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Abstract. Using 512 bit Advanced Vector Extensions, previous devel-
opment history and Intel documentation, BNF grammar based genetic
improvement automatically ports RNAfold to AVX, giving up to a 1.77
fold speed up. The evolved code pull request is an accepted GI software
maintenance update to bioinformatics package ViennaRNA.
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Original runtime ViennaRNA 2.4.9 (noSSE) on RNA STRAND v2.0, Intel Xeon 6126 2.60GHz

SSE128 (2.4.9)        
RMS fit (18% faster)
Evolved AVX512     
RMS fit (45% faster)

Fig. 1. Before and after GI elapsed time of RNAfold on 4663 RNA molecules.

1 Background: RNA, Genetic Improvement and RNAfold

RNA (like DNA) is a long chain biomolecule whose individual components
(bases) have distinct side-binding affinities as well as forming strong links along
the chain. Side bindings between elements of the chain cause RNA molecules to
fold up in particular ways (known as their secondary structure). Giving them
more or less stable shapes. The shapes of RNA molecules strongly influence their
chemistry, including gene regulation. The ViennaRNA package [1], particularly
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RNAfold, is often used to predict secondary structures from RNA base sequence
data. We show genetic programming can automatically convert existing RNAfold
code to new AVX 512 bit parallel instructions.

Unlike our earlier work with pknotsRG [2] initially there wasn’t a parallel
version of RNAfold. However in [3] we used grow and graft genetic programming
to create a parallel vector (SSE128) based implementation for ViennaRNA re-
lease 2.3.0. This was adopted and has been shipped with the ViennaRNA package
since release 2.4.7.

At the time we were frustrated in our attempt to go as far as the full 512 bit
Advanced Vector Extensions (AVX512) as they were only supported in spe-
cialised (GPU like) hardware accelerators, i.e. the Intel Phi cards. (ViennaRNA
also includes our GPU version of RNAfold [4].) Since then AVX has been made
available in certain top end Intel CPU chips and so we renewed our attempt to
automatically port RNAfold to AVX512 hardware.

As before we use our grammar based GP system [5]. The BNF grammar
is automatically created from our SSE128 code (itself based on ViennaRNA
release 2.3.0), the complete revision control system (RCS) history of the manual
code we generated for it and the Intel documentation (https://software.intel
.com/sites/landingpage/IntrinsicsGuide/# downloaded 26 Jan 2017). At
6122 rules (although only 631 are used) this is perhaps the largest GP grammar.

1.1 RNA STRAND

We test our evolved version of RNAfold on more than four thousand curated
RNA molecules given by RNA STRAND [7]. All 4666 RNA molecular base se-
quence were downloaded from http://www.rnasoft.ca/strand/download/

1.2 GGGP Genetic Improvement System

We use genetic improvement [8,9,5,10] as part of our Grow and Graft GP
(GGGP) [11] approach to optimising program sources. Previously [3] we had
profiled RNAfold using GNU gcov. It indicated almost all the execution time
was taken by a small fraction of function E ml stems fast in multibranch loops.c
Just four lines of C code inside nested for loops (given in Figure 2) were respon-
sible, since they were executed billions of times. Previously [3], RNAfold was
sped up by porting them to 128 bit SSE parallel Intel instructions. Here genetic
programming ports them to 512 bit operations.

for (decomp=INF, k=i + 1 + turn; k<=stop; k++, k1j++){

if((fmi[k] != INF ) && (fm[k1j] != INF)){

en = fmi[k] + fm[k1j];

decomp = MIN2(decomp, en);

}

}
Fig. 2. Original RNAfold 2.3.0 code in function E ml stems fast()
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Table 1. GGGP to improve SSE version of RNAfold

Representation: variable list of replacements, deletions and insertions into BNF gram-
mar (6122 rules)

Fitness: Compile (GCC 7.3.1 -O2, -DNDEBUG -march=native -mtune=native)
to modified object code, run on 10 000 random test cases. Two objec-
tives: number of tests past and elapsed time (see Section 2.10).

Population: 5000, panmictic, elite 10, generational.
Parameters: Initial population of random single mutants. 50% truncation selec-

tion. 50% two point crossover, 50% mutation. No size limit. Stop after
50 generations.

1.3 Parallel SSE 128-bit and AVX 512-bit Vector Instructions

At the end of the second millennium Intel started to increase the parallelism of
its flagship 8080 series of processors. The most successful approach remains to
integrate a few CPU cores onto single silicon chips. However at about the same
time, Intel extended the instruction set with SIMD (single instruction multiple
data) vector operations. Initially these allowed up to four 32 bit operations
in parallel but the SSE instruction set has been progressively extended and
now some processors support AVX (Advanced Vector Extensions) of 512 bits
(e.g. sixteen 32 bit int operations in parallel).

During the original manual phase, intermediate versions of the manually
written SSE code were held in a revision control system (RCS), see reference
[3, Figs. 2 and 3]. The appendix (Figure 9) shows the initial (SSE 128) seed
code. Additionally the whole of the Intel SSE/AVX library was available to
genetic programming via the automatically created grammar, as an extended
code base [12]. 5694 rules were derived from the SSE/AVX documentation. A
further 168 were derived from RCS. Finally 141 came from the manually written
SSE code Figure 9 (i.e. the usual GI source seed code [5]). Of these 68 are fixed
and provide the framework within which GI operates on the remaining 73.

The next section (2) deals with setting up the grammar (2.1) and type restric-
tions (2.2–2.5) before dealing with evolutionary parameters, such as population
size (2.6, see also Table 1), creating the initial population (2.7) crossover and
mutation (2.8) and fitness and selection (2.9–2.12). Some sections, e.g. 2.5, are
very detailed and included for completeness.

Section 3 gives the results. Whilst Section 4 discusses, although it was not
needed here, if a Pareto approach might been better and suggests that perhaps,
despite the noisy fitness function, elitism is not in fact necessary. Finally we
conclude (Section 5) that the evolved AVX 512 code is more than six times
faster than the sequential code.

2 The Grammar Based Genetic Programming System
For our genetic programming [13,14,15] system we used GISMOE [5,16,17,18].
GISMOE (Figure 5) creates a BNF grammar, which represents the original pro-
gram’s source code and legitimate changes to it. It then creates and evolves a
population of changes to the BNF. Each modified BNF is expanded to give a
modified (i.e. mutated) C source file, which is then compiled (Section 2.9) and
tested (Section 2.10).
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const int end = 1 + stop - k;
int cnt;
__m128i inf = _mm_set1_epi32(INF);

for (cnt = 0; cnt < end - 3; cnt += 4) {
__m128i a = _mm_loadu_si128((__m128i *)&fmi_tmp[k + cnt]);
__m128i b = _mm_loadu_si128((__m128i *)&fm[k1j + cnt]);
__m128i c = _mm_add_epi32(a, b);
__m128i mask1 = _mm_cmplt_epi32(a, inf);
__m128i mask2 = _mm_cmplt_epi32(b, inf);
__m128i res = _mm_or_si128(_mm_and_si128(mask1, c),

_mm_andnot_si128(mask1, a));

res = _mm_or_si128(_mm_and_si128(mask2, res),
_mm_andnot_si128(mask2, b));

const int en = horizontal_min_Vec4i(res);
decomp = MIN2(decomp, en);

}

for (; cnt < end; cnt++) {
if ((fmi[k + cnt] != INF) && (fm[k1j + cnt] != INF)) {

const int en = fmi[k + cnt] + fm[k1j + cnt];
decomp = MIN2(decomp, en);

}
}

k += cnt;
k1j += cnt;

Fig. 3. Start point for genetic improvement (ViennaRNA patch 2.4.9). Notice
SSE 128 code already added [3], cf. Figure 2.

2.1 Representation: Variable length Genome

Each variable length linear GP individual is an ordered list of changes to the
original BNF grammar. Each generation, mutation can append a new change to
the list or two point crossover can create a new list from randomly chosen parts
of two parent lists [19, p18]. (Section 3.2 contains an example individual.)

2.2 BNF Generic Vector Types veci (m128i, m256i or m512i)

Since we want evolution to have access to the new vector instructions (i.e. 256
and 512 bit) but these are not used in the existing code, we automatically convert
BNF grammar rules for existing 128 bit SSE code to a generic vector type
“<veci ”. (See also next section.) This can be either 4 int, 8 int or 16 int. There
are three special meta mutations vecsize=4, vecsize=8 and vecsize=16, which
convert veci in BNF rules to m128i, m256i or m512i types. An individual can
contain multiple vecsize= meta-mutations. Variable length linear GP individuals
are interpreted from left to right. Therefore veci is converted to whichever mnnni
type is active. (By default the original code, i.e. m128i, is active.)

Everyone in the initial population must be unique, therefore there are ini-
tially only three individuals contain vecsize= metamutations. However during
evolution their number climbs rapidly to fill the whole population and many
individuals contain more than one. However the three sizes are approximately
equally prevalent.
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const int end = 1 + stop - k;
int cnt;
__m128i inf = _mm_set1_epi32(INF);

#ifdef AVX512
for(cnt = 0; cnt < end - (16- 1); cnt += 16) {

__m512i a = _mm512_loadu_si512((__m512i*)&fmi[k + cnt]);
__m512i b = _mm512_loadu_si512((__m512i*)&fm[k1j + cnt]);
__m512i c = _mm512_add_epi32(a, b);
__m512i min1 = _mm512_shuffle_epi32(c, _MM_SHUFFLE(0,0,3,2));
__m512i min2 = c;
__m512i min3 = _mm512_shuffle_epi32(min2, _MM_SHUFFLE(0,0,0,1));
__m512i min4 = _mm512_min_epi32(min2,min3);
en = _mm512_reduce_min_epi32(min4);
decomp = MIN2(decomp, en);

}
#endif /*AVX512*/

//second for loop used by both 128 bit SSE and 512 bit AVX code
for (; cnt < end; cnt++) {

if ((fmi[k + cnt] != INF) && (fm[k1j + cnt] != INF)) {
const int en = fmi[k + cnt] + fm[k1j + cnt];
decomp = MIN2(decomp, en);

}
}

k += cnt;
k1j += cnt;

Fig. 4. AVX 512 code automatically evolved from Figure 3

2.3 veci Mutations: Switching between m128i, m256i or m512i

Half mutations are randomly chosen to be vecsize= meta mutations (see previous
section). The size, 4, 8 or 16, is chosen uniformly at random.

2.4 BNF Grammar Type Matching

The input code (appendix Figure 9) leads to 12 BNF Grammar types:
39 “” statement
2 for1 first part of for loop
2 for2 second part
2 for3 last part of for loop
2 inti int
1 int(veci) int function with generic input
8 const03 0, 1, 2 or 3
2 unsigned-char(const03,const03,const03,const03) function with 4 inputs
9 veci generic vector
2 veci(veci-const*) function pointer input, return vector
2 veci(veci,int) function with vector and int arguments
3 veci(veci,veci) function with two vector inputs

The first four types have been repeatedly used by GISMOE [5,20]. There are
39 simple lines (i.e. type “”). These can be deleted, replaced by another line,
swapped or inserted before another line. All genetic operations are between BNF
grammar rules of the same type. The two for loops in the input code (appendix
Figure 9) each give rise to three rules (of types: for1, for2 and for3).
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Initial pop of modifications

Fitness

Select

Improved AVX code

Pop of modifications

Mutation and Crossover

Grammar
Intel doc  5694

RCS          168

RNAfold   141

source code

Manually
written

to test
fragments
5000 code

4 232 596
test cases tests

10000

Fig. 5. Genetic Improvement evolutionary cycle starts with the original C code
(red, see appendix Figure 9). The grammar tries to ensure many mutants com-
pile, run, and terminate in ≤ 2 seconds. Fitness is given by run time and com-
paring with the original code’s answer.

2.5 Vector Type Matching Rules

The remaining types (i.e. “inti” to the end of the table in Section 2.4) are new
and relate to expressions rather than complete lines of code. They can be deleted,
replaced and exchanged. Rather than leave a hole in the source code, each type
has a delete operation. For example: deleting a constant actually causes it to be
replaced by zero, deleting a vector causes it to be replaced by a default vector
“a”, deleting a pointer to vector means replacing it with a pointer to “a” and
deleting functions causes them to be replaced by their first argument. Notice 5
types include “veci” and so expand to 15 possibilities, making 22 types in total.

The Intel SIMD intrinsics documentation defines 5694 library functions. The
documentation includes their input arguments’ types and return type. This gives
1337 types. However to be used the types must match rules given by the input
code (appendix Figure 9). There are several aspects of matching. Firstly, the
input code uses generic veci types (Section 2.2 above). Secondly, the Intel intrin-
sics use multiple types to represent pointers and integers. For example, the type
int(veci) matches functions which return int, mmask8, mmask16, mmask32 or
unsigned-int and (depending on vecsize, Section 2.2) takes vector inputs of type
m128i, m256i or m512i. The possible function type matches for this RNAfold
experiment are given in Table 2.

When a new mutant code change is made, the Intel intrinsics whose return
type matches the current vecsize are eligible and one of them (depending upon
mutant type) maybe chosen. However if there is a type error during fitness evalu-
ation when the mutated C code is generated, there is a fixup process which selects
the Intel intrinsic of the right type whose name matches as closely as possible.
Also there are a few veci(veci,int) and veci(veci,veci) types where veci takes dif-
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Table 2. Each box of three columns lists the number of Intel intrinsics which
match the generic type above the table. The columns are (left to right) for 128,
256 and 512 bit vectors. I.e. 4, 8 and 16 int parallel operations.

int(veci)

int(m128i) 3 int(m256i) 2 int(m512i) 7
mmask8(m128i) 3 mmask8(m256i) 2 mmask8(m512i) 1
mmask16(m128i) 1 mmask16(m256i) 1 mmask16(m512i) 1
mmask32(m128i) 0 mmask32(m256i) 1 mmask32(m512i) 1
unsigned(m128i) 0 unsigned(m256i) 0 unsigned(m512i) 2

veci(veci-const*)

m128i(m128i*) 1 m256i(m256i*) 0 m512i(m512i*) 0
m128i(m128i-const*) 4 m256i(m256i-const*) 4 m512i(m512i-const*) 0
m128i(void-const*) 6 m256i(void-const*) 0 m512i(void-const*) 5

veci(veci,int)

m128i(m128i,int) 16 m256i(m256i,int) 8 m512i(m512i,int) 6
m128i(m256i,int) 2 m256i(m128i,int) 0 m512i(m128i,int) 0
m128i(m512i,int) 2 m256i(m512i,int) 2 m512i(m256i,int) 0
m128i(m128i,const-int) 4 m256i(m128i,const-int) 0 m512i(m128i,const-int) 0
m128i(m256i,const-int) 2 m256i(m256i,const-int) 13 m512i(m256i,const-int) 0
m128i(m512i,const-int) 0 m256i(m512i,const-int) 0 m512i(m512i,const-int) 3
m128i(m128i,unsigned) 1 m256i(m256i,unsigned) 1 m512i(m512i,unsigned) 9

m512i(m512i,MM-*) 4

veci(veci,veci)

m128i(m128i,m128i) 136 m256i(m256i,m256i) 118 m512i(m512i,m512i) 110
m256i(m128i,m128i) 2 m512i(m512i,m128i) 9
m256i(m256i,m128i) 9

Total usable intrinsics 502 + 5 (see end of Section 2.5) = 507
All these available intrinsic functions are used by evolution.

ferent values. Since vecsize can only take one value at a time, these are resolved
by the fixup process. E.g., m128i(m256i,int) (3rd box in Table 2) may be replaced
by one of the m128i(m128i,int), m256i(m256i,int), m512i(m512i,const-int), etc.
functions. Which one depends upon the current vecsize but is fixed so that the
mapping from genotype to phenotype is deterministic.

In addition to the 502 intrinsics in Table 2, during evolution (Section 3),
the fixup process substitutes other rules from the input (17), the history (10),
an additional 5 Intel intrinsics (not in the table) or either stub. (Two stub
functions, mm cvtsi256 si32 mm cvtsi512 si32, are missing from the Intel in-
trinsics documentation. They were defined by hand in C code to correspond to
mm cvtsi128 si32.)

2.6 Population Size

In order to give a reasonable chance of including most of the eligible Intel SIMD
intrinsics, the population size was increased dramatically to 5000 mutants. The
initial generation (Section 3) used 396 intrinsics directly.

2.7 Initial Population

The initial population of 5000 unique individuals is created using mutation.
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2.8 Genetic Operations: Mutation and Crossover

Half the new members of each generation are created by mutation and half by
two point crossover. Excluding the small elite (Section 2.12), every member of the
generation is unique. Both mutation and crossover attempt to avoid repeating
the same changes by removing such duplications from the new child’s genome
before applying unique requirements. Similarly both apply limited scoping checks
to the genome [11,21]. If any of these checks fail, the change is discarded and a
new random change is attempted.

As mentioned above (Section 2.3) half the time mutation attempts to set
vecsize. (However the uniqueness requirement limits the extent to which vecsize
floods the population.) If chosen, vecsize is inserted at a random point in the
individual’s genome. Whereas other mutations are appended to it.

If not a vecsize mutation, one of the 73 variable BNF grammar rules from
the input code is chosen at random to be the target of a change. There are four
changes: delete, replace, insert and swap. Any grammar rule can be deleted but
for replacement, insert and swap, the replacement grammar rule must be of the
same type.

2.9 Compiling gcc -O2 -DNDEBUG -march=native -mtune=native

Both reference (see Section 2.11) and evolved code were compiled with the
same compiler (GCC 7.3.1) and options (-O2 -DNDEBUG -fmax-errors=1 and
-march=native -mtune=native). Notice we use the same default optimisations
(-O2 -DNDEBUG) as the ViennaRNA release kit. The gcc command line option
-DNDEBUG is used to disable some runtime checks in the supporting code. It does
not directly affect the evolved code. Since any compilation error is regarded as
fatal, -fmax-errors=1 is used to terminate failed compilations as quickly and
tersely as possible.

By default the compiler will not generate either SSE or AVX instructions.
Therefore, -march=native -mtune=native gcc command line options are used
to generate optimised SSE and AVX instructions.

As before [3], we prevent some semantically equivalent mutants by insisting
that the compiled object code is not identical to that of the un-mutated code.

2.10 Fitness Function: Run 10 000 times, Elapsed time & Accuracy

To get a realistic fitness function for training the GI, we started by profiling
the RNAfold code on a real RNA molecule. This logged all 4 232 596 calls to
the modular decomposition code in order. Each call was converted into a test
case, giving the inputs to the code and the required output (i.e. the test oracle).
Due to the way RNAfold uses dynamic programming, these test cases are also
roughly ordered by difficulty and run time.

To both decrease the chance of over fitting and to reduced run time only a
fraction of the test cases are used. To give a good spread of test case difficulty
and runtime the 4 232 596 are divided into five equal sequences. Each generation
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a sequence of 2000 tests is chosen uniformly at random from each group. Making
a total of 10 000 test cases.

Assuming the mutant compiled ok, it is run and the number of tests passed
and time taken, for both the original code and the mutant code, is recorded. The
whole process is subject to a total CPU limit of two seconds. (Normally it will
take about 0.2 seconds.)

2.11 Selection for Speed and Correctness

As is often the case, we have two aspects of fitness. 1) the code should be
accurate. 2) it should be fast. These are decided by testing (see previous section).
Instead of combing these in a fixed way our selection is similar to VEGA [22].
(See also Section 4.) All the individuals which completed the tests (i.e. did not
abort during testing) and passed at least one test are sorted into two lists by
speed and accuracy. One list is sorted first by number of tests passed (ties are
resolved by relative elapsed time). The second is sorted by relative elapsed time.
Ties are unlikely but for symmetry are resolved by number of tests passed. (To
compensate for short term fluctuations in computer speed we use the ratio of
run time of the mutant and that of the reference code measured in the same exe
image within a few milliseconds of each other. Indeed to obtain stable results
both reference and mutated code are run eleven times and the first quartile,
i.e. 3rd fastest, run time is used.) Mutants are taken alternatively from the two
lists. When a mutant has already been selected, because it came earlier in the
other list, it is not selected again. In effect that list loses a turn and selection
goes immediately to the other list.

As mentioned in Section 2.8, two children are created in the next generation
per selected parent. However if less than half the population are selected to be
parents the next generation is made up to the full population size by creating
random individuals.

It seems this selection does reduced the tendency of the population to con-
verge but also the population seems to diverge into two separate camps (as
reported for VEGA [23]), see Figure 7.

2.12 10 Member Elite

Up to the first ten members of the list sorted by tests passed (see previous
section) are automatically carried unchanged directly into the next generation
[24, p 101]. Normally they will also be parents of children (created with additional
mutations or by crossover).

Since it is easy to retain the best of each generation, we had not been overly
worried by evolution’s tendency to lose (even the best) individuals from the
population. Nonetheless, due to the noisy fitness function, we tried elitism here
and it did indeed stabilise the best (see Figures 6 and 7). Nonetheless having
the best of run individual in the last generation does not seem a big gain and
in practise we were still free to chose the best mutant from any generation
(Section 3.2).
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3 Results

The next section describes the evolutionary processes, before Section 3.2 de-
scribes why we chose the best mutant from generation 34. Section 3.3 explains
how its genome translates into coding changes. Whilst Section 3.4 shows it gives
a six fold speed up. Then Section 3.5 measures it in situ, i.e. within RNAfold,
and shows it speeds up the whole of RNAfold by 45% on real RNA molecules.

3.1 Evolving the Population

Several hundred individuals which pass all their tests and are more than 10%
faster evolved (Figure 6 red ×). But most of population evolve to be either
much faster and fail many tests or pass all their tests but give no speed up
Figure 7. Figure 7 highlights new code which passes all its tests and is at least
40% faster (×) or is more than 60% faster (+).

During evolution 13% of mutants fail to compile, 0.3% compile ok but their
object code is identical to the seed code’s (end of Section 2.9), 1.5% fail at
runtime (e.g. segfault or CPU time limit exceeded) and 85% run all ten thousand
tests.
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3.2 Choosing the Winner

We choose the best individual in generation 34 since it was the first to be more
than 60% faster (actually 69.9%) and pass all 10 000 of the tests used in its
generation. This evolved individual contains 8 mutations:

vecsize=16
< modular decomposition.c 100>x< modular decomposition.c 77>
<veci 2modular decomposition.c 110>
<int(veci) 1modular decomposition.c 116><int(m512i) IntrinsicsGuide.txt 8506>
<veci(veci,int) 1modular decomposition.c 112><m256i(m512i,int) IntrinsicsGuide.txt 4614>
< modular decomposition.c 97>x< modular decomposition.c 84>
<const03 5modular decomposition.c 114>
<veci(veci,veci) 1modular decomposition.c 113>

3.3 Explaining the Wining Evolved Program

The evolved individual (8 mutations) can be reduced to three, since:

– Swapping lines 100 and 77 makes no difference.
– Similarly swapping lines 97 and 84 makes no difference.
– Deleting rule <veci 2modular decomposition.c 110> again makes no differ-

ence (since delete substitutes a default variable for the deleted one, which
turns out to be identical).
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– Similarly <const03 5modular decomposition.c 114> replaces a zero with an-
other zero.

– The mutation which changes the right hand side of line 112 also makes no
difference since the variable it writes to (min1) is no longer used. (Originally
it was set on line 112 and used on line 113.)

The three remaining essential changes that are left are: vecsize=16
<int(veci) 1modular decomposition.c 116><int(m512i) IntrinsicsGuide.txt 8506>
<veci(veci,veci) 1modular decomposition.c 113>

– vecsize=16 converts all generic SSE code to 512 bit code.
– Line 8506 of the Intel documentation IntrinsicsGuide.txt is mm512 reduce min epi32,

so <int(veci) 1modular decomposition.c 116><int(m512i) IntrinsicsGuide.txt 8506>
causes en = mm cvtsi128 si32(min4) to be replaced with
en = mm512 reduce min epi32(min4). This is a key step, since it causes
the output of the code (en) to be set to the minimum of sixteen (32 bit) int
values held in 512 bit vector min4.

– The remaining mutation, increases efficiency by allowing the optimising com-
piler (note -O2) to avoid calculating a result by spotting it is being written
into a variable which is not used.

Other efficiency gains might be possible by removing other unneeded operations.
(Conceivable the compiler has already splotted them without needing explicit
changes to the source code.) As is usual in GI practise [5], only the critical
changes were retained. The evolved code gives exactly the same answers as the
original sequential code.

3.4 Improved Performance inside RNAfold

To estimate the total improvement in performance we ran RNAfold on a long
real sequence eleven times: for no SSE, for the 2.4.9 SSE128 released code and
for the new evolved AVX512 code. To allow a regression plot (see Figure 8) each
of these were repeated with the critical code repeated from one to ten times. The
gnuplot (version 4.6.2) fit function was used to calculate the RMS least errors
linear fit (Figure 8).

In summary, on long sequences, the SSE128 code in release 2.4.9 is 3.428 ± 0.002
times faster than the nonSSE code and the newly evolved AVX512 code is
1.774 ± 0.003 faster than the released SSE128 code. I.e. 6.083 ± 0.002 times faster
than the non SSE release 2.4.9 code.

3.5 Performance on Hold Out Data

The new mutant AVX 512 code was inserted into the current release (2.4.9) of
RNAfold by hand and tested on the whole of RNA STRAND (see Figure 1). In
all 4 666 cases it gives identical results. Even on the five corrupt fasta strings in
RNA STRAND v2.0 where RNAfold fails, the evolved and the released code give
the same error messages. It is on average 45% faster. (Remember this includes
the whole code, not just the dynamic programming inner loop.)
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nosse      11.55190 +/-0.012280
SSE128    3.36968 +/-0.006621
AVX512    1.89912 +/-0.004035

Fig. 8. Estimating true runtime with linear regression. Running multiple times
(x-axis) allows the individual elapsed time to be estimated from the gradient.
CRW 00528 (4382 bases) using newly evolved AVX512 (lowest +) code, the
release 2.4.9 code configured with –enable-sse (+) and without (nosse × top).

4 Discussion: Population Convergence

The (VEGA [22] like) selection by two individual objectives (Section 2.11) avoids
arbitrary weighting of the objectives but it appears (as suggested by Gold-
berg [23]) that it leads to the population dividing between the two objectives, so
some programs are very fast but pass few tests and others pass all their tests but
give little speed-up (Figure 7). Whereas an approach like NSGA II [25] could
potentially lead to more intermediate mutants (i.e. give a speed up but fail some
tests) [26,27]. It may be having the larger population allows sufficient diversity
in the two sub-populations to allow evolution to progress without the need for
more refined selection techniques.

It appears that the use of an elite group ([24, p 101] Section 2.12) does stably
allow its preservation from one generation to the next. However the number of
good fast mutants does not grow exponentially but quickly stabilises at three
or four more than the size of the elite. As mentioned in Section 2.12, it may be
these dozen or so high fitness individuals are not essential to allow evolution to
progress.
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5 Conclusions

Using a standard computer under a standard operating system (Linux) without
specialised customisation to either, we have demonstrated that evolution can
optimise a critical function written in C. Automatically creating AVX instruc-
tions, it gives almost a doubling in speed (1.71 fold) on top of hand written SSE
instructions (6.1× the sequential code).

The new code has been included in ViennaRNA since release 2.4.11.
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int
modular_decomposition(const int i, const int ij, const int j, const int turn, const int fmi[(2913+1)], const int fm[5000000]) {

int k = 0;
int k1j = 0;
int stop = 0;
int end = 0;
int en = 0;
int decomp = INF;
k += i;
k += turn;
k += 1;
k += 1;
k += -1;
k += 2;
k += -2;
k += 3;
k += -3;
k1j += ij;
k1j += turn;
k1j += 2;
k1j += 1;
k1j += -1;
k1j += 2;
k1j += -2;
k1j += 3;
k1j += -3;
stop += j;
stop += -turn;
stop += -2;
stop += 1;
stop += -1;
stop += 2;
stop += -2;
stop += 3;
stop += -3;
{
end += 1;
end += stop;
end += -k;
end += 1;
end += -1;
end += 2;
end += -2;
end += 3;
end += -3;
int i;
for(i=0;i<end-3;i+=4) {

__m128i a = _mm_loadu_si128((__m128i*)&fmi[k +i]);
__m128i b = _mm_loadu_si128((__m128i*)&fm[k1j+i]);
__m128i c = _mm_add_epi32(a,b);
__m128i min1 = _mm_shuffle_epi32(c, _MM_SHUFFLE(0,0,3,2));
__m128i min2 = _mm_min_epi32(c,min1);
__m128i min3 = _mm_shuffle_epi32(min2, _MM_SHUFFLE(0,0,0,1));
__m128i min4 = _mm_min_epi32(min2,min3);

en = _mm_cvtsi128_si32(min4);
decomp = MIN2(decomp, en);

}
for(;i<end;i++) {

en = fmi[k +i]+fm[k1j+i];
decomp = MIN2(decomp, en);

}
}
return decomp;

}

Fig. 9. Starting point for evolution. C code derived from ViennaRNA (Figures 2
and 3). Pairs of lines of code were manually added before the for loops to provide
feed stock for evolution [2] but appear not to have been helpful. Instead successful
changes (Figure 4) come from the for loops themsleves.
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