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Traditional sentiment analysis approaches tackle problems like ternary (3-category) and fine-
grained (5-category) classification by learning the tasks separately. We argue that such classifi-
cation tasks are correlated and we propose a multitask approach based on a recurrent neural net-
work that benefits by jointly learning them. Our study demonstrates the potential of multitask
models on this type of problems and improves the state-of-the-art results in the fine-grained
sentiment classification problem.
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Introduction

Automatic classification of sentiment has mainly fo-
cused on categorizing tweets in either two (binary senti-
ment analysis) or three (ternary sentiment analysis) cate-
gories (Giachanou & Crestani, 2016). In this work we study
the problem of fine-grained sentiment classification where
tweets are classified according to a five-point scale ranging
from VeryNegative to VeryPositive. To illustrate this, Ta-
ble 1 presents examples of tweets associated with each of
these categories. Five-point scales are widely adopted in
review sites like Amazon and TripAdvisor, where a user’s
sentiment is ordered with respect to its intensity. From a
sentiment analysis perspective, this defines a classification
problem with five categories. In particular, Sebastiani et al.
(Martino, Gao, & Sebastiani, 2016) defined such classifica-
tion problems whose categories are explicitly ordered to be
ordinal classification problems. To account for the ordering
of the categories, learners are penalized according to how far
from the true class their predictions are.

Although considering different scales, the various settings
of sentiment classification are related. First, one may use
the same feature extraction and engineering approaches to
represent the text spans such as word membership in lex-
icons, morpho-syntactic statistics like punctuation or elon-
gated word counts (Balikas & Amini, 2016; Kiritchenko,
Zhu, & Mohammad, 2014). Second, one would expect that
knowledge from one task can be transfered to the others and
this would benefit the performance. Knowing that a tweet is
“Positive” in the ternary setting narrows the classification de-
cision between the VeryPositive and Positive categories in the

fine-grained setting. From a research perspective this raises
the question of whether and how one may benefit when tack-
ling such related tasks and how one can transfer knowledge
from one task to another during the training phase.

Our focus in this work is to exploit the relation between
the sentiment classification settings and demonstrate the ben-
efits stemming from combining them. To this end, we pro-
pose to formulate the different classification problems as a
multitask learning problem and jointly learn them. Multi-
task learning (Caruana, 1997) has shown great potential in
various domains and its benefits have been empirically vali-
dated (Collobert & Weston, 2008; Plank, 2016; Liu, Qiu, &
Huang, 2016b, 2016a) using different types of data and learn-
ing approaches. An important benefit of multitask learning
is that it provides an elegant way to access resources devel-
oped for similar tasks. By jointly learning correlated tasks,
the amount of usable data increases. For instance, while for
ternary classification one can label data using distant supervi-
sion with emoticons (Go, Bhayani, & Huang, 2009), there is
no straightforward way to do so for the fine-grained problem.
However, the latter can benefit indirectly, if the ternary and
fine-grained tasks are learned jointly.

The research question that the paper attempts to answer is
the following: Can twitter sentiment classification problems,
and fine-grained sentiment classification in particular, benefit
from multitask learning? To answer the question, the paper
brings the following two main contributions: (i) we show
how jointly learning the ternary and fine-grained sentiment
classification problems in a multitask setting improves the

ar
X

iv
:1

70
7.

03
56

9v
1 

 [
cs

.I
R

] 
 1

2 
Ju

l 2
01

7



2 GEORGIOS BALIKAS

VeryNegative

Beyond frustrated with my #Xbox360 right now,
and that as of June, @Microsoft doesn’t support it.
Gotta find someone else to fix the drive.

Negative

@Microsoft Heard you are a software company.
Why then is most of your software so bad that it
has to be replaced by 3rd party apps?

Neutral

@ProfessorF @gilwuvsyou @Microsoft
@LivioDeLaCruz We already knew the media
march in ideological lockstep but it is nice of him
to show it.

Positive

PAX Prime Thursday is overloaded for me with
@Microsoft and Nintendo indie events going
down. Also, cider!!! :p

VeryPositive

I traveled to Redmond today. I’m visiting with
@Microsoft @SQLServer engineers tomorrow - at
their invitation. Feeling excited.

Table 1
The example demonstrates the different levels of sentiment
a tweet may convey. Also, note the Twitter-specific use of
language and symbols.

state-of-the-art performance,1 and (ii) we demonstrate that
recurrent neural networks outperform models previously pro-
posed without access to huge corpora while being flexible to
incorporate different sources of data.

Multitask Learning for Twitter Sentiment Classification

In his work, Caruana (Caruana, 1997) proposed a multi-
task approach in which a learner takes advantage of the mul-
tiplicity of interdependent tasks while jointly learning them.
The intuition is that if the tasks are correlated, the learner can
learn a model jointly for them while taking into account the
shared information which is expected to improve its general-
ization ability. People express their opinions online on var-
ious subjects (events, products..), on several languages and
in several styles (tweets, paragraph-sized reviews..), and it is
exactly this variety that motivates the multitask approaches.
Specifically for Twitter for instance, the different settings of
classification like binary, ternary and fine-grained are corre-
lated since their difference lies in the sentiment granularity
of the classes which increases while moving from binary to
fine-grained problems.

There are two main decisions to be made in our approach:
the learning algorithm, which learns a decision function, and
the data representation. With respect to the former, neu-
ral networks are particularly suitable as one can design ar-
chitectures with different properties and arbitrary complex-
ity. Also, as training neural network usually relies on back-
propagation of errors, one can have shared parts of the net-
work trained by estimating errors on the joint tasks and oth-
ers specialized for particular tasks. Concerning the data rep-
resentation, it strongly depends on the data type available.
For the task of sentiment classification of tweets with neu-
ral networks, distributed embeddings of words have shown
great potential. Embeddings are defined as low-dimensional,
dense representations of words that can be obtained in an

unsupervised fashion by training on large quantities of text
(Pennington, Socher, & Manning, 2014).

Concerning the neural network architecture, we focus on
Recurrent Neural Networks (RNNs) that are capable of mod-
eling short-range and long-range dependencies like those ex-
hibited in sequence data of arbitrary length like text. While
in the traditional information retrieval paradigm such depen-
dencies are captured using n-grams and skip-grams, RNNs
learn to capture them automatically (Dyer, Ballesteros, Ling,
Matthews, & Smith, 2015). To circumvent the problems
with capturing long-range dependencies and preventing gra-
dients from vanishing, the long short-term memory network
(LSTM) was proposed (Hochreiter & Schmidhuber, 1997).
In this work, we use an extended version of LSTM called
bidirectional LSTM (biLSTM). While standard LSTMs ac-
cess information only from the past (previous words), biL-
STMs capture both past and future information effectively
(Huang, Xu, & Yu, 2015; Dyer et al., 2015). They consist of
two LSTM networks, for propagating text forward and back-
wards with the goal being to capture the dependencies better.
Indeed, previous work on multitask learning showed the ef-
fectiveness of biLSTMs in a variety of problems: (Alonso
& Plank, 2016) tackled sequence prediction, while (Plank,
2016) and (Kiperwasser & Goldberg, 2016) used biLSTMs
for Named Entity Recognition and dependency parsing re-
spectively.

Figure 1 presents the architecture we use for multitask
learning. In the top-left of the figure a biLSTM net-
work (enclosed by the dashed line) is fed with embeddings
{X1, . . . , XT } that correspond to the T words of a tokenized
tweet. Notice, as discussed above, the biLSTM consists of
two LSTMs that are fed with the word sequence forward and
backwards. On top of the biLSTM network one (or more)
hidden layers H1 transform its output. The output of H1 is
led to the softmax layers for the prediction step. There are
N softmax layers and each is used for one of the N tasks of
the multitask setting. In tasks such as sentiment classifica-
tion, additional features like membership of words in senti-
ment lexicons or counts of elongated/capitalized words can
be used to enrich the representation of tweets before the clas-
sification step (Kiritchenko et al., 2014). The lower part of
the network illustrates how such sources of information can
be incorporated to the process. A vector “Additional Fea-
tures” for each tweet is transformed from the hidden layer(s)
HA and then is combined by concatenation with the trans-
formed biLSTM output in the HM layer.

Experimental setup

Our goal is to demonstrate how multitask learning can be
successfully applied on the task of sentiment classification

1An open implementation of the system for research pur-
poses is available at https://github.com/balikasg/
sigir2017.
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Figure 1. The neural network architecture for multitask learning. The biLSTM output is transformed by the hidden layers H1,
HM and is led to N output layers, one for each of the tasks. The lower part of the network can be used to incorporate additional
information.

of tweets. The particularities of tweets are to be short and
informal text spans. The common use of abbreviations, cre-
ative language etc., makes the sentiment classification prob-
lem challenging. To validate our hypothesis, that learning
the tasks jointly can benefit the performance, we propose an
experimental setting where there are data from two different
twitter sentiment classification problems: a fine-grained and
a ternary. We consider the fine-grained task to be our primary
task as it is more challenging and obtaining bigger datasets,
e.g. by distant supervision, is not straightforward and, hence
we report the performance achieved for this task.

Ternary and fine-grained sentiment classification were
part of the SemEval-2016 “Sentiment Analysis in Twit-
ter” task (Nakov, Ritter, Rosenthal, Sebastiani, & Stoyanov,
2016). We use the high-quality datasets the challenge or-
ganizers released.2 The dataset for fine-grained classifica-
tion is split in training, development, development_test and
test parts. In the rest, we refer to these splits as train,
development and test, where train is composed by
the training and the development instances. Table 2 presents
an overview of the data. As discussed in (Nakov et al., 2016)
and illustrated in the Table, the fine-grained dataset is highly
unbalanced and skewed towards the positive sentiment: only
13.6% of the training examples are labeled with one of the
negative classes.
Feature representation We report results using two differ-
ent feature sets. The first one, dubbed nbow, is a neu-
ral bag-of-words that uses text embeddings to generate low-
dimensional, dense representations of the tweets. To con-
struct the nbow representation, given the word embeddings
dictionary where each word is associated with a vector, we
apply the average compositional function that averages the
embeddings of the words that compose a tweet. Simple com-
positional functions like average were shown to be robust
and efficient in previous work (Mitchell & Lapata, 2010).
Instead of training embeddings from scratch, we use the pre-
trained on tweets GloVe embeddings of (Pennington et al.,
2014).3 In terms of resources required, using only nbow is
efficient as it does not require any domain knowledge. How-
ever, previous research on sentiment analysis showed that us-

|D| VeryNeg. Neg. Neutr. Pos. VeryPos.

Train 7,292 111 884 2,019 3,726 432
Dev. 1,778 29 204 533 887 125
Test 20,632 138 2,201 10,081 7,830 382

Ternary 5,500 - 785 1,887 2,828 -

Table 2
Cardinality and class distributions of the datasets.

ing extra resources, like sentiment lexicons, can benefit sig-
nificantly the performance (Kiritchenko et al., 2014; Balikas
& Amini, 2016). To validate this and examine at which ex-
tent neural networks and multitask learning benefit from such
features we evaluate the models using an augmented version
of nbow, dubbed nbow+. The feature space of the latter,
is augmented using 1,368 extra features consisting mostly
of counts of punctuation symbols (’!?#@’), emoticons, elon-
gated words and word membership features in several sen-
timent lexicons. Due to space limitations, for a complete
presentation of these features, we refer the interested reader
to (Balikas & Amini, 2016), whose open implementation we
used to extract them.4
Evaluation measure To reproduce the setting of the Se-
mEval challenges (Nakov et al., 2016), we optimize our sys-
tems using as primary measure the macro-averaged Mean
Absolute Error (MAEM) given by:

MAEM =
1
|C|

|C|∑
j=1

1
|Te j|

∑
xi∈Te j

|h(xi) − yi|

where |C| is the number of categories, Te j is the set of in-
stances whose true class is c j, yi is the true label of the in-
stance xi and h(xi) the predicted label. The measure penal-
izes decisions far from the true ones and is macro-averaged
to account for the fact that the data are unbalanced. Comple-
mentary to MAEM , we report the performance achieved on

2The datasets are those of Subtasks A and C, available at
http://alt.qcri.org/semeval2016/task4/.

3urlhttp://nlp.stanford.edu/data/glove.twitter.27B.zip
4https://github.com/balikasg/SemEval2016

-Twitter_Sentiment_Evaluation



4 GEORGIOS BALIKAS

the micro-averaged F1 measure, which is a commonly used
measure for classification.
The models To evaluate the multitask learning approach,
we compared it with several other models. Support Vec-
tor Machines (SVMs) are maximum margin classification al-
gorithms that have been shown to achieve competitive per-
formance in several text classification problems (Nakov et
al., 2016). SVMovr stands for an SVM with linear kernel
and an one-vs-rest approach for the multi-class problem.
Also, SVMcs is an SVM with linear kernel that employs the
crammer-singer strategy (Crammer & Singer, 2001) for the
multi-class problem. Logistic regression (LR) is another type
of linear classification method, with probabilistic motivation.
Again, we use two types of Logistic Regression depending
on the multi-class strategy: LRovr that uses an one-vs-rest
approach and multinomial Logistic Regression also known
as the MaxEnt classifier that uses a multinomial criterion.

Both SVMs and LRs as discussed above treat the prob-
lem as a multi-class one, without considering the ordering
of the classes. For these four models, we tuned the hyper-
parameter C that controls the importance of the L2 regu-
larization part in the optimization problem with grid-search
over {10−4, . . . , 104} using 10-fold cross-validation in the
union of the training and development data and then retrained
the models with the selected values. Also, to account for the
unbalanced classification problem we used class weights to
penalize more the errors made on the rare classes. These
weights were inversely proportional to the frequency of each
class. For the four models we used the implementations of
Scikit-learn (Pedregosa et al., 2011).

For multitask learning we use the architecture shown in
Figure 1, which we implemented with Keras (Chollet, 2015).
The embeddings are initialized with the 50-dimensional
GloVe embeddings while the output of the biLSTM network
is set to dimension 50. The activation function of the hidden
layers is the hyperbolic tangent. The weights of the layers
were initialized from a uniform distribution, scaled as de-
scribed in (Glorot & Bengio, 2010). We used the Root Mean
Square Propagation optimization method. We used dropout
for regularizing the network. We trained the network using
batches of 128 examples as follows: before selecting the
batch, we perform a Bernoulli trial with probability pM to
select the task to train for. With probability pM we pick a
batch for the fine-grained sentiment classification problem,
while with probability 1− pM we pick a batch for the ternary
problem. As shown in Figure 1, the error is backpropagated
until the embeddings, that we fine-tune during the learning
process. Notice also that the weights of the network until the
layer HM are shared and therefore affected by both tasks.

To tune the neural network hyper-parameters we used 5-
fold cross validation. We tuned the probability p of dropout
after the hidden layers HM ,H1,HA and for the biLSTM for
p ∈ {0.2, 0.3, 0.4, 0.5}, the size of the hidden layer HM ∈

{20, 30, 40, 50} and the probability pM of the Bernoulli tri-
als from {0.5, 0.6, 0.7, 0.8}.5 During training, we monitor
the network’s performance on the development set and apply
early stopping if the performance on the validation set does
not improve for 5 consecutive epochs.
Experimental results Table 3 illustrates the performance of
the models for the different data representations. The upper
part of the Table summarizes the performance of the base-
lines. The entry “Balikas et al.” stands for the winning sys-
tem of the 2016 edition of the challenge (Balikas & Amini,
2016), which to the best of our knowledge holds the state-of-
the-art. Due to the stochasticity of training the biLSTM mod-
els, we repeat the experiment 10 times and report the average
and the standard deviation of the performance achieved.

Several observations can be made from the table. First
notice that, overall, the best performance is achieved by the
neural network architecture that uses multitask learning. This
entails that the system makes use of the available resources
efficiently and improves the state-of-the-art performance. In
conjunction with the fact that we found the optimal prob-
ability pM = 0.5, this highlights the benefits of multitask
learning over single task learning. Furthermore, as described
above, the neural network-based models have only access to
the training data as the development are hold for early stop-
ping. On the other hand, the baseline systems were retrained
on the union of the train and development sets. Hence,
even with fewer resources available for training on the fine-
grained problem, the neural networks outperform the base-
lines. We also highlight the positive effect of the additional
features that previous research proposed. Adding the features
both in the baselines and in the biLSTM-based architectures
improves the MAEM scores by several points.

Lastly, we compare the performance of the baseline sys-
tems with the performance of the state-of-the-art system of
(Balikas & Amini, 2016). While (Balikas & Amini, 2016)
uses n-grams (and character-grams) with n > 1, the baseline
systems (SVMs, LRs) used in this work use the nbow+ rep-
resentation, that relies on unigrams. Although they perform
on par, the competitive performance of nbow highlights the
potential of distributed representations for short-text classifi-
cation. Further, incorporating structure and distributed rep-
resentations leads to the gains of the biLSTM network, in the
multitask and single task setting.

Similar observations can be drawn from Figure 2 that
presents the F1 scores. Again, the biLSTM network with
multitask learning achieves the best performance. It is also
to be noted that although the two evaluation measures are
correlated in the sense that the ranking of the models is the
same, small differences in the MAEM have large effect on the
scores of the F1 measure.

5Overall, we cross-validated 512 combinations of parameters.
The best parameters were: 0.2 for all dropout rates, 20 neurons for
HM and pM = 0.5.
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nbow nbow+

SVMovr 0.840 0.714
SVMcs 0.946 0.723
LRovr 0.836 0.712
MaxEnt 0.842 0.715
(Balikas & Amini, 2016) - 0.719

biLSTM (single task) 0.827±0.017 0.694±0.04
biLSTM+Multitask 0.786±0.025 0.685±0.024

Table 3
The scores on MAEM for the systems. The best (lowest) score
is shown in bold and is achieved in the multitask setting with
the biLSTM architecture of Figure 1.

SVMcs MaxEnt SVMovr LRovr biLSTM biLSTM+
Multitask

0.15

0.30

0.45

0.251

0.359

0.445 0.459 0.469 0.481
F1

Figure 2. F1 scores using the nbow+ representations. The
best performance is achieved with the multitask setting.

Conclusion

In this paper, we showed that by jointly learning the tasks
of ternary and fine-grained classification with a multitask
learning model, one can greatly improve the performance on
the second. This opens several avenues for future research.
Since sentiment is expressed in different textual types like
tweets and paragraph-sized reviews, in different languages
(English, German, ..) and in different granularity levels (bi-
nary, ternary,..) one can imagine multitask approaches that
could benefit from combining such resources. Also, while
we opted for biLSTM networks here, one could use convolu-
tional neural networks or even try to combine different types
of networks and tasks to investigate the performance effect of
multitask learning. Lastly, while our approach mainly relied
on the foundations of (Caruana, 1997), the internal mech-
anisms and the theoretical guarantees of multitask learning
remain to be better understood.
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