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Classification of soundscapes of urban public open spaces 1 

Abstract: It is increasingly acknowledged by landscape architects and urban planners that the 2 
soundscape contributes significantly to the perception of urban public open spaces. Describing and 3 
classifying this impact, however, remains a challenge. This article presents a hierarchical method for 4 
classification that distinguishes between backgrounded and foregrounded, disruptive and supportive, 5 
and finally calming and stimulating soundscapes. This four-class classification is applied to a growing 6 
collection of immersive audio-visual recordings of sound environments from around the world that 7 
could be explored using virtual reality playback. To validate the proposed methodology, an experiment 8 
involving 40 participants and 50 soundscape stimuli collected in urban public open spaces worldwide 9 
was conducted. The experiment showed that (1) the virtual reality headset reproduction based on 10 
affordable spatial audio with 360-degree video recordings was perceived as ecologically valid in terms of 11 
realism and immersion; (2) the proposed classification method results in well-separated classes; (3) 12 
membership to these classes could be explained by physical parameters, both regarding sound and 13 
vision. Moreover, models based on a limited number of acoustical indicators were constructed that 14 
could correctly classify a soundscape in each of the four proposed categories, with an accuracy 15 
exceeding 88% on an independent dataset. 16 

Keywords: soundscape, classification, urban space 17 

1. Introduction 18 

Soundscape, as defined by the International Organization for Standardization (ISO), is an “acoustic 19 
environment as perceived or experienced and/or understood by a person or people, in context” (ISO, 20 
2014). The urban soundscape contributes to the perceived quality of the urban environment and the 21 
identity of a city. Ambient sounds may evoke thoughts and emotions, may influence our mood or steer 22 
our behavior. Cities are comprised of many types of public outdoor spaces, each with their distinctive 23 
soundscape. Inspired by the potential positive effects a suitable acoustic environment may have on well-24 
being of citizens and the attractiveness of the city, the challenge of designing the acoustic environment 25 
of urban public outdoor spaces has attracted attention since decades (Southworth, 1969; Schafer, 1994). 26 

During the past decades, research on the urban sound environment and soundscape has grown, 27 
driven by increased population density and abundance of mechanical sounds in mega-cities across the 28 
world. Sound in outdoor environments has traditionally been considered in negative terms as both 29 
intrusive and undesirable (Jennings and Cain, 2013). However, sound may provide positive effects as 30 
well, such as enhancing a person's mood, triggering a pleasant memory of a prior experience, or 31 
encouraging a person to relax and recover (Payne, 2013). Where classical noise control exclusively 32 
focusses on reducing levels of unwanted sounds, soundscape design requires new tools. Hence the 33 
advent of realistic and affordable immersive audio-visual reproduction systems (head-mounted displays), 34 
backed by increasingly efficient and realistic acoustic simulation and auralization models (Vorländer, 35 
2008) has been identified as a key enabling technology. Immersive virtual reality could also become a 36 
valuable tool for interactive participatory evaluation of the soundscape in urban planning and design 37 
projects (Puyana-Romero et al., 2017; Echevarria Sanchez et al., 2017), as virtual reality reproduction 38 
systems are rapidly becoming affordable and widely available. 39 

Design is often inspired by good examples. As context is an important part of the soundscape and the 40 
visual setting is a string cue for context, examples of acoustic environments should be embedded in 41 
accurate 360-degree visualization. To date, however, no unique protocol or standards exist for 42 
immersive audio-visual recording and playback of urban environments with soundscape in mind (Hong 43 
et al., 2017). In addition to providing examples, high-quality immersive recordings of existing spaces are 44 
highly valuable to serve as an ecologically valid baseline for studying the perceptual outcome of noise 45 
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control and soundscape measures. Hence, such recordings are now being collected in cities across the 46 
globe. To unlock such collections, a suitable classification is needed and best examples of each class 47 
need to be identified. 48 

One could consider a purely acoustical categorization (Rychtáriková and Vermeir, 2013). However, 49 
according to the soundscape definition (ISO, 2014), soundscape evaluation should not be restricted to 50 
acoustical determinations only (Zannin et al., 2003), as the social context (Maris et al., 2007), visual 51 
context (Sun et al., 2018a) and individual differences need to be included (Dubois et al., 2006). 52 

When asked to describe the urban acoustic environment, persons tend to name audible sounds and 53 
their sources and may relate the quality of the environment to the meaning given to these sounds 54 
(Dubois et al., 2006). In view of the importance of audible sounds, classification schemes based on urban 55 
sound source sorting have been proposed (Léobon, 1995; Brown et al., 2011). Such classifications can 56 
easily be applied to collections of audio-visual recordings through listening experiments conducted by 57 
sound specialists, yet one should remain aware that attention plays an important role in the perception 58 
of the acoustic environment in a real context (Oldoni et al., 2013). Classification based on audible 59 
sources does not capture the influence of the composition as a whole on persons and therefore should 60 
be complemented by more holistic indicators. 61 

Holistic descriptors that have been proposed previously and that could be used for classification 62 
include: pleasantness, music-likeness, restorativeness, appropriateness. (Aletta et al., 2016; 63 
Botteldooren et al., 2006). A lot of research has focused on the soundscape descriptors inspired by 64 
emotion-denoting adjectives (Brown, 2012; Aletta et al., 2016). The well-known circumplex model of 65 
affect (Russell, 1980) identifies eight affective concepts that can be mapped to a two-dimensional plane. 66 
Previous research (Berglund and Nilsson, 2006; Axelsson et al., 2010) translated core affect to the 67 
physical environment that causes it and showed that outdoor soundscape quality may be represented 68 
by two main orthogonal components: pleasantness and eventfulness. In such a 2D model specific 69 
directions are labelled: exciting (45˚), chaotic (135˚), monotonous (225˚) and calm (315˚).  70 

Although very popular, this assessment and classification framework has also been subject to some 71 
critique. Regarding the core affect model itself, research has identified a main problem with the two-72 
dimensional approach offered by Russell: a variety of overlapping emotional concepts can be placed in 73 
the same quadrant of the model (e.g., Ekkekakis, 2008). Based on the 2D core affect model, Latinjak 74 
(2012) proposed a three-dimensional model, where a third dimension, namely “time perspective”, was 75 
added next to arousal and valence. In addition, the classification of soundscape in the pleasantness – 76 
eventfulness plane assumes that the environmental sound is attentively listened to. It assumes that 77 
perceiving the sonic environment is a main purpose of an individual visiting a place, which is not often 78 
the case. Unawareness of the surroundings (inattentional blindness (Simons and Chabris, 1999) and 79 
inattentional deafness (Macdonald and Lavie, 2011)) occurs especially during moments with reduced 80 
attention towards the environment. The sonic environment is thus often backgrounded. 81 

Besides the soundscape descriptors and the 2D core affect model, a triangular qualitative urban 82 
sound environment mapping technique was recently proposed (Kamenický, 2018). This research used 83 
activities, mechanisms and presence to build an objective soundscape map based on composition of 84 
sound events. A significant correlation between qualitative cognitive-semantic variables clustering and 85 
quantitative acoustic and psychoacoustic parameters agglomerative clustering was proposed. 86 

In an urban environment, the soundscape, the landscape, etc., and its users form an ecological entity. 87 
It might therefore be more suitable if the soundscape classification of existing urban sites could be 88 
treated within such a holistic context. With the aforementioned discussion in mind, we propose a coarse 89 
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hierarchical classification that could be used for labelling audiovisual collections or as a first mapping of 90 
the city. The proposed classification, shown in Figure 1, was first suggested in De Coensel et al. (2017). In 91 
a first stage, soundscapes are classified according to whether they are backgrounded or contain 92 
foregrounded sound elements when perceived within context (Botteldooren et al., 2015) – where only 93 
visual context has been considered here. Foregrounded sound affects the overall perception of the 94 
environment. In a second stage, one could distinguish between sonic environments that are disruptive 95 
or supportive for the envisaged use. Disruptive sound environments could lead to annoyance. Finally, 96 
the sonic environment could be supportive for the overall experience of the living environment in many 97 
different ways. Here, the proposed classification follows the arousal dimension of core affect to 98 
distinguish between calming (reducing arousal) and stimulating (increasing arousal). We forward the 99 
hypothesis that the proposed classification system is strongly related to the sonic environment itself and 100 
less sensitive to differences between people than previous classification systems and therefore more 101 
appropriate for classifying the audio-visual representation of a place. 102 

 103 

Figure 1 – Proposed hierarchical classification of urban soundscapes. 104 

It is worth noticing that the proposed classification is not crisp; one could potentially mathematically 105 
formalize this classification using fuzzy set memberships. 106 

In this article, the proposed classification will for the first time be made operational through a 107 
questionnaire that is administered to a panel of volunteers that is experiencing the immersive playback 108 
at the laboratory of a collection of audio-visual recordings at an urban site (Section 2.2.3). This will allow 109 
exploring the rationality of the proposed soundscape classification, the underlying affiliation between 110 
categories and its comparison with the 2D core affect model (Section 3.3). Classification of a collection 111 
achieved by questioning persons about the soundscape as experienced in the virtual reality environment 112 
has some drawbacks: because of the variability between persons (Sun et al., 2018b), this requires an 113 
assessment panel of sufficient size, which results in a large effort and cost for classifying new recordings. 114 
Hence this paper also proposes models based on acoustical parameters (Section 3.5).  115 

2. Methodology 116 

2.1 Methods for objective measurements and recording protocol 117 
The methodological approach for the site selection, audio-visual recordings and post-processing of 118 

the for the Virtual Reality application are reported in Appendix I. 119 

2.2 Experiment: Soundscape classification 120 

2.2.1 Materials and participants 121 
In total, 50 one-minute recordings were selected from the complete recording in this experiment 122 

(e.g.: Figure 3). One minute is very short for assuring that participants are not focusing on the sound, but 123 
this time interval was chosen as a compromise that still gave a good impression but would not take too 124 
much time from the users of the collection. The Table IV in Appendix III gives the overview of their basic 125 
characteristics namely location, time, and LAeq, 1 min (A-weighted equivalent sound pressure levels during 126 
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the one-minute period). The LAeq of each stimulus was calculated on the basis of the binaural signal, 127 
applying an independent-of-direction (ID) equalization, and taking the energetic average between both 128 
ears.  129 

To allow for completely independent validation of prediction models, the whole experiment was 130 
repeated two times. First, 25 stimuli (Table IV in Appendix III – collection 1) were chosen for participant 131 
group 1 (20 participants, 6 female, Agemean=28.9 yr, standard deviation 2.8 yr, range: 25-35 yr). Five 132 
cities (Montreal, Boston, Tianjin, Hongkong and Berlin) were included in the experiment, and each city 133 
contributed with 5 stimuli. The stimuli were presented city by city to the participants. The city order and 134 
the order of stimuli in each city were randomized. 135 

Another 25 recordings (Table IV in Appendix III – collection 2) were presented to participant group 2 136 
(20 participants, 5 female, Agemean=30.2 yr, standard deviation 5.6 yr, range: 22-46 yr). The number of 137 
stimuli per city was different now. These 25 recordings were grouped into 5 groups of 5 stimuli each, 138 
avoiding e.g. that one group contained only parks. The group order and the order of stimuli in each 139 
group were again fully randomized. To avoid social biases, the participants were a well balance in terms 140 
of occupation, nationality and education level. 141 

All participants had normal hearing status which was assessed via pure tone audiometry (PTA) 142 
carried out in a soundproof room using a regularly calibrated AC5Clinical Computer Audiometer. All 143 
participants had normal color vision which was tested by the “Ishihara test for color deficiency” (Ishihara, 144 
1957). The participants performed the perception experiment individually, and were offered a gift 145 
voucher as compensation. 146 

 147 

Figure 3 – Example: snapshot of stimuli R0001. (more stimuli could be found in Supplement 1). 148 

2.2.2 Experiment setup 149 
Participants joined this experiment inside a soundproof booth (Figure 4), where the process was 150 

monitored through a double-glassed window from outside. Stimuli were played back using a PC (placed 151 
outside the booth), equipped with the GoPro VR Player 3.0 software, which allowed to play back video 152 
with spatial audio. The 360-degree video was presented through an Oculus Rift head-mounted display. 153 
The audio was played back through Sennheiser HD 650 headphones, driven by a HEAD acoustics LabP2 154 
calibrated headphone amplifier. The gain of the ambisonics audio has been adjusted such that their level 155 
is as close as possible to that of the corresponding binaural audio tracks.  156 

During the experiment, participants remained seated (seat height: 0.50m), which allowed them to 157 
freely move their head and look around in all directions but physically remained at a fixed position. The 158 
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sensor for Oculus Rift was placed on a tripod (height: 1.20m), keeping approximately the same height as 159 
the participant’s head position. A microphone was mounted on the tripod and was driven by a laptop, 160 
which was used to monitor the experiment from outside. When participants needed to answer 161 
questions during the experiment, they could do it by (verbal) talking and the experimenter could mark it 162 
from outside the booth. By this procedure, a holistic immersed experience was maintained throughout 163 
the full experiment. 164 

 165 

Figure 4 – Experiment setup (Left: participant inside the listening booth; Right: view from monitoring 166 
position). 167 

2.2.3 Procedure 168 
Soundscape classification according to Figure 1 was achieved via a questionnaire. The questionnaire 169 

was designed to follow the hierarchical nature of the classification and with brevity in mind (Figure 5). 170 
To assess foregrounding/backgrounding of the sound within the holistic experience participants were 171 
asked: (Q3) How much did the sound draw your attention? To frame this question, a more general 172 
question (Q1) In general, how would you categorize the environment you just experienced? was added. 173 
The options for answering this question already focus attention on the more pleasurable evaluation: 174 
“calming/tranquil” to “lively/active” but with a clear option “neither” in between. The question 175 
distinguishing disruptive from supportive environments relates to possible activities: (Q4) Would the 176 
sound environment prevent you from doing the activities above? A question that again required some 177 
framing by listing possible activities in Q2 (see Figure 5). The answers to Q2 are not used and hence the 178 
choice of possible activities is not critical.  179 

Finally, Q5 evaluates the contribution of the sonic environment as being supportive to the perception 180 
of the overall environment. This question defines the labels calming and stimulating as sonic 181 
environments that contribute to the calmness/tranquility and the liveliness/activeness of the place 182 
respectively. 183 

Participants experienced the one-minute stimuli first, followed by the 5 questions presented in the 184 
VR screen with a black background (Figure 5). Participants needed to answer all 5 questions verbally. 185 
Hence also the choice for a 5-point answer scale with answering categories equidistantly spaced is in 186 
agreement with Fields et al. (2001). Note that question 5 has two versions, only one (5a or 5b) is 187 
presented to the participants. This is based on the answer in question 1: participants answering “very 188 
calming/tranquil” or “calming/tranquil” received question 5a, while participants answering one of the 189 
other choices got question 5b. After answering the questions, the next stimuli were presented. Thus, 190 
participants did not have to take off the headset between experiencing each stimulus.  191 
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The experiment was divided in 5 sections, each section contained 5 stimuli (in collection 1, one city is 192 
one section, while in collection 2, one group is one section, see Section 2.2.1). Between each section, 193 
there is a small break where participants could take the headset off. During this break, participants 194 
needed to answer additional questions regarding to the 5 stimuli they just experienced. Participants got 195 
5 photos of the opening scenes of the stimuli in the same order as the stimuli play order. Below each 196 
photo, participants first needed to put a score on a 11-point scale (from 0: “not at all” to 10: 197 
“extremely”) on the following questions: “How well do you remember the sound environment that goes 198 
with this picture?” (which shows whether an environment is memorable), and “How would you rate the 199 
sound environment of this place in terms of "full of life and exciting"/"chaotic and restless"/"calm and 200 
tranquil"/"lifeless and boring"?”(Axelsson, 2015a), respectively. After this break, the next 5 stimuli were 201 
presented to the participants with the same procedure until all 25 stimuli (i.e. 5 sections) were 202 
evaluated. 203 

After the participants finished the 25 stimuli, two questions regarding the overall reproduction 204 
quality were asked, specifically on the realism and immersion, using an 11-point scale. The questions 205 
presented during the break and at the end of experiment were answered on paper, thus an 11-point 206 
scale could be seen as continues scale. 207 

 208 

Figure 5 – List of questions asked to the participants in the classification experiment. Lines and 209 
multipliers denote the flow taken depending on the participants’ answers. Colored parts show possible 210 

outcomes of the classification. 211 

2.2.4 Data processing 212 
In this study, the fuzzy membership set of the four proposed classes backgrounded, disruptive, 213 

calming, and stimulating is based on the answers in question 3, 4, 5a and 5b, as marked in Figure 5, 214 
where SA(x) is the membership degree of soundscape x in the fuzzy set A. The fuzzy membership set, i.e. 215 
the correspondence between the answer on the question and the degree of belonging to each class, is 216 
given in Table 1. 217 

Table 1 – The original fuzzy membership set for each class of soundscape. 218 

Question Answer Fuzzy set 
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Not at all A little Moderate Highly Extremely 

Question 3 1 0.5 0 0 0 Sbackgrounded(x) 
Question 4 0 0 0.5 1 1 Sdisruptive(x) 
Question 5a 0 0 0.5 1 1 Scalming(x) 
Question 5b 0 0 0.5 1 1 Sstimulating(x) 

 219 

To account for the hierarchical structure of the proposed classification scheme, exclusion rules 220 
should be implemented. For example, a soundscape cannot be disruptive if it is backgrounded or it 221 
cannot be supportive if it is disruptive. In mathematical form, this implies a transformation of the 222 
membership degree: 223 

𝑆𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑
′ = 𝑆𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑

 

𝑆𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑣𝑒
′ = 𝑆𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑣𝑒

 (1 − 𝑆𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑)

𝑆𝑐𝑎𝑙𝑚𝑖𝑛𝑔
′ = 𝑆𝑐𝑎𝑙𝑚𝑖𝑛𝑔

 (1 − 𝑆𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑣𝑒 − 𝑆𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑)

𝑆𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑛𝑔
′ = 𝑆𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑛𝑔

 (1 − 𝑆𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑣𝑒 − 𝑆𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑)

 

where the AND and NOT operator were implemented as a probabilistic t-norm and fuzzy negation. 224 

The membership data used in the analysis was performed after the above described mathematical 225 
transformation (i.e. all 𝑆′ ). The above procedure was applied to each soundscape-participant 226 
combination. For each soundscape, the average membership over all participants on the four classes 227 
was also calculated. Next to this, participants also evaluated each soundscape in terms of the 2D core 228 
affect model (“full of life and exciting”, “chaotic and restless”, “calm and tranquil” and “lifeless and 229 
boring”) on an 11-point scale during the small break in the experiment. Similarly, the average score 230 
using the 2D core affect model quadrant categories for each soundscape was also calculated. 231 

2.2.5 Psychoacoustical indicators and saliency 232 
A preliminary study (Appendix II) showed that either ambisonics or binaural recordings could be used 233 

for the reproduction. The gain of the ambisonics audio tracks has been adjusted such that their level is 234 
as close as possible to that of the corresponding binaural audio tracks. As the binaural tracks were 235 
recorded with a fully calibrated setup, the acoustical properties of the recordings are calculated on the 236 
basis of the one-minute binaural tracks using HEAD acoustics ArtemiS 8.3. The values for equivalent A-237 
weighted sound pressure level (LAeq), percentile (LAxx) and maximum sound levels (LAFmax) were calculated 238 
as the energetic average of both left and right ears, whereas the values for loudness (N), sharpness (S) 239 
and corresponding percentile and maximum values were calculated as the arithmetic average between 240 
left and right ears.  241 

Sounds that are noticed have a strong influence on the perception of soundscape (Kang et al., 2016, 242 
Terroir et al., 2013, De Coensel et al. 2009). Noticing of the sound is influenced by two interchanging 243 
processes: top-down and bottom-up attention. Top-down attention is voluntary: it assumes an active 244 
listening for the sounds occurring in the environment. On the other hand, bottom-up attention is 245 
involuntary and is influenced by the sonic environment alone. To investigate the bottom-up attention to 246 
sound, saliency as a concept is introduced. Saliency indicates how much the specific sound or a sound 247 
event stands out of its background. In consequence, the higher the saliency, the higher the probability of 248 
a sound being noticed. Although related to perception, it is possible to define the physical characteristics 249 
that contribute to saliency (Kaya and Elhilali, 2017). In this study, we used a computational model 250 
(Filipan et al., 2019) which calculates the saliency of the sound by simulating several aspects of the 251 
measured physiological response of the brain. This saliency model has two processing stages 252 
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implemented: auditory periphery and brain processing. Auditory periphery simulates the initial 253 
transformation of the sound from the acoustic wave to the firing of neurons. The second stage of the 254 
model is related to the sensitivity of the human auditory cortex to spectrotemporal modulations 255 
(Santoro et al., 2017; Schönwiesner and Zatorre, 2009) that are frequently encountered in speech and 256 
biological vocalizations. This reaction is simulated by mapping the tonotopically spaced output of the 257 
periphery to both amplitude (AM) and frequency modulation (FM) space. The mapping is achieved by 258 
using resonator filters for the AM and summation of the differently delayed signals across frequency 259 
bands for the AM/FM combination space. These signals are then fed through the sensory activation 260 
stage, a part of the model that simulates defocusing of the attention (Xue et al., 2014, Krause et al. 2013) 261 
by inhibiting the excitatory input. To summarize the saliency of the sound in a single value indicator, all 262 
demodulated signals (spread over the frequency bands and AM/FM frequencies) are summed and 263 
saturated using a logarithm function. For the full overview of the saliency model used we refer to 264 
(Filipan et al., 2019). 265 

One-minute indicators for the time-evolution of the overall saliency in this study calculated as: 266 
maximum (SL_max), average (SL_avg), median (SL_median) and 5, 10, 50, 90 and 95 percentile values 267 
(SL_xx). 268 

2.2.6 Visual factors 269 
The visual factors in each stimulus were also assessed, specifically the percentage of green pixels – a 270 

proxy for vegetation – and the number of people. The 50 stimuli were also labelled by the density of 271 
people appearing in the video using a qualitative 5-point scale, ranging from none to extremely dense. 272 
The proportion of person density grade in the dataset is 22%, 30%, 26%, 14%, 8% of the cases (from 273 
“none” to “extremely”), respectively.  274 

The opening scene in each stimulus was used to calculate the green area percentage. The digital 275 
pictures consisted of 4096 × 1632 pixels and were saved in .png format. The “RGB greenness” parameter 276 
GRGB (Crimmins and Crimmins, 2008; Richardson et al., 2007) is used and calculated as GRGB = (G-R) + (G-277 
B), where G, R and B are the relative intensities of the green, red and blue channels in the RGB picture, 278 
respectively. A more robust assessment of green vegetation is the (broadband) normalized difference 279 
vegetation index (NDVI), however, requiring a measurement of near-infrared light. RGB greenness was 280 
shown to perform quite similar to NDVI in capturing the amount of vegetation as concluded by 281 
Richardson et al. (2007). 282 

In a next step, an appropriate threshold was set. Note that all green is included when calculating 283 
GRGB; so not only leaves from trees and bushes but also grass zones. Non-green vegetation is missed in 284 
this assessment. However, in this study, vegetation is predominantly green colored. Accidental non-285 
vegetation green-colored objects were manually removed, typically accounting for only small zones in 286 
the photographs. Such a manual action was needed in less than 10% of the pictures. In Figure 6, 287 
examples are shown for a low, a moderate and a high vegetation percentage. 288 
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 289 

Figure 6 – Green coverage of opening scene in 360-degree videos. Top to bottom: low, moderate and 290 
high green percentage. (Left: original snapshots; Right: corresponding scene with pixels identified as 291 

green). 292 

2.3 Statistical analysis 293 
To observe relationships between the proposed soundscape categories, a principal component 294 

analysis (PCA) was performed. A PCA was also applied to the quadrant classifications in the 2D core 295 
affect model. A mixed factor generalized linear model (GLMM) fit was applied to check the relationship 296 
between memorization (question during the break, section 2.2.3) and fuzzy membership for each 297 
soundscape. Moreover, a GLMM was constructed for the four proposed categories to analyze the 298 
contribution of underlying physical parameters to the classification. The fittest model for each 299 
soundscape category was looked for, using the Akaike Information Criterion (AIC) as model quality 300 
indicator (models with smaller AIC values fit better). Finally, predicting models from collection 1 and 2 301 
were built via linear regression, to predict the scores on four soundscape categories. A receiver 302 
operating characteristic (ROC) analysis was made to check the prediction quality. The statistical analysis 303 
in this study was conducted using the SPSS statistics software (version 25). 304 

3. Results 305 

3.1 Correlation between audiovisual perception and soundscape clustering 306 
A crisp way to categorize the soundscapes is to compare the fuzzy membership to the proposed four 307 

classes. If the membership to one specific class is much larger than in the others, this soundscape is 308 
sorted in this class. Otherwise, this soundscape categorization remains unclear. Figure 8 shows the 309 
distribution of soundscapes that can be categorized into one of the four classes (i.e. 70.1% of cases), 310 
over the general audiovisual perception of the environment (answer to question 1). More specifically, 311 
backgrounded was found in 18% of the case, while disruptive, calming, stimulating was found in 18%, 312 
14.5%, 19.6% of the cases, respectively. 313 
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  314 

Figure 8 – Proportion of the fuzzy membership to soundscape classification category (Sections 2.2.3. 315 
and 2.2.4.) as a function of the overall perception of the audiovisual environment (Section 2.2.3.). 316 

For the backgrounded category, the sound at the location does not lead to the awareness of the 317 
acoustical environment. The distribution shows that an overall “very lively/active” environment is very 318 
unlikely if the soundscape is backgrounded but then tends more towards a “calming/tranquil” 319 
environment. The disruptive category shifts the curve towards the “lively/active” side making a “very 320 
calming/tranquil” overall environment very unlikely. The supportive soundscape (calming and 321 
stimulating) pushes the curve towards the extremes in overall perception. A higher proportion of 322 
calming soundscapes appears in the overall perception cases of “very calming/tranquil”. It is striking 323 
that for the option “very lively/active”, the proportion of disruptive soundscapes is higher than the 324 
proportion of stimulating soundscapes, which might suggest that a relatively larger number of 325 
environments with a non-supportive soundscape were selected as stimuli. 326 

3.2 Principal component analysis 327 
In Figure 1, soundscapes are divided into backgrounded and foregrounded by attention causation. 328 

The foregrouded soundscapes consist of three categories, corresponding to the negative and positive 329 
effects. A principal component analysis (PCA) is applied to the average score on disruptive, calming and 330 
stimulating for 50 stimuli. Figure 9a shows the triangle of three foregrounded soundscape categories in 331 
the plane spanned by the two principal components. In particular, component 1 explains 71.1% of 332 
variance, while component 2 explains 22.1%.  333 

The average score on the four proposed soundscape classifications forms a 4×50 size matrix, with 334 
values varying from 0 to 1. A threshold is set to the matrix for binary results to highlight the most 335 
pronounced 25% of the scores in the matrix. The threshold is set at 0.32, and 53 values out of 200 are 336 
greater than this threshold. It is found that 29 soundscapes clearly belong to one of the four proposed 337 
categories (backgrounded: 9, disruptive: 7, calming: 3, stimulating: 10), 12 soundscapes cover two 338 
categories and 9 soundscapes cannot be sorted into any of these categories. Figure 9a shows the 339 
distribution of 50 soundscapes in the PCA analysis, they are colored based on the binary results of the 340 
proposed classification. 341 

0

0.2

0.4

0.6

0.8

very
calming/tranquil

calming/tranquil neither
calming/tranquil
nor lively/active

lively/active very lively/active

P
ro

p
o

ti
o

n
 o

f 
so

u
n

d
sc

ap
e

s 
cl

u
st

e
ri

n
g 

Overall perception of the audiovisual environment 

calming 

stimulating 

backgrounded 

disruptive 



11 
 

As a comparison, the scores on four quadrant categories in the 2D core affect model (Axelsson et al., 342 
2010) also forms a 4×50 size matrix. A threshold of 5.79 is set to the matrix to highlight the most 343 
pronounced 25% of the scores. 52 values out of 200 are greater than the threshold in the matrix. It is 344 
found that 28 soundscapes are determined by one of the four quadrant categories (chaotic: 6, exciting: 345 
6, tranquil: 16, boring: 0), 12 soundscapes cover two categories and 10 soundscapes cannot be sorted 346 
into any of these categories. In Figure 9b, 50 soundscapes are colored based on the binary results in the 347 
2D core affect model. 348 

 349 

Figure 9 – Component plot based on fuzzy classification in a PCA rotated space: a) (triangle label) 350 
distribution of 50 soundscapes colored by the proposed classification; b) distribution of 50 soundscapes 351 

colored by the 2D core affect model classification (Axelsson et al., 2010). 352 

Similarly, a PCA is also applied to the four quadrant categories in the 2D core affect model. In Figure 353 
10a, component 1 explains 55.1% of variance, while component 2 explains 30.9%. Also, Figure 10 shows 354 
the distribution of 50 soundscapes in PCA analysis, colored by the 2D core affect model classification and 355 
the proposed classification, respectively. 356 
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 357 

Figure 10 – Component plot based on answers to the core affect model question in a PCA rotated 358 
space: a) distribution of 50 soundscapes colored by the 2D core affect model classification (Axelsson et 359 

al., 2010); b) distribution of 50 soundscapes colored by the proposed classification. 360 

3.3 Factor analysis 361 

3.3.1 Relationships between soundscape class and memorization 362 
During the small break in between experiencing 5 environments (see Section 2.2.3), a question about 363 

the memorization degree of the soundscape was asked, with the corresponding picture presented. 364 
There is a hypothesis that one tends to memorize foregrounded soundscapes better than backgrounded 365 
ones. To evaluate whether this memorization degree has a correlation with the scores on the proposed 366 
four soundscape categories, a mixed factor generalized linear model fit was applied, using participants 367 
as random factor. It is found that the memorization has significance in backgrounded (F1,498=25.626; 368 
p<0.001) and disruptive (F1,498=6.814; p<0.01), but not in calming (F1,498=2.238; p>0.05) and stimulating 369 
(F1,498=3.745; p>0.05). Naturally, the score of the backgrounded category has a negative correlation with 370 
memorization, while for the disruptive category, it is positively correlated. 371 

3.3.2 Physical factors explaining soundscape classification 372 
Taking into account all above-mentioned factors, a mixed factor generalized linear model fit was 373 

applied, with a stepwise method and using participant as random factor. Table 2 shows the fittest model 374 
results, with the Akaike Information Criterion (AIC) as a model quality indicator. The results suggest that 375 
the physical parameters that were tested fit the backgrounded category model best. All categories 376 
involve both acoustical factors and visual factors, except for the disruptive category. This might indicate 377 
that in a disruptive soundscape, the sound is dominating the perception. 378 

tranquil 

boring 

chaotic 

exciting 

-3

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

none chaotic

exciting tranquil

chaotic+exciting exciting+tranquil

chaotic+tranquil 2D core affect

a component 1 

co
m

p
o

n
en

t 
2

 

-3

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

none backgrounded
disruptive calming
stimulating backgrounded+calming
disruptive+stimulating

b 



13 
 

Table 2 – Generalized linear mix model results of proposed soundscape categories. 379 

glmm AIC 
 

F df1 df2 coefficient sig. 

backgrounded 319.231 corrected model 48.081 5 994 0.458 0.000 

 
 LA05 55.591 1 994 -0.041 0.000 

 
 N05 30.428 1 994 0.023 0.000 

 
 Smax 19.228 1 994 -0.068 0.000 

 
 SL_median 10.011 1 994 -0.037 0.002 

 
 Green pixels 6.827 1 994 -0.116 0.009 

 
 

    
 

 
disruptive 511.113 corrected model 29.200 8 991 -1.432 0.000 

 
 LA95 45.799 1 991 -0.525 0.000 

 
 LA90 43.224 1 991 0.547 0.000 

 
 SL_95 6.205 1 991 -0.035 0.013 

 
 S50 12.919 1 991 -0.480 0.000 

 
 N05 12.287 1 991 0.040 0.000 

 
 N 5.469 1 991 -0.046 0.020 

 
 S95 6.886 1 991 0.302 0.009 

 
 S05 4.538 1 991 0.145 0.033 

 
 

    
 

 
calming 591.150 corrected model 40.721 6 993 1.327 0.000 
  LAFmax 103.492 1 993 -0.020 0.000 

 
 Person density 12.645 4 993 

(=1)0.172 
(=2)0.024 
(=3)0.003 
(=4)-0.057 
(=5)0* 

0.000 

 
 S50 22.805 1 993 0.106 0.000 

 
 

    
 

 
stimulating 535.742 corrected model 40.829 5 994 0.755 0.000 

 
 Person density 16.435 4 994 

(=1)-0.196 
(=2)-0.077 
(=3)-0.064 
(=4)0.091 
(=5)0* 

0.000 

 
 SL_median 39.724 1 994 0.067 0.000 

*:This coefficient is set to 0 because it is redundant. 

 380 

3.4 Soundscape classification prediction 381 
The previous section explored the factors that could modify the membership set of the proposed 382 

four categories. As stated before, an important challenge is to create models based on acoustical 383 
parameters that predict soundscape classification as accurately as possible within the context of the 384 
definition of soundscape. For this purpose, collection 1 and collection 2 (Table IV in Appendix III) that 385 
were conducted with two groups of totally different stimuli, and applied to two groups of different 386 
participants, will be treated as two independent data sets. Each soundscape gets an average 387 
membership score for each of the proposed soundscape classes. We will investigate whether a model 388 
based on physical parameters that is extracted from one of the classifications can predict this 389 
membership score for the other classification. 390 
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3.4.1 Prediction models from collection 1 391 
A linear regression on 25 stimuli in collection 1 is applied, using a stepwise approach to access all 392 

possible acoustical parameters. Table 3 shows the remaining predictors, as well as the detailed model 393 
for each class membership. 394 

Table 3 –Linear regression models for 25 stimuli in collection 1. 395 

label 
Soundscape 
category 

R2 SE 
prediction equation  
– from collection 1 

predictors sig. 

1-1 backgrounded 0.546 0.100 y=-0.017x+1.393 x=LA05 0.000 

1-2 disruptive 0.719 0.095 y=0.029x1-0.014x2-0.922 
x1=LA05,  
x2=LA95 

LA05(0.000) 
LA95(0.006) 

1-3 calming 0.606 0.129 y=-0.023x+1.936 x=LAFmax LAFmax(0.000)  
1-4 stimulating 0.667 0.100 y=0.105x+0.722 x=SL_95 SL_95(0.001) 

SE: Std. Error of the Estimate. 

 396 

When applying the equations in Table 3, it is easy to get the predicted scores of proposed 397 
soundscape categories for 25 stimuli in collection 2. To compare this prediction with the experimental 398 
value in collection 2, a receiver operating characteristic (ROC) analysis is applied. Figure 11 shows the 399 
ROC curve of the prediction, referring the experimental binary results of collection 2 as criterion. The 400 
parameter in this ROC curve is the threshold for crisp classification. Table 4 further shows the detailed 401 
results of the model prediction quality. 402 

 403 

Figure 11 – Receiver operating characteristic (ROC) curve of prediction models for 25 stimuli in collection 404 
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Table 4 – The ROC curve area analysis for prediction models from collection 1. 406 

 
Area Under the Curve 

 Area Std. Errora Asymptotic Sig.b 
Asymptotic 95% Confidence Interval 

 
Lower Bound Upper Bound 

backgrounded 0.889 0.068 0.002 0.755 1.000 
disruptive 0.900 0.063 0.007 0.777 1.000 
calming 0.930 0.054 0.003 0.824 1.000 
stimulating 1.000 0.000 0.000 1.000 1.000 

a. Under the nonparametric assumption. 
 

b. Null hypothesis: true area = 0.5. 
 

 407 

As shown in Figure 11 and Table 4, the ROC curve shows the numeric results of the predictions. The 408 
Youden index (𝐽) is often used as a criterion for selecting the optimum cut-off point (Schisterman et al., 409 
2005). The Youden index is defined as shown in Eq. 1, and it ranges from -1 to 1. A higher value for 𝐽 410 
represents a lower proportion of totally misclassified results, i.e. a better prediction. Table 5 shows the 411 
maximum 𝐽 value and its corresponding threshold. 412 

𝐽 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1                                               (Eq. 1) 413 

Table 5 – Maximum Youden index for prediction models from collection 1. 414 

label 
soundscape 
category 

Highest 𝐽 
Recommended 

threshold 
Accuracy 

1-1 backgrounded 0.812 0.3101 0.88 
1-2 disruptive 0.85 0.1592 0.88 
1-3 calming 0.85 0.4659 0.88 
1-4 stimulating 1 0.1916 1 

 415 

3.4.2 Prediction models from collection 2 416 
Vice versa, the same procedure applies to collection 2. Table 6 shows the results of linear regression 417 

(stepwise) applied to collection 2 and the model details for each category. The prediction for 25 stimuli 418 
in collection 1 is compared with the binary results of the experimental value in collection 1, using ROC 419 
analysis (Figure 12). Table 7 further shows the detailed results of the prediction quality. Similarly, Table 420 
8 shows the maximum 𝐽 value and the corresponding threshold for predictions from collection 2. 421 

Table 6 – Linear regression models for 25 stimuli in collection 2. 422 

label 
Soundscape 
category 

R2 SE 
prediction equation  
– from collection 2 

predictors sig. 

2-1 backgrounded 0.603 0.113 y=-0.026x+1.894 x=LA05 0.000 
2-2 disruptive 0.360 0.148 y=0.020x-1.111 x=LA05 0.002 

2-3 calming 0.512 0.138 y=-0.028x1+1.161x2+1.76 
x1=LAFmax, 
x2=S50 

LAFmax(0.000) 
S50(0.027) 

2-4 stimulating 0.663 0.090 y=0.023x-1.221 x=LA10 LA10(0.001) 

SE: Std. Error of the Estimate 

 423 
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 424 

Figure 12 – Receiver operating characteristic (ROC) curve of prediction models for 25 stimuli in collection 425 

2. 426 

Table 7 – The ROC curve area analysis for prediction models from collection 2. 427 

 
Area Under the Curve 

 Area Std. Errora Asymptotic Sig.b 
Asymptotic 95% Confidence Interval 

 
Lower Bound Upper Bound 

backgrounded 0.831 0.09 0.009 0.655 1.000 
disruptive 0.825 0.089 0.019 0.65 0.999 
calming 0.947 0.046 0.001 0.857 1.000 
stimulating 0.713 0.103 0.091 0.511 0.915 

a. Under the nonparametric assumption. 
 

b. Null hypothesis: true area = 0.5. 
 

 428 

Table 8 – Maximum Youden index for prediction models from collection 2. 429 

label 
Soundscape 
category 

Highest 𝐽 
Recommended 

threshold: 
Accuracy 

2-1 backgrounded 0.64 0.107 0.8 
2-2 disruptive 0.632 0.2644 0.72 
2-3 calming 0.895 0.1184 0.92 
2-4 stimulating 0.471 0.3037 0.64 

 430 

3.4.3 Prediction quality comparison 431 
Taking the recommended threshold, the numeric result is transferred into a dichotomous result. As 432 

stated before, the experimental binary results are used as criterion. In the ROC analysis, the accuracy 433 

(
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒
) is indicating the proportion of total correctly classified results. Tables 6 and 9 434 
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show the accuracy of each prediction taking the recommended threshold, respectively. They indicate 435 
that it is better to predict backgrounded soundscape with 1-1, and for disruptive and stimulating 436 
soundscape, 1-2 and 1-4 predicts better. Whereas for predicting a calming soundscape, 2-3 is clearly 437 
better. Another way to detect the quality of the predictions is considering the true positive to false 438 
positive rate (TPR to FPR). As shown in Figure 13, a smaller distance between prediction dots and point 439 
(0,1) indicates a higher prediction quality. The relative distance also indicates that for the proposed four 440 
categories, model 1-1, 1-2, 2-3 and 1-4 are optimized choices. 441 

 442 

Figure 13– The Receiver operating characteristic (ROC) space with points of eight predictions at the 443 

thresholds recommended by the maximum Youden Index (Table 6 and Table 9). 444 

3.4.4 Models from all 50 stimuli 445 
Based on the above comparison, a better model is selected for each category (model 1-1, 1-2, 2-3, 1-446 

4). Table 9 gives the models that are built on the dataset of all 50 stimuli, with the indicators obtained 447 
from the optimized models built on the subgroups that best extrapolated to an independent dataset. 448 
Within this study, we cannot test this model with other recordings as verification. However, it can serve 449 
as a guideline once the new recordings and new subjective assessment are done. 450 

Table 9 – Linear regression models for all 50 stimuli used in the experiments. 451 

label 
Soundscape 
category 

R2 SE 
prediction equation  
– from all 50 stimuli  

predictors sig. 

0-1 backgrounded 0.521 0.112 y=-0.018x+1.464 x=LA05 0.000 

0-2 disruptive 0.488 0.128 y=0.027x1-0.015x2-0.733 
x1=LA05,  
x2=LA95 

LA05(0.000) 
LA95(0.006) 

0-3 calming 0.426 0.150 y=-0.020x1+0.079x2+1.440 
x1=LAFmax,  
x2=S50 

LAFmax(0.000) 
S50(0.098) 

0-4 stimulating 0.501 0.114 y=0.078x+0.643 x=SL_95 SL_95(0.000) 

SE: Std. Error of the Estimate. 

 452 
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4. Discussion 453 

4.1 Backgrounded soundscapes 454 
A backgrounded soundscape is defined as one that does not contribute to the overall experience of 455 

the place. Thus, it is fair to assume that this class of soundscapes does not catch a lot of attention. If not 456 
heard, such a soundscape will neither leave an impression in memory which is supported by a significant 457 
negative correlation with memorization (Section 3.4.1). Earlier research (Axelsson, 2015b) categorized 458 
one outdoor space type as "my space", where crowds and mechanical sounds should be inaudible and 459 
sounds of nature and individuals should be only moderately audible. This supports the idea that 460 
backgrounded soundscapes are appropriate for “my space”. The distribution of this soundscape over 461 
general perception of environments shown in Figure 8, shows a trend towards an overall 462 
“calming/tranquil” perception of the environment. This reveals that a backgrounded soundscape is not 463 
often found in a lively and active environment. As the backgrounded soundscape does not attract 464 
attention, it covers a separate dimension and hence it was not included in the PCA (Section 3.3). In 465 
Figures 9&10, the stimuli labelled as backgrounded in the proposed classification scheme were labelled 466 
as “none” in 2D core affect model, i.e. not dominated by any category. This might be explained by the 467 
fact that a backgrounded soundscape could be allocated by all emotional components. It has been 468 
argued that a representative soundscape for the “lifeless and boring” label in the 2D core affect model 469 
seems rare (Axelsson, 2009; Bahalı and Tamer-Bayazıt, 2017), which is also the case in this study (Figure 470 
10a). However, some backgrounded stimuli are located close to the “lifeless and boring” label in Figure 471 
10b which might suggest that a “lifeless and boring” soundscape does not attract attention. Hence in an 472 
experiment that focusses attention on sound, either sonic environments that could lead to such a 473 
soundscape are not included or explicit foregrounding changes people’s perception. Note that this does 474 
not suggest that the backgrounded and “lifeless and boring” are completely overlapping since the two 475 
classifications are from different domains. 476 

The generalized linearized model for individual soundscape classification with progressive inclusion 477 
of significant physical parameters shows that also visual factors contribute to the soundscape being 478 
backgrounded. Visible green reduced the chance for a soundscape to become labelled as backgrounded. 479 
This is consistent with previous work highlighting the importance of visual factors in the construct of 480 
annoyance at home – the place where backgrounded soundscapes may be most appropriate (Gidlöf-481 
Gunnarsson and Öhrström, 2007; Van Renterghem and Botteldooren, 2016). While comparing the fittest 482 
model for each soundscape category (Table 3), it seems that physical parameters built the best model 483 
for backgrounded (with lowest AIC compared to other categories), thus it seems easier to predict on the 484 
basis of physics when the sound environment will not be noticed. 485 

The stable model for predicting backgrounded soundscapes only retains LA5 as an acoustical indicator. 486 
To be backgrounded, sonic environments should simply not contain any loud sounds whatever their 487 
origin and duration. Focusing on the highest level using low percentile statistical indicators (or an 488 
equivalent level) is consistent with models for annoyance at home and the above observation that 489 
backgrounded soundscapes might be most appropriate for the environmental contribution to the 490 
private dwelling. 491 

4.2 Disruptive soundscapes 492 
Disruptive soundscapes are defined as sonic environments that prevent the users of the space from 493 

doing activities they would otherwise engage in. This conceptual soundscape relates very strongly to 494 
affordance and activity appropriateness as proposed in Nielbo et al. (2013) and Andringa and Van Den 495 
Bosch (2013). It is, to a certain extent, also aligned with the concept of “appropriateness”, which has 496 
been suggested as key determinant of soundscape evaluation (Axelsson, 2015a). 497 
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Among all three foregrounded categories, disruptive is the only one that significantly correlates to 498 
memorization (Section 3.4.1), suggesting that such a soundscape leaves a strong – albeit negative – 499 
impression. The distribution of disruptive soundscapes over categories of overall appreciation of the 500 
environment shows an increasing trend towards “lively/active” and neutral evaluation (Figure 8). A 501 
straightforward interpretation is that disruptive soundscapes prevent the overall environment to be 502 
“calming/tranquil”, yet it could be compatible with an environment that is neither calming nor lively or 503 
even with a “lively/active” environment. Soundscapes in this category tend to be loud, accompanied by 504 
a high density of people (Supplement 2).  505 

It seems that disruptive is close to “chaotic and restless” in the 2D core affect model from the 506 
description, as well as certain overlaps in binary results of stimuli (Figure 9&10). In the PCA (Figure 9a), 507 
disruptive determined soundscapes are concentrated in the upper part of the triangle, while two outliers 508 
are slightly deviated to the negative axes of component 1. When analyzing these two outliers (R0013 & 509 
R0029), a shared trait was found: both stimuli contain a (visually) peaceful park, there are nearly no 510 
human activities and the weather is nice. In R0029, a honk from a boat appears all of a sudden. In R0013, 511 
a sustained noise from a lawnmower (not visible) appears in the background. These unexpected 512 
occurrences trigger some participants to report a disturbance while others chose to ignore these two 513 
stimuli and focus on the calming aspects of the soundscape. These two stimuli were labelled as “none” 514 
in the PCA analysis based on the 2D core affect model (Figure 9b).  515 

The generalized linear model combines many non-orthogonal factors to predict the disruptive 516 
category but does not contain visual factors in the fittest model (Table 3). The dominance of sound in 517 
such a case is in line with many studies dealing with the perception of “unpleasant” soundscapes 518 
(Guastavino, 2006; Davies et al., 2013). Moreover, disruptive leads to the best prediction model among 519 
the three foregrounded categories (Table 3, AIC), which supports the use of the disruptive-supportive 520 
subdivision as second stage division (Figure 1). 521 

Finally, looking at the predictive models for average soundscape classification (see also Section 3.5), 522 
additional insight in this category of soundscape can be obtained. The predictive models contain LA5 and 523 
LA95 as acoustic descriptors, or looking in more detail at the signs and magnitude of the coefficients, LA5 524 
and LA5-LA95, both with a positive trend. This indicates that in addition to the sound level – measured 525 
here as LA5 – that also appears in the classification of backgrounded, the temporal variability of the 526 
sound – measured here as LA5-LA95 – is important for the soundscape to become disruptive. Previous 527 
work has suggested the importance of the latter difference or a similar indicator of fluctuation, 528 
sometimes referred to as emergence, for predicting the pleasantness of public place soundscapes 529 
(Nilsson et al., 2007; Liu and Kang, 2015), as well as for annoyance at home (Bockstael et al., 2011), but 530 
never found such strong effects.  531 

4.3 Calming soundscapes 532 
Supportive soundscapes are expected to contribute to the overall experience of a place. They should 533 

match expectations created by the context and purpose of the place. In a design phase the type of 534 
support expected could be put forward by the urban designer. In this study the type of support one may 535 
expect, calming or stimulating, is mainly evoked by visual information. Therefore, in the procedure 536 
(Figure 5), questions 5a and 5b were only asked based on the answer in question 1 (i.e. when the overall 537 
perception is “calming/tranquil”, it is assumed the soundscape would support the “calming/tranquil” 538 
atmosphere). If a not very “calming/tranquil” soundscape appears in an overall “calming/tranquil” 539 
environment, the fuzzy scores will only give a lower score for calming, rather than categorizing the 540 
soundscape as stimulating. Thus, calming and stimulating are not opposites of each other. Because of 541 
this construction, the combined distribution of calming and stimulating soundscapes over overall 542 
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perception (Figure 8) is not very informative, but at least shows a somewhat stronger importance of the 543 
soundscape in “very calming/tranquil” environments.  544 

Stimuli identified as “calm and tranquil” in the 2D core affect model also appear in the calming 545 
region of the PCA based on the proposed classification (Figure 9) and vice versa (Figure 10). This is not 546 
surprising as the distinction between the calming and stimulating type of supportive environments is 547 
mainly in the arousal dimension of core affect. In addition, the pleasantness dimension seems to bare 548 
some resemblance with not being disruptive. It is also found that the calming category is close to 549 
backgrounded, as 8 stimuli out 12 were identified as belonging to these two categories (Figure 9a). One 550 
possible explanation, focusing on attention, is that as the stimuli in calming soundscapes lead to passive 551 
attention fading (Bradley, 2009). This shifts the perception towards backgrounded. This vacillates the 552 
soundscape perception along the attention causation, which makes it stringent to label a soundscape as 553 
calming. However, despite the crossover between calming and backgrounded, these two categories are 554 
still different. Firstly, calming soundscapes make the overall environment being perceived as “calm and 555 
tranquil” and “very calm and tranquil” (Figure 8). Secondly, the percentage of (visual) vegetation is not a 556 
significant factor for explaining calming soundscapes (Table 3 and Supplement 2). As for visual factors, a 557 
vegetation-dominated view is not a prerequisite for the soundscape to be classified as calming yet the 558 
visual presence of people plays a key role: too many people reduce the calmness of the soundscape. 559 
Sharpness (S50) and the absence of strong peaks (LAFmax) appear both in the explorative GLM and the 560 
predictive models. Sharpness is typically higher for natural sounds and lower for mechanical ones (Boes 561 
et al., 2018). A lot of research confirmed the positive effect of e.g. natural sounds (Payne, 2013, Van 562 
Renterghem, 2018) and the negative effect of mechanical sound (Bijsterveld, 2008).  563 

4.4 Stimulating soundscapes 564 
Finally, the simulating category is defined by the questionnaire as a soundscape that supports the 565 

liveliness and activeness of the environment. It is expected to arouse people, to encourage them to get 566 
involved. Music or music-like sound, for instance, could achieve such an effect (Botteldooren et al., 567 
2006; Raimbault and Dubois, 2005), which was also found in some stimuli in this study (e.g., R0010, 568 
R0058, etc.). This type of soundscape helps the whole environment to be perceived as “lively/active” 569 
(Figure 8). However, compared to disruptive, a rather lower proportion of stimulating appears in an 570 
overall “very lively/active” perception. This might suggest that environments with such soundscapes 571 
attract people’s attention but is slightly more likely to cause activity interference. Given a closer look at 572 
the 4 stimuli that are crossing these two categories (Figure 9a), all of them contain a lot of people, so 573 
some people may judge this crowd disturbing for their envisaged activities. When putting stimulating 574 
soundscapes in the PCA plane of the 2D core affect model, they lay in between “chaotic and restless” 575 
and “full of life and exciting” (Figure 10a). As defined in the proposed classification, this category 576 
supports the liveliness and activeness of the environment. The GLM suggests that the presence of 577 
people is necessary (Table 3). It is consistent with previous research (van den Bosch et al., 2018; Aletta 578 
and Kang, 2018), which suggests that human sounds add to the eventfulness of a soundscape and the 579 
perceived audible safety. It is worth noting that only when the visual person density is high, this 580 
category seems to be favored while lower person densities tend to favor calming soundscapes.  581 

Finally, both the explanatory GLM and the predictive models (See also Section 3.5) for stimulating 582 
soundscapes contain the continuous fraction of saliency. Saliency, as defined in the model based on 583 
amplitude and frequency modulations, focusses strongly on vocalisations. Hence it is also indicative of 584 
the presence of human sounds. Previous work showed that the second order time derivative of the level 585 
in the 500 Hz octave band – which is also an indicator for amplitude fluctuations – correlates well with 586 
the presence of human voices (Aumond et al., 2017). 587 
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4.5 The soundscape classification approach 588 
This study proposed a holistic soundscape classification method as a labeling tool for audio-visual 589 

collections. This classification is not expected to be covering all details and further taxonomy could be 590 
used. The proposed classification is based on the contribution of the soundscape to the overall 591 
environmental perception. 592 

This classification scheme recognizes that, in context, environmental sounds may remain 593 
backgrounded and that only sonic environments containing foregrounded elements may significantly 594 
contribute to the overall experience of the urban environment. Thus the backgrounded class is 595 
introduced as an orthogonal dimension. A good classification of the remaining foregrounded 596 
soundscapes: disruptive, calming and stimulating should be minimally overlapping and therefore form a 597 
triangle in the principle component space. This was proven to be indeed the case. Moreover, although 598 
the classes slightly overlap and soundscapes may have a finite fuzzy membership to multiple classes at 599 
the same time, a tendency for good separation is indeed visible (Figure 9a). Recent research (Kamenický, 600 
2018) also uses a triangle (activities, mechanisms and presence) for classification, which suggests a 601 
spectrum evolution of soundscapes in between the extremes. The evolution between soundscape 602 
categories is also embodied by the stimuli crossing two categories. It suggests that the soundscape 603 
perception is fluid and could be modified by time, person and context (Maris et al., 2007; Sun et al., 604 
2018b). 605 

The proposed classification is compared to the popular classification in a 2D core affect plane. There 606 
are some obvious similarities between both classifications yet in the plane of the first two principle 607 
components classes, the latter seems less separated. This could be because another dimension is 608 
sampled and the core affect classification is richer, but as the variance explained by the first two 609 
components is even higher than for the proposed classification, this does not seem the case. This might 610 
suggest that in a given soundscape (with fixed physical parameters), detecting attention causation is 611 
easier than classifying emotion perception. It highlights the importance of involving attention causation 612 
in soundscape classification. None of the observed soundscapes is dominantly “boring” as observed 613 
above, which argues in favor of eliminating this dimension. It should be noted however that in this study, 614 
the data for the proposed classification were collected right after each stimulus, while the data of the 2D 615 
core affect model were collected afterwards (Section 2.2.3). This might introduce the deviation of 616 
acoustical memory in perception (Darwin and Baddeley, 1974). However, no significant correlation was 617 
found between memorization and any of the four categories in the 2D core affect model. 618 

Understanding the soundscape needs to isolate it from the whole environment that contains more 619 
than the sonic environment, but it is also important to use the whole environment as a guideline to 620 
classify the soundscape. Visual context, specifically two items in this study (Supplement 2), were found 621 
significant in both whole environment perception and the crisp clustering, though the latter represents 622 
70.1% of the variance (Section 3.2). This is not the case in some of proposed categories. For example, for 623 
disruptive, the visual factors do not influence significantly. On the other hand, the soundscape also 624 
modifies the overall perception (e.g., two outliers in disruptive category).  625 

Although soundscape implies perception in context, a classification of sonic environments with 626 
soundscape in mind should benefit from capturing common understanding by society rather than 627 
personal preferences. Hence the proposed classification avoided the pleasantness dimension in affect 628 
which is expected to be more individual than the arousal dimension. If this attempt to remove individual 629 
differences from the classification was successful, it should be possible to construct predictive models 630 
solely based on physical parameters. This will be shown in the next Section. 631 
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4.6 Prediction models 632 
The main goal of building prediction models is labelling new audio-visual recordings in the collection 633 

without the use of a panel. As the main application of the collection is to provide representative 634 
exemplars for each category, the prediction models do not need the refinement to resolve ambiguous 635 
situations and therefore could be based on a limited database of 50 samples. Another goal of building a 636 
model purely based on acoustical parameters could be to construct “soundscape maps”. Also for this 637 
application simple models are preferred. Of course other modelling options are available (Yu and Kang, 638 
2015; Hong and Jeon, 2015), but this approach adds to the literature for explained reasons. 639 

Thus, in this study, models predicting soundscape classification with a limited number of acoustical 640 
parameters were considered. The strongest possible model validation was assured by confirming model 641 
performance on the outcome of independent experiments. The linear models produce a membership 642 
degree for each of the four classes. Model comparison is done on sharp, binary classifications. The 643 
choice of threshold allows to balance between the risk of obtaining false positives and false negatives. 644 

For model validation, the recommended threshold is based on the Youden Index which selects an 645 
optimal balance between sensitivity and specificity. This results in most crisp classification models 646 
combine the highest possible specificity with the highest possible sensitivity and appear in the upper left 647 
corner of Figure 13 (7 out of 8 dots). The recommended threshold for each model (Table 6&10), is lower 648 
than the value used to crisply classify the experimental results (0.32). This causes more than 25% data to 649 
be classified and therefore the model approach is less critical than the experimental approach. This may 650 
lead to false classification but it ensures that all possible example in each category are selected. Because 651 
it includes some soundscapes into one category unnecessarily, it might need additional panel tests to 652 
purify the selected soundscapes. 653 

An alternative way to select the threshold is to push the outcome to maximal specificity (i.e. minimal 654 
FPR component). This method ensures that all automatically selected soundscapes are representative 655 
exemplars of a certain category, but it faces the fact that some soundscapes that could be a 656 
representative of a certain category, will be filtered out. As more audiovisual recordings are thus thrown 657 
out of the classification, this increases the work of site recording as a bigger collection is needed to start 658 
from. Thus, both methods for selecting the threshold have advantages and drawbacks. The choice 659 
depends on whether panel tests costs more than site recording or the other way around. 660 

Besides the comparison between the models built on subgroups, Table 10 gives the models from the 661 
data of all 50 stimuli. Based on this study, they cannot be rigorously bilaterally verified. However, model 662 
parameter selection from the best models for the two subgroups are used without adding new 663 
parameters, which should reduce the risk of overfitting on the pooled data. Coefficients are 664 
nevertheless optimized for the pooled data. The models of Table 10 are therefore our suggestions for 665 
best available models. 666 

4.7 Limitations 667 
Although using audio-visual reproduction through virtual reality is a huge improvement over older 668 

methods to experience sonic environments in context, it still lacks other sensory context: odor, heat and 669 
humidity, etc. And, although the 360-degree visual scenery is a very strong cue for setting the context, it 670 
does not contain all information about a place, its use, its socio-cultural meaning, etc. The selection 671 
procedure for collecting the audio-visual recordings in each city was rather stringent and recordings 672 
from cities in different continents were included. Nevertheless, there might be some sampling bias: due 673 
to practical considerations, more recordings were made in less crowded environments like parks than in 674 
crowded places like shopping streets.  675 
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Additional indicators and alternative machine learning techniques could have been used while 676 
constructing prediction models. E.g. regarding visual factors, only two items were assessed, although 677 
many other aspects were shown to have an impact on soundscape perception (such as sound source 678 
visibility, number of vehicles, etc.). The database is open and will be extended in the future, allowing to 679 
test more hypotheses. 680 

5. Conclusions 681 

This study proposes a hierarchical soundscape classification methodology that is grounded in 682 
attention causation and reflects the contribution of the soundscape to the overall perception of the 683 
environment. The methodology is made operational through a brief questionnaire. The proposed 684 
hierarchical classification scheme offers an alternative to the 2D core affect model, and is based on how 685 
well the soundscape is noticed, how it interferes with possible activities at the site, and includes the 686 
overall appreciation of the environment. It (1) accounts for the existence of backgrounded soundscapes 687 
that do not catch attention; (2) forms a clear triangular construct between disruptive, calming and 688 
stimulating, which offers a clear separation of soundscape categories; (3) explores the multiple factors 689 
that might modify the four categories, both in terms of acoustics and vision. Finally, a set of models 690 
based on acoustical parameters is built to predict the partial membership to the proposed soundscape 691 
categories, which might be used to classify soundscapes without involving participants. It has a high 692 
proportion of correctly classified soundscapes, validated by verification on a completely independent 693 
dataset (other participants and other soundscapes). By using the proposed soundscape classification 694 
methodology, it is at least possible to identify the most pronounced examples in each category. 695 

The methodology is developed with the classification of a repository of audiovisual recordings from 696 
around the world in mind, yet it could be applied in other application domains. It is tested on an 697 
ecologically valid, realistic and immersive soundscape reproduction system to be applied in a laboratory. 698 
This holistic method includes soundscape collection, on-site recordings and final playback. 699 

Within the framework of the funded project, more soundscape recordings will gradually be added 700 
into the database. It is hoped that, together, this ecologically valid reproduction system and the models 701 
that automatically classify soundscapes as the recordings enter the database will allow building a 702 
growing international collection. This will offer urban planners the most interesting exemplars 703 
worldwide for each type of soundscape, inspiring and guiding future urban sound planning and design. 704 
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Appendix I 883 

Methods for objective data collection – Recording protocol 884 

Site selection protocol 885 

Sampling of urban sites for performing soundscape evaluation studies is most often performed in an 886 
ad hoc manner. Systematic site selection methods for landscape studies, conservation and planning are 887 
often based on objective factors such as land cover (Gillespie et al., 2017), as well as perception, visual 888 
preference and emotional attachment of local residents (Longstreth, 2008; Walker and Ryan, 2008). The 889 
latter are typically evaluated through surveys or interviews, in order to select a sample of sites covering 890 
a wide range of landscapes (Tress et al., 2006). 891 

A similar approach for site selection was also applied at the early stage of this study. An online 892 
questionnaire survey was conducted among 30 to 50 inhabitants (depending on the city), in which they 893 
were asked to pinpoint outdoor public spaces within their city that they perceive along the soundscape 894 
perception dimensions of pleasantness and eventfulness. Locations obtained from the online survey 895 
were then spatially clustered using the Google MapClusterer API, which allows extracting a shortlist of 896 
prototypical locations. This approach was designed to lead to a range of urban sites with a large variety 897 
in soundscapes, more or less uniformly covering each of the four quadrants of the 2D core affect 898 
perceptual space (Axelsson et al., 2010; Cain et al., 2013). In each city, participants were recruited 899 
among local students, and through calls for participation on relevant Facebook pages and with local 900 
guide associations. Details of the site selection protocol can be found in De Coensel et al. (2017).  901 

Audio-visual recording 902 

Combined and simultaneous audio and video recordings were performed at the selected locations 903 
within each city, using a portable, stationary recording setup (Figure I). The setup consists of the 904 
following components: binaural audio (HEAD acoustics HSU III.2 artificial head with windshield and 905 
SQobold 2-channel recording device), first-order ambisonics (Core Sound TetraMic microphone with 906 
windshield and Tascam DR-680 MkII 4-channel recording device) and 360-degree video camera (GoPro 907 
Omni spherical camera system, consisting of 6 synchronized GoPro HERO 4 Black cameras). The ears of 908 
the artificial head, the video camera system and the ambisonics microphone are located at heights of 909 
about 1.50m, 1.70m and 1.90m, respectively. It was chosen to stack the audio and video recording 910 
devices vertically, such that no horizontal displacement between devices is introduced, which could 911 
otherwise result into an angular mismatch for the localization of sound sources in the horizontal plane. 912 
A minimal separation distance of about 20cm between the camera and both the binaural and 913 
ambisonics microphones is required, such that these do not show up prominently on the recorded video, 914 
and can be masked easily using video processing software. All audio was recorded with a sample rate of 915 
48 kHz and a bit depth of 24 bits, and were stored in uncompressed .wav format; moreover, the binaural 916 
recordings were performed according to the specifications set forth in ISO/TS 12913-2:2018 (ISO, 2018). 917 
Note that the recording setup is highly portable: when disassembled, all components can be carried by a 918 
single person. Assembling the setup takes about 10 minutes, and batteries and memory of all recording 919 
devices allow for about a full day of recording. 920 

At each location, the recording system is oriented towards the most important sound source and/or 921 
the most prominent visual scene—this orientation defines the initial frontal viewing direction for the 922 
360-degree video and ambisonics recordings, and the fixed orientation for the binaural recordings. Time 923 
synchronization is performed at the start of each recording by clapping hands directly in front of the 924 
system; this also allows checking correct 360-degree alignment of all components when post-processing. 925 
At each location, at least 10 minutes of continuous recordings were performed, such that 1-minute or 3-926 
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minute fragments containing no disturbances can be extracted easily. During recording, the person 927 
handling the recording equipment was either hiding (in order not to show up on the 360-degree video) 928 
or, in case hiding was not possible, blended in the environment (e.g. performing the same activities as 929 
the other people around). 930 

 931 

Figure I – Audio-visual recording setup (Left: photo on location (Boston); Right: position 932 
diagrammatic sketch of the recording equipments). 933 

Post-processing for Virtual Reality 934 

Since the six cameras from GoPro Omni use a parallel program, the six individual videos are 935 
automatically synchronized. The stitching work that combines these six videos together as a single 360-936 
degree video is achieved with Autopano Video and Autopano Giga from Kolor software team. It gives 937 
the postproduction a stable, color-balanced and sustained 360-degree view. Since the postproduction 938 
captures the full surroundings, it is impossible to know what the viewer will eventually be focusing on 939 
(within the 360-degree sphere) at any given moment. In this study, only the opening scene of each 940 
recording (the coordinates of the image) was fixed, which ensures all the participants receive the same 941 
view at the beginning. With this setting, it also sets a reference for the audio-spatial synchronization.  942 

Since the GoPro Omni cameras stand between the tripod stand, the HEAD and the Tascam (Figure 2), 943 
the videos will also record these devices, shown in zenith and nadir (top and bottom) in the 944 
postproduction, respectively. These were carefully camouflaged with a patch created in Photoshop, 945 
ensuring that no recording equipment appears in the final playback. Also, a color equalization has been 946 
applied to the postproduction by using ffmpeg (saturation=2), which highlights the color vividness in the 947 
video. All videos were exported in 4k quality. Together with the presentation by an Oculus Virtual Reality 948 
device, it gives a visually realistic and immersive experience as if the participants were in the place 949 
standing right on the recording position. 950 

These 360-degree video is paired with ambisonics audio recording. The reason why first-order 951 
ambisonics audio can be used is explained in Appendix II. Video and audio synchronization was 952 
conducted by ffmpeg. Google Spatial Media Metadata Injector was used to achieve the spatial audio 953 
effect following head rotations. 954 
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Appendix II 955 

Preliminary study – Validation of the recording and playback protocol 956 

Overview 957 

With the virtual reality device presents the video, it is expected to pair with corresponding audio 958 
recording, that ensures a high quality and spatial effect. Note that the audio recording by GoPro Omni 959 
cameras itself was not used in this study. As the recording contains both ambisonics and binaural audio 960 
(Figure 2), it is essential to decide which audio recording performs better through headphone playback 961 
when combined with virtual reality. A preliminary experiment was designed for this purpose. 962 

Binaural audio recordings, performed using an artificial head, are generally considered to provide the 963 
highest degree of realism. Using an artificial head, the sound is recorded as if a human listener is present 964 
in the original sound field, preserving all spatial information in the audio recording. The main 965 
disadvantage of binaural audio recordings is that the frontal direction, and as such the acoustic 966 
viewpoint of the listener, is fixed by the orientation of the artificial head during the recording. This 967 
drawback could in theory be solved using ambisonics audio recording (Gerzon, 1985), a multichannel 968 
recording technique that allows for unrestricted rotation of the listening direction after recording. In 969 
principle, this technique could therefore provide an alternative to binaural recordings in the context of 970 
soundscape studies. However, the ambisonics technique has its own disadvantages, such as the more 971 
complex process of playback level calibration and equalization as compared to the binaural technique, 972 
the necessity of head tracking and real-time HRTF updates in case of playback through headphones, and 973 
the limited spatial resolution that can be achieved with lower-order ambisonics recordings—to date, 974 
there are no truly portable higher-order ambisonics recording systems available. Nevertheless, (first-975 
order) ambisonics has become the de facto standard for spatial audio in VR games and platforms 976 
providing 360 video playback such as YouTube or Facebook. 977 

Material & Experiment setup 978 

Five 1-minute recordings were chosen for experiment 1 (Table I). The stimuli contain a fixed HD video, 979 
cut out from the original video in the frontal viewing direction, and padded with black in order to obtain 980 
again a 360-degree spherical video that can be viewed through a head-mounted display. This creates a 981 
“window” effect, forcing the participant to watch only in the frontal direction (Supplement 3). 982 
Furthermore, these stimuli are created in two flavors: with first-order ambisonics spatial audio track 983 
(allowing for head rotation) and with binaural audio track (which provides a fixed, i.e. head-locked, 984 
listening direction). 985 

Table I  – Stimuli used in the validation experiment. 986 

Label City Date Time Location Longitude Latitude 
LAeq,

1min 

R0001 Montreal 2017/6/22 8:02 Palais des congrès 45.503457 -73.561461 65.8 

R0012 Boston 2017/6/28 9:36 Boston Public Garden 42.353478 -71.070151 62.5 

R0030 Tianjin 2017/8/24 16:00 Century Clock 39.13262 117.198314 63.2 

R0038 Hong Kong 2017/8/29 17:07 Taikoo Shing 22.286715 114.218385 64.6 

R0055 Berlin 2017/9/10 12:08 Checkpoint Charlie 52.507796 13.390011 66.5 

 987 

The experiment setup is the same as described in Section 2.2.2. During the experiment, participants 988 
were seated inside a soundproof booth. Recordings are played back using a PC (placed outside the 989 
booth), equipped with the GoPro VR Player 3.0 software, which allows to play back video with spatial 990 
audio. The 360-degree video is presented through an Oculus Rift head-mounted display, and the 991 
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participant could freely move the head and look around in all directions. The audio is played back 992 
through Sennheiser HD 650 headphones, driven by a HEAD acoustics LabP2 calibrated headphone 993 
amplifier. Stimuli with binaural audio track are automatically played back at the correct level, as the 994 
headphone amplifier and headphones are calibrated and equalized for the artificial head that made the 995 
recordings. The gain of the ambisonics audio tracks have been adjusted such that their level is as close 996 
as possible to that of the corresponding binaural audio tracks. 997 

Procedure & Participants 998 

Since 5 stimuli paired with 2 audio recordings were involved, these 10 videos were played randomly 999 
to participants (20 participants, 6 female, Agemean=28.9 yr, standard deviation 2.8 yr, range: 25-35 yr). 1000 
After each video, 6 questions were shown in the VR screen (Table II, Guastavino et al., 2007). 1001 
Participants needed to answer each question on a 5-point scale by verbal talking.  1002 

Table II – Questions asked to the participants in the validation experiment. 1003 

Question: Answer (5-point scale): 

1. The sonic environment sounds __ enveloping. little – very 
2. I feel __ immersed on the sonic environment. little – very 
3. Representation of the sonic environment: poor – good 
4. Readability of this scene: poor – good 
5. Naturalness, true to life: not truthful – truthful 
6. The quality of the reproduction is __. poor – good 

 1004 

Results 1005 

Table III shows the results of the comparison between ambisonics (allowing head rotation) and 1006 
binaural (head-locked) audio playback. The table shows, on a scale from 1 to 5, the median scores on 1007 
the questions asked (similar results are obtained with average scores). When there is a difference in 1008 
median between the binaural and ambisonics playback cases, the higher value is underlined. 1009 

Table III – Median score of five pairs of soundscapes in the second stage of the validation experiment: 1010 
a) ambisonics, b) binaural. 1011 

Label 
Envelopment Immersion Representation Readability Realism Overall quality 

a b a b a b a b a b a b 

R0001 4.0 4.0 3.5 4.0 4.0 3.5 4.0 3.0 3.5 4.0 4.0 4.0 
R0012 3.5 4.0 3.0 3.5 3.0 3.0 3.0 3.5 3.0 3.0 3.0 3.0 
R0030 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 
R0038 4.0 3.5 4.0 3.0 4.0 4.0 4.0 3.5 4.0 4.0 4.0 4.0 
R0055 4.0 4.0 4.0 3.0 4.0 4.0 4.0 4.0 4.0 3.0 4.0 3.0 

 1012 

Earlier research (Guastavino et al., 2007) showed that ambisonics audio results in a high degree of 1013 
envelopment and immersion. Intuitively, one would expect that the possibility of rotating one’s head 1014 
during playback would result in a higher degree of envelopment and immersion, as compared to the 1015 
case when one’s listening direction is locked. On the other hand, due to the limited spatial resolution 1016 
offered by first-order ambisonics, one would expect the binaural reproduction to result in a higher 1017 
degree of readability and realism. The results shown in Table III do not allow to draw these conclusions; 1018 
using a two-sample t-test with significance level 0.05, no significant difference is found between both 1019 
sound reproduction methods, for any of the perceptual dimensions considered. Moreover, the 1020 
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difference between soundscapes is found to be larger than between the audio reproduction methods; 1021 
some differences are significant, e.g. between R0012 and R0030 regarding representation (both 1022 
ambisonics and binaural) and realism (binaural), or between R0012 and R0055 regarding immersion 1023 
(ambisonics), readability (ambisonics) and representation (both ambisonics and binaural). This pilot test 1024 
therefore justifies the use of ambisonics in the first stage of the experiment; either reproduction 1025 
method could have been used. 1026 
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Appendix III 1035 

Overview of the basic characteristics of the recordings used for the VR experiment. 1036 

Table IV – Overview of the stimuli presented in the two repetitions of the soundscape classification 1037 
experiment: (above division line) collection 1, (below division line) collection 2. 1038 

Label City Date Time Location Longitude Latitude LAeq,1min/dB 

R0002 Montreal 2017/6/22 8:43 Place d'Armes 45.504683 -73.55715 66.5 
R0003 Montreal 2017/6/22 9:43 Tour de l'horloge 45.511973 -73.545911 55 
R0007 Montreal 2017/6/22 15:26 Chalet du Mont-Royal 45.503405 -73.587005 54.8 
R0010 Montreal 2017/6/22 17:53 Square Phillips 45.503807 -73.568543 67.5 
R0011 Montreal 2017/6/22 19:10 Place Jacques Cartier 45.50768 -73.552625 66.1 
R0015 Boston 2017/6/28 12:41 Old State House 42.359039 -71.057139 69.5 
R0016 Boston 2017/6/28 13:11 Quincy Market 42.35986 -71.055825 74.6 
R0017 Boston 2017/6/28 13:47 Post Office Square 42.35623 -71.0556 65.8 
R0018 Boston 2017/6/28 14:23 R. F. Kennedy Greenway 42.354721 -71.052073 66.1 
R0020 Boston 2017/6/28 16:31 Paul Revere Mall 42.365687 -71.053446 57.4 
R0022 Tianjin 2017/8/24 8:54 Peiyang Square (TJU campus) 39.107327 117.170222 62.2 
R0026 Tianjin 2017/8/24 11:46 Water Park North 39.090986 117.163317 60.4 
R0029 Tianjin 2017/8/24 15:29 Haihe Culture Square 39.130202 117.193256 73.5 
R0031 Tianjin 2017/8/24 16:26 Tianjin Railway Station 39.133779 117.203206 65.2 
R0033 Tianjin 2017/8/24 17:59 Nanjing Road 39.118566 117.185557 65.3 
R0036 Hong Kong 2017/8/29 15:43 Wanchai Tower 22.279705 114.17245 68.7 
R0040 Hong Kong 2017/8/30 7:44 Hong Kong Park 22.277824 114.161488 64.1 
R0041 Hong Kong 2017/8/30 8:50 Wong Tai Sin Temple 22.342062 114.194042 69.7 
R0047 Hong Kong 2017/8/30 13:36 Peking Road 22.296512 114.171813 77 
R0048 Hong Kong 2017/8/30 14:30 Ap Lei Chau Waterfront 22.245093 114.155663 62.2 
R0050 Berlin 2017/9/9 16:57 Breitscheidplatz 52.504926 13.336556 72.4 
R0054 Berlin 2017/9/10 11:32 Gendarmenmarkt 52.513517 13.3929 60.8 
R0058 Berlin 2017/9/10 14:18 Lustgarten 52.518604 13.399195 65.2 
R0060 Berlin 2017/9/10 15:39 James-Simon Park 52.521787 13.399158 65.9 
R0061 Berlin 2017/9/10 16:32 Pariser Platz 52.516145 13.378545 67.7 

R0001 Montreal 2017/6/22 8:02 Palais des congrès 45.503457 -73.561461 65.8 
R0004 Montreal 2017/6/22 10:39 Place Marguerite-Bourgeoys 45.507368 -73.555006 62.1 
R0005 Montreal 2017/6/22 12:21 Parc La Fontaine 45.523279 -73.568341 53.7 
R0006 Montreal 2017/6/22 14:22 Monument à Sir George-Étienne Cartier 45.514488 -73.586564 58.7 
R0008 Montreal 2017/6/22 16:26 McGill University campus 45.504202 -73.576833 54.7 
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R0012 Boston 2017/6/28 9:36 Boston Public Garden 42.353478 -71.070151 62.5 
R0013 Boston 2017/6/28 10:12 Boston Common 42.353705 -71.065063 62.3 
R0023 Tianjin 2017/8/24 9:23 Jingye Lake (TJU campus) 39.107495 117.166476 57.4 
R0027 Tianjin 2017/8/24 12:14 Water Park Center 39.087846 117.162092 58.5 
R0030 Tianjin 2017/8/24 16:00 Century Clock 39.13262 117.198314 63.2 
R0032 Tianjin 2017/8/24 16:55 Jinwan Plaza 39.131835 117.202969 60.7 
R0034 Tianjin 2017/8/24 18:44 Drum Tower 39.140833 117.174355 54.5 
R0037 Hong Kong 2017/8/29 16:14 Johnston Road 22.277781 114.176621 71.6 
R0038 Hong Kong 2017/8/29 17:07 Taikoo Shing 22.286715 114.218385 64.6 
R0039 Hong Kong 2017/8/29 17:55 Victoria Park 22.281835 114.187832 57.0 
R0042 Hong Kong 2017/8/30 9:44 Nelson Street 22.318352 114.170164 67.2 
R0043 Hong Kong 2017/8/30 10:32 Signal Hill Garden 22.296008 114.174859 62.1 
R0045 Hong Kong 2017/8/30 12:45 Hong Kong Cultural Centre 22.29343 114.170038 60.7 
R0049 Hong Kong 2017/8/30 15:53 The Peak 22.270879 114.150917 55.6 
R0052 Berlin 2017/9/10 9:28 Tiergarten 52.512166 13.347172 53.3 
R0053 Berlin 2017/9/10 10:48 Leipziger Platz 52.509296 13.37818 68.8 
R0055 Berlin 2017/9/10 12:08 Checkpoint Charlie 52.507796 13.390011 66.5 
R0057 Berlin 2017/9/10 13:43 Neptunbrunnen 52.519829 13.406623 66.2 
R0062 Berlin 2017/9/10 18:06 Sony Center 52.510166 13.373572 66.9 
R0063 Berlin 2017/9/10 18:31 Potsdamer Platz 52.509192 13.376332 67.4 

 1039 

 1040 


