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ABSTRACT 

BACKGROUND AND AIMS. In 2014, we reported a model for Donor-Recipient 

matching (D-R) in liver transplantation (LT) based on artificial neural networks 

(ANN) from a Spanish multicentre study (MADR-E: Model for Allocation of Donor 

and Recipient in España) and compared it against all previously reported scores 

with excellent results. The main aim is to test the ANN-based methodology in a 

different European healthcare system in order to validate it.  

METHODS. An ANN D-R model was specifically designed for a cohort of patients 

selected from King’s College Hospital (KCH) (N=822). The ANN was trained and 

tested using KCH pairs for both 3- and 12-months survival models. Two more 

validations were tested (MADR-E training and KCH testing; and a combined model 

using MADR-E and KCH for both training/testing). Endpoints were probability of 

graft survival (CCR) and non-survival (MS). 

RESULTS. Models designed for KCH had excellent prediction capabilities for both 

3-months (CCR AUROC=0,9375; MS AUROC=0,9374) and 1-year (CCR 

AUROC=0,78333; MS AUROC=0,81528), being almost 15% higher than the best 

obtained by other known scores. The pure validation of MADR-E model had much 

lower prediction capabilities (CCR AUROC=0,6400; MS AUROC=0,6235). A 

combined model grouping both populations was complex but also achieved good 

prediction capabilities (CCR AUROC=0,7791; MS AUROC=0,7016), almost 20% 

higher than other scores.  

CONCLUSIONS. The use of ANN for D-R matching in LT in other healthcare 

systems achieved excellent prediction capabilities being clearly validated. It should 
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be considered as the most advanced, objective and useful tool to date for the 

management of waiting lists.  
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INTRODUCTION 

 Liver transplantation (LT) offers the best outcome for several end-stage 

liver disorders. Thanks to its wide applicability and excellent outcomes, the 

number of candidates continues to grow. However, this has not been matched by 

growth in the number or quality of the donors. As a consequence, death and drop-

out from the waiting list continue to be significant. Over the last 20 years, criteria 

for considering a graft suitable for transplantation have extensively widened and 

the use of extended criteria donors (ECD) is widely accepted in the transplant 

community. However, the balance between waiting list, ECD and outcomes after 

transplantation is tenuous and care is required to maintain outcomes after LT on 

an intention to treat basis [1]. 

It is well-known that donor and recipient matching (D-R matching) is 

important in determining outcomes after LT and several ‘scores’ have been 

proposed to provide help [2-4]. The use of high-risk-donors in high-risk-recipients 

has been postulated as a complex combination which is not always advantageous 

[5-7]. Similarly, others have analyzed how specific factors are harmful for some 

recipients but not for others (i.e. donor macrosteatosis and hepatitis-C (HCV) vs 

non-HCV recipients) [8]. D-R matching is not important in terms of individual 

outcomes but best use for the overall population also has to be considered. An 

optimal D-R matching is the key for an allocation system that intends to be 

objective and equal for every patient [9]. 

In 2014, our groups reported the utility of artificial neural networks (ANN) 

as an optimal D-R matching system (MADR-E.- Model for the Assignment of Donor 

and Recipient in España) for LT in a large multicenter cohort of D-R pairs [10]. In 
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this study, ANN were superior to all other scores published to date in predicting 

graft survival and graft loss. The manuscript included a theoretical model in which 

it was possible to observe how donor livers were allocated to recipients in both 

standard and extended criteria groups. However, it was suggested that an external 

validation would be needed in order to find out if the results obtained in Spain 

could be duplicated elsewhere in Europe. 

The aim of our study was to find out if ANN would have a similar behaviour 

in a different healthcare system and whether they would be a powerful tool for D-R 

matching in comparison to other current models. The secondary aims, were to test 

if the MADR-E model would be exportable to another system or if the ANN worked 

better being self-trained-self-tested. In addition, a combined model formed by 

grouping all Spanish and foreign D-R pairs was used to build a combined ANN. 

 

PATIENTS AND METHODS 

a. Hospital selection for the validation. From the whole spectrum of 

hospitals in Europe, we performed the external validation with King’s 

College Hospital (KCH) in London-United Kingdom. The reasons for 

choosing this center were: first, it is the highest-volume center (>200 

transplant per year) in Europe with excellent results and protocols; second, 

it could be obtained a similar population to that used for the Spanish model 

in a similar period of time, leading to similar sample sizes and avoiding 

biases as long time periods or lack of standardized model for end-stage 

liver disease (MELD) use; third, data collection seems fairly more strict, 

homogeneous and with less amount of missing data if validation comes 
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from a single Unit; and fourth, KCH belongs to a public healthcare system 

(similar to Spain) but with clear differences in terms of donation and 

distribution of transplantation centers.  

b. Patient selection.  

1. Spanish dataset.- The chosen dataset was the same as the 

previously 1,003 matched D-R cases in the Spanish series[10].  

2. King’s College Hospital dataset.- To obtain a similar number of 

patterns, only reported pairs from January 2002 to December 2010 

were included. Thereby, a dataset containing 858 English D-R pairs 

was collected. 

3. Exclusion criteria: Paediatric liver transplants, living donor liver 

transplants and hepatocellular carcinoma (HCC). These last 2 

exclusion criteria were because they follow different allocation 

policies not strictly ruled by MELD score or random MELD score 

points additions according to time on waiting list or high/low risk 

HCC criteria.  

c. Missing values. Imputation techniques. Once the data were collected 

(both in the Spanish and English series), it was necessary to perform some 

classical techniques of data imputation in order to replace all the missing 

values. To do so, first, when the ratio of missing values for any variable was 

<1%, those were substituted by the mean (in the case of a continuous and 

quantitative variable) and by the mode (in the case of a binary and 

qualitative variable). When the ratio of missing values was >1% and <10%, 

a linear and nonlinear regression analysis was performed for recover those 

missing values. Finally, patterns with a percentage of missing values >10% 



 9 

were not considered for the study. Besides, It was necessary to exclude four 

hospitals from the study (from the eleven initial ones), because when 

classifying each hospital separately, those four obtained an AUC measure < 

0.5, which means that a random classifier would be even better for those 

samples. Thus, once the patterns from those hospitals were removed, the 

total number of cases was 615 for the Spanish dataset. 

d. Building the artificial neural networks: Models of donor-recipient 

matching. In order to obtain the best knowledge of D-R prognosis, a new 

system was developed for graft assignment. For each D-R pair, two 

probabilities were calculated using 2 different and non-complementary 

models: the positive-survival model and the negative-loss model.  

1. The positive-survival model consists of a neural network, which 

predicts the probability of 3-months graft survival after LT. This 

model uses the mathematical concept of Correct Classification Rate 

(CCR), or Accuracy, defined as the percentage of correctly classified 

training patterns. This model tries to maximize the probability that a 

D-R pair has of belonging to the "graft survival" class. 

2. The negative-loss model consists of a neural network giving the 

probability of non-survival of the graft 3 months following the 

transplant. This model uses the mathematical concept of Minimum 

Sensitivity (MS), defined as the minimum value of the sensitivities of 

each of the classes. This model tries to maximize the probability that 

a D-R pair has of belonging to the “non-graft-survival” class. 

e. Building the artificial neural networks: the training/testing process.  

The values of the connections and the structure of the models are 
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determined by an evolutionary algorithm.  To verify that the individuals 

obtained by the evolutionary algorithm are efficient, the coefficients of 

individual neural network models are trained with a subset of the database 

(training set) and tested with the rest of the database (generalization set) 

[11]. For this purpose, experts in computational analysis used the 10-fold 

cross-validation methodology. Briefly, the whole dataset is randomly 

divided, and 90% of the patients are used for the training step, leaving 10% 

for the final testing. This process is performed 10 times, so that all patterns 

participate in the testing phase. After these 10 randomizations, the best CCR 

and MS models are chosen. The two "best models" are those that correctly 

classifies the highest number of pairs in both categories of graft survival 

and graft loss. 

f. Building the artificial neural networks: Algorithms used. The positive-

survival and negative-loss models are models of ANN. In this manuscript, a 

Multiobjective Evolutionary Algorithm (MOEA) was used to train artificial 

neural networks models. An ANN is a mathematical model inspired by 

biological neural networks used to learn and predict the end-point variable 

from a given set of input data (in this case, characteristics of recipients, 

donors and other operative factors were considered). The weights of the 

ANNs were adjusted by operators employed by the MOEA during the 

evolutionary process. Both operators, as well as the MOEA, are inspired by 

biological evolution, performing methodologies such as reproduction, 

mutation or selection. In our work, the evolutionary process of the MOEA 

was guided by two different competing objective functions. The former 

function considered was the accuracy or CCR and the latter was the MS, 
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which reports the minimum classification rate per class of all of the classes 

in the problem. In this sense, the CCR metric will be focused on overall 

classification, whereas MS will focused on the minority class classification 

(in our cases, non-survival class) [12]. The MPENSGA2 algorithm (Memetic 

Pareto Evolutionary approach based on the NSGA2 evolutionary algorithm) 

was selected as MOEA in this paper in order to train ANNs, since it has been 

shown to achieve competitive performance with a limited computational 

cost [12]. Once the evolutionary process of the algorithm has been 

completed, both best models (the one for CCR and the one for MS) have 

been selected as potential solutions to the problem 

g. Validation process. Our previously reported MADR-E (Model for the 

Allocation of Donor and Recipient in España) was validated in an European 

high-volume liver transplant Unit (King’s College Hospital-London). Three 

different validation processes were performed to fulfill three different aims: 

1. Training KCH  testing KCH. In this model, the methodology is 

entirely new performed with KCH. Thus, a theoretical new D-R 

matching model is created for KCH (MADR-KCH). With this model, 

the aim is to find out if ANN work well in a different population 

within Europe. According to previous suggestions, 3-months and 1-

year graft survival models were obtained. 

2. Training MADR-E  testing KCH. This would be the “pure” 

validation process in which the MADRE model is directly tested on 

KCH population. According to the original MADRE model, 3-months 

graft probability of survival and non-survival were the endpoint 

variables. 
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3. Grouping MADR-E + KCH (training MADR-E + KCH  testing 

MADR-E + KCH). The main aim of this model was to find out if a 

larger model would improve every result obtained to date and to 

test if a unique MADR-Eu (Model for the Allocation of Donor and 

Recipient in Europe) could be potentially suggested.  

h. The Rule-based system. With the two models obtained, a very simple rule-

based-for-decision system was designed: first, MELD score is the 

cornerstone, so in case of draw when the ANN is not capable to determine 

differences, the D-R matching is allocated by MELD; second, the D-R pair is 

chosen in cases of real biological, and not mathematical differences, defined 

by, at least, 3% and 5% in the NN-CCR and NN-MS models respectively. 

These probabilities were chosen from the standard deviations from the 

probabilities of belonging to the class of graft survival (SD=2.86%) or not-

survival (SD=5.56%). 

i. Comparisons against other scores. To test the accuracy of ANN in 

predicting both graft-survival and –loss, comparisons with other current 

validated scores were performed. Receiver-operating-characteristics (ROC) 

curves were obtained for every score to predict both end-points and 

compared against CCR and MS models. According to current literature, 

MELD[13], D-MELD[14], DRI[2], P-SOFT, SOFT[3] and BAR[4] scores were 

calculated. 

j. Ethical and humanae considerations. Every procedure, including 

obtaining informed consent, was conducted in accord with the ethical 

standards of the Committee on Human of the Helsinki Declaration of 1975. 
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RESULTS 

a. Descriptive analysis. Considering the surviving/non-surviving graft 

classes, there were 548/67 pairs, in the Spanish and 739/83 in the KCH 

database. A total number of 1287/150 D-R pairs was collected. Thus, this is 

an unbalanced database, and therefore the usual models of binary 

classification that try to optimize the CCR, present the difficulty to 

optimize the classification of the majority class (graft survival) to the 

detriment of the classification of the minority class (graft not 

survival). For each pair, several variables were selected, more specifically, 

16 variables concerning the recipient, 17 concerning the donor and finally, 

5 related to the surgery. Some of these variables such as Aetiology are 

encoded in nominal scale (7 modalities) so for each modality we 

generate a binary variable. In this way the total number of variables is 

55 (see Table 1 and the best models for CCR and MS in Supplemental 

Digital Content 1 and 2) 

b. Independent baseline results, comparisons between MADR-E and KCH and 

global data from the 1437 pairs are depicted in Table 1.  

c. ANN for KCH (3-months graft survival model). Training KCH  Testing 

KCH (Supplemental Digital Content 1). The ANN models clearly improved 

the potential prediction of graft survival and graft non-survival 3-months 

after the transplant. The CCR (AUROC=0,9375) and MS (AUROC=0,9374) 

models increased up to 10% respect to the second best score (BAR score; 

AUROC=0,8446) (Figure 1). As observed, the prediction capability was 

excellent and clearly better (increase >11%) than in the previous original 
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MADR-E model in which CCR and MS models predicted AUROC=0,8060 and 

AUROC=0,8215, respectively. 

d. ANN for KCH (1-year graft survival model). Training KCH  Testing 

KCH (Supplemental Digital Content 2). The impact of D-R matching on 

graft survival was also analyzed in the long-term setting. One-year 

probability of graft (AUROC=0,78333) and non-graft (AUROC=0,81528) 

survival were better predicted by ANN compared to the best prediction 

achieved by other scores (BAR score; AUROC=0,70972) (Figure 2).  

e. The exportation model. Training MADR-E  Testing KCH. The statistical 

analysis performed by using MADR-E for the training and testing with the 

KCH showed that both CCR (AUROC=0,6400) and MS (AUROC=0,6235) 

models worked slightly better than the best score (BAR score; 

AUROC=0,6034) (Figure 3). 

f. Global ANN using combined data. Training MADR-E + KCH  Testing 

MADR-E + KCH (The potential MADR-Eu) (Supplemental Digital 

Content 3). By grouping both Spanish and KCH population, 1470 D-R pairs 

were analyzed (by the 10-fold technique, 147 pairs were randomly selected 

10 times and 1323 were validated 10 times). Both CCR (AUROC=0,7791) 

and MS (AUROC=0,7016) achieved excellent prediction probabilities almost 

20% higher than the best current score (BAR score; AUROC=0,5973) 

(Figure 4). These results were slightly worse than those obtained in our 

previous MADR-E only manuscript (CCR AUROC=0,8060; MS 

AUROC=0,8215).  

g. A theoretical D-R selection model using the rule-based model in the 

KCH model. By the application of the rule-based model, 5 random real 
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recipients and 10 random potential donors were selected. The ANN 

calculated the highest probability of graft survival (CCR model) and the 

lowest probability of graft non-survival (MS model). By combining both of 

them and using the rule-based system, a recipient was chosen for a specific 

donor. In our theoretical model, R1 was the preferential selection for 

donors 2, 8 and 10. For example, when donor 10 was selected, R1 and R3 

had equal survival and non-survival probabilities, but highest MELD score 

(and thus, highest probability of death on waiting list) ruled the decision 

from the ANN. For example, when donor 6 was selected, R1 and R3 had 

similar graft surviving rates but R3 had the lowest probability of non-

survival and then, it was selected by the rule-based system (see Table 2).  

 

DISCUSSION. 

 The management of waiting lists for liver transplantation is not an easy 

task. The number of candidates continues to increase and could be even higher if 

expanded indications such as colorectal liver metastases and extended criteria for 

HCC and cholangiocarcinoma were accepted for inclusion on the waiting list. The 

medical community needs a tool that could combine three features: objectivity (to 

avoid human subjectivity in the management of waiting list), optimization (to 

achieve highest post-transplant survival rates) and justice (to give the chance to be 

transplanted with advanced disease). Besides, this tool should be flexible and 

adapt to most of the allocation systems in all countries with their own 

peculiarities. We developed models entitled MADR (“madre” in Spanish means 

“mother”, that helps conceive these models as a creative tool that generates 
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multiple individual and unique models). Our findings confirm that the best D-R 

matching system to date would be an ANN-guided system trained, tested and 

optimized for each healthcare system. 

  Several systems have been proposed for D-R matching in LT. All of them 

have been built using regression models or statistical findings. They work well and 

highlight the complexity of donor and recipient matching. None have emerged as of 

value in healthcare systems worldwide. Reasons for this include their heterogeneity, the 

different variables used and that some of them are all-or-none systems in which only a 

small number of patients can be discriminated. Further disadvantage is that access to 

transplant may not be equally guaranteed in special indications such as recurrent 

encephalopathy or refractory as cites [9]. 

Our MADR-E worked well in the Spanish database grouping data from 

several centres. The development of an ANN for KCH (MADR-KCH) had excellent 

prediction capabilities which was even better than the original MADR-E. Validation 

of ANN as a tool for optimal D-R matching is supported by our findings. However, 

exporting the MADR-E ANN to KCH was unsatisfactory. The explanation for this 

would include that ANN is built for a different healthcare system and that input 

variables are absolutely different (different donors, indications, race proportions, 

…). Therefore each ANN model utilised worldwide is trained for a specific purpose 

in a single distinctive population. The 1-year MADR-KCH ANN was also notable. In 

that, the model was useful, but was less accurate than the 3-months model. This is 

probably because D-R interactions may not have such a direct impact on mid-term 

survival as they do on short-term outcomes. 
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The development of a preliminary MADR-Eu is interesting and the results 

are promising. By grouping all the populations and training/testing them, excellent 

prediction rates for graft survival and non-survival were achieved, which were 

higher than with other scores. This potential utility needs to be evaluated with a 

much larger population using large multinational databases. It is an attractive 

prospect to think that it may be possible to find a unique ANN that may be 

exportable to liver transplant programs in every country. However, it should be 

possible for each transplant program to analyse their data by building their own 

ANN and generating specific D-R matching software. Unfortunately, medical 

records are not as accurate as they should be and databases do not equally work in 

every hospital. ANN could potentially work better if they could be developed using 

previously recorded data with no missing values. A potential area of research 

would be to prospectively build an ANN using hundreds of pre-transplant 

variables and hundreds of post-transplant variables. 

Conventional regression analyses use historical data and try to fit them to 

some function. The drawback here is the difficulty of selecting an appropriate 

function capable of capturing all forms of data relationships as well as 

automatically modifying output in case of additional information, because the 

performance of a candidate is influenced by a number of factors, and this 

influence/relationship is not likely to be represented by a simple known 

regression model. An ANN, which imitates the human brain in problem solving, is a 

more general approach that can handle this type of problem by adapting itself, 

learning from every candidate and modifying with every situation. 
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Artificial neural networks are complex tools. They can predict several 

important situations from which the life of human populations is decided. For 

example, during emergencies such as flood and drought seasons, reservoirs act as 

defence mechanisms to reduce the risk of flooding and to maintain water supply. 

During this period, decision regarding water release is critical [15]. Another 

example is the prediction of water levels at Kainji Dam, which supplies water to 

Nigeria’s largest hydropower generation station in which ANN were built to 

generate a more efficient power supply [16]. All the models used hundreds of 

variables recorded daily for several years to build extremely accurate tools that 

have led to excellent prediction capabilities not reachable by the human mind and 

far from simplistic common statistical models. Nowadays, a huge number of 

processes worldwide are predicted, controlled and guided by ANN. All are 

specifically designed for each individual process. For example, the ANN designed 

for the forecast prediction of one is not the same for another, or the one that 

controls variables affecting flight status of one type of plane is not usable for 

another. 

It is extremely difficult to predict every human behaviour and every human 

medical process. But it is more complex to modify human feelings and to adapt 

them to artificial intelligence. Even the most sophisticated robot may not 

accurately consider individual factors and ethical issues are unlikely to be 

accurately modelled. For example, an ANN would be unlikely to consider an 

adequate donor for a third-graft recipient that developed a primary graft non-

function in his first transplant and a late arterial thrombosis after his second 

transplant. The likelihood is that this recipient would never be allocated a donor, 
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due to the poor outcomes. The solution would be to create a specific ANN for 

retransplants or to bypass the ANN solution generating a mixed model in which 

artificial intelligence and human factors would coexist. 

The research field that our group has started is at the very beginning. 

Leaving the decision of who will get a graft and who will not and thus, who will die 

to software will not satisfy everyone. But there are now many examples such as 

plague control, flight behaviour, water level controls, dock openings or weather 

forecasting that are ANN-controlled and may lead to the survival of thousands of 

people everyday. The medical community has to explore the interface between 

human decisions and software-guided analyses which is moving in favour of 

complex computational tools. A prospective trial may be the next step to make the 

transplant community consider these tools and to further apply the results of our 

analysis that shows that ANN may accurately predict graft outcomes and guide 

donor-recipient matching decisions in different healthcare systems. 
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TABLE 1. Baseline characteristics of the Spanish (MADR-E) and British (KCH) 

populations.  

VARIABLES 

GLOBAL 

N=1437 

MADR-E 

N=615 

KCH 

N=822 

P 

RECIPIENT VARIABLES 

Age (x1) 49.6 ±12.0 50.5 ± 11.0 49.0 ± 12.0 0.05 

Gender (x2) 64.6% 65.9% 63.6% 0.36 

BMI (x3) 31.4 ±6.0 29.9 ± 6.0 32.6 ± 5.0 0.02 

Diabetes (x4) 15.8% 14.8% 16.6% 0.35 

Hypertension (x5) 16.6% 14.1% 18.5% 0.03 

Pre-transplant dialysis (x6) 2.7% 2.4% 2.9% 0.57 

Aetiology 

•  HCV (x7) 

•  ALCOHOL (x8) 

•  HBV (x9) 

•  ALF (x10) 

•  PBC (x11) 

•  PSC (x12) 

•  Others (x13) 

 

21.4% 

25.0% 

5.2% 

13.6% 

5.6% 

7.7% 

21.4% 

 

24.7% 

25.6% 

5.2% 

11.9% 

3.7% 

8.1% 

20.8% 

 

18.9% 

24.5% 

5.2% 

15.0% 

7.1% 

7.4% 

21.9% 

0.02 

Portal vein thrombosis 

• Absent (x14) 

• Partial (x15) 

• Complete (x16) 

 

88.0% 

11.6% 

0.8% 

 

87.7% 

11.2% 

1.1% 

 

87.6% 

11.9% 

0.5% 

0.35 

Days on waiting list (x17) 165 ± 200 167 ± 211 164 ± 192 0.56 

MELD (at inclusion) (x18) 17.5 ± 7.8 18 ± 7.4 17.1 ± 8.0 0.03 

MELD (at transplant) (x19) 18.9 ± 8.2 19.2 ± 7.4 18 .6 ± 8.5 0.002 

TIPS (x20) 3.8% 4.4% 3.3% 0.28 

Hepatorenal syndrome (x21) 10.4% 10.6% 10.4% 0.90 

Abdominal surgery (x22) 11.0% 12.8% 9.6% 0.06 

Pre-transplant status 

• Ambulatory (x23) 

• Admitted ward (x24) 

• ITU (x25) 

• ITU + ventilator (x26) 

 

65.6% 

18.3% 

4.0% 

12.0% 

 

66.9% 

18.8% 

4.9% 

9.4% 

 

64.7% 

17.9% 

3.4% 

14.0% 

0.04 

CMV status (x27) 71.5% 74.2% 69.4% 0.05 
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DONOR VARIABLES 

Age (x28) 49.8 ± 16.0 52.6 ± 16.0 47.8 ± 15.0 0.12 

Gender (Male) (x29) 53.3% 54.1% 52.7% 0.62 

BMI (x30) 26.2 ± 4.0 26.5 ± 4.0 25.8 ± 4.0 0.05 

Diabetes (x31) 7.7% 8.3% 7.3% 0.49 

Hypertension (x32) 22.0% 25.3% 19.5% 0.08 

Cause of death  

•  Trauma (x33) 

•  CVA (x34) 

• Anoxia (x35) 

•  DCD (x36) 

•  Others (x37) 

 

17.5% 

68.1% 

7.1% 

1.7% 

12.7% 

 

19.2% 

68.5% 

4.4% 

1.5% 

10.9% 

 

16.2% 

67.8% 

9.1% 

1.8% 

14.1% 

0.005 

Days on ICU (x38) 2.8 ± 3.9 2.9 ± 3.6 2.8 ± 4.1 0.85 

Hypotensive episode (x39) 15.9% 17.7% 14.6% 0.11 

Inotropes (x40) 76.5% 77.4% 75.9% 0.49 

Creatinine (x41) 1.02 ± 0.60 1.04 ± 0.60 1.00 ± 0.60 0.12 

Sodium (x42) 147.1 ± 8.0 147.4 ± 8.0 146.9 ± 8.0 0.65 

AST (x43) 60.2 ± 91.0 55.4 ± 71.0 63.8 ± 103.0 0.04 

ALT (x44) 51.9 ± 91.0 52.3 ± 87.0 51.7 ± 93.0 0.87 

Bilirubin (x45) 0.70± 0.48  0.70 ± 0.40 0.69 ± 0.40 0.95 

Hepatitis B (HBcAb +) (x46) 5.6%  5.7% 5.5% 0.87 

Hepatitis C (HCV +) (x47) 1.0% 1.5% 0.6% 0.10 

CMV status (x48) 60.3% 63.3% 58.0% 0.04 

PERI-TRANSPLANT VARIABLES 

Multiorgan donor (x49) 48.3% 58.1% 40.9% 0.001 

Combined transplant (x50) 3.1% 4.1% 2.3% 0.06 

Partial graft (x51) 6.9% 3.9% 9.1% 0.001 

Cold ischaemia (h) (x52-54) 

• <6h 

• 6-12h 

• >12h 

8.1 

26.7% 

44.3% 

28.9% 

7.4 

58.7% 

39.7% 

16.0% 

8.8 

28.0% 

47.8% 

49.4% 

0.002 

 

 

 

ABO compatibility (x55) 94.2% 94.8% 93.8% 0.41 
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Table 2. A simulation of D-R allocation by the ANN. By randomly choosing 5 

potential recipients with MELD score 23-27 and 10 random donors, probability of 

survival (CCR) and non-survival (MS) were calculated. After that, and using the 

“rule-based system”, a D-R pair is selected.  

CCR MODEL.- 3-MONTHS PROBABILITY OF GRAFT SURVIVAL 

 Recipient (MELD) Don1 Don2 Don3 Don4 Don5 Don6 Don7 Don8 Don9 Don10 

Recipient 1(27) 93.19 91.43 93.19 94.26 94.13 93.19 94.26 94.13 94.26 94.27 

Recipient 2(26) 84.37 84.30 84.37 94.25 85.28 84.37 92.95 85.28 92.95 94.26 

Recipient 3(23) 92.95 90.95 92.95 94.26 94.10 92.95 94.26 94.10 94.26 94.27 

Recipient 4(23) 84.35 84.30 84.35 94.24 85.28 84.35 92.95 85.28 92.95 94.26 

Recipient 5(23) 84.18 84.27 84.18 94.09 84.33 84.18 87.05 84.33 87.05 94.13 

           MS MODEL.- 3-MONTHS PROBABILITY OF NON-GRAFT SURVIVAL 

  Don1 Don2 Don3 Don4 Don5 Don6 Don7 Don8 Don9 Don10 

Recipient 1(27) 74.85 76.37 75.60 19.69 25.31 74.16 18.91 76.36 73.31 13.75 

Recipient 2(26) 75.83 76.39 76.11 30.29 41.08 75.58 28.50 76.38 75.24 15.13 

Recipient 3(23) 49.29 75.74 60.16 13.26 13.52 42.41 13.23 75.60 36.03 13.00 

Recipient 4(23) 68.76 76.25 72.39 14.29 15.46 65.63 14.13 76.22 61.67 13.12 

Recipient 5(23) 76.40 76.40 76.40 74.95 75.61 76.40 74.73 76.40 76.38 64.57 

           Allocation: R3 R1 R3 R3 R3 R3 R3 R1 R3 R1 
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Figure 1. Artificial neural network model to predict 3-months graft survival 

developed using the KCH population for both training and testing and 

comparisons against other scores. CCR: correct classification rate; MS: minimum 

sensitivity.  
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Figure 2. Artificial neural network model to predict 1-year graft survival 

developed using the KCH population for both training and testing and 

comparisons against other scores. CCR: correct classification rate; MS: minimum 

sensitivity. 
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Figure 3. Artificial neural network model to predict 3-months graft survival 

developed using the Spanish previously reported model [10] for training and 

the KCH population for testing comparisons against other scores. CCR: correct 

classification rate; MS: minimum sensitivity. 
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Figure 4. Artificial neural network model to predict 3-months graft survival 

developed using the combined population of MADR-E and KCH both for 

training and testing and comparisons against other scores. CCR: correct 

classification rate; MS: minimum sensitivity. 
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Supplemental Digital Content 1. Formulae obtained from the artificial neural 

network model to predict 3-months graft survival developed using the KCH 

population for both training and testing and comparisons against other 

scores. C: correct classification rate; MS: minimum sensitivity. 

The probability that a pair (D-R) designed by x belongs to 3 months survival class 

SC,3M,KC is (all variables Xi are normalized between 0.1 and 0.9): 

     

 

C,3 ,

C,3 , 1,C

C,3 , ( )

,3 , 2,C,3 ,

3,C,3 ,

 1.39 1.40* , 1.12* ,

                           

1
( ) ,  

 -13.75* ,

1

 

M KC

M KC M KC M K

M KC f
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M KC

P S
e

wher f B B

B

e




  




1 2

x

3

x x w x w

x w

x

 

B1,C,3M,KC(x,w1)= 1/(1+EXP{-9.06 -0.17 * ( X6 ) +1.78 * (X7) -7.25 * (X8) -16.99 * 

(X10 )-5.14 * (X11 ) -5.25 * (X15 ) -3.92 * (X21 ) -0.31 * (X22 ) -10.46 * (X24 ) -3.77 

* (X30 ) +15.82 * (X32 ) +10.65 * (X33 ) -5.15 * (X34 ) -6.28 * (X35 )-11.23 * (X43 ) 

-5.25 * (X44 ) -0.28 * (X48 ) +2.74 * (X50 ) -6.30 * (X51 )})  

B2,C,3M,KC(x,w2)= 1/(1+EXP{-6.05 -7.72 * ( X2 ) -3.47 * (X10 ) +7.99 * (X20 ) -1.17 * 

(X31 ) -4.98 * (X48 ) -6.44 * (X49 ) +9.17 * (X53 )})  

B3,C,3M,KC(x,w3)= 1/(1+EXP{-9.12-2.66 * (X9) +11.41 * (X17 ) +6.02 * (X18 ) -9.84 * 

(X19 ) +3.32 * (X20 ) +1.68 * (X24 ) -2.81 * (X27 )-1.02 * (X33 ) -6.24 * (X34 ) +7.77 

* (X36 ) -0.36 * (X38 ) +6.83 * (X49 ) +5.49 * (X55 )})   

---------------------------------------------------------------------------------------------------------- 

The probability that a pair (D-R) designed by x belongs to 3 months survival class 

SMS,3M,KC is (all variables Xi are normalized between 0.1 and 0.9): 

     

 

,3 ,

,3 , 1,MS,3 ,

,3 ,

2,MS,3 ,

3,

)

,3 ,

(

 1.42 0.48* , 16.34* ,

                            -3.07*
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1 MS M KC
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MS K

f
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M C

f B B

B

P S
e
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



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 



1 2

3

x

x x w x w

x w

x
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B1,MS,3M,KC(x,w1)= 1/(1+EXP{10.07 -0.36 * ( x6 ) -3.20 * ( x7 ) -7.49 * ( x8 ) -7.39 * ( 

x9 ) -17.18 * ( x10 ) -5.61 * ( x11 ) -7.57 * ( x15 ) -6.20 * ( x21 ) -0.66 * ( x22 ) -9.32 

* ( x24 ) +0.82 * ( x29 ) -3.97 * ( x30 ) +17.83 * ( x32 ) +0.52 * ( x33 ) -1.05 * ( x34 ) 

-8.58 * ( x35 ) -7.83 * ( x43 ) -1.92 * ( x44 ) -3.25 * ( x47 ) +1.26 * ( x48 ) -0.69 * ( 

x49 ) +1.66 * ( x50 ) -0.96 * ( x51 )})  

B2,MS,3M,KC(x,w2)= 1/(1+EXP{-12.31 -0.20 * ( x2 ) -0.59 * ( x3 ) +2.27 * ( x9 ) +17.57 

* ( x17 )+6.46 * ( x18 ) -11.40 * ( x19 ) +4.07 * ( x20 ) -0.77 * ( x24 ) -3.55 * ( x27 ) -

0.70 * ( x32 ) -0.09 * ( x33 ) -0.50 * ( x35 ) +6.75 * ( x36 ) -4.50 * ( x38 ) -0.08 * ( 

x42 ) -0.97 * ( x43 ) -0.86 * ( x44 ) -1.84 * ( x47 ) +6.88 * ( x49 ) +0.53 * ( x55 )}) 

B3,MS,3M,KC(x,w3)= 1/(1+EXP{-8.84 +6.20 * ( x4 ) -1.55 * ( x6 ) -1.44 * ( x8 ) +9.43 * ( 

x9 ) -3.64 * ( x10 ) +2.57 * ( x11 )+0.85 * ( x12 ) -0.87 * ( x13 ) +1.57 * ( x14 ) +1.57 

* ( x17 ) -6.80 * ( x18 ) -7.52 * ( x19 ) -0.82 * ( x20 ) -4.63 * ( x21 ) -9.82 * ( x22 ) -

0.16 * ( x24 ) -1.28 * ( x25 ) -5.92 * ( x26 ) -2.50 * ( x27 )-5.35 * ( x29 )+7.24 * ( x31 

) +4.61 * ( x32 ) +5.26 * ( x33 ) +8.30 * ( x36 ) -0.90 * ( x38 ) +3.00 * ( x40 ) -0.22 * ( 

x42 ) +3.97 * ( x43 ) -8.94 * ( x45 ) -6.60 * ( x46 ) -0.75 * ( x47 ) -0.14 * ( x48 ) -6.68 

* ( x49 ) -0.73 * ( x51 ) +0.16 * ( x52 ) -4.95 * ( x54 ) +4.89 * ( x55 )})  
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Supplemental Digital Content 2. Formulae obtained from the artificial neural 

network model to predict 1-year graft survival developed using the KCH 

population for both training and testing and comparisons against other 

scores. C: correct classification rate; MS: minimum sensitivity. 

The probability that a pair (D-R) designed by x belongs to 1 year survival class 

SC,1Y,KC is (all variables Xi are normalized between 0.1 and 0.9): 

     
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e

wher Be f B
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 


x

x x w x w

x
 

B1,C,1Y,KC(x,w1)=  1/(1+EXP{-7.25+9.91 * ( x1 ) -9.12 * ( x2 ) -3.56 * (X3) +11.50 * 

(X4) +10.75 * ( x5 ) -1.42 * ( x6 ) -5.43 * (X10 ) -0.64 * (X11 ) +4.60 * (X14 ) -7.69 * 

(X15 ) -12.71 * (X17 ) +2.69 * (X20 ) -19.91 * (X22 )+2.88 * (X23 ) +1.92 * (X25 ) 

+18.65 * (X27 ) +17.36 * (X29 ) -1.02 * (X30 ) +8.68 * (X31 )+5.40 * (X32 ) -7.17 * 

(X33 )-2.09 * (X36 ) -5.13 * (X37 ) +7.32 * (X38 ) +1.09 * (X40 ) +11.29 * (X41 ) 

+0.78 * (X46 ) +3.05 * (X48 ) -2.52 * (X49 ) +11.77 * (X50 ) +8.08 * (X52 ) +3.56 * 

(X53 ) -0.62 * (X54 ) -7.46 * (X55 )}) 

B1,C,1Y,KC(x,w2)=  1/(1+EXP{-6.28 +5.47 * ( x2 ) +12.22 * (X3) -10.72 * (X4) +3.46 * 

(X7) -7.26 * (X9) +16.46 * (X11 ) +5.15 * ( x12 ) -0.29 * (X13 ) +0.20 * (X14 ) +13.09 

* (X15 ) -0.07 * (X17 ) +6.02 * (X18 ) +4.79 * (X19 ) -26.00 * (X20 ) +10.24 * (X21 ) -

11.58 * (X22 ) -5.55 * (X23 ) +5.67 * (X26 ) -4.93 * (X29 ) -0.10 * (X32 )-32.80 * 

(X36 ) +16.27 * (X37 ) -7.34 * (X38 ) +2.31 * (X39 ) -7.76 * (X40 ) +7.86 * (X41 ) 

+6.79 * (X42 ) -8.42 * (X45 ) -17.47 * (X46 ) +7.49 * (X47 ) +5.43 * (X49 ) -2.49 * 

(X50 ) -8.57 * (X52 )})  

 

---------------------------------------------------------------------------------------------------------- 
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The probability that a pair (D-R) designed by x belongs to 1 year survival class 

SMS,1Y,KC is (all variables Xi are normalized between 0.1 and 0.9): 

   
,1 ,

,1 ,,1 , 1, ,1 , 1( )

1
( ) ,    -7.12 8. ,

1
98*

MS Y KC
MS Y KC MS Y KMS Y KC Cf

P S whe
e

f Bre


 


 
x

x x wx  

B1,MS,1Y,KC(x,w1)=  1/(1+EXP{-1.83 -1.03 * ( X2 ) -0.84 * (X3) -3.29 * (X4) -3.59 * ( x5 

) -0.96 * (X6)  +7.10 * (X7) +4.67 * (X9)+0.51 * (X10 ) +0.92 * (X11 ) -0.62 * ( x12 ) 

+2.40 * (X14 ) +5.83 * (X15 ) -0.58 * (X17 ) -7.36 * (X18 ) +8.72 * (X19 ) -0.48 * ( 

X22 ) -6.53 * ( X23 ) +0.50 * ( X24 ) -1.93 * ( X25 ) -0.31 * ( X26 ) +0.90 * ( X29 ) 

+1.50 * (X31 ) +0.45 * (X33 ) +1.24 * (X37 ) +3.34 * (X38 ) +0.03 * (X39 ) -1.37 * 

(X41 ) +0.60 * (X42 ) -7.17 * (X43 ) -8.36 * (X44 ) +0.59 * (X48 ) -0.22 * (X49 ) -8.76 

* (X52 ) -1.64 * (X53 ) +0.91 * (X54 )})  
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Supplemental Digital Content 3. Formulae obtained fro the artificial neural 

network model to predict 3-months graft survival developed using the 

combined population of MADR-E and KCH both for training and testing and 

comparisons against other scores. C: correct classification rate; MS: minimum 

sensitivity. 

The probability that a pair (D-R) designed by x belongs to 3 months survival class 

SC,3M,MKC is (all variables Xi are normalized between 0.1 and 0.9): 
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B1,C,3M,MKC(x,w1)= 1/(1+EXP{-8.79-2.84 * ( x3 ) +5.86 * ( x6 ) +4.02 * ( x7 ) +7.83 * ( 

x8 )-0.53 * ( x9 ) +3.18 * ( x10 ) -1.87 * ( x11 ) +3.42 * ( x15 ) +3.29 * ( x17 ) +8.72 * 

( x19 ) -4.65 * ( x20 ) -8.48 * ( x21 ) -9.32 * ( x23 ) -2.62 * ( x24 ) +0.53 * ( x25 ) 

+1.80 * ( x26 ) +5.97 * ( x28 ) +7.76 * ( x30 ) +6.23 * ( x31 ) +1.02 * ( x32 ) +1.07 * ( 

x33 ) -2.51 * ( x34 ) -8.31 * ( x37 )-0.50 * ( x38 ) -1.13 * ( x40 )-0.94 * ( x45 )-4.42 * 

( x46 ) +9.43 * ( x49 ) -0.92 * ( x50 ) +2.20 * ( x51 ) })  

B2,C,3M,MKC(x,w2)= 1/(1+EXP{- 3.45+6.46 * ( x2 )+3.98 * ( x4 ) +5.57 * ( x5 ) -2.24 * ( 

x7 ) -2.73 * ( x8 ) +2.81 * ( x11 ) -6.87 * ( x12 ) -6.76 * ( x13 ) -5.67 * ( x15 ) -6.38 * ( 

x16 ) +4.48 * ( x18 ) -1.73 * ( x19 )+8.97 * ( x20 ) +9.43 * ( x21 ) +6.49 * ( x23 

)+9.16 * ( x24 ) -4.91 * ( x25 ) -4.52 * ( x26 ) -0.99 * ( x27 ) +10.12 * ( x28 ) +6.15 * 

( x29 ) +11.03 * ( x30 ) +7.02 * ( x31 ) -7.38 * ( x34 ) +4.25 * ( x35 ) +6.50 * ( x36 ) -

3.18 * ( x37 ) +1.01 * ( x39 ) -6.08 * ( x41 ) +4.85 * ( x42 ) -6.28 * ( x43 ) +5.46 * ( 

x47 ) +2.45 * ( x48 ) +7.67 * ( x49 ) +3.60 * ( x50 ) +7.78 * ( x51 ) -6.48 * ( x52 ) -

5.42 * ( x53 ) +11.33 * ( x55 )})  
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B3,C,3M,MKC(x,w3)= 1/(1+EXP{4.82 +4.74 * ( x10 ) +3.99 * ( x14 ) +1.84 * ( x15 ) -1.11 

* ( x16 ) -0.15 * ( x17 ) -3.64 * ( x25 ) +6.57 * ( x29 ) +1.08 * ( x31 ) +0.83 * ( x32 ) 

+7.36 * ( x34 ) +1.06 * ( x36 ) -8.70 * ( x37 ) +2.95 * ( x38 ) +7.11 * ( x42 ) -3.49 * ( 

x45 ) -6.90 * ( x46 ) +10.59 * ( x48 ) -4.40 * ( x50 ) -0.06 * ( x51 ) -6.33 * ( x52 ) -

4.87 * ( x55 )})  

---------------------------------------------------------------------------------------------------------- 

The probability that a pair (D-R) designed by x belongs to 3 months survival class 

SMS,3M,MKC is (all variables Xi are normalized between 0.1 and 0.9): 
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B1,MS,3M,MKC(x,w1)= 1/(1+EXP{0.05+5.60 * ( x1 ) +3.71 * ( x2 ) +2.32 * ( x3 ) -9.95 * ( 

x6 )-6.64 * ( x8 ) -2.24 * ( x9 )-1.86 * ( x10 ) -7.46 * ( x11 ) -3.90 * ( x12 )-2.62 * ( 

x14 )-5.99 * ( x15 )-8.68 * ( x17 ) +8.72 * ( x18 ) -10.37 * ( x20 ) +2.35 * ( x22 ) -

1.67 * ( x23 ) -0.57 * ( x24 )+1.35 * ( x25 ) -3.30 * ( x26 )-2.43 * ( x27 )+4.23 * ( x28 

)+6.03 * ( x30 ) +5.54 * ( x31 ) -2.94 * ( x32 ) +2.41 * ( x34 ) -7.68 * ( x36 ) +9.91 * ( 

x37 ) -5.11 * ( x38 )-2.37 * ( x40 ) -5.63 * ( x41 ) -6.52 * ( x42 ) +1.77 * ( x43 ) +3.99 

* ( x44 ) +10.29 * ( x46 ) -1.46 * ( x47 ) -1.37 * ( x51 ) -7.54 * ( x52 ) +7.43 * ( x53 ) -

5.03 * ( x55 ) })  

B2,MS,3M,MKC(x,w2)= 1/(1+EXP{-3.84 +10.41 * ( x3 ) +1.18 * ( x6 ) +8.28 * ( x7 ) +3.93 

* ( x13 ) +2.27 * ( x14 ) -4.71 * ( x15 ) -9.02 * ( x20 ) -11.36 * ( x22 ) -9.32 * ( x23 ) -

2.48 * ( x28 ) +3.40 * ( x29 ) +1.94 * ( x31 ) +9.08 * ( x38 ) +2.60 * ( x39 )+0.71 * ( 

x43 ) -1.53 * ( x44 ) +0.11 * ( x46 ) -4.14 * ( x47 ) +1.58 * ( x49 ) +6.55 * ( x51 ) -

1.54 * ( x54 ) }) )  
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