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Abstract

Numeracy and literacy are the abilities to understand and work with numbers and
words, respectively. While both skills are necessary for reading and writing doc-
uments in clinical, scientific, and other technical domains, existing statistical lan-
guage models focus on words to the expense of numbers: numbers are ignored,
masked, or treated similarly to words, which can obscure numerical content and
cause sparsity issues, e.g. high out-of-vocabulary rates. In this thesis, we investi-
gate whether the performance of neural language models can be improved by i) con-
sidering numerical information as additional inputs and ii) explicitly modelling the

output of numerical tokens.

In experiments with numbers as input, we find that numerical input features
improve perplexity by 33% on a clinical dataset. In assisted text entry and verifica-
tion tasks, numerical input features improve recall from 25.03% to 71.28% for word
prediction with a list of 5 suggestions, keystroke savings from 34.35% to 44.81% for
word completion, and F1 metric by 5 points for semantic error correction. Numeri-
cal information from an accompanying knowledge base helps improve performance

further.

In experiments with numerical tokens as output, we consider different strate-
gies, e.g. memorisation and digit-by-digit composition, and propose a novel neural
component based on Gaussian mixture density estimation. We propose the use of
regression metrics to evaluate numerical accuracy and an adjusted perplexity metric
that accounts for the high out-of-vocabulary rate of numerals. Our evaluation on
clinical and scientific datasets shows that perplexity can be improved by more than

2 and 4 orders of magnitude, respectively, by modelling words and numerals with
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different sub-models through a hierarchical softmax. For the same datasets, our
proposed mixture of Gaussians model achieved a 32% and 54% reduction of mean
average percentage errors over the contender strategy, digit-by-digit composition.

We conclude with a critical reflection of this thesis and suggestions for future work.



Impact Statement

This work investigates the relationships between words, numbers, numerals, and
several models, particularly language models, in statistical tasks and applications in
the area of natural language processing.

The work contributes to highlight the strong connections between words and
numbers and exemplifies how integration of word and number inputs can lead to
improvements in tasks and downstream applications of language models. Specifi-
cally, our insights could improve the quality of service for assisted text entry sys-
tems (word prediction and completion) and for assisted number-based proof-reading
systems (semantic error detection and correction). Application of such systems in
clinical domains could facilitate the composition of clinical reports and reduce the
amount of errors that could adversely affect the quality of heath-care.

Furthermore, this work contributes to the methodology of neural language
modelling by proposing models with alternative strategies (hierarchical, compo-
sition, from continuous density, and combination of strategies) for modelling nu-
merals and for predicting numbers; our evaluations reveal that the proposed models
can improve the (adjusted) perplexity evaluation metric by 100 and 10,000 times
in a clinical and scientific domain, respectively. Applications of language models
in other number-intensive domains could benefit from these improvements. The
methodological contributions in evaluations of language models (e.g. only on nu-
merals), as well as the insights for the nature of numerals as special words that
confer numerical information, can be applied to guide and promote future research.

This stream of work has already generated publications in leading conferences,

such as EMNLP and ACL.
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Chapter 1

Introduction

‘The numbers are the key to everything’
— Nicolas Cage as ‘John Koestler’,

in The Knowing

Literacy and numeracy refer to the ability to comprehend, use, and attach
meaning to words and numbers, respectively. Words are categorical labels devised
by humans to categorise, document, and communicate information, while numbers
are abstract mathematical objects that facilitate numerical reasoning. Numerals are
closely related to both words and numbers: a numeral is a word that refers to a num-
ber; thus, the ability to understand numerals is essential for numeracy, but it can also
be important to literacy. Figure 1.1 shows the relations among these concepts.

This thesis is about the joint modelling of data of different types: words, num-
bers, and numerals.! We seek to improve the performance of models by i) incorpo-
rating inputs of different types, e.g. numerical inputs to models for word prediction,
and ii) by proposing mechanisms for modelling outputs of different types, e.g. nu-
merical outputs from word prediction models. Our emphasis is on language models,

which are probabilistic models of texts, that is, sequences of words and numerals.

1.1 Motivation

Numbers and Words Numbers are abstract mathematical objects that can be used

to measure, count, and label; this contrasts with words, which can only act as labels.

I ' We draw a clear distinction between the terms ‘numbers’ and ‘numerals’, and our usage of the
term ‘words’ excludes numerals.
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s -

Words ‘—_‘i Numerals

~- -

Categorical . Numerical

Figure 1.1: Basic concepts. Literacy and numeracy are the abilities to work with words and
numbers, respectively. Words are categorical labels, and numbers are abstract
numerical objects. Numerals are categorical labels (like words) for numbers.

Numbers have the continuous property of numerical magnitude, and they can be or-
dered according to it. This continuity facilitates generalisation to numbers that have
never been seen before. For example, if someone describes two persons with heights
1.8 metres and 2.1 metres as ‘tall’, we would expect them to use the same word to
describe anyone with a height between those values. On the contrary, generalisation
across words is harder, or even impossible, because they are categorical, i.e. they
have no magnitude and no natural ordering. For example, if someone describes two
persons called ‘Sarah’ and ‘John’ as ‘tall’, we would have no information on how
they would describe people with different names. Moreover, relevant information
can be better represented as numbers (e.g. height) or as words (e.g. biological sex:
‘male’ or ‘female’). Therefore, having both numbers and words as inputs to models

can help capture more information and improve generalisation to unseen data.

Numerals and Words Numerals are symbols that refer to numbers, just as words
are symbols that refer to other objects and ideas. Unlike most words, new numerals

can be procedurally generated to refer to never before encountered numbers (and
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there are infinite of them), i.e. numerals come from an open vocabulary. In many
applications of natural language processing, numerals are often neglected and low-
resourced, e.g. they are often simply filtered from text data or masked (Mitchell
and Lapata, 2009), and there are only 15,164 (3.79%) numerals in the vocabulary
of GloVe’s 400,000 pretrained embeddings (Pennington et al., 2014). In language
modelling, i.e. statistical estimation of probabilities of texts, numerals are often
treated like all other words: most language models assume that their inputs and
outputs are categorical, i.e. they have no magnitude. However, the number that
underlies the numeral could be retrievable, up to an extent, e.g. the numeral in the
text ‘with a height of 2 metres, he is a tall’ is likely to represent number 2 or another
number with a similar magnitude (e.g. 1.99, 2.001, etc.). The number could then be
used as a continuous numerical input to the model to help the model predict certain
words, e.g. ‘tall’, and generalise over unseen numerals. Finally, the modelling of
numerals could be improved by using an alternative output mechanism that accounts

for the smoothness of the underlying number.

Language Models The emphasis of this thesis is on language models (LMs), which
are statistical models that assign a probability over texts (sequences of words and
numerals). Language models can often help with other tasks, such as speech recog-
nition (Mikolov et al., 2010; Prabhavalkar et al., 2017), machine translation (Lu-
ong et al., 2015; Giilgehre et al., 2017), text summarisation (Filippova et al., 2015;
Gambhir and Gupta, 2017), question answering (Wang et al., 2017), semantic er-
ror detection (Rei and Yannakoudakis, 2017), and fact checking (Rashkin et al.,
2017). Improving the performance of language models may lead to improvements
in downstream applications. Therefore, we seek to bring about these improvements
by providing language models with mechanisms for the input and output of numer-

als and numbers.

1.2 Research Questions

This thesis is about the joint modelling of data of different types: words, numbers,

or numerals. We seek to improve the performance of models by 1) incorporating
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Table 1.1: Overview of models in this thesis with examples for inputs and outputs. The text
type is a sequence of words and numerals.

Type Example Approach
input — output input — output model chapter
numbers — words height=2.1 — class="tall’ classifier ~ Ch. 4
numbers —  texts height=2.1 — ‘John is tall’ LM Ch.5
words — numbers ‘tall’  —  height=2.1 regressor  Ch. 4
words — numbers ‘John’s heightis [...” — value=2.1 LM Ch. 6
numerals —  words ‘John’s heightis 2.1m” — class="tall’ classifier = Ch. 4
numerals — texts ‘John’s heightis 2.1m> — ‘John is tall’ LM Ch.5
words — numerals ‘John’s heightis [...]” — ‘[..]2.1[...] LM Ch. 6

Table 1.2: Research questions.

Research Questions

Can inputting numbers into a model that predicts words

(classifier) improve its performance? Ch. 4

Q.1

Can inputting words into a model that predicts numbers (re-

. . Ch. 4
gressor) improve its performance?

Q2

Can inputting numbers into a language model improve its
Q.3 ability to model/predict/correct texts (sequences of words Ch. 5
and numerals)?

Q.4 How can we improve the ability of language models to Ch. 6
model numerals?

How can we improve the ability of language models to pre-

Ch. 6
dict numbers?

Q.5

inputs of different types, e.g. numerical inputs to models for word prediction, and
ii) by proposing mechanisms for modelling outputs of different types, e.g. numer-
ical outputs from word prediction models. Table 1.1 shows an overview of models

with various possible types for inputs and outputs found in the thesis.
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Table 1.2 lists the research questions that we address in this thesis. Question
Q.1 is a preliminary question that investigates the importance of numbers in models
that predict words, i.e. classifiers; likewise, question Q.2 is a preliminary ques-
tion that investigates the importance of words in models that predict numbers, i.e.
regressors. Question Q.3 is a preliminary question that extends question Q.1 to lan-
guage models for language modelling and downstream applications (text prediction,
semantic error detection and correction). Questions Q.4 and Q.5 are concerned with
finding improved mechanisms for modelling numerals and predicting number with

language models.

1.3 Contributions

The main contributions of this thesis are as follows:

1. We find a strong connection between words and numbers, and we achieve im-
provements in several tasks (classification, regression, language modelling,
word prediction and completion, error correction and detection) by using in-

puts that contain both words and numbers.

2. We propose two mechanisms (magnitude-dependent embeddings and condi-
tioning on lexicalised KB) for incorporating numerical inputs into language
models. These lead to improvements for language modelling and several
downstream applications of language models (word prediction and comple-
tion, error correction and detection). The improvements from the two mech-

anisms are mostly orthogonal and incremental.

3. We find that language models perform much worse on numbers than on other
words, possibly because of the high OOV-rate for numerals. This might lead
to significant failures of existing models in number-based applications. This
behaviour is not immediately obvious from standard evaluations of language

models (unadjusted perplexity evaluated on all tokens).

4. We propose several alternative strategies (hierarchical, compositional, from

continuous probability density, and combination of strategies) for modelling
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numerals and predicting numbers with language models. We find that for
modelling the best perplexity is achieved with a combination of strategies,
and for prediction with the continuous density strategy. There are indications

that a different strategy can be suitable for different contexts.

List of Publications

The work in this thesis is partly based on the following publications by the author
(in bold):

1.5

G. P. Spithourakis, S. Riedel. Numeracy for Language Models: Evaluating
and Improving their Ability to Predict Numbers. ACL 2018.

G. P. Spithourakis, 1. Augenstein, S. Riedel. Numerically Grounded Lan-
guage Models for Semantic Error Correction. EMNLP, 2016.

G. P. Spithourakis, S. E. Petersen, S. Riedel. Clinical Text Prediction with
Numerically Grounded Conditional Language Models. LOUHI - 7th Interna-
tional Workshop on Health Text Mining and Information Analysis, EMNLP
2016.

G. P. Spithourakis, S. E. Petersen, and S. Riedel. Harnessing the predictive
power of clinical narrative to resolve inconsistencies and omissions in EHRs.
2nd Workshop on Machine Learning for Clinical Data Analysis, Healthcare
and Genomics, NIPS 2014.

Structure of the Thesis

In this Chapter, we introduced the concepts of words, numbers, and numerals, and

we discussed the relations between them and with literacy, numeracy, and to cate-

gorical and numerical data. We motivated and formulated the research questions for

the remainder of the thesis (Table 1.2), and we presented the contributions of this

work and list of publications by the author. The rest of the thesis is structured as

follows:
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* In Chapter 2, we introduce the concepts of categorical and numerical vari-
ables, and we present models and evaluations for the tasks of classification,
language modelling, text prediction (word prediction and completion), error

detection and correction and regression.

* In Chapter 3, we position this work within the broader literature by discussing
related work on the topics of language modelling, text prediction, error detec-

tion and correction, and numbers in natural language processing.

* In Chapter 4, we address research questions Q.1 and Q.2, by investigating a
classification and a regression task, with numbers and words as inputs, re-

spectively.

* In Chapter 5, we address research question Q.3, by investigating language
models with numbers as inputs in the tasks of language modelling, text pre-
diction (word prediction and completion), and semantic error detection and

correction.

* In Chapter 6, we address research questions Q.4 and Q.5, by investigating
language models with different strategies for modelling numerals and for pre-

dicting numbers, respectively.

* In Chapter 7, we conclude with an overall discussion that critically reflects on

this work and proposes pathways to future research.

An overview of models and typical task signatures in each chapter can be found

in Table 1.1.






Chapter 2

Background

‘I've always believed in numbers and the equations
and logics that lead to reason ... It is only in the
mysterious equations of love that any logic or

reasons can be found’
— John F. Nash

Many problems, including most problems in this thesis, involve finding rela-
tionships between variables, in particular how input variables (independent vari-
ables) affect an output variable (dependent variable). A variable is any quantity
or quality of interest, e.g. a person’s age, sex, year and country of birth, height,
weight, eye and hair colour, etc, that takes different values in different situations,

e.g. among different persons. There are two main types of variables:

» Categorical Variables These variables are associated with qualitative at-
tributes, e.g. country of birth, eye and hair colour, etc. The values of cat-

egorical variables are categorical labels, i.e. words.

* Numerical Variables These variables are associated with quantitative at-
tributes, e.g. age, height, weight, etc. The values of numerical variables

are numbers.

Supervised Learning Problem Let x; be the input variables or input features and let
y; be an output or target variable that we want to predict. Let 2" and % be the space

of input and output values, respectively. Let D = {(x;,y;)|[i = 1,...,N} be a training
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set, where each pair (x;,y;) is called a training example. The supervised learning
problem can then be defined as: given a training set, learn a function f: 2" — %/,
so that f(x) is a ‘good’ predictor of the corresponding value of y. Training refers to
the process of learning the function from data, and evaluation refers to the process

of finding how good the predictor is.

Probabilistic Approaches A random variable Y is a variable! that depends on a
random process and takes a value y from a set, e.g. the random variable ‘toss of a
coin’ can take any value from the set { ‘heads’, ‘tails’}. Likewise, random variables
can be categorical or numerical, depending on the domain that they take their values

from.

Structure of Chapter This chapter is structured as follows:
* In Section 2.1, we present models and tasks for categorical variables;
* In Section 2.2, we present models and tasks for numerical variables;

* In Section 2.3, we provide some additional information on the topics of

words, numbers, and numerals.

2.1 Categorical Variables and Related Tasks

A categorical variable is a variable whose value comes from a limited set of items.
For example, a statement can be ‘True’ or ‘False’, a patient’s condition can be
described as ‘normal’, ‘mild’, or ‘severe’, a word can be any word from the vo-
cabulary of a language, etc. For a categorical random variable Y, the probability
that it takes on a particular value y is called its probability mass function (PMF),

p(y) = P(Y =Yy), or simply its probability function.

2.1.1 Classification

Task Definition Classification is the problem of assigning an object to a category
or class based on features of the object, e.g. assign a patient’s condition to a level

from an intensity scale { ‘normal’, ‘mild’, ‘moderate’, ‘severe’, ‘critical’} based on

! According to a stricter, but less practical for our purposes, definition, a random variable is a
function from the sample space of an experiment to the set of real numbers.”
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the patient’s health record. More formally, a classification problem is a supervised
learning problem, where the target variable is a categorical variable. The problem
is known as binary classification when there are only two possible values for the

target variable and as multi-class classification when there are more than two.

Probabilistic Classification A probabilistic approach to classification assumes that
for an instance x its class y is the value of a categorical random variable from a set
of possible labels X. The conditional distribution of the class is modelled with a

categorical distribution” using the softmax function:

p(y|x; 0) = softmax (yg(y;x)) = %eWe(y;X)

Zo=Y eVl
yev

2.1)

where 0 are the parameters of the model, the normaliser Zg is known as the partition
function, and wy(y;x) is a score function that measures the agreement between
every class y and the instance x. A commonly used score function is the dot product

between input and output feature vectors:

Yo (v:x) = 0 (x) dy0(y), (2.2)

where ¢,.9(x) € RY and ¢y.9(y) € RY are vector feature representations of the in-
put x and output y, respectively. The probabilistic classifier can produce a ‘hard’

prediction by assigning the instance to the class with the highest probability:

$ = argmax p(y'|x; ). (2.3)
yev
For linear score functions, this model is called the log-linear classifier.
Training Training the classifier refers to selecting the best configuration for its pa-
rameters 0 on the basis of an observed training set D = {(x;,y;),i=1,...,N} of N

pairs of instances x; and their labels y;.

%In natural language processing, the categorical distribution is often called the ‘multinomial dis-
tribution’. We break with that tradition for the sake of clarity.
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Maximum Likelihood Maximum likelihood estimation is a statistical method for
estimating the model’s parameters from data. The parameters are selected to max-
imise the likelihood that the process described by the model produced the data that

were actually observed. Equivalently, the negative log likelihood is minimised:

N
—InL(6|D) =—ln[llp(yi|xi;9)
=
= 'Zl In p(yi|xi; 0) (2.4)
1=

N
=NInZo — L. In¥o(yix)

0* = argmin[—InL(6|D)] (2.5)
0
The optimisation problem can be solved using gradient descent techniques.

Minimum Cross-Entropy Another way to derive a parameter estimate is through
minimising an information-theoretic training objective. Cross-entropy measures
how useful the model distribution p is in order to predict data that come from a

true distribution g:

H5(q:p) = — qu(yIX) Inp(y|x) 06
y .

= —E,4[Inp(y|x)]

Considering the training data as a sample from the true distribution g, we can derive

a practical Monte-Carlo approximation:

1 N
H5x(D,p) = =5 3 Inp(yilxi) 2.7)
i=1

This approximation of the cross-entropy is proportional to the negative log-
likelihood of the model, and it can minimised at training time to obtain estimates

for the parameters of the model.

Evaluation for Binary Classification The performance of a classifier is evaluated
by comparing the predicted labels with the observed labels on a held out test set.

We are interested in the counts for the various combinations of the target variable
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Table 2.1: Layout of the confusion matrix for binary classification.

actual class

yes no
T es P fp
k> § y (true positive)  (false positive)
-qg ° fn tn
=9 (false negative) (true negative)

and predictions:

* True Positives (TP) These are cases in which we predicted yes, and the label

is yes;
* True Negatives (TN) We predicted no, and the label is no;

« False Positives (FP) We predicted yes, but the label was no;>

« False Negatives (FN) We predicted no, but the label was yes.*

The above counts are presented as a contingency table, where each row represents
a predicted class, and each column an actual class, called the confusion matrix.
Table 2.1 shows the typical layout of the confusion matrix. Various other evaluation

metrics can be derived from the confusion matrix:

* Accuracy This metric measures the overall percentage of predictions that
were correct. Accuracy is not informative of model performance per class. In
some cases of imbalanced classes, a model with high accuracy can have no

useful predictive power for the rare class. Accuracy is calculated as:

Accuracy = tptin (2.8)
tp+tn+ fp+ fn

* Precision and Recall These metrics measure model performance for a spe-
cific class of interest. Precision measures the percentage of the instances

classified as the interest class that actually belong in that class, i.e. how exact

3 Also known as Type I error.
4Also known as Type II error.
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the model is at assigning instances to a class. Recall measures the percentage
of instances from the interest class that were classified to that class, i.e. how
thorough the model is at identifying instances from a class. In binary classifi-
cation, we are usually interested in the positive (‘yes’ in Table 2.1) class, and

its precision and recall are calculated as:

.. tp
Precision = (2.9)
tp+fp
tp
Recall = 2.10
tp+ fn ( )

F-score This metric summarises both precision and recall, using a weight to

control the importance of each:

precision - recall

Fg = (14p%) (2.11)

B2 * precision+ recall’

where B € R* is a weight that controls the contribution of the precision and
recall. For B = 1, both are equally important, and the resulting F; metric is

equivalent to their harmonic mean:

2 - precision - recall

2] (2.12)

precision + recall

Evaluation for Multiclass Classification In the multiclass case, the confusion ma-

trix can be extended with additional rows/columns. Precision, recall, and F-score

are defined for each class, which gives the finest level granularity and is useful

when high performance in specific classes is desired. Otherwise, averaged versions

of these metrics exist that summarise the classifier’s performance over all classes.

Different types of averaging can be performed on the data:

* Micro Average Calculate metrics globally by counting the total true posi-

tives, false negatives and false positives.

* Macro Average Calculate metrics for each label, and find their unweighted

mean, which does not take label imbalance into account (this assumes that all
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classes are equally important).

* Weighted Average The weighted average of the metric across all classes,
where the weights are the class proportions in the data (assumes that class

importance correlates with its frequency in the data).

The micro-averaged precision, recall, F1, and accuracy will always have the same
value. The weighted-averaged F1 might not coincide with the harmonic mean of

the weighted-averaged precision and recall.

2.1.2 Language Modelling

Task Definition Let 51, 57, ..., 57, denote a document, where s; is the token at the ¢-th
position. Language modelling is the task of estimating the probability of observing
a given document, i.e. p(sy,...,sz). This involves learning a Language Model (LM),
which is an estimator of the probability of the next token given its previous tokens,
i.e. p(s¢|s1,...,8,—1). Often, a neural network is used to estimate this probability, and
several different neural architectures for language models have been proposed (see
Approaches in Section 3.1). In this section, we present some technical background
for the approach of language modelling with recurrent neural networks. Recurrent
neural LMs estimate this probability by feeding embeddings, i.e. vectors that rep-

resent each token, into a Recurrent Neural Network (RNN) (Mikolov et al., 2010).

Input Layer This layer calculates representations for the tokens, called embed-

dings. Several different options for defining embeddings are listed bellow:

1. Token-Based Embeddings Tokens are most commonly represented by a D-
dimensional dense vector that is unique for each word from a vocabulary #
of known words. This vocabulary includes special symbols (e.g. ‘UNK’)
to handle out-of-vocabulary tokens, such as unseen words or numerals. Let
w; be the one-hot representation of token s, i.e. a sparse binary vector with
a single element set to 1 for that token’s index in the vocabulary, and E €
RP*I”| be the token embeddings matrix. The token embedding for s is the

vector:

eloken — By (2.13)
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2. Character-Based Embeddings A representation for a token can be build
from its constituent characters (Luong and Manning, 2016; Santos and
Zadrozny, 2014). Such a representation takes into account the internal struc-
ture of tokens. Let di,d»,...,dy be the characters of token s. A character-
based embedding for s is the final hidden state of a D-dimensional character-
level RNN:

¢hs — RNN (do, dy, ...dy ). (2.14)

N

3. Gated Token-Character Embedding Either of the previous embeddings can
be better suited to represent the token. Miyamoto and Cho (2016) combine

both using a learnt gating function per hidden unit:

eé?ated S20 eivoken 4+ (1 . g) o e;‘hars 1S
- token ! chars ( ’ )
g=0 |We, " +Wie

where W and W' are transformation matrices with suitable dimensions, and

o(.) is the sigmoid function.’

Recurrent Layer The computation of the conditional probability of the next token
involves recursively feeding the embedding of the current token e, and the previous
hidden state /,;_; into a D-dimensional token-level RNN to obtain the current hidden

state /.

1. Vanilla RNN This is uses the simplest recurrent function:
hy = tanh(Ah,_ + Bx;), (2.16)

where tanh is the hyperbolic tangent function. Vanilla RNNs often suffer from
the vanishing or exploding gradient problems (Pascanu et al., 2013; Bengio
et al., 1994): in the exploding gradient problem, the norm of the gradient

increases explosively during training, which makes training numerically un-

3> We follow the trend of referring to a particular sigmoid function, the logistic function ¢ (z) =
1/(1+e7%), as ‘the sigmoid function’.
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stable; in the vanishing gradient problem, conversely, the norm of the gradient

decreases fast to zero, which makes learning longer dependencies harder.

. LSTM LSTMs address the vanishing gradient problem commonly found in
RNNSs by incorporating gating functions into their state dynamics (Hochreiter
and Schmidhuber, 1997). At each time step, an LSTM maintains a hidden
vector & and a memory vector m responsible for controlling state updates and
outputs. More concretely, the hidden vector at time step ¢ is often computed

using the formulation of Gers et al. (1999):

g; = G(Aihzfl —i—Bixt)
g{ = G(Afhtfl +Bixt)
g;) = G(A()h[_] —l—Bix;)
2.17)
5; = tanh(ACht_l +chl‘>
Ct — 8{®C171 ‘|‘g; QCTI‘

ht = gto ® tanh(Ct)

This typical formulation employs three gates: the input gate (g!), forget gate
(gf ), and output gate (gf). Variants of this formulation also exist, such as
LSTMs with peephole connections (Gers and Schmidhuber, 2001; Gers et al.,
2002), etc. An introduction on the use of neural networks, including LSTMs,

in NLP can be found in Goldberg (2016).

Output Softmax Layer The output probability is estimated using the softmax func-

tion, i.e.

p (s¢| hy) = softmax (y(s;)) (2.18)

where Y (.) is a score function. This is similar to the output layer of a multi-class

softmax classifier.

Training Neural LMs are typically trained to minimise a cross-entropy objective on

the training corpus:

1
Liran= -5 ¥, Inp(sls<) (2.19)

St Etrain
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Evaluation Language models can be evaluated as follows:

* Perplexity A common performance metric for LMs is per token perplexity
(Eq. 2.20), evaluated on a test corpus. It can also be interpreted as the average
branching factor of a LM, i.e. the size of an equally weighted distribution
(e.g. number of sides on a fair die) that would give the same uncertainty
as the estimated distribution. This simple interpretation of perplexity and its
independence from the choice of a logarithm basis makes it a more attractive

evaluation metric than cross-entropy.

PPy = exp(%est) (2.20)

When OOV symbols (e.g. ‘UNK’) are included in the corpus, perplexity is
sensitive to out-of-vocabulary (OOV) rate. This complicates the direct com-
parison of perplexities between different datasets and between models with
different vocabulary sizes. As an extreme example, in a document where all
words are out of vocabulary, the best perplexity is achieved by a trivial model

that predicts everything as unknown.

* Adjusted Perplexity Ueberla (1994) proposed Adjusted Perplexity (APP;
Eq. 2.22), also known as unknown-penalised perplexity (Ahn et al., 2016),
to cancel the effect of the out-of-vocabulary rate on perplexity. The APP is
the perplexity of an adjusted model that uniformly redistributes the probabil-

ity of each out-of-vocabulary class over all different types in that class:

p(s) if s € 00V,
P(s) = |OOV| ‘ (2.21)
p(s) otherwise

where OOV, is an out-of-vocabulary class (e.g. words and numerals), and

|OOV,| is the cardinality of each OOV set. Equivalently, adjusted perplexity
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can be calculated as:

APP oy = exXp (%e’st + Z afijust)
c

2.22
o ybieoon] i 2.22)
t

adjust —

1
N %loov,]

where N is the total number of tokens in the test set and |s € OOV,| is the

count of tokens from the test set belonging in each OOV set.

» Task-specific Evaluation Perplexity-based metrics are generic language
modelling evaluation metrics that may or may not correlate with the perfor-
mance in a downstream task. Therefore, a task-specific evaluation is often

required.

2.1.3 Text Prediction

Text prediction is a family of tasks that predict text from a context. Two tasks from

this family are word prediction and word completion.

2.1.3.1 Word Prediction

Task Definition Word prediction is the task of proposing a ranked list of suggestions
for each next word in a text given a context. Typically, a language model is used to
accumulate the history of the already typed words into the context and to make the

suggestions.

Evaluation The word prediction task can be evaluated with the following metrics:

* Precision and Recall at Rank For ranked outputs precision and recall are
calculated at a rank r by only considering the top r retrieved items in the list

for each instance/query g;:

i rel(a; )

Precision;@r = L (2.23)
r
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Recall;@r = =L (2.24)

where rel(.) is a relevance function that assigns 1 to relevant and O to non-
relevant items. The performance of the system is summarised by reporting
the metrics averaged over all queries/instances. Precision and recall at rank

ignore items ranked lower in the list than rank r.

Mean Reciprocal Rank Mean reciprocal rank is a metric that emphasises
the single highest-ranked relevant item in the list. It is the mean of the re-
ciprocal rank for all queries/instances, where the reciprocal rank for a single
query/instance g; is the multiplicative inverse of the rank of the first relevant
item:

0 no relevant in results
RR;, = (2.25)

rl—* otherwise

where r* is the first rank where a relevant item is found in the list.

2.1.3.2  Word Completion

Task Definition Word completion is the task of predicting the next word in a text,

as the user is typing. If the correct word is suggested, the user can auto-complete

the word by pressing a single key, e.g. the tab key, which saves a few keystrokes;

otherwise, the user continues typing characters until the intended word is suggested

or until the user finishes typing the word.

Evaluation Word completion has task-specific evaluation metrics that compare the

aided and unaided streams of keys:

* Keystroke Savings and Unnecessary Distractions Keystroke Savings (KS)

measures the percentage reduction in keys pressed compared to character-by-
character text entry and Unnecessary Distraction (UD) measures the average

number of unaccepted character suggestions that the user has to scan before
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completing a word:

_ keyslmaided — keysaided

KS
key Sunaided

(2.26)

_ count (suggested, not accepted)

UD = (2.27)

count (accepted)

* Precision and Recall Alternatively, one can view word completion as a clas-

sification or retrieval task for each next character and evaluate using precision

and recall:
t ted
Precision = count(accepted) (2.28)
count (suggested )
t ted
Recall = —_Cownilaccepted) (2.29)

count(total characters)

Both sets of evaluation metrics for word completion are equivalent, as Bickel et al.
(2005) note that UD and KS correspond to these precision and recall metrics, re-

spectively:

Recall = KS (2.30)

L 1
Precision = 5 D>

2.1.4 Error Detection and Correction

Error detection and correction are the tasks of detecting and correcting, respectively,

errors in texts. There are two main types of text errors:

1. Grammatical Error This is a violation of the grammatical rules of a lan-

guage, e.g. ‘I eats an apple’.

2. Semantic Error This is a violation of the rules of meaning of a language, e.g.

‘An apple eats me’.
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2.1.4.1 Error Detection

Task Definition Error detection is the binary classification task of deciding whether
a text contains an error or not. For example, the sentence ‘I eats an apple’ should
trigger positive detection, as it contains an error (grammatical error). Error detection
can also be viewed as a binary retrieval task, where we want to retrieve all texts that

contain errors from a collection of texts.

Evaluation Error detection can be evaluated with the following metrics:

* Precision and Recall These are defined as in binary classification or, equiv-

alently, as in retrieval:

|relevant Nretrieved| 231)

Precision = -
|retrieved)|

relevant Nretrieved
Recall = | |

(2.32)

|relevant|

where the sets contain the retrieved items and the relevant items.

* F-score This metric summarises both precision and recall. The F1 metric can
be used if precision and recall are equally important. In some error detection
tasks, precision is more important to minimise nuisance to the user and a

different F-score is used, e.g. the FO.5.

2.1.4.2 Error Correction
Task Definition Error correction is the task of proposing a set of edits to correct any
errors in a given text. For example, the grammatical error in the sentence ‘I eats an

apple’ can be corrected by applying either of the edits {eats — eat } or {I — She}.

Evaluation Error correction can be evaluated as follows:

¢ Precision and Recall These are defined as in retrieval:

N
X leingil
Precision = ZZIN— (2.33)
X el

i=1
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N
X leingil
Recall = ’ZIN— (2.34)
Y |gil
i=1

where e¢; is the set of proposed edits and g; is the set of ground truth edits.

* F-score The F1 or F0.5 scores are used to summarise precision and recall.

2.2 Numerical Variables and Related Tasks

A numerical variable is a variable whose value is a number. There are two types of

numerical variables:

* Discrete Variables These variables take their value from a countable set (fi-
nite or countably infinite), e.g. roll of a die (set {1,2,3,4,5,6}), number of
children (set of natural numbers), valences of chemical elements (set of inte-

ger numbers), etc.

* Continuous Variables These variables take their value from an uncountably
infinite set, e.g. someone’s age, height, credit card balance (all from the set

of real numbers), etc.

Probability Functions Depending on the type of the numerical variable, its proba-

bility may be defined by one of the following probability functions:

* Probability Mass Function For a discrete random variable X, the probability
that it takes on a particular value x is known as the probability mass function

(PMF), p(x) = P(X = x), similarly to categorical variables.

* Probability Density Function For a continuous random variable X, the prob-
ability that it takes on any particular value x is always exactly equal to zero,
i.e. P(X = x) = OV, since there infinite possible values. For this reason, we
are instead usually interested in the probability that X belongs in an inter-
val, P(a < X < b). This is estimated with the help of a probability density
function (PDF), p(x), as P(a < X <b) = [? p(x)dx.
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e Cumulative Density Function Since discrete and continuous variables call
for probability mass and density functions, respectively, it is sometimes more
convenient to instead work with the cumulative density function (CDF),
F(x) = P(X <x). This is defined as F(x) =Y, <, p(t) and F(x) = [%_ p(t)dt
for discrete and continuous variables, respectively, and is a non-decreasing
function. Now, for both types, the interval probability is computed as

Pla<X <b)=F(b)—F(a).

Mixed-Type Variables The CDF makes it possible to consider and analyse a third
type of numerical variable: mixed random variables, which are numerical random
variables that are neither discrete nor continuous. For example, the amount of rain-
fall within a 24-hour period is not purely continuous, because the existence of dry
days implies that P(rainfall = x) > 0 for x = 0, nor is it purely discrete, because
the set of all possible values is not countable. Mixed type variables occur naturally

when a continuous random variable is truncated, e.g. through rounding.

2.2.1 Regression

Task Definition Regression is the problem of predicting the value of a numerical
attribute of interest for an object based on features of the object, e.g. predict a
patient’s risk of disease based on their demographic information. More formally,
a regression problem is a supervised learning problem, where the target variable is
a numerical variable. Regression with textual features is known as text regression,

e.g. predict a movie’s revenue from its reviews.

Linear Regression Given a data set {(xi,yi)}, a linear regression model assumes

that the relationship between the input variable x; and output variable y; is linear:
yi=wlxi+¢ (2.35)

where €; is an unobserved random variable that adds noise. Assuming that the noise

variable is iid normally distributed, i.e. € ~ N (O, 62) , the probability of the output
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given the input becomes:

1 1
pylx) = ovon exp (_FU - WTX)2> (2.36)

Maximising the likelihood yield the maximum likelihood estimator (MLE) for the
model:
1 T

WMLE = argfvnaxln(L) = —r‘_z(y —wlx)? (2.37)

Evaluation Let §; be the prediction of the model, and let v; be the ground truth

value. Regression can be evaluated with the following metrics:

* Absolute Errors In reverse order of tolerance to extreme errors, some of the
most popular evaluation metrics from the regression literature are Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and Median Absolute
Error (MdAE):

ei = yi—Ji

N
RMSE = [x ¥ ¢
=1 (2.38)

LN
MAE = 7 X lei]
MdAE = median{|e;|}

These metrics depend on the scale and units of the data.

¢ Relative Errors If the data contains values from different scales, relative met-
rics are often preferred, such as the Mean Absolute Percentage Error (MAPE):
pi = )’i;i}’i

N (2.39)
MAPE = N.zl|p,~|
=

2.3 Words and Numbers

This section provides some additional information on the topics of words, numbers,

and numerals.
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Words A word is a symbol that expresses a meaning (object/idea) in a language.
e.g. ‘word’, and ‘antidisestablishmentarianism’ are words in the English language,

but ‘wrod’ and ‘mentarianism’ are not.

Characters Characters are basic symbols used to construct words, e.g. the word
‘word’ is constructed from characters ‘w’, ‘0’, ‘r’, and ‘d’. For example, the charac-
ters of the English language are the lowercase and uppercase forms of the 26 letters
of the alphabet, numeric digits, punctuation marks, and a variety of other symbols,

e.g. the ampersand (‘&’), the at sign (‘@”), currency symbols (£, €, $, ...), etc.

Numbers A number is an abstract, mathematical object with a specific magnitude.
Examples of numbers include the natural numbers such as 1 and 2, integer numbers
such as 2018 and —3, rational numbers such as 1/2 and —3/4, real numbers such
as /2 and 7, complex numbers such as v/—1 and 2 + 3i, etc. Numbers are used to

count, measure, and label.

Numerals A numeral is a symbol used to represent a number, e.g. the numeral ‘5’

represents the integer number five. One could choose alternative symbolic notations

to represent the same number, e.g. fi, 101, V, &', , etc.

Digits Digits are basic symbols used to construct numerals, e.g. the numeral 2018’
is constructed from the digits ‘2°, ‘0’, ‘1’, and ‘8’. Single digits typically represent
small numbers.

Numeral Systems A numeral system is a set of digits together with rules for ar-
ranging digits into numerals that represent numbers. The Hindu-Arabic numeral
system, the world’s most common numeral system, uses 0-9 and the decimal point
as its set of digits. Under the system’s rules, ‘3.14159 is a well-formed numeral,
but ‘3.141.59’ is not (valid numerals contain at most one decimal point). The in-
tended numeral system needs to be known to unambiguously interpret a numeral, as
the same numeral can represent different numbers in different numeral systems. For
example, numeral ‘101’ represents number 101 in the decimal system and number

5 in the binary system.

Types of Numeral Systems The Hindu-Arabic system is a positional or place-value

system, i.e. the value of a digit changes depending on its position in the numeral
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string. For example, digit 5 can mean five, fifty, five hundred, etc., depending on
its placement as the first, second, third, etc., position before the decimal point (or
end of numeral), respectively. Contrast that with the Roman numeral system, a non-
positional system, where V always denotes five and different digits are employed

for fifty (L), five hundred (D), etc.

Bases of Numeral Systems The number of unique digits, including zero, that a po-
sitional numeral system uses is called its base or radix. The Hindu-Arabic numeral
system is a decimal or base-10 system, i.e. it uses 10 digits. Non-decimal systems
are occasionally preferred by different cultures or in specialised applications: unary
(base-1) systems are used in counting with tally marks; binary (base-2) in digital
computing; vigesimal (base-20) in some languages currently or historically, e.g.
‘quatre-vingts’, ‘laurogei’, ‘fourscore’, and ‘kan k’4al’ for 80 in French, Basque,
English, and Yucatec Mayan, respectively, literally mean “four-twenties”; sexages-
imal (base-60) in ancient Summer and Babylonia and in modern circular coordinate

and time measuring systems.






Chapter 3

Related Work

It’s everywhere: dates, times, license plate

numbers, pages of books, even elevator floor lights.’

— Jim Carrey as ‘Walter Sparrow’,

in The Number 23

This chapter positions our work within the broader literature by discussing

related work.

Structure of Chapter This chapter is structured as follows:

* In Section 3.1, we present existing work related to language modelling.

* In Section 3.2, we present existing work related to text prediction (word pre-

diction and completion).

* In Section 3.3, we present existing work related to error detection and correc-

tion.

* In Section 3.4, we present existing work related to numbers in natural lan-

guage processing.

* In Section 3.5, we present applications of natural language processing with

an emphasis in the clinical domain.

3.1 Language Modelling

Language Models Language Models (LMs) are statistical models that assign a

probability over sequences of words. Language models have been used to ad-
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dress a wide range of tasks either as components in the noisy channel paradigm,
e.g. for part of speech tagging (Church, 1989), machine translation (Brown et al.,
1993), speech recognition (Jelinek, 1997), information retrieval (Berger and Laf-
ferty, 2017), text summarisation (Knight and Marcu, 2002), and question answer-
ing (Quirk et al., 2004); or, more recently, as end-to-end conditional language mod-
els, e.g. for speech recognition (Mikolov et al., 2010; Zhang et al., 2017; Xiong
et al., 2017; Prabhavalkar et al., 2017), machine translation (Luong et al., 2015;
Giilcehre et al., 2017; Gao et al., 2017), text summarisation (Filippova et al., 2015;

Gambhir and Gupta, 2017), and question answering (Wang et al., 2017).

Approaches Modelling approaches to language models have evolved as follows:

1. N-grams Early statistical language models were estimated by counting n-
grams, i.e. contiguous sequences of n words in the text, from a training
set. This approach suffers from sparsity, as unobserved n-grams are asso-
ciated with zero probabilities, which can be alleviated through smoothing

techniques (Chen and Goodman, 1999; Kneser and Ney, 1993).

2. Feed-Forward Neural Networks Neural approaches enforce smoothness by
using projections to lower dimensional spaces and non-linear functions. Early
neural LMs were feed-forward networks with a fixed-length word history

window as input and the next word as output (Bengio et al., 2003).

3. Recurrent Neural Networks More recently, Recurrent Neural Networks
(RNNs5) have allowed LMs to learn longer-range dependencies by accumulat-
ing a running representation of the complete history, instead of using a fixed-
length history (Mikolov et al., 2010). This approach can suffer from the van-
ishing gradient problem, which can be addressed by using more sophisticated
recurrent units, such as the Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014)

networks.

Conditional Language Models Conditional LMs compute the probability of a text

given various types of contexts, e.g. document in a foreign language for machine
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translation (Cho et al., 2014), longer documents for summarisation (Nallapati et al.,
2016), speech for speech-to-text (Graves and Jaitly, 2014), images (Vinyals et al.,
2015b; Donahue et al., 2015) or videos (Yao et al., 2015) for captioning, and oth-
ers. The design of conditional LMs often makes use of the encoder-decoder frame-
work (Cho et al., 2014), where a dedicated component, the encoder, builds the rep-
resentation of the context which is then used to influence the hidden state of an-
other neural network, the decoder. Sequence-to-sequence learning (Sutskever et al.,
2014) is a special case, where the input of the encoder and output of the decoder are

sequences.

Grounded Language Models The symbol grounding problem (Harnad, 1990)
refers to how a symbol, e.g. a word, derives its semantic meaning. Similarly to how
the distributional hypothesis (Harris, 1954; Firth, 1957) exploits the co-occurrence
between words to build semantic representations, grounded semantic representa-
tions can be built by exploiting the co-occurrence of words and non-linguistic con-
texts, such as images (Bruni et al., 2014; Silberer and Lapata, 2014), audio (Kiela
and Clark, 2015), video (Fleischman and Roy, 2008), colours (McMahan and Stone,
2015), and smells (Kiela et al., 2015).

Gradable Words Gradable words (Sapir, 1944) denote different degrees of quality,
e.g. ‘tiny’, ‘short’, ‘tall’, and ‘gigantic’ denote different degrees of height. Grad-
able adjectives can be interpreted as measure functions (Bartsch, 1975; Kennedy,
1999) associated with features that are easily observable (e.g. ‘tall’, ‘old’, ‘hot’)
or more abstract (e.g. ‘beautiful’, ‘intelligent’, ‘energetic’). Other parts of speech
can also be gradable, such as verbs (e.g. ‘to cool’, ‘to freeze’), nouns (‘idiot’, ‘ge-
nius’), and adverbs (e.g., ‘fairly’, ‘utterly’) (Shivade et al., 2015; Ruppenhofer et al.,
2015). Gradability expresses vagueness and uncertainty, and the semantics of grad-
able words are context sensitive (Kennedy, 2007; Frazier et al., 2008), e.g. in ‘John
is a tall boy’ and ‘John is a tall basketball player’ the word ‘tall” alludes to different
measurements of height. Gradable words can be considered grounded in their asso-
ciated quality, e.g. Shivade et al. (2016) use a simple probabilistic model to ground

gradable adjectives from patient health records in clinical numerical measurements.
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Structured Data to Text A standard problem in natural language generation
(NLG) (Kukich, 1983; Holmes-Higgin, 1994; Reiter and Dale, 1997) involves read-
ing structured data, such as tables, knowledge bases, or ontologies, and producing
text that describes the data. Benchmark datasets have been created for several do-
mains, such as generating weather forecast reports from meteorological data, e.g.
WeatherGov (Liang et al., 2009) and Sumtime (Sripada et al., 2003a), generating
sportcasting descriptions from sport data, e.g. Robocup (Chen and Mooney, 2008),
RotoWire and SBNation (Wiseman et al., 2017), generating biographical descrip-
tions from infoboxes e.g. WikiBio (Lebret et al., 2016), generating restaurant de-
scriptions from metadata (Novikova et al., 2017), etc. The data that the texts are
based on often contain numbers, e.g. temperatures and wind speeds, points scored,

dates, ratings, etc.

Out-of-Vocabulary Words and The Unknown Word Problem In language mod-
elling, generating rare or unknown words has been a challenge, similar to our un-
known numeral problem. Gulcehre et al. (2016) and Gu et al. (2016) adopted pointer
networks (Vinyals et al., 2015a) to copy unknown words from the source in trans-
lation and summarisation tasks. Merity et al. (2016) and Lebret et al. (2016) have
models that copy from context sentences and from Wikipedia’s info boxes, respec-
tively. Ahn et al. (2016) proposed a LM that retrieves unknown words from facts
in a knowledge graph. They draw attention to the inappropriateness of perplexity
when OOV-rates are high and instead propose an adjusted perplexity metric that is
equivalent to APP. Other methods that aim at speeding up LMs, such as hierarchical
softmax (Morin and Bengio, 2005b) and target sampling (Jean et al., 2014), have
been used to allow for increasingly larger vocabularies (Chen et al., 2015), but still
suffer from the unknown word problem, as they cannot accommodate an open vo-
cabulary. Finally, the unknown word problem does not occur when modelling with
subword units, e.g. individual characters (Graves, 2013; Sutskever et al., 2011) or
byte-pair encoding (BPE) (Sennrich et al., 2016), which allows for handling an open

vocabulary.
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Figure 3.1: Our position among approaches to Language Modelling.

Our Work Figure 3.1 shows the position of our work among approaches to lan-
guage modelling. We are extending neural language models by conditioning and
grounding on a numerical modality. We address the unknown word problem for
numerals, for which we provide explicit evaluations. This work is related to the
structured data to natural language text generation, where the structured data comes

from a entries in a knowledge base.

3.2 Text Prediction

Text Prediction Word prediction and word completion are aspects of text predic-
tion, a collection of functionalities for assisting users at text entry tasks by antici-
pating the next words, phrases, or sentences that the user will produce. Text predic-
tion originated in Augmentative and Alternative Communication (AAC) for people
with motor or speech impairments (Beukelman and Mirenda, 2005; Brown, 1992).
The scope of text prediction now extends to a gamut of applications, such as data
entry in mobile devices (Dunlop and Crossan, 2000), interactive machine transla-
tion (Foster et al., 2002), search term auto-completion (Bast and Weber, 2006), and
assisted clinical report compilation (Eng and Eisner, 2004; Cannataro et al., 2012).
Moreover, word prediction has been used as a task to evaluate the natural language

understanding capabilities of neural networks (Paperno et al., 2016; Ghosh et al.,
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2016).

Aims The main aim of text prediction is to reduce the effort and time for text entry.
Assuming text entry on a keyboard, this aim is usually achieved by reducing the
number of keystrokes needed, and the performance is evaluated by as the keystroke
savings: the percentage of keystrokes saved (Li and Hirst, 2005; Trnka and Mc-
Coy, 2007; Carlberger et al., 1997; Garay- Vitoria and Abascal, 2006; Newell et al.,
1998). Surveys report keystroke savings between 29% and 56% (Garay-Vitoria and
Abascal, 2006). Some applications of text prediction have alternative aims: im-
proving the quality of text by preventing misspellings, promoting the adoption of
standard terminologies, and allowing for exploration of new vocabulary (Sevenster

and Aleksovski, 2010; Sevenster et al., 2012).

Approaches The context up to the current word is very important for correctly pre-
dicting or completing the next intended word. For example, in addition to the prefix
of the current word, knowing the previous words and characters can significantly
improve word completion (Fazly and Hirst, 2003; Van Den Bosch and Bogers,
2008). Most approaches to word prediction and completion use a LM to accumulate
the history of already typed work into the context (Bickel et al., 2005; Wandmacher
and Antoine, 2008; Trnka, 2008; Ghosh et al., 2016). Earlier work used n-gram
LMs (Fazly and Hirst, 2003; Foster et al., 2002; Matiasek et al., 2002), while more
recent work uses neural LMs (Ghosh et al., 2016). This context is often enhanced
with additional syntactic or semantic information to improve the predictive system’s

performance:

* Syntactic Context Syntactic input features, e.g. part-of-speech tags (Fazly
and Hirst, 2003), can help produce grammatically correct suggestions. Alter-
natively, syntactic information can help limit the search space only to gram-
matically appropriate words, e.g. consider only words for which the whole
final sentences have valid syntactic trees (Wood and Lewis, 1996), or use
syntactic parsing to automatically inflect content words allowing the user to
type the shorter noninflected forms (McCoy et al., 1998). Finally, syntactic

language models are language models that use syntactic structure to model
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long-distance dependencies in an incremental, left-to-right manner, and can
be used to predict the next word (Chelba and Jelinek, 1998, 2000; Roark,
2001; Charniak, 2001; Emami and Jelinek, 2005).

* Semantic Context Semantic input features, e.g. the topic of previous sen-
tences (Ghosh et al.,, 2016) or word vectors that capture lexical seman-
tics (Wandmacher and Antoine, 2008), can help produce semantically correct
suggestions. Alternatively, semantic information can be incorporated through
domain adaptation, e.g. through adapting the LM to the user (Wandmacher
et al., 2008) or topic (Trnka, 2008).

Our Work Figure 3.3 shows the position of our work among approaches to text
prediction. We are incorporating numerical magnitude into the semantic context of

neural language models for text prediction.

3.3 Error Detection and Correction

Approaches to Error Detection and Correction Leacock et al. (2014) and Tetreault

et al. (2014) identify the following approaches to Error Detection and Correction

(EDC):

1. Rule-Based This approach uses hand-crafted rules to tackle specific error
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types. While rule-based systems do not require training corpora, they do not

generalise to errors not explicitly covered by dedicated rules.

. Classification This approach uses binary classifiers to detect errors or multi-

class classifiers to correct errors by recommending edits from a finite set of
alternatives, the confusion set. Typically, a classifier is trained for each tar-
geted error type on a training corpus with ground-truth annotations for errors

and required correction edits.

. Language Modelling This approach uses a language model to score the origi-

nal and alternative texts, where words have been substituted with alternatives
(e.g. from confusion sets). The text with the highest probability under the
language model is chosen as the correct text in the given context. Language
models are not restricted to correcting pre-specified error types, but they re-

quire large training corpora of correct language usage.

. Statistical Machine Translation This approach views error correction as a

translation from an erroneous, “noisy”’ language into an error-free, corrected
language. The translation system is trained on a training corpus with pairs of
erroneous and corrected texts. This approach is related to the language mod-
elling approach, and many machine translation systems rely on a language

model as a core component.

. Web-based This approach mimics the strategy of humans who search for

alternative constructions on the web and compare usage counts as a proxy of
correctness. While large scale Web data are readily available, this approach
can suffer from sparsity issues with certain errors, the strategy is not context

dependent, and the counts can unreliably change over time.

Research in Grammatical EDC Most early work in grammatical EDC used rule-

based approaches, and hand-crafted rules are still commonly used in hybrid sys-

tems for certain well understood errors, such as subject-verb agreement. Classi-

fication approaches use various features, including syntactic, lexical, and semantic
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features (Gamon et al., 2008; De Felice and Pulman, 2008; Tetreault and Chodorow,
2008), and are trained on real or artificially generated errors (Felice and Yuan,
2014; Felice et al., 2014; Rozovskaya and Roth, 2010a,b). Language models have
been used to detect errors that are later corrected via other approaches (Hdez and
Calvo, 2014), to correct errors via scoring suggested corrections from other ap-
proaches (Boros et al., 2014; Gamon et al., 2008; Chodorow et al., 2010; Felice
et al., 2014), and in combination with classification (Gamon, 2010). Web-based
approaches have been found to perform promisingly for determiner errors in En-
glish, but less so for collocation errors (Y1 et al., 2008). There have been several
shared tasks on grammatical EDC (Dale and Kilgarriff, 2011; Dale et al., 2012; Ng
et al., 2013, 2014), and many of the participating teams used statistical machine

translation approaches.

Research in Semantic EDC Many semantic errors manifest themselves as the
wrong choice of content words, which is the third most frequent error type (Lea-
cock et al., 2010). There has been substantially less work in semantic EDC than
grammatical EDC, and tackling of the first is often subsumed into the latter. Rule-
based approaches to semantic EDC compare usage against a database of known
errors (Shei and Pain, 2000; Wible et al., 2003; Chang et al., 2008; Park et al.,
2008). Such approaches do no generalise to unseen errors and are not context de-
pendent. Wu et al. (2010) used a classifier to correct verb usage in the abstracts
of academic articles. Other work detects semantically anomalous adjective-noun
combinations in isolation (Vecchi et al., 2011) and in texts (Kochmar and Briscoe,
2013). Machine translation approaches have been used to correct the word choices
of language learners (Dahlmeier and Ng, 2011) and to improve the output of speech
recognition systems by applying semantic EDC in post-processing (Jeong et al.,
2004, 2003). Semantic EDC is related to the task of writing improvement (Chang
et al., 2008; Futagi et al., 2008), which involves editing a text to improve its relative

quality without making claims about its absolute correctness.

Our Work Figure 3.3 shows the position of our work among approaches to error

detection and correction. We are following a machine learning, language modelling
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approach for semantic error corrections. We extend existing approaches by using

language models that are sensitive to numerical information.

3.4 Numbers in Natural Language Processing

Text Regression Text regression is the NLP task of predicting a real-valued quan-
tity from an associated piece of text (Kogan et al., 2009). Applications of the
task use text to predict financial risk (Kogan et al., 2009), movie reviews and rev-
enues (Joshi et al., 2010), influenza rates (Lampos and Cristianini, 2010), author
age (Nguyen et al., 2011), scientific article downloads and citations (Yogatama
et al., 2011), restaurant reviews and menu prices (Chahuneau et al., 2012), and
election results (Lampos et al., 2013). Early work uses linear regression with simple
word occurrence features and metadata, while more recently deep neural networks
have been employed (Bitvai and Cohn, 2015). Interpretation of the parameters of
the regression models has revealed strong connections between real-world quanti-
ties and certain words or phrases. Occasionally, predicting a continuous variable has
been addressed as a classification problem by discretising the continuous variable
into binned categories, e.g. continuous author age binned into age ranges (Schler
et al., 2006; Garera and Yarowsky, 2009). A variety of techniques have been em-

ployed to predict the geolocation coordinates of tweets on Twitter (Rahimi et al.,
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2015b,a, 2017b,a; Lau et al., 2017).

Numbers in Commonsense Reasoning Numbers can be uses for commonsense
reasoning, e.g. knowing the sizes of books and libraries, we can infer a content-
container relation between them (Aramaki et al., 2007). A common framework for
acquiring commonsense knowledge about numerical attributes is based on using
templates to collect a a corpus of numerical attribute:value pairs and then mod-
elling those attributes with a normal distribution (Aramaki et al., 2007; Davidov
and Rappoport, 2010; Iftene and Moruz, 2010; Narisawa et al., 2013; de Marneffe
et al., 2010).

Numbers in Question Answering Question answering systems have checked
whether numerical values in their answers are within common-sense ranges, using
external knowledge resources, such as a manually curated commonsense knowledge
based (Chu-Carroll et al., 2003; Prager et al., 2003) or semantic type and typical nu-

merical range of quantities (Hovy et al., 2002)

Numbers in Recognising Textual Entailment Numerical quantities have been
recognised as important for recognising textual entailment (RTE) (Lev et al., 2004;
Dagan et al., 2013). Roy et al. (2015) proposed a quantity entailment task that fo-
cused on whether a quantity can be inferred from a text and, if so, what its value
should be. Different categories of common-sense knowledge are required for RTE,
such as arithmetic knowledge (LoBue and Yates, 2011), and many system failures

occur then numeric reasoning is necessary (Sammons et al., 2010).

Numbers in Information Extraction Another task that deals with numerals is nu-
merical information extraction. The aim of the task is to extract all numerical re-
lations, i.e. relations with numbers as arguments, from a corpus. This can range
from identifying a few numerical attributes (Nguyen and Moschitti, 2011; Intxaur-
rondo et al., 2015) to generic numerical relation extraction (Hoffmann et al., 2010;
Madaan et al., 2016). Other work focuses on algorithms and data structure for
searching documents with number-range queries (Fontoura et al., 2006; Yoshida

et al., 2010).
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Numbers in Automated Problem Solving Much work has been done in solving
arithmetic (Mitra and Baral, 2016; Hosseini et al., 2014; Roy and Roth, 2016),
geometric (Seo et al., 2015), and algebraic problems (Zhou et al., 2015; Koncel-
Kedziorski et al., 2015; Upadhyay et al., 2016; Upadhyay and Chang, 2016; Shi
et al., 2015; Kushman et al., 2014) expressed in natural language. Such models
often use mathematical background knowledge, such as linear system solvers. The
output of our model is not based on such algorithmic operations, but could be ex-

tended to do so in future work.

Numbers in Natural Language Generation A standard problem in natural lan-
guage generation (NLG) (Kukich, 1983; Holmes-Higgin, 1994; Reiter and Dale,
1997) involves reading structured data and producing text that describes this data.
Many of the specialised domains for structured data-to-text have data sources that
are number-intensive, e.g. sensor data from a gas turbine (Yu et al., 2007), sensor
data from a neonatal intensive care unit (Sripada et al., 2003b), and weather forecast
data (Sripada et al., 2003a) (for more examples see discussion on Structured Data
to Text in Section 3.1). Chaganty and Liang (2016) automatically generates short
descriptions to put numbers into perspective, e.g. ‘$131 million is about the cost to
employ everyone in Texas over a lunch period’. Other work investigates differences
in word usage between different authors, such as weather forecasts (Reiter et al.,

2005).

Our Work In this thesis, we use principles found in common approaches for several
tasks that use numbers: we consider models with text as input and numbers as output
(text regression); we use attribute:value pairs from a knowledge base to make infer-
ences about text (commonsense reasoning and RTE); and we predict words in a text
(natural language generation). Unlike the existing work, we embed these principles
into a language model. Also, we do not use mathematical background knowledge
(e.g. as often in automated problem solving), but all numerical knowledge is learnt

from data.
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3.5 Applications of Natural Language Processing

Clinical Domain Natural language processing techniques can be applied to any text
(or collection of texts) that arises from or is related to clinical activities, e.g. clini-
cal notes and narratives, discharge summaries, clinical research papers, etc. These
techniques can facilitate clinical decision support (Demner-Fushman et al., 2009),
and several NLP systems and toolkits have been developed for use in the clinical

domain (Savova et al., 2010; Soysal et al., 2017; Aronson, 2001).

Information Extraction Much of the NLP work in the clinical domain focuses on
information extraction from the text in electronic health records, such as the ex-
traction of categorical attributes, e.g. patient smoking status (Uzuner et al., 2008),
disease status (Friedman et al., 1994), clinical codes (Stanfill et al., 2010), medi-
cation information (Uzuner et al., 2010), obesity (Uzuner, 2009), negation of at-
tributes (Huang and Lowe, 2007), etc, or numerical attributes, e.g. temporal infor-
mation (Tang et al., 2013), medication dosages (Evans et al., 1996), etc. A review
of information extraction from clinical texts can be found in Meystre et al. (2008)

and Wang et al. (2018).

Text Entry and Processing Various techniques and tools have been employed for
assisting with the entry in electronic health records, such as assisted text entry (Can-
nataro et al., 2012), text standardisation through templating (Johnson et al., 2008),
text completion (Eng and Eisner, 2004), etc. Other work is concerned with identify-
ing and correcting errors in the texts of electronic health records, e.g. inconsisten-
cies between text and structured data (Bowman, 2013), prescription errors (Singh
et al., 2009), number-based errors (Arts et al., 2002), spelling mistakes (Lai et al.,
2015), etc. Overall, error rates in clinical data range from 2.3% to 26.9% (Goldberg
et al., 2008). Finally, other streams of work process clinical texts to generate related
texts for particular applications, e.g. translations into foreign languages (Randhawa
et al., 2013), customised educational messages for trainee clinicians (Denny et al.,
2015), simplified clinical texts that are more understandable to patients (Green,
2006), text summaries (Afantenos et al., 2005), answers to questions (Jacquemart

and Zweigenbaum, 2003), etc.
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Our Work In this thesis, we apply and extend standard techniques from NLP to text
data from the clinical domain. Our experiments with classification and regression
share the goals of information extraction, but we approach the problem in a pre-
dictive, rather than in an extractive way. Our experiments with language modelling
show that our techniques can be used to assist the entry (through text prediction)
and editing (through error detection and correction) of clinical text in a simulation,

rather than in an applied clinical setting.



Chapter 4

Establishing the Connection between

Words and Numbers

—How long will the morphine be effective?

—No telling with the size of her body.
— Otto Waldis as ‘Dr. Heinrich Von Loeb’

to Roy Gordon as ‘Dr. Isaac Cushing’,
in Attack of the 50 Ft. Woman

There is often an intuitive connection between certain numerical attributes and
textual descriptions. For example, if we know that someone has a height that is
greater than the average human height, we might describe that person as ‘tall’.
Likewise, if we know that someone has been described as ‘tall’, we can assume
with some confidence that their height is greater than average. Similar connec-
tions exist between other sets of gradable textual terms and measurable attributes,
e.g. ‘light’ or ‘heavy’ for weight, ‘slow’ or ‘fast’ for speed, ‘light’ or ‘dark’ for
luminosity, etc. Learning such connections between numerical attributes and text
can allow us to ground the semantics of words in measurements and perform rea-
soning with numerical and textual information sources in commonsense and expert

domains.

Research Questions In this chapter, we will investigate the connection between
words and numbers by measuring how helpful numerical attributes (e.g. measure-

ments expressed as numbers) at predicting words from a text, and vice versa. We
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frame this investigation as two research questions:

Research Question Q.1
Can inputting numbers into a model that predicts words (classifier for the next word;

single-step left-to-right language modelling) improve its performance?

Research Question Q.2

Can inputting words into a model that predicts numbers (regressor) improve its

performance?

Scope We will address the two research questions within the expert domain of clin-
ical records. A clinical dataset will be used throughout this thesis, and will is de-
scribed in the upcoming sections and in the Appendix. A clinical record describes

information about an individual patient in one of two ways:

* Knowledge Base (KB) The structured part of the clinical record is a collec-
tion of attribute-value pairs that describe the patient’s demographic informa-

tion (e.g. age, sex, etc.) and results of medical tests (e.g. cardiac function);

* Text The unstructured part of the clinical record is a textual report written by
a health-care professional to document further aspects of the patient’s history,
examination, diagnosis, and conclusion, as this information becomes avail-

able.

Numbers are represented either by the values of numerical attributes in the KB or
by numerals in the text. Both the KB and text of the record are essential for the

effective communication of clinical information (Lovis et al., 2000).

Connecting Words and Numbers: An Example Table 4.1 shows examples of clin-
ical records that highlight evidence towards inferring that the patient suffers from
dilated cardiomyopathy (DCM), a condition that accounts for about one in three

cases of congestive heart failure (Kasper et al., 2005). In healthy individuals, the
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4. End of Systole 3. Systole

Figure 4.1: Cardiac cycle. The cycle consists of the following phases (simplified to only
show changes in the volume of the left ventricle): 1. During diastole, blood
enters the left ventricle (in blue) and its volume increases; 2. At the end of
diastole, the ventricle has reached its End-Diastolic Volume (EDV); 3. During
systole, blood exits the ventricle and its volume decreases; 4. At the end of
systole, the ventricle has reached its End-Systolic Volume (ESV). The ejection
fraction (EF) is calculated as EF = (EDV — ESV)/EDV x 100%.
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Table 4.1: Example of data from the clinical domain. Clinical records store information
about patients in structured (knowledge base; KB) and unstructured (text) ways.
Evidence for left ventricular dilation is in bold (LV EDV is left-ventricular end-
diastolic volume); evidence for systolic function impairment is underlined (LV
EF is left-ventricular end-systolic volume); the remaining attributes (e.g. LV
ESV) are not required for understanding the example (for a description of all

attributes in the KB, see Appendix).

KB

TEXT

age: 76

sex: male

LV EDV: 378.85
LV ESV: 279.83
LV SV: 99

LV EF: 26.1

Left Ventricular Functional Analysis Results End di-
astolic volume 378.85 ml End systolic volume 279.83
ml Stroke volume 99.0 ml Ejection fraction 26.1 %
History: 76 year old man. Dilated LV of unknown
aetiology.  Unobstructed coronary arteries. Thoracic
anatomy:  Normal arrangement of cardiac cham-
bers and great vessels. [...] The left ventricle is
severely dilated; systolic function is severely impaired.
[...] Conclusion: Severe LV dilation and
systolic impairment.  Likely small lateral MI. Mild
eccentric AR. No perfusion defects. The appearances
are consistent with dilated cardiomyopathy and a small
lateral MI.

age: 26

sex: male

LV EDV: 170.16
LV ESV: 88.69
LV SV: 81.5

LV EF: 479
LV2 EDV: 1134

Normal arrangement of the great vessels and car-
diac chambers.  Resting Cardiac Function: LV is
non-dilated in diastole and mildly dilated in sys-
tole with mild LV systolic impairment (see above). [...]
There is mild biatrial enlargement (LA dimension is
42mm). The RV size and function are within nor-
mal limits. [...] Conclusion: Mild atrial dilatation
with preserved RV function. There is mild LV di-
latation with mild LV impairment.  There is no evi-
dence of infarction or fibrosis. these findings are most
consistent with previous myocarditis or DCM depend-
ing on the clinical context.

main pumping chamber of the heart, the left ventricle, expands and contracts to
circulate blood during the cardiac cycle, as shown in Figure 4.1. In patients with

DCM, i) the left ventricle has become enlarged and ii) the heart cannot pump blood

efficiently (Maron et al., 2006; Brandenburg et al., 1981).! These two criteria can

be respectively linked to the following numerical attributes:

1) the End-Diastolic Volume (EDV) measures the volume of the ventricle before

"More technically, i) the ventricle is dilated and ii) the systolic function is impaired.
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it contracts, which characterises the size of the ventricle;

i1) the Ejection Fraction (EF) measures the percentage of blood leaving the ven-
tricle each time it contracts, which characterises the pumping efficiency of the
heart. The systolic function is said to be impaired for lower values of the EF,

e.g. EF< 35%.

Different pathways can be used to make inferences about the patient’s condition.

For example, the ventricle can be confirmed to be dilated if:

* the KB contains an attribute for the EDV with a numerical value that is higher

than expected for the given demographic (age, sex, and body surface area);

* the text contains certain phrases, e.g. ‘the left ventricle is severely dilated’, or

numerals that indicate increased ventricular dimensions.

Similarly, the impairment of the systolic function can be inferred from phrases such
as ‘impaired systolic function’ in the text or lower values of the EF in the KB or in
the text. The complete list of attributes from the clinical dataset can be found in the

Appendix.

Structure of Chapter This chapter is structured as follows:

* Section 4.1 investigates research question Q.1 by comparing the perfor-
mances of models with textual and non-textual features in a word prediction

classification task.

* Section 4.2 investigates research question Q.2 by comparing the perfor-
mances of models with textual and non-textual features in a number predic-

tion regression task.

This chapter is partly based on work previously published by the author (Sp-
ithourakis et al., 2014).

4.1 Classification: From Numbers to Words

When someone composes a text, their choice of words can be affected by textual

and numerical information. For example, when a clinician composes a report about
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a patient, each word can depend on other words (what has been written so far) and
on the numerical attributes in the patient’s KB, respectively (for a more detailed de-
scription of the clinical workflow, see the Appendix). In this section, we investigate
the importance of numerical information for predicting words from clinical texts.
In particular, we are interested in models that predict the next word chosen by the
clinician to characterise the degree of ventricular dilation of a patient, which is typ-
ically a gradable adjective or adverb e.g. ‘no dilation’, ‘mild dilation’, or ‘severely
dilated’. We approach this task as a single step of left-to-right language modelling,
and we do not use any information on the right of the target token (i.e. we ignore
matched patterns used as annotations). We explore other word prediction tasks and

full-scale language modelling in Sections 5 and 6.

4.1.1 Approach

We address the problem as a multi-class classification task for word prediction with

the following specifications:

* Input The input features can be either textual features from the text or
(mostly) numerical features from the KB;
* Output The output class represents the word used by the clinicians to char-

acterise the degree of ventricular dilation, e.g. ‘no’, ‘mild’, or ‘severe’.

We will compare the performance of classifiers that use various combinations of

textual and numerical input features.

4.1.2 Data

Provenance and Description Our dataset comprises 16,015 anonymised clinical
records from the London Chest Hospital. The texts have an average length of 207

words, and the KB has the following attributes for each patient:

* age, which is a numerical attribute;
* sex, which is a categorical attribute that can take the value ‘male’ or ‘female’;

* end diastolic volume (EDV) for the left ventricle, which is a numerical at-

tribute;
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Table 4.2: Common text patterns for LV dilation. [is] = [appears] = [seems] = [ap-
pears to be] = [seems to be] = [remains], etc.; [left ventricle] = [LV] = [LV cavity]
= [left ventricular], etc.

Patterns

left ventricle | [ is | [ modifier | | dilated |
modifier | [ dilated | [ left ventricle |
modifier | [ dilation | [ of the | [ left ventricle |
modifier | [ left ventricle | | dilation |

B W N =

Table 4.3: Statistics of document annotation.

class label #docs Y%docs
unmatched 4721 29.48
no 9116 5692
borderline 16 0.10
mild 361 2.25
moderate 25 0.16
significant 25 0.16
marked 14 0.09
gross 80 0.50
severe 197 1.23
other 1460 9.12

total 16015 100.00

* ¢jection fraction (EF) for the left ventricle, which is a numerical attribute.

More information about the clinical dataset, e.g. descriptive statistics and the clini-

cal workflow through which the data were acquired, can be found in the Appendix.

Pattern-Based Annotation We use a pattern matching approach to extract the de-
gree of dilation reported by the clinician in the text. First, we examine the data to
manually compile a list of patterns found in the texts to describe degrees of dilation.
Table 4.2 shows these patterns. Then, we match all reports against these patterns
to identify all possible modifiers of the dilation status. From these modifiers, we

create the following normalised, mutually exclusive class labels:

» unmatched: a class for no pattern match;

* no: a class that groups all negative terms, i.e. ‘un’, ‘non’, ‘no’, and ‘not’;
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Table 4.4: Statistics of attributes missing from the KB.

EF EDV
class label Y% missing Y% missing
unmatched 47.81 47.77

no 36.89 36.87
borderline 12.50 12.50
mild 13.57 13.85
moderate 4.00 4.00
significant 40.00 40.00
marked 21.43 21.43
gross 33.75 33.75
severe 3.55 3.55
other 17.88 17.88
overall 37.34 37.32

* borderline, mild, moderate, significant, marked, gross, and severe:
classes that group the most frequent terms with the same stems, e.g. ‘mild’

and ‘mildly’;

* other: a class for infrequent or unspecified terms, e.g. ‘slight’, ‘extreme’,

‘very’, no term, etc.

Table 4.3 shows statistics for our automated annotation. The dataset is imbalanced,
with the majority of instances (56.92%) being assigned the ‘no’ label. A 29.48%
of the text did not match any of the patterns and where assigned to the ‘unmatched’
class, and a 9.12% of them were labelled as ‘other’. The remaining instances were

variously distributed to the rest of the classes.

Preprocessing We preprocess the dataset following the steps below:

1. Defining data folds We randomly split the data into training, development

and test sets using a 70/20/10 ratio, respectively.

2. Truncating texts We only keep the text on the left of the matched pattern. We
remove the matched pattern and all text following it, so that the models do not
have access to the ground truth information for the target classes, which can

be trivially inferred from the matched pattern. This truncation will allow us
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to assess how well the models can compose text in a left-to-right manner, i.e.

similar to a single step of a language model.

3. Tokenisation We tokenise at the whitespaces and all punctuation (with the
exception of the decimal point separator, to avoid splitting numerals). Since
our task can be seen as single-step language modelling, we do not remove the

stopwords.
4. Lowercasing We convert all characters to lowercase.

5. Filtering out missing data We observe that values from the KB are fre-
quently missing. Table 4.4 shows that the EF and EDV attributes are missing
in about 37% of the overall data. The percentage of missing values varies
among classes, from 3.55% for the ‘severe’ class to 40.00% for the ‘signif-
icant’ class and about 47.8% for the ‘unmatched’ class. We filter out all
instances with any missing value in the KB, which leaves us with 10,024
instances in total. Even though the removal of instances with missing data
might skew the data from their natural distribution (due to non-random miss-
ingness), the results will still be valid for that subset of the data. We did not

attempt to remove outliers, so as not to further disturb the data distribution.

6. Filtering out uninformative labels We filter out instances belonging in the
unmatched and other class classes, which leaves us with 6,364 instances. We
keep all remaining classes from Table 4.3, and we do not further merge them
(other than the initial merger between adjective and adverb forms, e.g. ‘mild’
and ‘mildly’). The classes themselves are mutually exclusive, as the clinician
can only choose to write one of those descriptors in their report; however, the
corresponding numerical ranges of the EF and EDV attributes overlap (see

next paragraph), which makes the task non-trivial.

Statistical Description Table 4.5 shows descriptive statistics for the Ejection Frac-
tion (EF) and End-Diastolic Volume (EDV) attributes from the Knowledge Base

(KB). We report the means and standard deviations for each class and overall. The
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Table 4.5: Statistics of EDV and EF attributes from the training set.

EF EDV

class label mean stdev mean stdev

unmatched 61.54 11.87 14491 47.44
no 59.59 11.54 144.49 34.79
borderline 54.60 8.14 20240 23.64
mild 4870 10.19 214.04 44.10
moderate 3897 11.02 226.23 24.81
significant 39.55 11.96 287.06 34.14
marked 28.79 13.76 336.56 33.96
gross 22.88 8.09 338.22 91.62
severe 24.93 10.22 337.50 78.40
other 34.62 12.08 249.74 53.53

overall 55.79 1523 164.67 62.27

numerical ranges of each class overlap for each of the EF and EDV attributes. The
high proportion of the ‘no’ class in the dataset lowers the overall mean and, possi-
bly, the mean for the unmatched texts. The standard deviation within most classes
is lower than in the overall dataset, with the exception of the ‘gross’ and ‘severe’

classes for the EF attribute.

4.1.3 Experimental Setup

Models We define classifiers to predict the label class from different sets of input

features:

1. kb This is a log-linear model that uses as input features the values of attributes

from the KB (age, sex, EDV, and EF);

2. text This is a log-linear model that uses n-gram features (all 1-grams and 2-
grams that appear at least 3 times in the texts of the training data) extracted

from the texts up to the matched pattern (not inclusive);

3. textUKkDb This is a log-linear model that uses the combined input features from

both previous models.

Training Details All models are trained with the LBFGS optimiser to minimise

a cross entropy objective. To account for the class imbalance in the dataset, the
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Table 4.6: Results for word prediction. Accuracy is equivalent to micro-averaged Precision
(R), Recall (R), and F1. Best results in bold.

micro P/R/F1 macro weighted
model Accuracy P R F1 P R F1

kb 69.50 28.42 2554 2224 9333 69.50 79.13
text 87.94 33.12 26.06 2851 86.96 87.94 87.42
textUkb 88.10 41.24 49.54 43.02 93.28 88.10 90.08

contribution of each instance to the objective is weighed proportionally to its class
frequency. All models are regularised with L2 regularisation, where the hyper-

parameter is selected to optimise the training objective on the development set.

4.1.4 Results

Classification Results Table 4.6 shows classification evaluation metrics (accuracy,
precision, recall, and F1) with different ways to average across classes (micro,
macro or weighted) for the various models. All results are evaluated on the test
set. For most metrics and manners of aggregation, the fextUkb model that combines
textual and non-textual features achieves the best performance. The only exception
is weighted precision, for which the kb model has the best performance, closely

followed by the textUkb model.

Breakdown of Classification Results Table 4.7 shows a breakdown of the clas-
sification evaluation metrics for each individual class. For the classes with few
instances (‘borderline’, ‘significant’, ‘moderate’ and ‘marked’, all with less than 25
instances; Table 4.3), the performance metrics are zero for various models. Particu-
larly for the ‘borderline’ and ‘significant’ classes, all models fail to correctly classify
any instance. This partially explains why macro-averaged metrics in Table 4.6 were
lower than the respective micro-averaged and weighted-averaged metrics. For the
‘mild’, ‘gross’, and ‘severe’ classes, the fextUkb has the best performance. For the
‘no’ class (majority class; Table 4.3), the kb model achieves the best precision and
the text model achieves the best recall. Overall, the fextUkb model has the best F1

score for most classes.
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Table 4.7: Breakdown of results for word prediction. Best performance in bold.
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Precision

kb 99.18 0.00 28.75 5.66 0.00 0.00 18.75 75.00
text 93.56 0.00 24.56 0.00 0.00 100.00 12.50 34.38
textUkb 98.57 0.00 29.56 14.29 0.00 50.00 60.00 77.50

Recall

kb 73.97 0.00 3333 42.86 0.00 0.00 37.50 16.67
text 95.11 0.00 20.29 0.00 0.00 50.00 12.50 30.56
textUkb 90.31 0.00 68.12 14.29 0.00 100.00 37.50 86.11

F1

kb 84.74 0.00 30.87 10.00 0.00 0.00 25.00 27.27
text 94.33 0.00 2222 0.00 0.00 66.67 12.50 32.35
textukb 94.26 0.00 41.23 14.29 0.00 66.67 46.15 81.58

Confusion Matrix Figure 4.2 shows the confusion matrix for the textUkb model,
evaluated on the test set. The counts of the matrix have been normalised for each
true class. The elements along the diagonal correspond to correct predictions, while
the rest of the matrix to misclassifications. The most common errors made by the
model were misclassifying ‘borderline’ as ‘no’, ‘moderate’ as ‘mild’, and ‘signifi-

cant’ as ‘severe’.

Important Features Tables 4.8 and 4.9 show the 10 most important features for the
text and textUkb models, respectively, that is, the features with the most positive and
negative coefficients. It should be reminded that the texts have been truncated to re-
move the matched pattern and any text following it. For the fext model (Tables 4.8),
many of the important features are numerals from the text. Some of these numerals
appear in a unique record in that class (e.g. ‘fraction 52.7 %’ in borderline, ‘vol-
ume 79.1 ml’ in marked, ‘volume 55.2 ml’ in gross), and for this reason they are
strongly associated with that class. For the textUkb model (Table 4.9), important

features include fewer numerals from the text. Instead, the EF attribute from the



4.1. Classification: From Numbers to Words 73

1.0
no 0.00 009 000 000 000 000  0.00
- 0.00 000 000 000 000 000  0.00 0.8
borderline : . : . : . :
milgl 019 o001 BEEEMN 004 000 000 000 007
0.6
T moderate| 014 000 BN 014 014 000 000 000
o
g
2 significant| 000 000 000 000 000 000 000
0.4
marked| 000 000 000 000 000 0.00
gross| 000 000 025 000 000 012 038
0.2
ceverel 000 000 008 000 000 003 003
o 2N & & > & @
< é\@ N L8 ‘,\\cfo Q(_?/ Q@ R 0.0
QO S S (“’b &
° < &

Predicted label

Figure 4.2: Confusion matrix for the textUkb model. The counts have been normalised per
TOW.

KB has a large positive weight for the ‘no’, ‘borderline’, and ‘mild classes, and a

large negative weight for the ‘marked’, ‘gross’, and ‘severe’ classes.

Decision Areas Figure 4.3 shows the decision areas of the kb model, that is, the
combinations of the EF, EDV, age and sex attributes from the KB for which the clas-
sifier assigns a different label. Additionally, the plots are overlaid with datapoints
from the development set for patients of the same sex and in the same decade of
life., along with their true label for the dilation class. For increasing values of EDV
or decreasing values of EF, the model changes its decision from ‘no’, through ‘bor-
derline’ (or ‘mild’, ‘moderate’, or ‘significant’) to ‘gross’ (or ‘severe’ or ‘marked’).
Age and sex are also important at shaping the decision areas. Most misclassifi-
cations (coloured points in areas of different colour) occur between classes with

neighbouring decision areas.
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Table 4.8: Most important features from the zext model.

Positive

Negative

normal, volume 110.6, effusions .,

37.3, 38.8, % thoracic, 21.5, 35.4,

S hcm, normal lv, history, 57, 65.1, 44.5, dilated with, volume 44.5,
chambers is, trivial mr 44.5 ml, 23.2

<5}

% 119.8, volume 103.8, 103.8 ml, ventricular, lv, wall, la, with mild,
3 103.8, fraction 52.7, 52.7, 52.7 %, with, moderate, and tr, % conclu-
E and, and mild, mild tr sion, ;

- 37.3, 35.4, fraction 45.1, 45.1 %, function :, volume 110.6, severe, di-
E 105.8, 105.8 ml, volume 105.8, ameter, resting, mr ., ml lv, 57, tr .,

45.1, fraction 21.7, 21.7 %

% ed

ventricular function, fraction 70.3,
conclusion, 70.3 %, 70.3, rate 73,
73 bpm, resting ventricular, 73, out-
put 10.2

resting cardiac, cardiac function, ml
end, % conclusion, results end, . .,
volume :, bpm conclusion, left ven-
tricular, are

42.9 %, fraction 42.9, 42.9, volume
59.5,59.5ml, 59.5, rate 53, 53 bpm,
is, volume 67.7

conclusion, conclusion thoracic, %
conclusion, with, /, arrangement, -,
g, the, are

marked |significant | moderate

volume 79.1, 79.1 ml, 79.1, volume
76.9, 76.9 ml, 76.9, 59.7 ml, vol-
ume 59.7, 59.7, 57.4

44.6, 52.6, 52.6 ml, volume 52.6, %
history, : the, of the, in, arrange-
ment of, trivial

gross

23.2, 55.2 ml, volume 55.2, 55.2,
94.2 ml, 94.2, volume 94.2, mr ., :
the, 24.2

and mild, mild tr, ;, are mildly, %
ed, 51, non, noted ., there is, dilated

severe

38.8, 44.5 ml, volume 44.5, 44.5,
21.5, severe, 51 bpm, rate 51, dcm,
51

49.9 %, fraction 49.9, be, . bilateral,
. trivial, 60.9, 79.1, 79.1 ml, the,
volume 79.1

4.1.5 Discussion

Findings The results indicate that numerically information is crucial to the per-
formance of models in a word prediction classification task. Our most important

findings are:

* A model that uses a combination of textual and non-textual input features
(textUkb) can perform better than models that use either only textual (text) or
only non-textual (kb) features in a word prediction classification task. This

holds for most results averaged across classes (Table 4.6) and for the results
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Table 4.9: Most important features from the textUkb model. Features from the KB in bold.

Positive

Negative

attribute:sex=male, normal, at-
tribute:EF, history, of, of great,

attribute:sex=female, mild, aorta,

c . . .
. ) , ), there, 4, : there, aortic, signifi-
= history :, : normal, function :, the G) &
i cant
cardiac
2
= /, and, attribute:EF, 119.8, vol- wall, : ml stroke, ventricu-
2 ume 103.8, 103.8 ml, 103.8, frac- lar, with, vessels ., la, is, at-
E tion 52.7, 52.7, 52.7 % tribute:sex=female, stroke
g was, ml, with, rv, mildly, :, are, with rnrft, fon il(lgtzd’ l(r)I;)l 81V’ lrca,l ) -
£ mild, attribute:EF, dimension aorta, non, = -6 M, volume
103.8
2 ) ) ) ) ) ) )
*é ventricular function, resting ven- resting cardiac, cardiac function,
2 tricular, ventricular, on, mild, con- the, ml end, cardiac, are, : the, di-
€ clusion history, wall, %, rca, echo lated, . ., systolic
g y y
- :;, conclusion, with, conclusion
= . )
S is, mm, measures, dilated, dilated ., thoracic, ngrmal, anatgmwal,
SE of great, has, ) ra normal anatomical, anatomical ar-
) T rangement, arrangement ., % con-
- clusion
volume 79.1, 79.1, 79.1 ml, ar- .
e cal and, attribute:EF, vessels, great,
22 rangement ., anatomical arrange- .
= . great vessels, heart, in, bpm, rate,
g ment, normal anatomical, anatom- heart rat
ical, volume 59.7, 59.7 ml, 59.7 cart rate
. ;, attribute:EF, heart, history, ml
% the, in, : the, mr ., . the,la, 21, mr, . . ’ . 7’
g ejection, of, there is, ventricular
= are, rv ) ]
o0 function, function, : end
@ severe, heart, and, right, 60, male, 1v, 21, resting,  at-
© chamber, Iv systolic, old male, . tribute:sex=male, mildly, cabg, mr
2 there ., attribute:EF, mildly dilated, /

of several individual classes (Table 4.7).

Numerical information is important enough that many of the most important

features of the fext model were n-grams that contained numerals (Table 4.8).

Such n-grams might be sparse, and their categorical nature might not be the

most efficient representation for the underlying continuous attribute. In the

important features of the textUkb model, numerals are largely displaced by

continuous attributes from the KB (Tables 4.9).
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Figure 4.3: Decision areas of the kb model. The model classifies instances to different
classes of dilation status for different combinations of attributes from the KB
(EDV, EF, age, and sex).

* The importance of smoothness of the continuous attributes is seen in the de-

cision areas of the kb model (Figure 4.3).

Limitations There are several limitations for this experiment:

¢ Limitations from Data The dataset contained texts from several clinicians,
and there is expected to be lexical variation among them. We tried to alleviate
this issue by normalising the labels, e.g. conflating adverbs and adjectives.
The data came from a single clinical speciality, i.e. cardiology, and some of
the classes had few instances. We had to filter out instances with missing
values in the KB, which makes our techniques not applicable to datapoints
with missing values and might skew the data from their natural distribution;

therefore, the findings are valid only for the subset of data with no missing
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KB values. Finally, we truncated the data to only keep the text up to (but not

including) the matched pattern.

* Limitations from Models The models were not deep and did not encode
interactions of features. The n-gram features do not encode longer text de-
pendencies and can suffer for sparsity. Finally, all results are to be interpreted
as correlations and not as causation, e.g. severe dilation comments on the di-
mensions of the heart and should depend on the EDV attribute, but most our

models pick up a dependence on the EF.

In general, our results and findings should be validated externally.

4.2 Regression: From Words to Numbers

In the previous section, we noticed that numerical attributes from the KB can suffer
a high percentage of missing values, namely more than 37% of the EDV and EF
attributes in the dataset had missing values (Table 4.4). Several reasons can lead
to that, e.g. the value was not measured, not reported, lost, or corrupted. Some of
the missing values can be reconstructed from the rest of the data with one of two
approaches: 1) the value of the attribute can be exactly extracted from the text; ii) the
value of the attribute can be approximately predicted from the text or from other
attributes in the KB. The former is only possible when the numerical information
is explicitly mentioned in the text, e.g. ‘the EF was 35%’; for this reason, we
are interested to investigate whether the value can be predicted in the absence of
such explicit mentions. In this section, we investigate the importance of textual
information for predicting the values of numerical attributes in the KB. In particular,

we are interested in models that predict values for the EDV and EF attributes.

4.2.1 Approach

We address the problem as a regression task with the following specifications:

 Input The input features can be either textual features from the text or non-

textual features from the KB;
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* Output We consider two continuous outputs from the KB: the EDV and the
EF.

For both output attributes, we will compare the performance of regression models

that use various combinations of textual and non-textual input features.

4.2.2 Data

Preprocessing We follow the same preprocessing steps as in the previous experi-
ment of the previous section, except that we do not truncate the texts to remove the
matched patterns and we do not filter out any label classes, which leaves us with
10,024 instances in total. We simulate the absence of direct numerical mentions of
the attributes in the text by additionally replacing all numerals with an ‘UNKNUM’
token. It should be noted that even though the corresponding numerical ranges of
the EF and EDV attributes overlap for the various classes (see next paragraph), the
classes themselves are mutually-exclusive, as only one of the corresponding words
could appear in the matched pattern. Other than merging the adjective and adverb
forms (e.g. ‘mild’ and ‘mildly’) into a single class (and merging low frequency
matches into the other class), we chose not to merge classes with overlapping nu-
merical ranges, so as to retain the high granularity of the gradable words and to not

inject additional clinical knowledge into the models.

Statistical Description Figures 4.5 and 4.4 show the histograms for the distribu-
tions of the EF and EDV attributes, respectively, for each class. Similarly to their
means and standard deviations (Table 4.5), the histograms for the ‘unmatched’ class
resemble those for the ‘no’ class. A possible explanation is that for most cases that
the pattern failed to match, there is simply no dilation. On the contrary, the his-

togram of the ‘other’ class appears different.

4.2.3 Experimental Setup

Models For each target variable, we train the following linear regression models:

1. mean This model only has a bias and no other input features (equivalent to

predicting with the mean value from the training data).
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Figure 4.4: Histograms of EDV for class of dilation.
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4.2. Regression: From Words to Numbers 81

Table 4.10: Results for regression for EF and EDV. Root mean square error (RMSE), mean
absolute error (MAE), and median absolute error (MdAE) are absolute metrics;
mean absolute percentage error (MAPE) is a relative metric. Best model in

bold.
model RMSE MAE MdJAE MAPE
EF
mean 15.44 12.14 0.88 3191
kb 15.13 11.88 9.59 31.10
label 11.51 8.91 7.41 20.69
text 6.82 529 4.39 12.13
all 6.71 5.21 4.31 11.93
EDV
mean 60.51 4491 36.05 30.12
kb 57.83 42.02 33.07 27.77
label 41.76 31.85 26.96 21.98
text 39.02 29.17 23.22 19.57
all 35.93 26.40 21.47 17.68

2. kb This model uses as features the values of attributes from the KB (age and

sex).

3. label This linear regression model uses as features the label of the dilation
class extracted through pattern matching (including the unmatched and other
classes). This is equivalent to predicting with the mean value from the training

data for that class.

4. text This model uses n-gram features from the texts (all 1-grams and 2-grams

that appear at least 3 times in the texts of the training data).

5. all This model uses the combined features from all previous models.

Training Details All models are trained with coordinate descent to minimise an
RMSE objective and regularised with elastic net regularisation (i.e. both L1 and
L2), where the hyper-parameters are selected to optimise the training objective on

the development set.
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Table 4.11: Breakdown of results for regression for EF and EDV The results report root
mean square error (RMSE) for each dilation class. Best model for each class

in bold.
class
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EF

mean 11.26 34.68 19.72 1297 15.68 11.48 3421 36.04 23.85 12.85
kb 1495 3440 2094 1275 1577 1138 33.18 40.59 23.16 12.53
label 16.78 9.05 3.26 10.84 7.83 10.67 10.79 18.47 12.62 11.36
text 037 13.10 6.89 5.60 458 580 1041 11.57 6.75 6.30
all 059 13.20 634 575 455 5.65 997 12.12 6.88 6.13

EDV

mean 37.46 135.66 148.27 5528 76.47 39.54 18991 7574 9449 48.58
kb 2833 136.72 154.00 48.44 7839 37.05 18559 9891 9090 45.26
label 24.64 46.27 58.54 26.81 51.09 34.01 7538 5.65 50.69 44.07
text 37.80 49.63 5090 35.67 39.01 32.81 79.16 11.10 48.62 35.81
all 1243 4943 49.02 29.25 3533 28.85 71.67 11.17 4525 33.01

4.2.4 Results

Regression Results Table 4.10 shows regression evaluation metrics (RMSE, MAE,
MdJAE, and MAPE) for the two target variables (EF and EDV) and for the various
models. All results are evaluated on the test set. For all metrics and for both targets,
the all model has the best performance. Furthermore, models that also used textual
features (all, text, and label) perform better than models that only used non-textual

features (kb and mean).

Breakdown of Regression Results Table 4.11 shows a breakdown of the RMSE
metric within subsets of the test data for each individual class. For all classes and
for both targets, the best performance is achieved by one of the models that use
textual features (all, text, or label). Models that used textual features (all, text,
or label) performed better than models that only used non-textual features (kb and
mean) for most classes and targets, with the exception of the fext model for EDV
and the label model for EF in the unmatched class. For the unmatched class, the
all and text achieved particularly low errors. It should be noted that even though

we truncated documents during pre-processing to remove all text after matching the
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Table 4.12: Most important features from the fext model.

Positive Negative

hyperdynamic, dynamic, dynamic with poor, severe lv, severe global,

e systolic, severely dilated, severe tr, severely, poor systolic, severely im-

M severe ar, good systolic, exertional, paired, with severe, impairment,
severe mr, to severely impaired, reduced systolic

> severely dilated, : severe, increased - dilated, non dilated, not dilated,

a lv, severe lv, severely, grossly, : di- smalllv, severe tr, hyperdynamic, in

lated, dilatation, dilation, thinned systole, female, moderate tr, af

pattern, only for the unmatched class we kept the entire document (since none of
the patterns matched). Therefore, the instances of the unmatched class contained

more information that the models can use to make their predictions.

Important Features Table 4.12 shows the 10 most important features for each tar-
get from the respective fext model, that is, the features with the most positive and
negative coefficients. Important features for the EDV and EF targets correspond to
phrases that discuss the ventricular size and systolic function, respectively. For ex-
ample, the phrase ‘severely dilated’ (positive feature) correlates with a higher EDV

value, and ‘non dilated’ (negative feature) with a lower EDV value.

4.2.5 Discussion

Findings The results indicate that textual information is crucial to the performance

of models in a regression task. Our most important findings are:

* A model that uses a combination of textual and non-textual input features (all)
can perform better than models that use either only textual (label and text) or
only non-textual (kb) features in a regression task. This holds for all results
averaged across classes (Table 4.10) and for the results of several individual

classes (Table 4.11).

* Models that use textual input features (all, label, or text) can perform better
than models that only non-textual (kb) features in a regression task. This
holds for all results averaged across classes (Table 4.10) and for the results of

most individual classes (Table 4.11).
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* Important textual features correctly identify common phrases that discuss the

respective numerical attributes (Table 4.12).
Limitations There are several limitations for this experiment:

* Limitations from Data There were some outliers, particularly for the EDV
attribute. Additionally, we had to filter out instances with missing values in
the KB, which makes some of our techniques not applicable to datapoints with
missing values and might skew the data from their natural distribution (due to
non-random missingness); therefore, the findings are valid only for the subset
of data with no missing KB values. Finally, we did not treat outliers in any
special way, even though they might require different modelling assumptions

(e.g. come from a different distribution).

* Limitations from Models The models were not deep and did not encode
interactions of features. The n-gram features do not encode longer text de-
pendencies and can suffer for sparsity. Finally, all results are to be interpreted

as correlations and not as causation.

In general, our results and findings should be validated externally.



Chapter 5

The Effect of Numbers on Language
Modelling

‘Something’s going on, and it has to do with that

number. The answer is there.’
— Sean Gullette as ‘Max Cohen’,

in Pi

In Chapter 4 we found that numbers can be useful for modelling single words;

in this chapter we look to investigate whether this finding holds for longer sequences
of words, i.e. texts. We focus on the effect of numerical magnitude of numbers and
numerals in language modelling. We also consider the effect on downstream tasks
that use language models, namely text prediction (word prediction and completion)

and semantic error detection and correction.

Research Question We frame our investigation as the following research question:

Research Question Q.3

Can inputting numbers into a language model improve its ability to

model/predict/correct texts (sequences of words and numerals)

Scope Similarly to Chapter 4, we will address this research question in the expert
domain of clinical records. Table 5.1 shows an example of a clinical record and
highlights the spans of text that depend on numerical information from the KB or
the text. Numerical information is represented in the value of the attribute-value

pairs from the KB, e.g. age:76, and in numeral in the text, e.g. ‘76 year old man’.
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Table 5.1: Example of text with dependencies on a KB and on numbers. Text in bold
relays information found in the KB, and underlined text relays information that
depends on numerical attributes earlier found in the text or in the KB.

KB Text

Left Ventricular Functional Analysis Results
End diastolic volume 378.85 ml End systolic
volume 279.83 ml Stroke volume 99.0 ml Ejec-
tion fraction 26.1 % History: 76 year old man.
Dilated LV of unknown aetiology. Unobstructed
coronary arteries. Thoracic anatomy: Normal
arrangement of cardiac chambers and great ves-
sels. [...] The left ventricle is severely dilated;
systolic function is severely impaired. [...]
Conclusion: Severe LV dilation and
systolic impairment. [...]

age : 76
sex : male
LV EDV (ml) : 378.85
LVESV (ml) : 279.83
LVSV(@ml) : 99
LV EF (%) : 26.1

Structure of Chapter This chapter is structured as follows:

* In Section 5.1, we investigate neural language models that depend on numbers

(numerical magnitude of numerals in text and numbers in a KB).

* In Section 5.2, we investigate the performance of number-dependent language

models in the task of text prediction (word prediction and completion).

* In Section 5.3, we investigate the performance of number-dependent language

models in the task of semantic error detection and correction.

This chapter is partly based on work previously published by the author (Sp-
ithourakis et al., 2016a,b).

5.1 Language Modelling

Humans regularly compose texts that describe, summarise or are otherwise based
on some context. Often this context includes numerical information, as shown in
the example from the clinical domain in Table 5.1, where a clinician has composed
a clinical report given a KB about a patient. The mechanism of generation of such

data has been described in Chapter 4, and more information can be found in the
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Appendix. In the example of Table 5.1, the clinician has transcribed numbers from
the KB into numerals in the text (e.g. age:76 to ‘76 year old man’) or has trans-
lated them into textual descriptions after performing expert reasoning (e.g. EF:217.1
to ‘systolic function is severely impaired’). In this section, we are interested in
developing and evaluating language models that similarly depend on numerical in-
formation, namely numerical magnitude of numerals in the text and numbers in the

KB.

5.1.1 Approach

Let s1,s2,..5s7 be a sequence of tokens that is the text, where s; is the token at
position ¢. Let e/°“" be the token embedding for token s, that a neural language

model uses as input.

Challenges In order to build language models that incorporate numerical magni-

tude, we need to address the following challenges:

* Variable data types The KB contains both numerical and categorical at-
tributes; the text contains tokens that are numerals and others that are not.
The property of numerical magnitude is defined only for numbers from the

KB (the value of numerical attributes) and numerals from the text.

* Variable structure The KB can have attributes with missing values or have
different sets of attributes across different instances; likewise, different texts

can have a different number of tokens, i.e. different lengths.

Magnitude-Dependent Embeddings To address the variable data type challenge

for the text, we define the magnitude of token s; as:

Inumber(s;)| if s; is numeral

0 otherwise

where number(.) is a conversion function that takes a numeral as input and returns
its numerical value. This straightforward definition sets the magnitude of non-

numeral words to zero. We proceed to define a magnitude-dependent embedding
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for token s; by concatenating the magnitude for that token to its embedding:

ud etoken
t t
e;nagm ude (5.2)

ni

This magnitude-dependent embedding becomes the input to the RNN’s recurrence
function. We rely on the RNN to address the variable structure challenge, since
RNN’s can deal with sequences of arbitrary length. Therefore, through our def-
inition of the magnitude-dependent embeddings and the use of a RNN, we have
addressed the variable data type and the variable structure challenges, respectively,

and we can build magnitude-dependent language models.

Dependence on KB Building a language model that is conditional on the KB re-
quires that we solve the variable data type and the variable structure challenges. We
achieve that by reusing and extending our solution for the text data by following the

steps below:

1. KB Lexicalisation We convert the KB into text, for which we have al-
ready addressed the two challenges. This is done by converting the list
of attribute:value pairs into a delimited string. Table 5.2 shows an exam-
ple of a lexicalised KB. Lexicalisation of structured data, e.g. knowledge
bases, ontologies, etc., is a standard technique in data-to-text language gener-
ation (Wiseman et al., 2017; Liang et al., 2009; Reiter and Dale, 2000; Belz,
2008; Lebret et al., 2016).

2. Encoder-Decoder Framework A neural network (encoder), e.g. a RNN, is
used to build a representation of the lexicalised KB, hgp. This becomes the

initial hidden state of the language model’s RNN (decoder).

The resulting language model depends on the attributes of the KB and the magnitude

of their values.

5.1.2 Data

Our dataset comprises 16,003 anonymised clinical records from the London Chest

Hospital. Each patient record consists of a text report and an accompanying struc-
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Table 5.2: Example of KB lexicalisation. The KB entry is a collection of attribute:value
pairs, while the lexicalised KB entry is text.

KB Lexicalised KB
age : 76 “age = 76 ; sex = male ;
sex : male

LV_EDV_ml = 378.85 ;
LV_ESV_ml =279.83 ;
LV.SV_.ml=99;
LV_EF % =26.1;"

LV EDV (ml) : 378.85
LV ESV (ml) : 279.83
LVSV (ml) : 99

LV EF (%) : 26.1

tured KB.

Preprocessing We preprocess the dataset following the steps below:

1. Defining data folds We randomly split the data into training, development

and test sets using a 70/20/10 ratio, respectively.

2. Tokenisation We tokenise at the whitespaces and all punctuation (with the

exception of the decimal point separator, to avoid splitting numerals).

3. Lowercasing We convert all characters to lowercase.

Descriptive Statistics for the Text Table 5.3 summarises descriptive statistics of
the dataset and for a vocabulary of the 1,000 most frequent tokens from the training
data. Numerals account for a large part of this vocabulary (>40%); at the same time
they suffer from high out-of-vocabulary rates (>40%), despite constituting only a

small proportion of the total tokens in the data (4.3%).

Structure and Content of the Knowledge Base The KB contains a list of at-
tribute:value pairs for each patient. The attributes describe demographic (age and
sex) and clinical (e.g. end diastolic and systolic volumes for the left and right ven-
tricles as measured through magnetic resonance imaging) information about the
patient. This information was available to the clinician at the time of the compila-
tion of the text. In total, there are 20 possible attributes, of which one is categorical
(sex) and the rest are numerical (age, EF, EDV, etc.). The KB contains, on average,

5 attribute:value pairs per patient.
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Table 5.3: Statistics for clinical dataset. Counts for non-numeral (words) and numeral to-

kens reported as percentage of counts for all tokens. Out-of-vocabulary (OOV)
rates are for the vocabulary of 1,000 most frequent words in the train data.

train dev test

#documents 11,158 1,625 3,220

E: all 2049 2044 2022
2 g words  957% 95.7% 95.7%
£ numeral  43% 43% 43%
. all  50% 5.1% 52%
S £ words  34% 35% 3.5%

numeral 404% 40.8% 41.8%

5.1.3 Experimental Setup

Models We define the following neural LMs:

1. baseLM This model is a LM built on a single layer Long Short-Term Mem-

ory (LSTM) (Hochreiter and Schmidhuber, 1997). The model uses input and
output token embeddings for the vocabulary of V = 1000 most frequent to-
kens from the training set. The vocabulary also includes two unknown tokens,
for OOV numerals and other OOV words, respectively. The dimensions for
all model parameters (internal matrices, input and output embeddings) are set

to D = 50.

. kb This is a LM that is conditional on the lexicalised KB. The encoder and

decoder have the same architecture (similar to the baseLM model) and their
weights are tied. The lexicalised attributes and delimiters are added to the

input vocabulary.

. num This model is a LM that uses magnitude-dependent token embeddings

for the input tokens and is otherwise similar to the baseLM model.

. kbUnum This is a LM that is conditional on the lexicalised KB. It uses

magnitude-dependent token embeddings for the input tokens and is otherwise

similar to the kb model.
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Table 5.4: Results for language modelling on the test set. We report perplexity (PP) and
adjusted perplexity (APP), evaluated on different subsets of tokens (all tokens,
only words, and only numerals). Best results in bold.

all words numerals
model PP APP PP APP PP APP

baseLM 14.96 22.11 13.93 17.94 72.38 2289.47
kb 14.52 2147 1349 17.38 7448 2355.77

num 991 1466 9.28 11.96 42.67 1349.59
kbUnum 9.39 13.88 8.80 11.33 39.84 1260.28

Training Details All models are trained to minimise a cross-entropy loss, with
20 epochs of back-propagation and gradient descent with adaptive learning rates
(AdaDelta) (Zeiler, 2012) and mini-batch size set to 64. The hyper-parameters were
selected based on a small search on the development set around values commonly

used in the literature.

5.1.4 Results

Perplexities Table 5.4 shows the perplexity and adjusted perplexity evaluation met-
rics for the various models. All results are evaluated on the test set for different
subsets of its tokens (all tokens, only words, and only numerals). The subsets have
different OOV-rates, thus perplexities are not comparable between subsets. Ad-
Justed perplexity is not sensitive to OOV-rates; thus, it allows for meaningful com-
parisons between subsets. For all subsets and both metrics, the best performance is
achieved by models that use magnitude-dependent embeddings (kbUnum, followed
by num). For the subset of words, models that are conditional on the lexicalised
KB (kb and kbUnum) perform slightly better than unconditional models (baseLM
and num, respectively). For the subset of numerals, the adjusted perplexity of all
models is much higher (2 orders of magnitude) than for the subset of words. The
disparity between perplexity and adjusted perplexity is the greatest for the subset of

numerals.

Word Probabilities Figure 5.1 shows the ratios of word probabilities between the
best and baseline models, i.e. kbUnum and baseLM, respectively, at various posi-

tions in texts from the development set. The ratio at each position shows how many
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Figure 5.1: Ratios of word probabilities under different language models. The ratio is from
the kbUnum to the baseLM model. The text snippets are from the development
set. Boxes highlight areas with interesting phenomena.
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more times the probability under kbUnum is greater than (or less than) the probabil-
ity under baseLM for that word, i.e. if the ratio at a position is r, the probability for
that word appearing in that position estimated using the kbUnum model is |r| times
higher (or lower, if r is negative) than the same probability estimated using the
baseLM model. For most positions, the ratio is positive, i.e. kbUnum returns higher
probabilities than baseLLM for most tokens, including some numerals (e.g. “25% late
gadolinium enhancement’, ‘140 mcg/kg/min’), which is in agreement with the mod-
els” perplexity scores (see Table 5.4). However, the ratio turns negative at certain
positions with erroneous choices of words, e.g. missing words (‘there’ and ‘wall’)
and early sentence termination (‘.’) in the snippet ‘[there] is 25% late gadolinium
enhancement of the mid anterolateral [wall]’; this indicates that the proposed model

might be useful for detecting errors, which will be explored in Section 5.3.

5.1.5 Discussion

Findings The results indicate that numerical magnitude and conditioning on a KB

can improve the perplexity of language models. Our most important findings are:

* Primarily, using magnitude-dependent embeddings can greatly improve lan-
guage modelling performance, as models that use magnitude-dependent em-
beddings (kbUnum and num) perform much better than the other models (kb

and baseLM, respectively; Table 5.4).

* Secondarily, conditioning on a lexicalised KB can slightly improve language
modelling performance, as models that condition on the KB (kbUnum and kb)
perform slightly better than the other models (num and baseLM; Table 5.4).
This is possibly because many texts begin by recounting the information from
the KB in a format that resembles the lexicalised KB, as in the example of

Table 5.1.

* The improvements from using magnitude-dependent embeddings and from
conditioning on a lexicalised KB are orthogonal, as model with the best per-

formance (kbUnum; Table 5.4) implemented both.
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* Numerals are harder targets than other words for language models, as all mod-
els had a high adjusted perplexity for that subset (Table 5.4). This finding can
be easily overlooked if one only examines the unadjusted perplexity, which
does not account for the OOV-rate, or the perplexities evaluated on all to-
kens, which is overwhelmed by the high proportion of non-numeral words

(Table 5.3).
Limitations There are several limitations for this experiment:

* Limitations from Data Because of out tokenisation, all numerals represented
non-negative numbers. This seems to be a minor limitation, as all values in

the KB were non-negative.

* Limitations from Models In a straightforward manner, we have defined the
magnitude of non-numeral words to be zero, even though it is technically
undefined. Another possible problem with this representation is that the in-
put can become too large, causing numerical instabilities (e.g. overflows) at

training or test time.

5.2 Application: Text Prediction

In this section, we investigate whether our findings about the importance of numer-
ical magnitude translate into downstream language modelling tasks. In particular,
we experiment with applications of text prediction, where a system assists a user in

text data entry tasks. The input and output of the system are:
* Input The user actively types a stream of characters into a system;

* Output The system present to the user a ranked list of suggestions for each

next word.
Two variants of text prediction are word prediction and text prediction:

1. Word Prediction The list of suggestions is static and is not updated until the
user moves on to the next word. Word prediction can facilitate exploration of

vocabulary or promotion of standardised vocabularies.
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Table 5.5: Task examples for word prediction and completion. The input is the sequence of
characters that have been entered so far, and the output is a list of suggestions for
predicting/completing the next word. The context is often relevant to the quality

of the output.
Task input output
76 year old male
gentleman
£ man
';g > patient
=g Dilation of the lv is severe
& gross
significant
mild
76 year old ma le
=
S n
TE
Sa
=g |
3 Dilationof the lviss evere
ignificant
context

KB: age:76 sex:male EDV:378.85 EF:26.1

2. Word Completion The list of suggestions is interactively updated as the user
enters more characters. The user can choose to auto-complete the word with
the first element in the list, typically by typing a special character (e.g. tab).
The main goal of a word completion is to reduce the time and cost of text data

entry.

Table 5.5 shows examples for the two tasks with systems that demonstrate the de-
sirable behaviour. The systems prioritise the words ‘male’ and ‘severe’, because the

KB contains the attribute:value pairs sex:male and EDV:378.85, respectively.

Text Prediction in the Clinical Domain Many clinical data entry systems provide
text prediction features to assist clinicians in the compilation of clinical texts, such
as discharge summaries (Chen et al., 2012), brain MRI reports (Cannataro et al.,

2012) and radiology reports (Eng and Eisner, 2004). Text prediction can lead to
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Algorithm 1 Word completion

Input: 7 is set of vocabulary words, scorer returns score for word in current posi-
tion
Output: next word to be written
1: function COMPLETEWORD(Y, scorer)

2: prefix < ©

3: lexicon <V

4: loop

5: lexicon < {tokens in lexicon starting with prefix}
6: best +— argmax scorer(token)

token€lexicon

7: Display best

8: char < read next char

9: if char = TAB then
10: return best > Auto-complete
11: else if char = WHIT ESPACE then
12: return prefix > Next word
13: else
14: prefix < prefix—+ char > Append
15: end if

16: end loop
17: end function

keystroke savings and time reductions for data entry of texts (Gong et al., 2016;
Hua et al., 2014). Finally, text prediction has been used to standardise clinical
texts (Sirel, 2012; Lin et al., 2014) and to improve adherence to fields (Gong et al.,

2016) and response accuracy (Hua et al., 2014).

5.2.1 Approach

Word Prediction We use a LM to estimate the probability of the next word given
the history of typed words and any additional context. Regarding the list of sugges-

tions, the system presents the N-best list of words with the highest probability.

Word Completion We use a similar approach to word prediction, but we addition-
ally use a prefix matching algorithm to interactively remove suggestions that do not
match the characters already typed by the user. Algorithm 1 describes our approach
that is based on interactive prefix matching against the lexicon. The algorithm takes
as input the set of known vocabulary words and a scoring function that returns the

goodness of a word in the current position and context, which again can be the word
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probability from a language model. Initialisation sets the prefix to an empty string
and the lexicon to the whole vocabulary (lines 2-3). Iteratively, words that do not
match with the prefix are removed from the lexicon (line 5), the best word from the
lexicon according to the scorer is found and displayed to the user (lines 6-7) and the
user can respond with a key (line 8). If the user inputs the special character, the best
word is automatically completed (lines 9-10). If the user inputs a whitespace char-
acter, the algorithm terminates (11-12). This is the case when no matching word is
found in the vocabulary. If any other character is typed, it is appended to the prefix

and another iteration begins.

5.2.2 Data

Simulated Data Entry An automated evaluation for both tasks can be executed by
simulating a user who types the text character by character. The character stream
can come from a dataset of finalised texts. For both tasks, we assume that the word
from the dataset is the correct word. For the word completion task, we assume
that the user types the special key to auto-complete the word as soon as the correct

suggestion becomes available at the top of the suggestion list.

5.2.3 Experimental Setup

Models Our systems for word prediction and completion are based on the following

language models:

* baseLM, kb, num, and kbUnum These language models are defined and

trained as per Section 5.1.

For the word completion task, we additionally consider the following oracle sys-

tems:

* theoretical This oracle system returns a list of suggestions that contains only

the correct word.

* vocabulary This oracle system returns a list of suggestions that contains only
the correct word (similarly to the theoretical oracle), if the correct word is in

the known vocabulary; otherwise, it returns an empty list of suggestions.
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Table 5.6: Results for word prediction on the test set. Recall at different ranks (R @rank)
and mean reciprocal rank (MRR). At rank=1, recall is equal to precision
(i.e. R@1=P@1). Best system performance in bold.

Word Prediction
model R@1/P@1 R@3 R@5 R@10 MRR

baseLM 8.36 18.38 25.03 36.66 17.19
kb 45.27 5997 65.18 71.18 54.49

num 21.13 3545 43.66 53.72 3191
kbUnum 51.76 66.36 71.28 77.10 60.71

system

Table 5.7: Results for word completion on the test set. Keystroke savings (KS) are equiva-
lent with recall (R). Unnecessary distractions (UD) is inversely related to preci-
sion (P). Best system values in bold.

Word Completion
model KS/R UD P F1

% theoretical 58.87 0.00 100.0 74.11
g vocabulary 54.48 0.00 100.0 70.54

baseLM 34.35 6.17 1396 19.85
E kb 43.17 3.11 2434 31.13
% num 39.31 438 18.60 25.25

kbUnum 44.81 2.76 26.60 33.38

5.2.4 Results

Word Prediction Table 5.6 shows evaluation metrics for the word prediction task
(recall at various ranks and mean reciprocal rank) for the various models. All re-
sults are evaluated on the test set. At rank 1, recall is equivalent to precision. Rel-
ative model performance is consistent across all metrics. The best performance is
achieved by models that are conditional on the lexicalised KB (kbUnum, followed
by kb). Models that use magnitude-dependent embeddings (kbUnum and num) per-
form slightly better than models that are not aware of magnitudes (kb and baseLM,
respectively). The baseLM model fared the worst, even more than what we would
expect based on its similar perplexity scores to the kb model (Table 5.4); this obser-
vation indicates that, at each token, the probabilities assigned by the baseLM and
kb models to the ground-truth next word are comparable, but the ranking of the lists

of suggestions from the two models are very different. This is possible, because
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tiny changes in the probabilities are sufficient to cause perturbations in the rankings
of the lists. Word prediction with the baseLM model might suffer from low recall,
e.g. atrank 10 its recall is 36.66%, i.e. only 36.66% of all suggestion lists of length
10 contain the correct word; other models can have improved performance at lower
ranks (equivalently, with shorter lists of suggestions), e.g. at rank 5 recall is 43.66%

for num, 65.18% for kb, and 71.28% for kbUnum.

Word Completion Table 5.7 shows evaluation metrics for the word completion task
(keystroke savings, unnecessary distractions, precision, recall, and F1 score) for the
various models and for the oracles (theoretical and vocabulary). All results are
evaluated on the test set. Keystroke savings is equivalent to recall, and unneces-
sary distractions are inversely related to precision. Relative model performance
is consistent across all metrics. The best performance is achieved by models that
are conditional on the lexicalised KB (kbUnum, followed by kb). Models that use
magnitude-dependent embeddings (kbUnum and num) perform slightly better than
models that are not aware of magnitudes (kb and baseLM, respectively). Word
completion with the baseLM model can already lead to 34.35% keystroke savings,
i.e. the user needs to press 34.35% fewer characters to type the same text. Other
models can lead to further savings (39.31% for num, 43.17% for kb, and 44.81%
for kbUnum), while reducing the unnecessary distractions (average number of char-
acters the user has to scan through before choosing to auto-complete the word).
The performance of any system is bounded from above by that of the vocabulary
and theoretical oracles (Trnka and McCoy, 2008) at 54.48% and 58.87% keystroke
savings, respectively. The oracles have perfect precision and zero unnecessary dis-

tractions, because they never make any wrong suggestions.

Exploring the List of Suggestions Table 5.8 shows the list of suggestions (top 5
suggestions and ranks for other interesting suggestions) by the various models for
word prediction with a text from the development set. In that text, the next token
corresponds to the dilation status class, similarly to Chapter 4. It happens that the
baseLM makes the correct suggestion with its first item in the list (in agreement with

the ground-truth, ‘non’). The correct suggestion appears further down in the list for
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Table 5.8: Word prediction for sample document from the development set. Top-5 sugges-
tion lists for the next word (ground-truth is ‘non’ and ranks for interesting terms
from the complete lists of different systems.

Text: left ventricular function analysis results end diastolic
volume 131.49 ml end systolic volume 79.22 ml stroke vol-
ume 52.3 ml ejection fraction 39.8 % [...] 1v systolic function
is moderately impaired . non dilated atria . non dilated rv [...]
lv is [non dilated ...]

system: baseLM kb num kbUnum
rank suggestions
1 non normal normal preserved
2 normal preserved dilated normal
3  dilated non not dilated
4 preserved good preserved not
5 not mild non with
suggestion ranks
non-dilated 10 11 8 13
dilated 3 8 2 3
non 1 3 5 7
moderately 41 33 37 36
mildly 6 6 7 6
severely 29 23 28 27

the other models; still, their top suggestions (i.e. ‘normal’ and ‘preserved’) seem
reasonable, and would not be inconsistent with an occurrence of the pattern ‘the lv is
non dilated’ later in the text. An inconsistent suggestion that indicates the presence
of dilation (e.g. ‘dilated’) does appear higher than the correct suggestion (‘non’)
for the num and kbUnum models; however, such continuations are grammatically
correct and, at least, semantically relevant, and appear towards the top of the list
also for baseLLM. Finally, no list clearly separates words that might indicate presence

(e.g. ‘dilated’, ‘mildly’, etc.) or absence (e.g. ‘non’, ‘not’, ‘non-dilated’, etc.) of
dilation.

Sensitivity to Numerical Magnitude For the text in Table 5.8, we replace the nu-
merical information (numerals in the text and lexicalised KB) with various possible
configurations for the numerals that should favour a different word (e.g. ‘mildly’

or ‘severely’) to appear in the selected position. We inspect the list of suggestions
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by the various models for various substitute numerals that are unseen in the train-
ing data (unknown numerals). The rankings at the top of the list remain mostly
unchanged, and we do not notice any difference at the ranks shown in Table 5.8.
The insensitivity of the rankings to permutations in the numbers in the text and
KB suggests that the models might under-utilise the magnitude component of the
magnitude-dependent embeddings at test time. It is possible that the number-aware

model forgets the numbers from the KB because of the text that is later encounters.

5.2.5 Discussion

Findings The results indicate that numerical magnitude and conditioning on a KB
can improve the performance of language models in tasks of text prediction (word

prediction and word completion). Our most important findings are:

* Primarily, conditioning on a lexicalised KB can greatly improve the perfor-
mance of language models in text prediction tasks, as models that condition
on the KB (kbUnum and kb) perform much better than the other models (kb
and baseLM, respectively) in word prediction (Table 5.6) and word comple-

tion (Table 5.7).

» Secondarily, using magnitude-dependent embeddings can slightly improve
the performance of language models in text prediction tasks, as models that
use magnitude-dependent embeddings (kbUnum and num) perform slightly
better than the other models (kb and baseLM, respectively) in word prediction
(Table 5.6) and word completion (Table 5.7). The insensitivity of the rankings
in Table 5.8 to permutations in the numbers in the text and KB suggests that
the models might under-utilise the magnitude component of the magnitude-

dependent embeddings at test time.

* The improvements from conditioning on a lexicalised KB and from using
magnitude-dependent embeddings are orthogonal, as model with the best per-

formance (kbUnum; Tables 5.6 and 5.7) implemented both.

* Based on the evaluation for the simulated user, a real user would experi-

ence poor quality of service with text prediction systems that use the lan-
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guage model that neither conditions on a lexicalised KB nor uses magnitude-
dependent embeddings (baseLM). The quality of service would be greatly
improved with systems that use a similar language model that implements
both techniques (kbUnum). Namely, the user would benefit from higher re-
call even with shorter suggestion lists (from 36.66% with 10 suggestions to
71.28% with 5 suggestions; Table 5.6), when exploring the vocabulary with
word prediction, and higher keystroke savings (from 34.35% to 44.81%) with
even fewer unnecessary distractions (from 6.17 to 2.76 distracting characters

per word; Table 5.7), when entering text with word completion.

Limitations Additionally to the limitations from Section 5.1, there are additional

limitations for this experiment:

* Limitations from Evaluation The system suggestions might influence the
text produced by the user. We ignore any possible effects of the feedback
loop between the user and the system, and assume that the each next cor-
rect word is the word found in the text data. Higher keystroke savings and
lower unnecessary distractions might in practice not translate to time and ef-
fort savings, because of unaccounted factors (e.g. system interface, human

behaviour, etc.).

5.3 Application: Semantic Error Detection and Cor-

rection

In this section, we investigate whether our findings about the importance of numer-
ical magnitude translate into downstream language modelling tasks. In particular,
we experiment with applications of semantic error detection and correction, where
a system assists a user at detecting and correcting semantic errors in texts. The input

and output of the systems are:

* Input The user enters a text into the system that needs to be checked for se-
mantic errors. A semantic error is an inconsistency or contradiction between

statements in the text or between the text and the attribute-value pairs of a
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Table 5.9: Task examples for semantic error detection and correction. The input is a text,
and the output is a prediction for error detection/correction. The context is often
relevant to the quality of the output.

Task input output

g 76 year old male detect=FALSE

EE Dilation of the lv is severe  detect=FALSE

e 76 year old female detect=TRUE
/R  Dilation of the lvis mild detect=TRUE
g 76 year old male correct={}

’é"§ Dilation of the 1v is severe correct={}

S E 76 year old female correct={female — male }
S Dilation of the Iv is mild  correct={mild — severe }

context
KB: age:76 sex:male EDV:378.85 EF:26.1

linked KB. These inconsistencies may stem from oversight, lack of reporting

guidelines or negligence.

* Output The system issues an alert to the user, if it system detects a seman-
tic error; otherwise, the system notifies the user that no semantic error was
detected (in many applications, this notification is suppressed, to minimise

nuisance to the user).

For each task, the alert to the user contains the following information:

1. Semantic Error Detection The alert notifies the user that a semantic error

has been detected in the text.

2. Semantic Error Correction The alert notifies the user that a semantic error

has been detected in the text and recommends a text edit to correct the error.

Table 5.9 shows examples for the two tasks with systems that demonstrate the de-
sirable behaviour. The error detection system is triggered to detect errors by the
words ‘female’ and ‘mild’, because they are inconsistent with the attribute:value
pairs sex:male and EDV:378.85 from the KB, and the error correction system pro-

poses to correct them to the more consistent words ‘male’ and ‘severe’, respectively.
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Semantic Errors in the Clinical Domain In a review of clinical records, 60% of
texts about patients had errors (contradictions, copying errors, documentation er-
rors, etc.) with an average of 7.8 errors per patient (Weir et al., 2003). Some of
these errors, e.g. prescription errors can be potentially fatal (Lisby et al., 2005).
Overall, it is estimated that medical errors account for 44,000 to 98,000 deaths per
year in the United States alone (Donaldson et al., 2000). The adverse effects from
errors in clinical texts can be reduced by prospective audits of errors (Macaulay
et al., 1996) or by preventive guidelines for text composition, e.g. write ‘more than’
or ‘less than’ in prescriptions instead of ‘<’ or ‘>’ which can be confused (Institute

for Safe Medication Practices, 2017).

5.3.1 Approach

Error Detection Our approach to error detection hinges on our approach to error
correction: our error detection system is triggered (i.e. detects an error) when our
error correction system is triggered (i.e. suggests a correction).

Error Correction A statistical model chooses the most likely correction from a set
of possible correction choices. If the model scores a corrected hypothesis higher
than the original text, the correction is accepted. For a selected original text Hy, our

approach to error correction follows these steps:

1. Generate candidates Use a hypothesis generator function, G, to generate a
set of candidate corrected texts G(Hy) = {Hj,...,Hy}. A simple hypothesis
generator uses confusion sets of semantically related words to produce all

possible substitutions.

2. Score candidates Use a scorer model, s, to assign a score s(H;) € R to each

hypothesis H;. The scorer is based on

3. Make recommendation Propose a correction if an alternative hypothesis
scores higher that the original hypothesis. Semantic error detection can be
derived by saying that an error is detected when the Error Detection and Cor-
rection (EDC) system would recommend any hypothesis different than the

original text.
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Figure 5.2: Semantic error correction using language models.

Our approach to EDC is outlined in Figure 5.2. We use a hypothesis generator that
proposes lexical substitutions based on confusion sets extracted from a development
set, which would make the approach a weakly supervised approach. For the scorer
model, we use a likelihood ratio test between the original text (null hypothesis, Hp)
and each candidate correction (alternative hypotheses, H;), i.e. s(H;) = %. The

assigned score represents how much more probable a correction is than the original

text. The probability of observing a text, p(H;), is estimated using LMs.

5.3.2 Data

Constructing a Dataset with Errors Ideally, one should evaluate the tasks of se-
mantic error detection and correction on a dataset that contains real errors that have
been annotated by humans. If such a resource is not available, one can corrupt an
existing, trusted dataset by infusing simulated error. Such errors can come from
common word substitutions observed in a development set. To evaluate EDC, we
generate a ‘corrupted’ dataset of semantic errors from the test part of the ‘trusted’

dataset (Table 5.3, last column), by following the following steps:

1. We manually build confusion sets (Table 5.10) by searching the development
set for words related to numeric quantities and grouping them if they appear

in similar contexts.
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Table 5.10: Confusion sets for errors in the clinical data. The confusion sets were identified
from the clinical data.

description confusion set

intensifiers (adv): non, mildly, severely
intensifiers (adj): mild, moderate, severe
units: cm, mm, ml, kg, bpm
viability: viable, non-viable
quartiles: 25, 50, 75, 100
inequalities: <, >

2. Then, for each text in the trusted test set we generate an erroneous text by
sampling a substitution from the confusion sets. Documents with no possible

substitution are excluded.

The resulting ‘corrupted’ dataset is balanced, containing 2,926 correct and 2,926

incorrect texts.

5.3.3 Experimental Setup

Models We use an oracle hypothesis generator that has access to the ground-truth
confusion sets (Table 5.10). For error detection, we binarise the output of the correc-
tion models by detecting an error when the correction model recommends a correc-
tion. For error correction, we consider systems with scorers based on the following

language models:

* baseLLM, kb, num, and kbUnum These language models have exactly the

same architecture and trained parameters as those in Section 5.1.
Additionally, we consider systems with following random baseline scorers:

» always This scorer randomly assigns scores from a uniform distribution to
the corrected texts and the lowest score to the original text, i.e. this system

always proposes a (random) correction;

* random This scorer randomly assigns scores from a uniform distribution to
each text (including corrected and original), i.e. this system randomly pro-

poses to correct or not;
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Table 5.11: Results for semantic error detection on the test set. Precision (P), Recall (R),
and F-scores (F1 and F0.5). Best results in bold.

Error Detection
model P R F1 F0.5

always 50.00 100.0 66.67 55.56
random 50.27 90.29 64.58 55.16

baseLM 57.51 94.05 71.38 62.36
kb 56.86 94.43 7098 61.78

num 58.87 94.70 72.61 63.69
kbUnum 60.48 95.25 73.98 65.24

5.3.4 Results

Semantic Error Detection Table 5.11 shows evaluation metrics for the semantic er-
ror detection task (precision, recall, and F scores) for the various models. All results
are evaluated on the test set. For all metrics, the best performance is achieved by
models that use magnitude-dependent embeddings (kbUnum, followed by num). Er-
ror detection with the baseLM model can already lead to 94.05% recall and 57.51%
precision, i.e. a user could use the system to detect 94.05% of all errors in the texts,
but only 57.51% of the triggered detections would be desired (the rest are nuisance
alerts). Precision and recall are summarised by the FO.5 metric, which is 62.36%
for the baseLM model; for the other models, the FO.5 performance might be slightly
better (63.69% for num and 65.24% for kbUnum) or worse (61.78% for kb). Mainly
for the recall metric, the random baselines (a/ways and random) set a high standard:
the always baseline is triggered by all texts, and so it detects all errors (perfect re-
call), but half of its alerts are nuisance (50% precision); the random baseline is
triggered more often for texts with more alternative hypotheses (i.e. more items in

the confusion set) and again triggers many nuisance alerts.

Semantic Error Correction Table 5.12 shows evaluation metrics for the semantic
error correction task (precision, recall, F scores, and mean average precision) for
the various models. All results are evaluated on the test set. Relative model per-
formance is consistent across all metrics. For all metrics, the best performance is

achieved by models that use magnitude-dependent embeddings (kbUnum, followed
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Table 5.12: Results for semantic error correction on the test set. Precision (P), Recall (R)
and F-scores (F1 and F0.5). Best results in bold.

Error Correction
model P R F1 F0.5

always 6.13 12.26 8.18 9.20
random 5.73 1029 7.36 8.13

baseLM 39.54 64.66 49.07 53.36
kb 3746 6220 46.76 50.98

num 4425 71.19 5458 59.18
kbUnum 45.36 71.43 55.48 59.95

Correction
1.6 ] {}
14 1 1 1 H 1
{'non'=>'mildly'}
1.2

B {'non'>'severely'}

o 1
3
Q08
0.6
0.4
0.2 .
O —

Increasing EDV

Figure 5.3: Sensitivity of semantic error correction to numbers. Scores of the num model
for different hypotheses (original: ‘non’; alternatives: ‘mildly’ and ‘severely’)
and for different numerical configurations in a text from the development set
(same text as in Table 5.8).

by num). Error correction with the baseLM model can already lead to 64.66% recall
and 39.54% precision, i.e. a user could use the system to correct 64.66% of all er-
rors in the texts, but only 39.54% of the proposed corrections would be desired (the
rest are nuisance). Precision and recall are summarised by the F0.5 metric, which is
53.36% for the baseLM model; for the other models, the FO.5 performance might be
slightly better (59.18% for num and 59.95% for kbUnum) or worse (50.98% for kb).
For all metrics, all systems perform much better than the random baselines (always

and random).
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Sensitivity to Numerical Magnitude Figure 5.3 shows the scores of the num model
for different hypotheses (original: ‘non’; alternatives: ‘mildly’ and ‘severely’) and
for different numerical configurations in a text from the development set (same text
as in Table 5.8). We replace numerals in the text to simulate increasing EDV values
(substitute numerals were unseen in the training data). We observe higher scores
for ‘mildly’ and ‘severely’ as we increase the EDV; however the value exceeds the

range of the attribute before ‘severely’ achieves the highest score.

5.3.5 Discussion

Findings The results indicate that numerical magnitude and conditioning on a KB
can improve the performance of language models in tasks of semantic error detec-

tion and correction. Our most important findings are:

* Using magnitude-dependent embeddings can improve the performance of
language models in semantic EDC tasks, as models that use magnitude-
dependent embeddings (kbUnum and num) perform better than the other mod-
els (kb and baseLM, respectively) in semantic error detection (Table 5.11) and
correction (Table 5.12). The magnitude-dependent embeddings allowed some

sensitivity of the correction outputs to numbers (Figure 5.3).

* Conditioning on a lexicalised KB has mixed results for the performance of
language models in semantic EDC tasks, as some models that condition on
the KB perform better (kbUnum) and others worse (kb) when compared to un-
conditional models (kb and baseLM, respectively) in semantic error detection

(Table 5.11) and correction (Table 5.12).

* Still, the best performance was achieved by a model that simultaneously
uses magnitude-dependent embeddings and conditions on a lexicalised KB

(kbUnum) in both EDC tasks (Tables 5.6 and 5.7).

* A user of the semantic EDC systems could experience better quality of service
with the kbUnum system than with the baseLM system. Namely, the user

would benefit from higher recall (from 94.05% to 95.25% of semantic errors)
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with fewer nuisance alerts (precision from 57.51% to 60.48%; Table 5.11)
for semantic error detection and higher recall (from 64.66% to 71.43% of
needed corrections) with fewer mistakes (precision from 29.54% to 45.36%;

Table 5.12) for semantic error correction.

Limitations Additionally to the limitations from Section 5.1, there are additional

limitations for this experiment:

* Limitations from Evaluation We used an oracle hypothesis generator that
had access to the ground truth confusion set. Also, dedicated models to ad-
dress each of the two tasks might be more suitable in practice, We assumed

that the texts already were correct and had no other errors.



Chapter 6

Modelling Numerals and Predicting
Numbers with Language Models

‘ “The Answer to the Great Question... Of Life, the
Universe and Everything... Is... Forty-two,” said

Deep Thought, with infinite majesty and calm.’
— Douglas Adams,

The Hitchhiker’s Guide to the Galaxy

In Chapter 5 we found the performance of language models can be much worse
for numerals than for words. This chapter further investigates this phenomenon and
additionally proposes models to improve the performance of language models on
numerical information.

Research Questions In this chapter, we will investigate further how we can predict
numerical information from words. Specifically, we will focus on the ability of
language models to model numerals and predict numbers in the text. We frame this

investigation as the following research questions:

Research Question Q.4

How can we improve the ability of language models to model numerals?

Research Question Q.5

How can we improve the ability of language models to predict numbers?
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Scope We will address the two research questions in the technical domains of sci-

entific papers and clinical records.

Structure of Chapter This chapter is structured as follows:

* In Section 6.1, we propose models for various strategies for modelling nu-

merals, and we investigate the research question Q.4.

* In Section 6.2, we investigate the research question Q.5.

This chapter is partly based on work previously published by the author (Sp-
ithourakis and Riedel, 2018).

6.1 Modelling Numerals with Language Models

Challenges There are two main factors that might limit the performance of existing

language models on numerical information:

1. UNK token and OOV numerals Numbers that are not in the vocabulary are
all mapped to the same token, e.g. ‘UNK’, which fails to represent numerals

with different magnitudes.

2. Categorical Softmax The softmax used in the output layer of many existing
language models is suitable for categorical variables, but not for the numbers

that underlie the numerals, which might be continuous.

Figure 6.1 shows an example of the two challenges. Firstly, many of the numerals
are OOV and are mapped to the same ‘UNK’ token, which results in a uniform
probability for all OOV numerals. Secondly, the number that underlies the numeral
often stems from a continuous probability density function, which is not captured

by the categorical softmax output of existing language models.

6.1.1 Approach

In this section we describe models with different strategies for generating numerals
and propose the use of number-specific evaluation metrics that adjust for the high
out-of-vocabulary rate of numerals and account for numerical values. We draw in-

spiration from theories of numerical cognition. The triple code theory (Dehaene
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Figure 6.1: Challenges for modelling numerals with language models. Most language
models assume a categorical distribution over a fixed vocabulary, which maps
all out-of-vocabulary numerals to the same type, e.g. UNK. Furthermore, the
categorical distribution does not reflect the smoothness of the underlying con-
tinuous distribution of certain attributes.

et al., 2003) postulates that humans process quantities through two exact systems
(verbal and visual) and one approximate number system that semantically repre-
sents a number on a mental number line. Tzelgov et al. (2015) identify two classes
of numbers: i) primitives, which are holistically retrieved from long-term memory;
and ii) non-primitives, which are generated online. An in-depth review of numer-
ical and mathematical cognition can be found in Kadosh and Dowker (2015) and

Campbell (2005).

Categorical Softmax This class of models assumes that numerals come from a
finite vocabulary that can be memorised and retrieved later. The softmax model

treats all tokens (words and numerals) alike and directly uses Equation 2.18 with



114Chapter 6. Modelling Numerals and Predicting Numbers with Language Models

score function:

y(s:) = hi e = b Equws,, 6.1)

where E,,; € RP*I”1 is an output embeddings matrix. The summation in Equa-
tion 2.18 is over the complete target vocabulary, which requires mapping any out-

of-vocabulary tokens to special symbols, e.g. ‘UNK’ and ‘UNKNUM’.

Categorical Softmax with Digit-Based Embeddings The d-soft variant considers
the internal syntax of a numeral’s digits by adjusting the score function:

__ 1, T token T chars
W(Sl‘) - ht est +ht est

(6.2)
- h;TEOUtWS[ + h?Egllewa7

where the columns of ERIN are composed of character-based embeddings (see Sec-

tion 2.1.2) using a character set that comprises: digits (0-9), the decimal point, and
an end-of-sequence character. We trivially set egjlars to zero for tokens not covered
by this character set. The model still requires normalisation over the whole vo-
cabulary, and the special unknown tokens (i.e. ‘UNK’ and ‘UNKNUM’) are still

needed.

Hierarchical Softmax A hierarchical softmax (Morin and Bengio, 2005a) can help
us decouple the modelling of numerals from that of words. The probability of the
next token s; is decomposed to that of its class ¢; and the probability of the exact

token from within the class:

p(silh) = X pledhe)p(siler, hy)
ceC (6.3)

pleilh) = o (bl 'b)

where the valid token classes are C = {word, numeral}, o is the sigmoid function
and b is a D-dimensional vector. Each of the two branches of p(s;|c;,h;) can now
be modelled by independently normalised distributions. The hierarchical variants
(h-soft and hd-soft) use two independent softmax distributions for words and numer-
als. The hierarchical approach allows us to use any well normalised distribution to

model each of its branches. In the next subsections, we examine different strategies
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for modelling the branch of numerals, i.e. p(s;|c; = numeral, &, ). For simplicity, we

will abbreviate this to p(s).

Compositional Strategy Let dy,d;...dy be the digits of numeral s. A digit-by-digit
composition strategy estimates the probability of the numeral from the probabilities
of its digits:

p(s) = p(di)p(daldr)...p(dn|d<n) (6.4)

The compositional model (d-RNN) feeds the hidden state 4, of the token-level RNN
into a character-level RNN (Graves, 2013; Sutskever et al., 2011) to estimate this
probability. This essentially is a model that learns a numeral system. This strat-
egy can accommodate an open vocabulary, i.e. it eliminates the need for an “UN-
KNUM?” symbol, as the probability is normalised one digit at a time over the much

smaller vocabulary of digits (digits 0-9, decimal separator, and end-of-sequence).

Continuous Density Strategy We propose a model that factorises the probability

of a numeral s as a joint probability:

p(s) = p(v,r) = p(r)Q(v|r), (6.5)

where v is a random variable for the magnitude of the numeral at precision r, and
r is a random variable for the level of discretisation, i.e. how many decimal dig-
its to keep. The following paragraphs discuss how the components of this joint

probability can be computed.

Continuous Density Strategy: Mixture of Gaussians We would like to model the
number with a probability density function (pdf), g(v); however, the difficulty is that
for any continuous random variable, the probability that it equals a specific value
is always zero. To resolve this, we consider a probability mass function (pmf) that

discretely approximates the pdf:

V+Er

O(v|r) = / g)du=F (v+&)—F(v—g), 6.6)
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where F(.) is the cumulative density function of ¢(.), and & = 0.5 x 107" is the
number’s precision. We use a mixture of Gaussians for the underlying pdf, inspired
by the approximate number system and the mental number line (Dehaene et al.,

2003):

K
9(v) = Y m (Vi )
= (6.7)

T, = softmax (BTht) ,

where K is the number of components, 7, are mixture weights that depend on hidden
state i, of the token-level RNN, .4; is the pdf of a normal distribution parametrised

by mean i € R and variance 67 € R, and B € RP*K is a matrix.

Continuous Density Strategy: Discretisation The level of discretisation by con-
verting the numeral into a pattern and use a RNN to estimate the probability of that

pattern sequence:

r decimal digits

p(r) = p(SOS INT_PART. \d.. \d EOS) (6.8)

Figure 6.2 summarises the continuous density strategy with a mixture of Gaussians

(MoG).

Combination of Strategies Different mechanisms might be better for predicting
numerals in different contexts. We propose a combination model that can select

among different strategies for modelling numerals:

p(s)="Y omp(sim)
VYmeM (6.9)

o, = softmax (ATh,) ,

where M={h-soft, d-RNN, MoG}, and A € RP*IM| " Since both d-RNN and MoG
are open-vocabulary models, the unknown numeral token can now be removed from

the vocabulary of h-soft.
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Figure 6.2: Mixture of Gaussians model. The probability of a numeral is decomposed into
the probability of its decimal precision and the probability that an underlying
number will produce the numeral when rounded at the given precision.

6.1.2 Data
Clinical Data We use the clincial dataset, similary to the previous chapters.

Scientific Data This dataset comprises paragraphs from Cornell’s ARXIV ! repos-
itory of scientific articles, with more than half a million converted papers in 37
scientific sub-fields. We used the preprocessed ARXMLIV (Stamerjohanns et al.,
2010; Stamerjohanns and Kohlhase, 2008)2 version, where papers have been con-

verted from LATEX into a custom XML format using the LATEXML 3 tool. We

'ARXIV.ORG. Cornell University Library at http://arxiv.org/, visited December 2016
2ARXMLIV. Project home page at http://arxmliv.kwarc.info/, visited December 2016
SLATEXML. http://dImf nist.gov, visited December 2016
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Table 6.1: Statistical description of the clinical and scientific datasets: Number of in-
stances, maximum and average lengths, proportions of words and numerals, de-
scriptive statistics of numbers.

Clinical Scientific
Train Dev Test Train Dev Test

#inst 11170 1625 3220 14694 2037 4231
maxLen 667 594 666 2419 1925 1782
avglen 210.1 209.1 2069 210.1 2159 2121
%word 9577 9577  95.7 96.1 96.1 96.0
Jonums 4.3 4.3 4.3 3.9 39 4.0

min 0.0 0.0 0.0 0.0 0.0 0.0
median  59.5 59.0 60.0 5.0 4.0 4.5
mean 300.6 147.7 4648 ~10*' ~107 ~ 10’
max ~ 107 ~10° ~107 ~10* ~ 10! ~ 101

then kept all paragraphs with at least one reference to a table and a number.

Preprocessing For both datasets, we lowercase tokens and normalise numerals
by omitting the thousands separator (”2,000” becomes “2000’) and leading zeros
(”007” becomes 7). Special mathematical symbols are tokenised separately, e.g.

negation (“-17 as “-”, “1”), fractions (“3/4” as “37, “/”, “4”), etc.
Statistical Description Table 6.1 shows descriptive statistics for both datasets. All

numbers are non-negative, because of the tokenisation.

6.1.3 Experimental Setup

Models We consider the following language models:
1. soft A model that uses the categorical softmax.

2. d-soft A model that uses the categorical softmax strategy with digit-based

embeddings.
3. h-soft A model that uses the hierarchical softmax strategy.

4. hd-soft A model that uses the hierarchical softmax strategy with digit-based

embeddings.

5. d-RNN A model that uses the digit-by-digit compositional strategy.
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6. MoG A model that uses the continuous density strategy with a mixture of

Gaussians.

7. combination A model than uses a combination of h-soft, d-RNN, and MoG

strategies.

We set the vocabularies to the 1,000 and 5,000 most frequent token types for the
clinical and scientific datasets, respectively. We use gated token-character embed-
dings (Miyamoto and Cho, 2016) for the input of numerals, and we use token em-
beddings for the input and output of words, since the scope of our paper is nu-
meracy. We set the models’ hidden dimensions to D = 50. All our RNNs are
LSTMs (Hochreiter and Schmidhuber, 1997).

Training Details We initialise all token embeddings to pretrained GloVe (Penning-
ton et al., 2014) and the biases of the LSTM forget gates to 1.0 (J6zefowicz et al.,
2015). We train using mini-batch gradient decent with the Adam optimiser (Kingma
and Ba, 2014) and regularise with early stopping and 0.1 dropout rate (Srivastava,

2013) in the input and output of the token-based RNN.

Training Details: Means and Variances for MoG For the mixture of Gaussians,
we select the mean and variances to summarise the data at different granularities
by fitting 7 separate mixture of Gaussian models on all numbers, each with twice
as many components as the previous, for a total of 2’*! — 1 = 256 components.
These models are initialised at percentile points from the data and trained with the
expectation-minimisation algorithm. The means and variances are then fixed and

not updated when we train the language model.

6.1.4 Results

Adjusted Perplexities Table 6.2 shows the adjusted perplexity evaluation metric for
the various models. All results are evaluated on the test set for each dataset (clin-
ical and scientific) and for different subsets of tokens (all tokens, only words, and
only numerals). All comparisons of adjusted perplexities between subsets, datasets,
and models are meaningful. For all tokens of both datasets, the combination model

achieves the best performance, i.e. it performs better than its individual compo-
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Table 6.2: Results for language modelling (adjusted). Adjusted perplexities evaluated on
the test set for the clinical and scientific data.

Adjusted Perplexities

Clinical Scientific

model all words numerals all words numerals

soft 891 5.99 5844372 80.62 51.83 3505856.25
d-soft 8.77 591 56164.81 79.47 51.20 3300688.50

h-soft 6.05 4.96 49595 54.80 49.81 550.98
hd-soft 6.09 4.99 490.14 53.73 48.83 542.70
d-RNN 588 4.95 263.22 5370 48.89 519.80

MoG 5.88 4.99 226.46 5437 48.97 683.16
combination 5.82 4.96 197.59 53.03 48.25 520.95

Table 6.3: Results for language modelling (unadjusted). Perplexities (unadjusted) evalu-
ated on the test set for the clinical and scientific data. Only comparisons between
values with the same exponent (a, b, etc.) are valid. Best performance for group
of comparable results in bold. Performances in positions corresponding to best
performance in Table 6.2 in italics.

Perplexities

Clinical Scientific

model all words numerals all words numerals

soft 4.28¢  4.08¢ 12.04¢ 35797 3396" 127.12

d-soft 4.21¢ 4.03¢ 11.57¢ 3528/ 33.54" 119.68
h-soft 4.19¢  4.00¢ 11.78¢  36.517 34.73" 12267
hd-soft 4.22¢  4.03¢ 11.65¢ 35.80/ 34.04" 120.83
d-RNN 4.79®  3.99¢  26322¢ 37.98% 34.08" 519.80'
MoG 4.79°  4.03¢ 226.46° 38458 34.14"  683.16/
combination 4.74° 4.01¢  197.59° 37.50% 33.64" 520.95/

nents (MoG, d-RNN, hd-soft); the non-hierarchical softmax variants (soft and d-
soft) have the worst performance. For the subset of numerals, the combination
model achieves the best performance in the clinical data (followed by MoG), and
the second best performance in the scientific data (only slightly behind d-RNN);
the non-hierarchical softmax variants (soft and d-soft) have by far the worst per-
formance in both datasets (worse than then next best model by factors of 100 and
10,000 for the clinical and scientific data, respectively). For both datasets and all

models, performance on numerals is worse than on other models at least by a factor
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of 10.

Perplexities (Unadjusted) Table 6.2 shows the (unadjusted) perplexity evaluation
metric for the various models. All results are evaluated on the test set for each
dataset (clinical and scientific) and for different subsets of tokens (all tokens, only
words, and only numerals). Comparisons of results are not meaningful between
evaluations that have different OOV-rates, i.e. between different datasets, between
different subsets, or between a model with closed (all softmax variants) and a model
with open vocabulary of numerals (d-RNN, MoG, and combination). For most per-
mitted comparisons, perplexity follows the same performance patterns as adjusted
perplexity (Table 6.2); however, there is not much disparity between the perplexity
of non-hierarchical (soft and d-soft) and hierarchical softmax variants (h-soft and

hd-soft).

Numeral Embeddings: Softmax versus Hierarchical Softmax Figure 6.3 visu-
alises the cosine similarities between the output token embeddings for all numerals
in the vocabulary, for the soft and h-soft models trained on the clinical data. For
the non-hierarchical softmax (soft), the similarities between all numerals (including
the unknown numeral) are positive, whereas, for the hierarchical softmax (h-soft),
many similarities between numerals (including the unknown numeral) are negative.
For both models, similarities are in general higher between numerals with numeri-
cally closer magnitudes (along the diagonal in Figure 6.3), between some clusters
of numerals (e.g. ‘1’ through ‘30’ and ‘2010°, 2011°, 2012’, etc.), and between

some isolated numerals (e.g. 25°, ‘50°, “75’, and ‘100’).

Digit Embeddings Figure 6.4 visualises the cosine similarities between the output
embeddings for digits from the d-RNN model trained on the scientific data. Positive
similarities occur only between the decimal point (*.”) and ‘EOS’ symbol and be-
tween digits ‘1’ through *9’. For the latter, similarities are in general higher between
consecutive digits. Digits that represent smaller integers (e.g. ‘1’, ‘2°) are similar

to fewer other digits. The digit ‘0’ is not similar to any other symbol.

Distributions of Significant Digits Figure 6.5 shows the model distribution (from

d-RNN model estimates, averaged on the development set), empirical distribution
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Figure 6.3: Cosine similarities of embeddings for numerals. Embeddings are from the soft
(top) and h-soft (bottom) models trained on the clinical data. Numerals are
sorted by magnitude.
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Figure 6.4: Cosine similarities of embeddings for digits from the output layer of the d-RNN
model trained on the scientific data.

(from training data), and theoretically expected distribution (from Benford’s law)
for digits at various positions of the numerals in both datasets. Benford’s law (Ben-
ford, 1938), also known as the first-digit law, applies to numerals from many real-
life datasets, and predicts that the first digit of a numeral will be ‘1’ with higher
probability (about 30%) than ‘9’ (< 5%). Benford’s law weakens towards unifor-
mity for later (less significant) digits. The model and empirical distributions are
similar to one another; their estimates are occasionally lower (e.g. 1st digit being
‘3’ for clinical data) or higher than theoretically expected (e.g. 1st digit being ‘5’ for
clinical and 4th digit being ‘0’ for scientific data), but in general they tend towards

uniformity for less significant digits, as theoretically expected.

Combination Model: Strategy Selection Table 6.4 shows the numerals with the
highest strategy selection probability for each of strategy of the combination model
(h-soft, d-RNN, and MoG) and for each dataset (clinical and scientific); it also shows

snippets of texts where these numerals appear. The strategy selection probabilities
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Figure 6.5: Distributions of significant digits from d-RNN model, from data, and from the-
oretical expectation (Benford’s law).

are averaged over the development sets, from which all snippets also come. The
h-soft strategy is selected mostly for integer numerals in the clinical (percentile
points: ‘25’, 50, “75’; typical drug dosage: ‘140’) and scientific (years: ‘2004’,
‘1997’; basis of scientific notation: ‘10”) datasets. The d-RNN strategy is selected
mostly for two-digit integers (dimensions in mm: ‘37’) in the clinical dataset and
for the NGC index for cataloguing astronomical objects (Dreyer, 1888) in the sci-
entific dataset. The MoG strategy is selected mostly for non-integer numerals (end-
diastolic volumes: ‘138.47°) in the clinical dataset and for other indices for cat-
aloguing astronomical objects, e.g. GL (Gliese, 1988) and HIP (Perryman et al.,
1997). Most numerals for which the MoG strategy is selected are OOV.

6.1.5 Discussion

Findings Our most important findings are:

* Numerals are harder targets than other words for language models, as all mod-
els had a high adjusted perplexity for that subset (Table 6.2). This finding

can be easily overlooked if one examines only the unadjusted perplexity (Ta-
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Table 6.4: Examples of numerals for each strategy of the combination model. We show
numerals most highly associated with each strategy (on average, in the develop-
ment set) and text snippets that contain them.

Clinical

Scientific

Numerals: 50, 17, 100, 75, 25, 1, 140,
2012, 2010, 2011, 8, 5, 2009, 2013, 7,
6,2,3,2008, 4...

Numerals: 1992, 2001, 1995,
2003, 2009, 1993, 2010, 1994,

- Snippets: “late enhancement ( > 75 1998, 2002, 2006, 1997, 2005,
°§ %)”, “late gadolinium enhancement (1990, 10, 2008, 2007, 2004,
& <25 %)”, “infarction ( 2 out of 17 1983, 1991...
segments )”, “infarct with 4 out of Snippets: “sharp etal. 2004,
17 segments nonviable”, “adenosine “lietal. 20037, “3.5 x 10°4”,
stress perfusion @ 140 mcg”, “stress “0.3 x 10°16”
perfusion ( adenosine 140 mcg”
Numerals: 42, 33, 31, 43, 44, 21, 38, 16\1;1:11&2;13156:3 fg;l’s 42030606, égg’
36, 46, 37, 32, 39, 26, 28, 23, 29, 45, ’ ’ ’ ’ ’
% 40. 49. 94 375, 1068, 211, 6.4, 8.7, 600, 96,
[~ Lo . o 0.65, 700, 1.17, 4861, 270...

* Snippets: aortic root is dilated ( . N .
= » o« . Snippets: ngc 6334 stars”,
measured 37 x 37 mm”, “ascending 2366 sh Ith

aorta is not dilated ( 32 x 31 mm” nec shows a wealth of
small structures”
Numerals: 74.5, 69.3, 95.9, 96.5
’ ’ ’ > N Is: 12961, 766, 7409,
72.5,68.6,82.1,63.7,78.6,69.6.69.5. 4ecx 443 1819, 676 1070
82.2,68.3,73.2,63.2,82.6,77.7, 80.7, 5063’ 32?; ’264 1’63296, 2030’
o 0T 104 .77, 115, 196, 0.17, 148937,
< Snippets: “stroke volume 46.1 ml”, 0.43, 209458...
= “stroke volume 65.6 ml”, “stroke vol- Snippets:  “hip 12961 and gl

ume 74.5 ml”, “end diastolic volume
82.6 ml”, “end diastolic volume 99.09

ml”, “end diastolic volume 138.47
ml’,

676 a are orbited by giant plan-
ets,” “velocities of gl 67,
locities of hip 12961

» g

, “ve-

ble 6.3), which does not account for the OOV-rate, or only perplexities evalu-

ated on all tokens (Table 6.2), which is overwhelmed by the high proportion

of non-numeral words (Table 6.1).

Hierarchical modelling of numerals and words can drastically improve lan-

guage modelling performance, as the hierarchical softmax models (4-soft and

hd-soft) perform much better than their non-hierarchical variants (soft and

d-soft, respectively; Table 6.2). This is possibly because the non-hierarchical

softmax tries to separate the representations (output embeddings) of numerals
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apart from those of words, which results in the representations of all numerals
being too similar between one another and with the unknown numeral token
(Figure 6.3); in a hierarchical approach, the numerals are already separated
from other words, which allows for more degrees of freedom to discriminate
between numerals. Moreover, hierarchical modelling allows for a different
model to be used for each of two branches, i.e. to model numerals and to

model words.

* Softmax models with digit-based embeddings for numerals (d-soft and hd-
soft) do not perform much better (if any better at all) than softmax models
with only tokens-based embeddings (soft and h-soft, respectively; Table 6.2).
This is possibly because language modelling performance is bounded by low
performance on the OOV tokens, and digit-based embeddings fail to address
that issue (the ‘UNK’ and ‘UNKNUM’ tokens are still required).

* Compositional modelling (based on digit-based composition) in the hierarchi-
cal branch of numerals can further improve language modelling performance,
as the d-RNN model performed better than the softmax models (h-soft and hd-
soft) in both datasets (Table 6.2). This is possibly because d-RNN supports
an open vocabulary of numerals, which removes the need for an ‘UNKNUM’

token in the vocabulary.

* Continuous density modelling (based on mixture of Gaussians) in the hier-
archical branch of numerals may or may not improve language modelling
performance, as MoG performed better than the softmax models (k-soft and
hd-soft) in the clinical dataset, but worse in the scientific dataset (Table 6.2).
This is possibly because, although MoG supports an open vocabulary of nu-
merals, its performance depends on a good selection for the parameters of its

mixture components (means and variances).

* A combination of these strategies (categorical softmax, composition and con-
tinuous densities) might be the most appropriate for the modelling of numer-

als, as the combination model that implements all strategies (h-soft, d-RNN,
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and MoG, respectively) had the best overall performance (Table 6.2). This is
possibly because a different strategy needs to be selected for each numeral,

which can be inferred from its context (Table 6.4).
Limitations There are several limitations for this experiment:

* Limitations from Data Because of out tokenisation, all numerals represent
non-negative numbers; this means that the token-level RNN should learn
when a number should be negative. Numerals appearing in the scientific texts
can be very large, e.g. it contains an integer with 26 digits; this leads to nu-
merical instabilities, and it can also dominate numerical averages, as in the
cases of the mean of the date and of the absolute errors. Furthermore, the sci-
entific text contains numerals from several numeral systems with overlapping
forms, e.g. ‘10’ is at the same type the decimal (base-10) for 10, the binary
(base-2) for 2, the octal (base-8) for 8, etc.

* Limitations from Models Each of the models has its own limitations: soft-
max models (soft, d-soft, d-soft, and hd-soft) try to enforce a categorical dis-
tribution on numerals that might represent continuous quantities; the d-RNN
tries to learn the numeral system, but the data can contain several numeral
systems; the MoG has a performance that largely depends on the means and
variances of its components; and the combination needs to learn the optimal
strategy in an unsupervised way and might make paradoxical selections at test

time.

6.2 Predicting Numbers with Language Models

6.2.1 Approach

The evaluation with (adjusted) perplexities in Section 6.1. is concerned with sym-
bolic performance on numerals; in this section, we investigate the task of next num-
ber prediction and evaluate on the magnitude of numbers, which is their most promi-

nent semantic content (Dehaene et al., 2003; Dehaene and Cohen, 1995).
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6.2.2 Data

We use the clinical dataset used throughout the thesis and the scientific dataset in-

troduced in Section 6.1

6.2.3 Experimental Setup

Models We consider the following models for making predictions for the next num-

ber
1. mean This model predicts with the mean of the training data;
2. median This model predicts with the median of the training data.

3. soft, d-soft, h-soft, hd-soft, d-RNN, MoG, and combination This model
uses a LM (defined in Section 6.1) to score a set of candidate numerals and
predicts with the number of the best scoring numeral. To create the set of
candidate numerals, we first create a set of candidate numbers that is the union
of in-vocabulary numbers and 100 percentile points from the training set.
We generate the set of candidate numerals from these numbers by converting
them into numerals by considering all formats up to n decimal points. We
select n to represent 90% of numerals seen in the training data, which yields

n = 3 and n = 4 for the clinical and scientific data, respectively.

Training Details All language models are trained as in Section 6.1.

6.2.4 Results

Evaluation on the Number Line Table 6.5 shows regression evaluation with abso-
lute (RMSE, MAE, and MdAE) and relative (MAPE) error metrics for the various
models and for two naive baselines (mean and median). All results are evaluated
on the test set. The RMSE and MAE of the scientific dataset are in the order of
10°. Absolute errors (RMSE, MAE, and MdAE) are not be comparable between
datasets, because they are scale-dependent; in fact, unless the target numbers are
assumed to be dimensionless quantities (i.e. pure numbers without units), absolute
errors might be ill-defined, because they are unit-dependent. Such difficulties with

comparability or definition do not occur for the MAPE metric, which is a relative
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Table 6.5: Results for regression evaluated on the test set for the clinical and scientific data.
Best performances in bold; performances equal to or worse than the mean or
median baseline in italics.

Clinical Scientific
model RMSE MAE MdAE MAPE% MdJAE MAPE%

mean 1043.68 294.95 245.59  2353.11 ~ 10% ~ 1023
median 1036.18 120.24  34.52 425.81 420  8039.15

soft 997.84 80.29  12.70 621.78 3.00 1947.44

d-soft 99138 7444  13.00 503.57 3.50 15208.37

h-soft 1095.01 167.19  14.00 746.50 3.00 1652.21
hd-soft 1001.04 83.19  12.30 491.85 3.00  2703.49
d-RNN 1009.34  70.21 9.00 513.81 3.00  1287.27
MoG 998.78 57.11 6.92 348.10 2.10 590.42
combination  989.84  69.47 9.00 552.06 3.00  2332.50

error that is independent of scale and units. According to MAPE, the MoG model
achieves the best performance in both datasets, and it is the only model to perform
better than the median baseline for the clinical data. Finally, the combination model
does not achieve a better MAPE than any of its individual components (MoG, d-
RNN, hd-soft).

Probability of the Next Numeral Figure 6.6 visualises the probabilities of the var-
ious models for the next numeral in two examples from the development set of the
clinical data. The lines connect the the probabilities of numerals with the same
number of decimal digits. For the A-soft model, the probabilities are spiked; for
d-RNN, they follow a saw-tooth pattern; and, for MoG, they are smooth with an

occasional spike, whenever a narrow component allows for it.

6.2.5 Discussion

Findings Our most important findings are:

* Continuous density modelling (based on mixture of Gaussians) of numerals
can drastically improve the number prediction performance of language mod-
els, as the language model that implemented that strategy (MoG) performed
better than models that implemented other strategies or a combination of them

(Table 6.5). This is possibly because the smooth output probabilities of the
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Figure 6.6: Example model predictions for the A-soft (top), d-RNN (middle) and MoG (bot-
tom) models. Examples from the clinical development set.

MoG model (Figure 6.6) allow it to generalise better.

Limitations Additionally to the limitations from Section 6.2, there are additional

limitations for this experiment:

e Limitations from Evaluation Absolute errors (RMSE, MAE, and MdAE)

are not be comparable between datasets, because they are scale-dependent;

in fact, unless the target numbers are assumed to be dimensionless quanti-

ties (i.e. pure numbers without units), absolute errors might be ill-defined,

because they are unit-dependent. While most of these issues are solved by
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the use of relative error metrics (MAPE), there still exist numerals for which
evaluation with numerical errors is not meaningful: numerals that are simply

labels and their magnitude is irrelevant, e.g. phone numbers.






Chapter 7

Conclusion

‘That’s Numberwang!’
— Robert Webb as ‘Mr Terrific’,

in That Mitchell and Webb Look

Recapitulation This thesis was about the joint modelling of data of different types:
words, numbers, and numerals. We motivated and formulated the research ques-
tions (Chapter 1), reviewed the background of tasks and models (Chapter 2), and
positioned this work within the broader literature by discussing related work (Chap-
ter 3). We addressed the research questions by setting up and investigating experi-
ments for a variety of models: word classification with numbers as inputs and num-
ber regression with words as inputs (Chapter 4); language models with numbers as
inputs and their downstream applications in text prediction and semantic error de-
tection and correction (Chapter 5); and language models to model numerals and to
predict numbers (Chapter 6). In this chapter, we conclude with an overview of the

contributions of the thesis, critical reflection, and suggestions for future research.

Major Methodological Contributions The most important methodological inno-

vations of this work are as follows:

* We contribute to modelling by proposing the use of numbers as inputs to
language models and the mechanisms to achieve that (magnitude-dependent
embeddings and conditioning on lexicalised KB). We find that this can im-
prove performance for language modelling and several downstream applica-

tions (text prediction and semantic error detection and correction) (Chapter 5).
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* We contribute to modelling by proposing a variety of strategies (categorical
softmax, hierarchical, digit-by-digit compositional, from continuous proba-
bility density, and combination of strategies) that improve the ability of lan-

guage models to predict numbers and to model numerals (Chapter 6).

* We contribute to evaluation by using perplexities that are adjusted and evalu-
ated separately for the subset of numerals, to account for varying OOV-rates
and for the dominating prevalence of words in the data (Chapters 5 and 6).
We also use evaluations on the number line for numerical outputs of language
models (Chapters 6). These evaluations show a more faithful picture of the
behaviour of language models on the output of numerals and numbers, and

can be used to measure improvements.

Major Findings The most important findings of this work are the following:

* Combining words and numbers as inputs to word classification and number

regression task can improve over using inputs of a single type (Chapter 4).

* Numerals are harder targets than other words for language models. This find-
ing is not immediately evident, but requires to evaluate with adjusted perplex-

ity only on the subset of numerals (Chapters 5 and 6).

* Numbers as inputs to language models (using magnitude-dependent embed-
dings and conditioning on a lexicalised KB) can improve the performance for
language modelling and for several downstream applications (text prediction

and semantic error detection and correction) (Chapter 5).

* Modelling numerals and predicting numbers with language models might
benefit from using different strategies (categorical softmax, hierarchical,
digit-by-digit compositional, from continuous probability density, and com-
bination of strategies) for different contexts. For modelling numerals, a com-
bination of strategies was found to have the best performance for (adjusted)

perplexity; for predicting numbers, the continuous probability density strat-
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egy with a mixture of Gaussians achieved the best relative numerical error

(Chapter 6).

7.1 Critical Reflection

The findings and contributions should be considered along the following points of

critical reflection:

* Domain Dependence All our analyses, experiments, and investigations were
executed on texts from the clinical and scientific domains, which are expert
technical domains with their particular idiolects and idiosyncracies. Although
the results mostly agreed between the two domains, whenever compared, gen-
eralisation of the proposed techniques is not guaranteed for different domains,

e.g. non-technical texts.

* Simulation versus Real-Life Application Our evaluations for text predic-
tion (word prediction and word completion) and semantic error detection and
correction were simulated under the assumption of a perfect user, one who
is engaged, cooperative, consistent, and immediately responsive to the sys-
tems. In a real-life application, the true performance of such a system would
also depend on the variation among users, the system design, and other ex-
ternal factors. Furthermore, our evaluation for text prediction relied on the
correctness of the texts in the data, which cannot be guaranteed, and for error

correction on the distribution of the simulated errors.

* Numerical Instabilities This problem refers to numerical overflows and in-
definite operations that might arise when handling numerical data with com-
puters, e.g. multiplying two large numbers, dividing by zero, etc. For most
applications, numbers refer to a predetermined set of attributes and are often
normalised for that attribute’s numerical range, so as to avoid numerical insta-
bilities; however, we had no control over the set of possible attributes or range
of numbers in text data, e.g. we encountered an integer in the scientific data

that was 26 digits long. The problem of numerical instabilities was a concern
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throughout this work and had a major influence on the design decisions for
the models, e.g. we consciously tried to avoid non-bounded operations that

involved numbers from the text.

Predictability of Numbers The distribution for the next numeral in a text
might depend on information that is not yet available, e.g. the distribution
depends on the units for the number, which typically come after the numeral.
These make the distribution for the next number inherently multimodal, and
any evaluation against point estimates might be too harsh. A solution would
be to predict from the probability of the whole document for different substi-
tutions of the numeral candidates; however, this was beyond the scope of this
thesis. A further complication relates to the alternative function of numbers
as labels, e.g. the magnitude of a phone number is irrelevant. It might be

desirable to exclude such numerals from the evaluation of number prediction.

Challenges of Application Translating the findings from any simulation into
a practical clinical application is subject to challenges: the implementation of
the model introduces software engineering challenges (userability of human-
computer interface, scalability to large datasets, security of sensitive infor-
mation, etc.), and the human end-user might exhibit different behaviours (be-
cause of preferences, habits, idiosyncrasy, etc.) from the simulated ideal
user (Chapman et al., 2011). Mismatched expectations, poor implementa-
tion, or inadequate integration might inhibit the adoption of the clinical ap-
plication. Additional challenges are posed by the variability of sublanguages,
intended user groups, and support goals (Demner-Fushman et al., 2009) that

can differ between and within clinical institutions.

Opportunities of Application Technological advances and clinical needs
create opportunities for translating this work into clinical applications: elec-
tronic health records are becoming increasingly more widespread in health
care (Blumenthal and Tavenner, 2010); clinicians need to enter the patient’s

data quickly and accurately, and they need to be able to switch between
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structured and unstructured documentation, depending on their needs (Rosen-
bloom et al., 2011); advances in computing (cloud computing, GPUs, etc) al-
low us to develop, train, and serve complex models (e.g. neural networks) to
user-interfaces in computers, tablets, smart phones, etc.; finally, large-scale,
publicly available clinical datasets, e.g. MIMIC-III (Johnson et al., 2016), are

being released and can be used for training such models.

7.2 Future Work

We conclude this thesis with suggestions for future research, based on our insights

and on the trends in the literature. Our suggestions are as follows:

» Validate and extend the findings by experimenting in other sub-domains of
scientific and clinical data (e.g. different specialty or different hospital) or

other number-intensive domains (e.g. financial documents).

* Translate the techniques from this work and evaluate as a practical applica-
tion in an actual setting, e.g. deploy a text editor with predictive text entry
and error correction functionalities in a hospital and assess with operational
evaluation metrics, such as time and money savings, reduction of clinically

significant errors, user attitudes towards the application, etc.

* Validate and extend the findings by experimenting with other number-
intensive applications of language models, e.g. optical character recognition

(OCR), voice recognition, text generation, etc.

* Adapt and apply techniques from this work for models in other number-
related tasks, e.g. numerical question answering, numerical information ex-

traction, numerical entailment, commonsense reasoning, etc.

» Extend the models by adding new or refining existing strategies for numeri-
cal output, e.g. from continuous probability density functions with different

distributions.
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» Extend the abilities of the models by injecting mathematical background
knowledge for numerical reasoning, linear solvers, algebraic reasoning, nu-

merical expressions between attributes, etc.



Appendix A

Clinical Dataset

The dataset comprises 16,015 anonymised clinical records from the London Chest
Hospital. Each record has a knowledge base (KB) of attribute-value pairs and a text

report about the patient.

Statistical Description of Patients Table A.1 shows all the attributes from the KB
in the clinical dataset and their statistical description (mean, standard deviation,
and percentage of the records where the value of the attribute is reported). The
average patient is 56.46 years old, and 66% of the patients are male. The other
attributes refer to measurements of the end-diastolic volume (EDV), end-systolic
volume (ESV), ejection fraction (EF), stroke volume (SV), heart rate (HR), cardiac
output (CO), and mass in relation to the left ventricle (LV) or the right ventricle
(RV). Repeated measurements of an attribute are denoted with numbers, e.g. LV2
EDV refers to the second (follow-up) measurement of the end-diastolic volume of

the left ventricle.

Statistical Description of Texts The average length of the clinical text documents
is about 207 tokens, 4.3% of which are numerals. A more detailed description of

the statistics of the text documents can be found in Tables 5.3 and 6.1.

Workflow The data for each patient are collected following a workflow as below:

1. A clinician requests that the cardiac structure and function of the patient be
assessed. This decision is based on clinical indications, e.g. their history,

results of diagnostic tests, clinical findings, etc.
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Table A.1: Statistics for patients in clinical dataset. Mean, standard deviation, and percent-
age of records that have a value for that attribute.

mean std found in % of records
sex="‘male’ 66% - 100
age 56.46 15.53 100
LVI EDV  164.62 62.03 63
LV1 ESV 79.11 57.89 63
LV1 EF 5585 15.21 63
LV1 SV 85.58 25.39 62
LV1 HR 71.17 14.17 18
LV1 Mass 132.58 51.27 4
LV1 CO 584 1.67 3
LV2EDV  182.88 70.50 5
LV2 ESV 94.22 60.16 5
LV2 EF 52.00 13.70 5
LV2 SV 90.13 26.28 5
LV2 Mass 131.78 41.88 1
LV2 CO 496 140 1
RV1 EDV 176.60 96.62 1
RV1 ESV 82.54 46.35 1
RV1 EF 54.59 11.69 1
RV1 SV 91.72 32.65 1
RV1 CO 6.49 0.97 1

2. The patient undergoes cardiovascular magnetic resonance (CMR),! which is

the gold standard method for the assessment of cardiac structure and function.

3. The CMR scans are analysed using the cvi*? post-processing tool (Circle
Cardiovascular imaging, Calgary, Canada). The process of the analysis in-
volves visually identifying the systolic and diastolic phase (see Table 4.1 for
an overview of the cardiac cycle) and annotating contours in the images (an-
notation is assisted by the post-processing tool with the option of manual
correction). The post-processing combines the annotations provided by the
analyser with other automatically extracted features to populate the relevant

attributes in the patient’s KB, e.g. EDV, ESV, EF, mass, etc.

4. The analysis of the CMR is finalised, and the clinician composes the text

!CMR is also known as cardiac magnetic resonance imaging (cardiac MRI)
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Table A.2: Number of CMRs requested, analysed, or finalised per person. The names have
been anonymised. Note that some analyses might have been requested, anal-
ysed, or finalised by more than one person.

Requested by #CMRs | Analysed by #CMRs | Finalised by #CMRs

not available 829 anonymised A 2504 anonymised A 6779
anonymised_1 511 anonymised_B 1473 anonymised_B 3275
anonymised_2 407 anonymised 4 1068 not available 2146
anonymised_3 379 anonymised D 1033 anonymised C 2110

anonymised D 373 anonymised E 972 anonymised D 1315
anonymised_ A 319 anonymised C 854 anonymised_E 598
other 13403 other 8982 other 241

of the report. The clinician has access to the values from the KB and the
previous clinical notes on the patient (e.g. history), and can directly view the
CMR scans, if they wish. Often, clinicians use templates, copy text from the

patient’s record, or copy text from records of other patients (Weir et al., 2003).

5. At various points in the workflow, the process might be reviewed by multiple
people, e.g. in the case of significant discrepancies. As a result, for our dataset
each of the CMRs was requested on average by 1.01 (standard deviation 0.12),
analysed by 1.05 (std 0.24), and finalised by 1.03 (std 0.17) persons. A more
detailed (yet anonymised) view of the number of CMRs processed per person

can be found in Table A.2.
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