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Abstract—Derivative traders are usually required to scan
through hundreds, even thousands of possible trades on a daily-
basis; a concrete case is the so-called Mid-Curve Calendar Spread
(MCCS). The actual procedure in place is full of pitfalls and
a more systematic approach where more information at hand
is crossed and aggregated to find good trading picks can be
highly useful and undoubtedly increase the trader’s productivity.
Therefore, in this work we propose an MCCS Recommendation
System based on a stacking approach through Neural Networks.
In order to suggest that such approach is methodologically and
computationally feasible, we used a list of 15 different types of US
Dollar MCCSs regarding expiration, forward and swap tenure.
For each MCCS, we used 10 years of historical data ranging
weekly from Sep/06 to Sep/16. Then, we started the modelling
stage by: (i) fitting the base learners using as the input sensitivity
metrics linked with the MCCS at time t, and its subsequent
annualized returns as the output; (ii) feeding the prediction
from each base model to a particular stacker; and (iii) making
predictions and comparing different modelling methodologies by
a set of performance metrics and benchmarks. After establishing
a backtesting engine and setting performance metrics, our results
suggest that our proposed Neural Network stacker compared
favourably to other combination procedures.

I. INTRODUCTION

Inside an investment bank, a quantitative research team
plays an important role as a hub for the demands and inputs of
different stakeholders: traders, structurers, bankers, salespeo-
ple, etc. In general these actors are interested on trading ideas,
portfolio analysis, economic outlooks, and new products to be
sold for the bank’s clients: pension funds, wealth managers,
commercial banks, that is, institutional investors in general.
A concrete case is the so-called Mid-Curve Calendar Spread
(MCCS), a derivatives package that involves selling an option
on a forward-starting swap and buying an option on a spot-
starting swap with longer expiration [5], [22]. In such a
package, traders usually look for the historical carry and the
breakeven width levels, in order to rank the most prominent
ones to offer a client or to proceed in some proprietary trading.

However, one might notice that the main downsides of such
approach are: (i) substantial information on the underlying are
usually not taken into account; (ii) using the previous example,
high historical values for carry and breakeven widths are more
necessary rather than sufficient conditions for a profitable
MCCS trade; (iii) a trader can quickly judge if an individual
trade is worthwhile to invest, but may take some time to find
it; and (iv) after a given period, traders tends to only look at a

small subset of possible trades. Hence, a systematic approach
where more information at hand is crossed and aggregated to
find good trading picks can be highly useful and undoubtedly
increase the trader’s productivity.

Therefore, in this work we propose a MCCS Recommen-
dation System based on a stacking approach through Neural
Networks. Since we are looking for an omnibus methodology
that can work for the different profiles of a MCCS, this
ensemble-based methodology [13], [28] can provide us with
the capacity to highlight each base model where it fares best
and discredit each base model where it performs poorly. By
having many distinct base learners, we are able to provide a
reasonable solution to different MCCSs, while at the same time
give more chance to the Neural Network stacker to outperform
the base learners across all MCCSs.

In order to suggest that such approach is methodologically
and computationally feasible, we used a list of 15 different
types of US Dollar MCCSs regarding expiration, forward and
swap tenure. For each MCCS, we used 10 years of historical
data ranging weekly from Sep/06 to Sep/16. Then, we started
the modelling stage by: (i) fitting the base learners using as the
input sensitivity metrics linked with the MCCS at time t, and
its subsequent annualized returns as the output (in this case,
holding 1-year-ahead the trade); (ii) feeding the prediction
from each base model to a particular stacker; and (iii) making
predictions and comparing different modelling methodologies
by a set of performance metrics and benchmarks. Precisely,
we used a total of 13 base models, with some being com-
monly used by the traders to decide which MCCS look more
attractive to a selling pitch. We compared the Neural Network
stacker with three other traditional combination approaches
common in the financial literature. After establishing a back-
testing engine and setting performance metrics, our results
suggest that our proposed Neural Network stacker compared
favourably to other stacking procedures.

In this sense, we organised this work as follows: next
section presents a literature review on existing approaches
to return/price prediction/estimation in different areas and
instruments, as well as a brief description on MCCS trades.
The third section displays the stacking approach through
Neural Networks, the base learners used and the calibration
process that each undergone, the dataset that comports the
MCCS trades and a set of performance metrics applied.



Finally, we exhibit the results and discussions linked with the
performance analysis of each model through different metrics
and perspectives. We close this work with some concluding
remarks and future directions for research.

II. RELATED WORKS AND MID-CURVE CALENDAR
SPREAD

Literature provides a growing body of evidence that price
changes can be predicted, that is, in particular circumstances
and periods securities violate the Efficient Market Hypothesis
[3], [20]. This hypothesis states that price changes must
be unforecastable if they are properly anticipated, that is
if they fully incorporate the expectations and information
of all participants. In this sense, researchers have employed
different modelling approaches and information sets to predict
price changes across a range of assets; for cash instruments
(equities, bonds, foreign exchange, etc.) we can find a vast
amount of research using statistical and machine learning
methods [4], [6], [11], [15], [19], [29], [30].

Contrasting with the emphasis that researchers in cash
instruments put on return predictability, when we devote our
attention to research in derivatives instruments (options, swaps,
swaptions, etc.) it is clear that most of the effort is concentrated
on pricing these contracts via stochastic calculus [10], [16],
[22], [25], with some few exceptions using Neural Networks
and other machine learning models for price estimation [14],
[23], [27]. When we devote our attention to the asset type
that this work is dedicated, interest rate swaptions, a similar
pattern persists: most of the research is related to pricing and
not to return prediction.

Based on this short review of existing approaches to re-
turn/price prediction/estimation in different areas and instru-
ments, to the best of our knowledge, our work is the first
attempt to apply computational statistics and machine learning
techniques to build trading strategies in the context of interest
rate swaptions. Our approach is not the only novel from
a modelling perspective, but instead of trading the vanilla
product (receiver/payer interest rate swaption), we prefer to
focus on options strategies (calendar spreads, straddles, etc.)
which in many cases is the package that is in practice traded.
By thinking in terms of the package, in this case, a Mid-
Curve Calendar Spread, rather than the individual constituents
we unlock some features that can only be computed in this
situation, like the carry at expiry, breakeven width and so on.

A Mid-Curve Calendar Spread (MCCS) is a package in-
volving short selling an option on a forward-starting swap and
going long a longer-expiry swaption on the same underlying
swap [5], [12]. Investors typically use MCCS to take a view on
forwarding volatility. This comes from the fact that, conceptu-
ally, spot volatility can be decomposed into forward volatility
and mid-curve volatility. Taking 10y10y1 for example, we

1This notation is extensively used during this work. In this case, the first
10y means a spot swaption with 10 year of expiration, while the second 10y
refers to the swap tenure.

outline below a relation that hold for those volatility exposures
of different time periods for the underlying 10y10y rate [26]:

10y× σ2
10y10y = 5y× σ2

5y5y10ymid−curve + 5y× σ2
5yfwd5y10y

(1)
With the above (assuming flat skews where volatility is the

standard deviation), 5y fwd 5y10y volatility can be backed
out if we know 10y10y swaption volatility and 5y5y10y mid-
curve volatility. Therefore, a forward strike swaption, in nature
a pure exposure to forward volatility, can be approximated by
short selling a mid-curve and buying a plain vanilla swaption,
which is an MCCS. Due to put-call parity, at the expiry date,
an MCCS becomes either an out of the money payer or a
receiver no matter it is payer or receiver at the inception.

In Figure 1 is presented the payoff profile for an USD
1m1y2y. We plot the payoff profiles for current volatility
and up and down volatility scenarios, noting that the long
vega position means that the payoff profile shifts up in a
rising volatility environment and correspondingly shifts down
in a falling vol environment. We calculate the (volatility
adjusted) breakevens as being 0.41%−0.47%, giving very little
protection against selloffs, but maintaining a decent margin for
a rally. We note that forwards in a ±1 volatility band leave
them at 0.40% − 0.49%, a range just marginally larger than
our breakeven range (i.e., the trade should pay off just slightly
less than 66% of the time). From this payoff profile many of
the input variables, outlined in the next section, are backed,
such as the Gamma, Delta, Breakeven Width (BE-Width), and
so on.

Fig. 1. Payoff profile for an USD 1m1y2y.

III. METHODOLOGY

In summary, our solution develops the following roadmap:
1) Data: On a certain trade date, we calculate metrics and

sensitivities related to an MCCS package;
2) Modelling: These metrics are feed in a predictive

model that outputs its expected return for a given
holding period (e.g., one year);

3) Recommendation: After repeating (i) and (ii) for all
MCCS we (iii) rank them based on the expected returns
using some criteria.



Hence, the next three subsections describes in details the
MCCS trades and ensemble members used (Dataset and
Models section); how these base learners were stacked, and
specifically how they were assembled in a Neural Network
stacker (Stacking Approach section); and finally, last subsec-
tion presents which metrics were used to evaluate the rec-
ommendation system performance when a certain predictive
model candidate is underpinning it (Performance Metrics).

A. Dataset and Models

During our experiments, we opted to use the trades dis-
played in Table I.

TABLE I
CONFIGURATION OF THE MCCS TRADES USED. REMEMBER THAT THE

PACKAGE INVOLVES SELLING AN OPTION ON A FORWARD-STARTING SWAP
(USING THE EXPIRATION AND FORWARD TENURES) AND BUYING A LONG

EXPIRATION OPTION (SWAP TENURE) ON A SPOT-STARTING SWAP.

Currency Expiry Forward Swap Currency Expiry Forward Swap
USD 1y 1y 1y USD 1y 10y 20y
USD 1y 5y 5y USD 2y 1y 1y
USD 2y 5y 5y USD 2y 10y 20y
USD 3y 1y 1y USD 3y 5y 5y
USD 3y 10y 20y USD 4y 1y 1y
USD 4y 5y 5y USD 4y 10y 20y
USD 5y 1y 1y USD 5y 5y 5y
USD 5y 10y 20y

Although many other configurations are available in prac-
tice, these are the ones with longest historical data available,
which is important when it is necessary to fit a predictive
model. As it can be seen, all trades are in US Dollar, ranging
from different expiries (1y-5y), forwards (1y, 5y and 10y) and
swap tenures (1y, 5y and 20y).

For each configuration, at time t we agree with a counterpart
to trade this package using the At the Money Forward (ATMF)
rate as the strike, paying or receiving the present value
PVt. The PVt is computed via SABR model [24], using
information and parameters (e.g., spot, forward rates and rate-
rate correlation) calibrated using market data on a daily basis.
From the same model that computed the PVt, we can obtain
other metrics as those displayed in Table II.

TABLE II
METRICS AND SENSITIVITIES COMPUTED FOR EACH MCCS AT TIME t.

Features
PV Strike

Carry at Expiry Breakeven Width (BE-Width)
Aged 1y Carry Theta

ATMF Implied Volatility (Implied Vol) Gamma
Vega Curve Carry (Aged 1y)

Time Carry (Aged 1y) Volatility Carry (Vol Carry)

Carry at Expiry and BE Width are those obtained looking at
the payoff profile at expiry. The Aged 1y Carry is produced by
ageing the trade by one year (moving closer to the expiration)
and estimate the payoff profile computing the carry. Theta,
Vega and Gamma are the sensitivities of the instruments by a
change in time, volatility and a wider range of underlying rate
movements, respectively. These and the ATMF Implied Vol are

backed by the SABR model too. Curve, Time and Volatility
Carry are the amount of Aged 1y Carry that can be attributed
to the changes in certain sensitivities from spot to forward,
such as the Delta (Curve), Theta (Time) and Vega (Volatility).
These can also be used as tools to understand which factors
most influence the instrument value over time.

After computing all these metrics at time t, we hold the
trade until t+ h where h can be two weeks, one month, one
year, and so on, as long as t+ h is before or at expiration. In
time t + h we compute the PVt+h of the same trade again,
using the new economic scenario available (e.g. rates, change
in model parameters). By agreeing on buying back or selling
the current trade for PVt+h we can compute the Holding k-
period Return of the trade started at time t by:

R
(h)
t =

PVt+h − PVt
PVt

(2)

Based on these procedures, metrics and observations, Table
III express other details that we used during our experiments
to generate the dataset.

TABLE III
DETAILS USED TO GENERATE THE MCCS TRADE DATASET.

Detail Value
Period September 2006 to September 2016

Holding Period (h) 1 year
Trade Frequency Weekly (usually on Wednesday)

Strike At the Money Forward (ATMF)
Lagged data (h− p) p = 1, 2 and 3 lagged returns

Assumption Characteristic
Bid-Ask Middle Rate

Transaction Costs Entry and Unwind = 0.75× V egat
Funding Rate 3 month Treasury bill

Therefore, we gathered data from trades entered on a
weekly basis from September 2006 to September 2016. These
trades are struck ATMF, using the PVt computed from the
Middle Rate (in practice, some bid-ask spread would be
imbued proportional to the Vega). After holding for one year
(h = 1y) the trade, we compute the arithmetical returns that
are, therefore by definition, automatically annualised. These
returns are gross, and so we need to take into account the
transaction costs (hedging costs and fixed fees charged by the
derivatives desk) as well as some future funding rate. These
values are also outlined in Table III, where the transaction
costs of 0.75 as a fraction of Vega were chosen not only to
taken into account the transaction cost, but also some potential
bid-ask spread on the start/unwind of the trade. The 3-month
Treasury bill rate was chosen as the funding cost/benchmark
rate to compute excess returns.

In relation to modelling, our general model is a system of
uncoupled equations:

R
(1y)
t,1 = f1(featurest,1) + εt,1 = R̂

(1y)
t,1 + εt,1 (3)

R
(1y)
t,2 = f2(featurest,2) + εt,2 = R̂

(1y)
t,2 + εt,2 (4)

...

R
(1y)
t,n = fn(featurest,n) + εt,n = R̂

(1y)
t,n + εt,n (5)



where for each MCCS trade (i = 1, ..., n) there is an
i-th predictive model fi that is feed with a set of pre-
calculated features (BE Width, Carry, etc.) and returns an
estimate of the holding 1y-period return R̂(1y)

t,i . As the model
is an approximation, some noise/error is expected, and in the
modelling aspect, this is expressed as the εt,i component.
After defining which variable is intended to be predicted, the
remaining points are: which models are available to embody
fi and how the fitting, validation and selection of these models
are going to be made.

About the first point, in the first rows of Table IV we
display the base learners that we used during our experiments.
We should mention that these models are standard techniques
commonly found in the computational statistics and machine
learning literature, with their mathematical descriptions and
usage can be consulted in the following references [2], [8],
[9], [13], [17].

Table IV Model column presents a plethora of models that
this work has fitted for this prediction purpose: we started
from simple predictive models such as Classical Linear Re-
gression, Regression Tree, towards those that can seamlessly
exhibit nonlinear behaviours, like Random Forest, Kernel
Ridge Regression, Multi-Layer Perceptron and Support Vector
Regression. Some of these methods had their hyperparameters
held constant across all experiments (Fixed Hyperparameters
column), or because we wanted to apply a particular form of
a method (RBF kernel, single hidden layer, etc.) or because
during a warm-up phase we noticed that they did not affect
substantially the results (hyperbolic tangent, increasing num-
ber of trees, etc.).

For certain models, the Cross-Validated Parameters col-
umn shows which hyperparameters were optimised before
the prediction step. For instance, suppose the case of Ridge
Regression and the need to define the regularisation value
(λ) appropriately. Consider that we have a set of training
pairs (featurest, R

(1y)
t )Lt=1

2 of size L, and for this sample
we subset it in k-rolling-cross-validation (k-rolling-cv) folders
(better explained later in this subsection). Then, we train and
test using this scheme the Ridge Regression model with one of
the predefined λ, say λ = 100. We compute some performance
function on the test set (Mean Squared Error – MSE) and
repeat this process for all λ values available. We use in the
final model the λ that on average had the lowest MSE.

The process explained previously is repeated for
all cross-validated parameters in each model. When
a model needs to cross-validate a pair or more of
hyperparameters, the procedure is to perform all the
feasible combinations of them (e.g., KRR-RBF with
(λ, γ) = {(1, 0.01), (0.1, 0.01), ..., (0.001, 100)}). Another
relevant point is that this process is in fact made inside a
bigger loop called nested resampling [1], and that is the
reason we have k and L inner and outer.

We fitted an usual benchmark found in the literature for
forecasting modelling: the Naive model [18]. We also imple-

2For the sake of brevity we dropped the subscript (i).

mented the benchmarks that traders use to assess whether a
particular MCCS is worth to be pitched or traded: BE Width
and Carry at Expiry. We replicated the way traders look to
these features, by computing z-scores3 based on average and
standard deviation on rolling window of size equal to 1 year.
The signal for going long/short (St) is given by a thumb rule
with a simple rationale: if a certain metric has a z-score above
or equal to ±3, the trader goes fully long (+)/short(-) in the
trade, since it is a very extreme event. Otherwise, it reduces
the leverage on it, until it below one standard deviation of
distance from the rolling average.

We removed any missing data, and clipped extremes values,
mainly in returns above the 95% percentiles (in our case it can
be due to some numerical problems, or some extreme scenarios
related to 2008-2009 financial crisis period). Next subsection
presents the Stacking Approach, made to assemble all the base
learners in a final model.

B. Stacking Approach

In general, the stacking approach consists of combining the
underlying base learners in way that a consensual output is
generated from it. Generically, for a particular trade we can
express this combination by:

R̂
(1y)
t = g(R̂

(1y)
t,1 , ..., R̂

(1y)
t,k , ..., R̂

(1y)
t,K ) (6)

where R̂(1y)
t is the final output, comprising the combination

of k = 1, ...,K different base learners input (R̂(1y)
t,k ). In

this work, the way this combination is made, that is the
functional form of g, is established by one of the four different
forms: three linear and one nonlinear. Starting from the linear
approaches, we can cast the general expression of g by:

R̂
(1y)
t =

K∑
k=1

wkR̂
(1y)
t,k (7)

with the weights wk being defined by each approach as:
• Equally Weighted (Eq Weighted): all base learners wield

the same weight, that is, or more precisely wk = 1/K.
• Minimum Volatility Portfolio (Min Vol): the weights are

defined by the Minimum Volatility estimation technique
[21], in which the weights of each base learner are pro-
portional to the inverse of the ensemble covariance ma-
trix. Intuitively, base learners that provide more volatile
returns and are highly-correlated are weighted less in the
ensemble.

• Tangent Portfolio (Tang Port): the weights are defined
by the Tangent Portfolio technique [21], where roughly
speaking each base learner is weighted by its risk-
adjusted return, penalised by how much diversity (low-
correlation) is bringing to the portfolio.

It should be mentioned that all these approaches are tra-
ditional benchmarks used by the traders and found in the

3a z-score is defined by: Z−score = X−µ
σ

where X represent the actual
value of a certain variable, µ and σ the average and standard deviation of X
in a period.



TABLE IV
BASE LEARNERS USED TO MODEL THE MCCS TRADE DATASET.

Abbreviation Base learners Fixed Hyperparameters Cross-Validated Hyperparameters
Classical Classical Linear Regression None None

Ridge Ridge Regression None λ = {100, 10−1, 10−1, 10−2, 10−3}
Bayes Ridge Bayesian Ridge Regression Γ ∼ (10−6, 10−6) prior for noise Γ ∼ ({10−6, 10−4, 10−2, 100}, {10−6, 10−4, 10−2, 100})

prior for coefficients
Lasso Lasso Regression None λ = {100, 10−1, 10−1, 10−2, 10−3}

Elastic Net Linear regression with combined None l1 = {0.1, 0.3, 0.5, 0.7, 0.9} and
L1 and L2 priors as regularizer λ = {100, 10−1, 10−1, 10−2, 10−3}

KRR-RBF Kernel Ridge Regression Radial-Basis Function kernel λ = {100, 10−1, 10−1, 10−2, 10−3}
and γ = {10−2, 10−1, 100, 101, 102}

CART Classification and Regression Tree MSE Function Max depth = {2, 3, 5, 7}
Random Forest Random Forest Max depth = 5 Number of trees = {50, 100, 200}

Grad Boost Gradient Boosting Tree None Number of trees = {50, 100, 200} and
Learning Rate: {0.1, 0.3, 0.5}

Extreme RF Extra-Trees Regression None Number of trees = {50, 100, 200}
MLP Multi-Layer Perceptron Single hidden layer with hyperbolic λ = {100, 10−1, 10−1, 10−2, 10−3}

tangent as transfer function and number of neurons = {5, 7, 12}
SVR-RBF Support Vector Regression Radial-Basis Function kernel C = {100, 101, 102, 103}

and γ = {10−2, 10−1, 100, 101, 102}
AdaBoost AdaBoost Regression None Number of estimators = {50, 100, 200} and

Learning Rate: {0.1, 0.3, 0.5}
Abbreviation Baseline Model Parameter

Naive Naive Model
BE-Width BE Width feature Rolling window of size = 1 year St = b−1((Z > 1) ∗ Z)/(3)e+1

CarryAtExpiry Carry at Expiry feature Rolling window of size = 1 year St = b−1((Z > 1) ∗ Z)/(3)e+1

Other Parameters Values
Warm-up Period (L) Louter = 2 years Linner = 1 year

k-rolling-cv kouter = 1 week for outer kinner ≈ (Ttrain − Linner)/5 for inner
Outlier Treatment Winsorizing

Winsorizing Quantiles 0.01 and 0.95
Missing Data Treatment Remove

Observation: λ represents the regularisation parameter, while γ the precision parameter for the Radial-Basis Function (RBF) kernel.

financial literature. These approaches were contrasted with the
Neural Network Stacker. This stacking approach make use of
a Multi-Layer Perceptron (MLP Stacker), with hyperbolic tan-
gent neurons composing it single-hidden layer. The consensus
is, therefore, computed by:

R̂
(1y)
t =

m∑
m=1

rm tanh

K∑
k=1

wkR̂
(1y)
t,k + ck (8)

with M representing the number of neurons, rm and wk
the MLP’s weights. The MLP Stacker required an extra-round
of fine-tuning. Its parameters are the same used by the base
learner as in Table IV, and we have used an extra set of data
for this purpose. We also investigated the importance of each
underlying model. Since an MLP do not provide seamlessly
the relevance of each base learner, we have estimated it using
a perturbation method:

dR̂
(1y)
t

dR̂
(1y)
t,k

≈
R̂

(1y)
t (R̂

(1y)
t,k + h)− R̂(1y)

t (R̂
(1y)
t,k − h)

2h
(9)

hence, we approximate the partial derivative by taking a
central-difference for the base learner k. More precisely, by
adding and subtracting a small perturbation in its prediction
at time t, and evaluating its results in the output of the MLP
Stacker. By doing it across all base learners, we are able to
not only check which model plays a major role in the final
prediction, but also check in which sense its input is being
re-weighted (positively or negatively) .

Using the consensus prediction of a given stacking/base
learner, the recommendation of a certain trade can be made
solely on some normalised version of the expected return for
holding 1y-period the i-th trade (R̂(1y)

t,i ). Given that each model
will be providing individual forecasts for each MCCS and after
that their performance will be assessed locally and globally, a
more suitable manner to proceed would be to assign a credit
based on the tracking record of a model to predict a particular
MCCS trade. Hence, we will be weighted up or down a signal
not only based on the magnitude of a model prediction but also
by its quality. Then, consider as R̂(1y)

t,i the expected return for
holding 1y-period the i-th MCCS trade. Now, define the new
signal function St,i by:

St,i =

R̂
(1y)
t,i

× Rho
R̂

(1y)
t,i

,R
(1y)
t,i

max(|R̂(1y)
t,i

× Rho
R̂

(1y)
t,i

,R
(1y)
t,i

|, ..., |R̂(1y)
t−h,i

× Rho
R̂

(1y)
t−h,i

,R
(1y)
t−h,i

|)
(10)

where the strength of the i-th long/short signal is given by
its expected return, scaled by the maximum weighted return
that a long/short position on the same trade (that is why the
returns are in absolute terms) was expected to yield in the
previous h-period (in this case 1 year). Therefore, the trade
with the maximum weighted return in absolute terms will have
|St,i| = 1 as well as those close to zero will yield St,i ≈ 0. The
weight/credit of a certain prediction is based on the historical
adherence between the actual and predicted values, that is,
through the Pearson correlation coefficient (Rho).



C. Performance Metrics

Below we outline two types of metrics: one that focuses on
the predictive performance that the model provided, and other
four that are based on the profit/loss that its application har-
vested during the backtest. Set by R(Si)

t = R
(1y)
t,i ×St,i(R̂

(1y)
t,i )

the strategy return (combination of the realized/observed ex-
cess returns and the signal – function of a model prediction),
we can compute the following metrics:
• Average Return (Avg Return): is the arithmetic average

of the strategy returns:

R̄(Si) =

∑T
t=1R

(Si)
t

T
(11)

• Standard Deviation: is the estimator of the dispersion
around the strategy average returns (a risk measure in
certain sense):

σR(Si) =

√∑T
t=1(R

(Si)
t − R̄(Si))2

T
(12)

• Information Ratio: is the average annualized return of a
strategy earned in excess of a particular benchmark per
unit of risk (measured in terms of standard deviation):

IR =
R̄(Si) − B̄
σR(Si)

(13)

where B̄ is the average return of the benchmark (e.g.,
treasury bond, equity index). In our case, it was already
set to the 3-month Treasury bill (Table III). It should
be mentioned that Information Ratio makes each strategy
performance comparable: since we are adjusting average
returns by the risk assumed for each strategy, it removes
the leverage component that is magnifying/shrinking the
returns provided by a certain strategy. In analogy, it can
be viewed as standardising a random variable by stripping
it from its location and scaling factor.

Based on the methodology developed in this section, next
one presents the results and discussions of this work.

IV. RESULTS AND DISCUSSIONS

Table VI present the main results for each base learner and
stacking approaches in terms of Information Ratio in the test
set per MCCS. Overall, all methods outperformed the Naive
model, implying that some predictability exist and can be
achieved from the other features (Carry at Expiry, Breakevens,
etc.) we have selected to compose each base learner. Traders
benchmarks fared in average better than the machine learning
approaches, especially the BE-Width Z-score scheme though
CarryAtExpiry had controlled better the dispersion of the
results across MCCS. From the predictive methods, Bayesian
Ridge and Classical Ridge Regression outperformed in average
the remaining piecewise linear and nonlinear methods (like
SVR-RBF, KRR-RBF, etc.).

About the main findings of the stacking approaches (the last
four rows of Table VI), in average the MLP Stacker outper-
formed the remaining traditional approaches, and in just very

few occasions obtained a result lower than one the approaches
(such as for USD 1y5y5y). To check whether this difference
was substantial, Table V presents a statistical analysis using the
average aligned ranks, Aligned-rank Friedman test and Holm
posthoc procedure [7].

TABLE V
AVERAGE RANKS, FRIEDMAN AND HOLM POST-HOC STATISTICAL TESTS

AND ANALYSIS FOR INFORMATION RATIO.

Model Rank Z-score p-value Holm Correction
Tang Port 38.16 4.23 <0.0001 0.016
Min Vol 36.76 4.01 <0.0001 0.025

Eq Weighted 35.93 3.88 <0.0001 0.050
MLP Stacker 11.13 - - -

Friedman Chi-Square 11.96 0.0075

When we look at the average rank, MLP Stacker was
the top positioned (11.13) while Tang Port remained most
of the time as the worst choice (38.16), very close to the
remaining approaches. In general, all Z-scores were above
3.8, resulting in very low p-values (<0.0001). If we set our
initial significance level as 0.05 and correct using the Holm
procedure (last column) we can assert that MLP Stacker per-
formed significantly better than the other models. Therefore,
MLP Stacker is capturing some information beyond that is not
being spanned by the trader’s benchmark, probably due to its
nonlinear combination of the base learners – a statement that
might require further investigations.

Delving into the MLP Stacker results, Figure 2 presents
the normalised relevance of each base learner (following
equation 9), aggregating across all MCCS. Overall, most
machine learning approaches had low relevance, apart from the
Lasso Regression and MLP (keeping as estimated the position
signal), and Classic Regression and AdaBoost (reversing the
position signal). Both trader’s benchmark methods (Breakeven
and Carry) accounts roughly for 15-20% of the final predicted
value – as mentioned before these models in particular per-
formed in average better than the remaining predictive models.

Figure 3 presents the observed annualised returns (red line),
with the overlapped long-short positioning (area chart) of the
MLP Stacker for the USD 3y5y5y MCCS trade. The MLP
stacker was able to capture most opportunities to short the
trade (when the return would have been negative) or go long
in it (when the return was positive), avoiding volatile moments
(Feb-2012 to Feb-2013) by keeping the exposure as neutral as
possible.

V. CONCLUSIONS

This work proposed a trading recommendation system for
Mid-Curve Calendar Spread Trades (MCCS) through a Neu-
ral Network stacking approach. We started with the main
motivations, highlighting the bottlenecks that the derivatives
traders face in their day-to-day routines. To tackle these issues,
we propose a recommendation system that could analyse and
rank a set of fixed income derivatives trades. Therefore, we
started the methodology by showing the dataset: it comprised
of 15 US Dollar MCCS trades, ranging from September 2006



TABLE VI
AVERAGE INFORMATION RATIO OF EACH BASE LEARNER AND STACKING APPROACH PER MCCS IN THE TEST SET.

Model 1y10y20y 1y1y1y 1y5y5y 2y10y20y 2y1y1y 2y5y5y 3y10y20y 3y1y1y 3y5y5y 4y10y20y 4y1y1y 4y5y5y 5y10y20y 5y1y1y 5y5y5y Avg Std
Classical 0.452 -0.224 0.432 0.003 0.457 -0.148 -0.151 0.750 -1.025 0.236 0.690 0.031 0.305 0.384 -0.150 0.136 0.449

Ridge 0.460 0.106 0.780 0.550 -0.103 -0.077 0.463 0.497 0.217 0.414 0.555 0.330 0.447 0.657 0.186 0.366 0.254
Bayes Ridge 0.452 0.021 0.708 0.310 -0.047 0.496 0.434 0.608 0.293 0.272 0.552 -0.172 0.400 0.707 0.035 0.338 0.273

Lasso 0.459 0.347 0.728 0.034 -0.187 0.596 -0.161 0.562 0.287 -0.180 0.775 0.022 -0.023 0.659 -0.356 0.237 0.380
Elastic Net 0.331 0.164 0.700 -0.346 -0.118 0.524 0.259 0.334 0.324 0.078 0.536 -0.090 0.415 0.634 -0.329 0.228 0.329
KRR-RBF 0.061 -0.066 0.218 -0.026 -0.271 -0.176 0.106 -0.071 0.131 0.244 0.218 -0.581 0.317 0.648 -0.239 0.034 0.292

CART 0.105 0.240 0.468 0.439 -0.523 0.183 0.143 0.055 0.131 0.021 0.257 -0.125 0.251 -0.025 0.276 0.126 0.240
Random Forest 0.120 0.323 0.629 0.490 -0.511 0.211 0.410 0.007 0.121 0.092 0.313 -0.218 0.062 -0.505 0.360 0.127 0.331

Grad Boost 0.211 0.340 0.793 0.472 -0.561 0.413 0.228 0.414 0.139 0.332 0.247 -0.118 0.090 -0.239 0.295 0.204 0.322
Extreme RF 0.145 0.027 0.779 0.373 -0.545 0.555 0.314 0.264 0.033 0.331 0.298 -0.093 0.442 0.320 -0.004 0.216 0.310

MLP 0.426 -0.175 0.417 0.083 -0.381 0.379 -0.032 0.147 0.110 0.076 0.413 0.000 0.100 0.469 -0.255 0.119 0.264
SVR-RBF 0.053 0.068 1.397 -0.247 -0.504 0.173 0.674 -0.228 -0.540 0.465 0.133 -0.141 0.212 0.721 0.078 0.154 0.504
AdaBoost 0.160 -0.055 0.512 0.386 -0.683 0.443 0.327 0.074 0.083 0.385 0.213 0.053 0.419 -0.094 0.206 0.162 0.298

CarryAtExpiry 0.686 0.302 0.427 0.367 0.253 0.428 0.295 -0.123 0.588 0.165 0.320 0.620 0.061 0.826 0.592 0.387 0.250
BE-Width 0.688 0.054 0.328 0.927 0.384 0.430 0.592 0.403 0.660 0.409 0.407 0.849 0.140 -1.005 1.093 0.424 0.485

Naive 0.370 0.127 0.363 0.214 -0.766 0.265 0.086 -0.448 0.372 0.068 -0.409 0.140 0.156 -0.758 0.166 -0.004 0.392
Eq Weighted 0.260 0.114 0.688 0.175 -0.243 0.105 0.071 0.266 -0.232 0.134 0.394 -0.028 0.259 0.672 0.096 0.182 0.265

Tang Port 0.052 -0.263 0.570 0.006 0.148 0.257 0.120 0.196 0.050 -0.214 0.491 -0.075 0.274 0.403 0.259 0.152 0.237
Min Vol -0.658 0.457 0.725 0.117 -0.295 0.206 0.135 0.196 0.132 0.110 0.123 0.090 0.174 0.284 0.393 0.146 0.312

MLP Stacker 0.654 0.481 0.567 0.402 0.525 0.384 0.390 0.543 0.547 0.591 0.534 0.449 0.453 0.556 0.466 0.503 0.078

Fig. 2. Base Learner relevance for the MLP stacker, aggregated across all MCCSs.

Fig. 3. Observed annualised returns (red line), and long-short signals (area chart) of the MLP stacker for the USD 3y5y5y MCCS trade.



to September 2016, with different expirations, forward and
swap tenures. For each particular trade, we described how the
sampling of inputs (metrics, sensitivities and lagged returns)
and outputs (returns from unwinding the trade after one year
of its start) were computed on a weekly basis. Then, we
displayed the modelling strategy by highlighting the base
learners used, and how the Stacking approaches, in special
the Neural Network, were used to provide a consensual signal
based on the inputs from the underlying models as well as
other information to traders.

Our results suggests that our proposed Neural Network
Stacking approach outperformed substantially the traditional
approaches for pooling models in the financial literature. Also,
regarding interpretability, our sensibility investigation on the
models being most used – and the subsequent investigation
that can be made over which features are more prevalent in
which model – tend to make it easier to convey and convince
the traders to use our recommendation system.

Future works should increase the sampling frequency: we
used for this experiment data from weekly trades, and though
this turned the modelling process faster, we had an under-
sampling close to a fifth. This, of course, reduced the power
of our backtest as well as limited the range of models that
can be applied. Also, some other works can devote some
attention to better analyse the signal generating function used,
as well as attempt to find out potential alternatives for the
formulation used. Although it worked properly, we believe
that some extra effort can overall improve models results and
the nested resampling framework can help us find that out.
Finally, other stacking approaches based on machine learning
should be tried to enlarge and strengthen our findings.

ACKNOWLEDGEMENTS

Adriano Soares Koshiyama is funded by the National Re-
search Council of Brazil (CNPq) through the Science Without
Borders program. Also, the authors would like to thanks,
Guillaume Andrieux, Tomoya Horiuchi, Gerald Rushton, Tam
Rajendran, and Anthony Morris for all the comments and
support during this research.

REFERENCES

[1] Bernd Bischl, Olaf Mersmann, Heike Trautmann, and Claus Weihs.
Resampling methods for meta-model validation with recommendations
for evolutionary computation. Evolutionary Computation, 20(2):249–
275, 2012.

[2] C Bishop. Pattern Recognition and Machine Learning. Springer, New
York, 2007.

[3] John Y Campbell, Andrew Wen-Chuan Lo, and Archie Craig MacKinlay.
The econometrics of financial markets. Princeton University press, 1997.

[4] Eunsuk Chong, Chulwoo Han, and Frank C. Park. Deep learning
networks for stock market analysis and prediction: Methodology, data
representations, and case studies. Expert Systems with Applications,
83:187 – 205, 2017.

[5] Howard Corb. Interest Rate Swaps and Other Derivatives. Columbia
University Press, 2012.

[6] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai. Deep direct reinforcement
learning for financial signal representation and trading. IEEE Transac-
tions on Neural Networks and Learning Systems, 28(3):653–664, 2017.

[7] Joaquı́n Derrac, Salvador Garcı́a, Daniel Molina, and Francisco Herrera.
A practical tutorial on the use of nonparametric statistical tests as
a methodology for comparing evolutionary and swarm intelligence
algorithms. Swarm and Evolutionary Computation, 1(1):3–18, 2011.

[8] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classifi-
cation (2nd Edition). Wiley-Interscience, 2000.

[9] Bradley Efron and Trevor Hastie. Computer Age Statistical Inference,
volume 5. Cambridge University Press, 2016.

[10] Douglas S Ehrman. The handbook of pairs trading: strategies using
equities, options, and futures, volume 240. John Wiley & Sons, 2006.

[11] Graham Elliott, Antonio Gargano, and Allan Timmermann. Complete
subset regressions. Journal of Econometrics, 177(2):357 – 373, 2013.

[12] Nick Firoozye and Xiaowei Zheng. Market update: Forward vol and
midcurve calendar spreads in usd and eur recent levels and carry and
trades of note. Nomura International plc, Nomura Research, 2016.

[13] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements
of statistical learning, volume 1. Springer series in statistics Springer,
Berlin, 2001.

[14] R. Gencay and Min Qi. Pricing and hedging derivative securities with
neural networks: Bayesian regularization, early stopping, and bagging.
IEEE Transactions on Neural Networks, 12(4):726–734, 2001.

[15] Eduardo A. Gerlein, Martin McGinnity, Ammar Belatreche, and Sonya
Coleman. Evaluating machine learning classification for financial
trading: An empirical approach. Expert Systems with Applications,
54:193 – 207, 2016.

[16] Paul Glasserman. Monte Carlo methods in financial engineering,
volume 53. Springer Science & Business Media, 2013.

[17] Simon S Haykin. Neural networks and learning machines, volume 3.
Pearson, 2009.

[18] Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder.
Forecasting with exponential smoothing: the state space approach.
Springer Science & Business Media, 2008.

[19] Andreas Karathanasopoulos, Konstantinos Athanasios Theofilatos, Geor-
gios Sermpinis, Christian Dunis, Sovan Mitra, and Charalampos Stasi-
nakis. Stock market prediction using evolutionary support vector
machines: an application to the ase20 index. The European Journal
of Finance, 22(12):1145–1163, 2016.

[20] Burton G Malkiel. The efficient market hypothesis and its critics. The
Journal of Economic Perspectives, 17(1):59–82, 2003.

[21] Attilio Meucci. Risk and asset allocation. Springer Science & Business
Media, 2009.

[22] Sheldon Natenberg. Option volatility and pricing: advanced trading
strategies and techniques. McGraw Hill Professional, 2014.

[23] Hyejin Park, Namhyoung Kim, and Jaewook Lee. Parametric models and
non-parametric machine learning models for predicting option prices:
Empirical comparison study over {KOSPI} 200 index options. Expert
Systems with Applications, 41(11):5227 – 5237, 2014.

[24] Riccardo Rebonato, Kenneth McKay, and Richard White. The
SABR/LIBOR Market Model: Pricing, calibration and hedging for
complex interest-rate derivatives. John Wiley & Sons, 2011.

[25] Steven E Shreve. Stochastic calculus for finance II: Continuous-time
models, volume 11. Springer Science & Business Media, 2004.

[26] Nassim Taleb. Dynamic hedging: managing vanilla and exotic options,
volume 64. John Wiley & Sons, 1997.

[27] Christian von Spreckelsen, Hans-Jrg von Mettenheim, and Michael H.
Breitner. Real-time pricing and hedging of options on currency futures
with artificial neural networks. Journal of Forecasting, 33(6):419–432,
2014.

[28] David H Wolpert. Stacked generalization. Neural networks, 5(2):241–
259, 1992.

[29] Tianle Zhou, Shangce Gao, Jiahai Wang, Chaoyi Chu, Yuki Todo, and
Zheng Tang. Financial time series prediction using a dendritic neuron
model. Knowledge-Based Systems, 105:214 – 224, 2016.

[30] Xiaocong Zhou, Jouchi Nakajima, and Mike West. Bayesian forecasting
and portfolio decisions using dynamic dependent sparse factor models.
International Journal of Forecasting, 30(4):963–980, 2014.


