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Abstract. Automata learning is a popular technique for inferring min-
imal automata through membership and equivalence queries. In this
paper, we generalise learning to the theory of coalgebras. The approach
relies on the use of logical formulas as tests, based on a dual adjunction
between states and logical theories. This allows us to learn, e.g., labelled
transition systems, using Hennessy-Milner logic. Our main contribution
is an abstract learning algorithm, together with a proof of correctness
and termination.

1 Introduction

In recent years, automata learning is applied with considerable success to infer
models of systems and in order to analyse and verify them. Most current
approaches to active automata learning are ultimately based on the original algo-
rithm due to Angluin [4], although numerous improvements have been made, in
practical performance and in extending the techniques to different models [30].

Our aim is to move from automata to coalgebras [14,26], providing a gen-
eralisation of learning to a wide range of state-based systems. The key insight
underlying our work is that dual adjunctions connecting coalgebras and tailor-
made logical languages [12,19,21,22,26] allow us to devise a generic learning
algorithm for coalgebras that is parametric in the type of system under consid-
eration. Our approach gives rise to a fundamental distinction between states of
the learned system and tests, modelled as logical formulas. This distinction is
blurred in the classical DFA algorithm, where tests are also used to specify the
(reachable) states. It is precisely the distinction between tests and states which
allows us to move beyond classical automata, and use, for instance, Hennessy-
Milner logic to learn bisimilarity quotients of labelled transition systems.

To present learning via duality we need to introduce new notions and refine
existing ones. First, in the setting of coalgebraic modal logic, we introduce the
new notion of sub-formula closed collections of formulas, generalising suffix-
closed sets of words in Angluin’s algorithm (Sect.4). Second, we import the
abstract notion of base of a functor from [8], which allows us to speak about
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‘successor states’ (Sect. 5). In particular, the base allows us to characterise reach-
ability of coalgebras in a clear and concise way. This yields a canonical procedure
for computing the reachable part from a given initial state in a coalgebra, thus
generalising the notion of a generated subframe from modal logic.

We then rephrase coalgebra learning as the problem of inferring a coalgebra
which is reachable, minimal and which cannot be distinguished from the original
coalgebra held by the teacher using tests. This requires suitably adapting the
computation of the reachable part to incorporate tests, and only learn ‘up to
logical equivalence’. We formulate the notion of closed table, and an associated
procedure to close tables. With all these notions in place, we can finally define our
abstract algorithm for coalgebra learning, together with a proof of correctness
and termination (Sect.6). Overall, we consider this correctness and termination
proof as the main contribution of the paper; other contributions are the com-
putation of reachability via the base and the notion of sub-formula closedness.
At a more conceptual level, our paper shows how states and tests interact in
automata learning, by rephrasing it in the context of a dual adjunction connect-
ing coalgebra (systems) and algebra (logical theories). As such, we provide a new
foundation of learning state-based systems.

Related Work. The idea that tests in the learning algorithm should be formulas of
a distinct logical language was proposed first in [6]. However, the work in loc. cit.
is quite ad-hoc, confined to Boolean-valued modal logics, and did not explicitly
use duality. This paper is a significant improvement: the dual adjunction frame-
work and the definition of the base [8] enables us to present a description of
Angluin’s algorithm in purely categorical terms, including a proof of correctness
and, crucially, termination. Our abstract notion of logic also enables us to recover
exactly the standard DFA algorithm (where tests are words) and the algorithm
for learning Mealy machines (where test are many-valued), something that is
not possible in [6] where tests are modal formulas. Closely related to our work
is also the line of research initiated by [15] and followed up within the CALF
project [11-13] which applies ideas from category theory to automata learning.
Our approach is orthogonal to CALF: the latter focuses on learning a general
version of automata, whereas our work is geared towards learning bisimilarity
quotients of state-based transition systems. While CALF lends itself to studying
automata in a large variety of base categories, our work thus far is concerned
with varying the type of transition structures.

2 Learning by Example

The aim of this section is twofold: (i) to remind the reader of the key elements
of Angluin’s L* algorithm [4] and (ii) to motivate and outline our generalisation.

In the classical L* algorithm, the learner tries to learn a regular language £
over some alphabet A or, equivalently, a DFA A accepting that language. Learn-
ing proceeds by asking queries to a teacher who has access to this automaton.
Membership queries allow the learner to test whether a given word is in the lan-
guage, and equivalence queries to test whether the correct DFA has been learned
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already. The algorithm constructs so-called tables (S, F) where S, E C A* are
the rows and columns of the table, respectively. The value at position (s,e) of
the table is the answer to the membership query “se € L7”.

Words play a double role: On the one hand, a word w € S represents the
state which is reached when reading w at the initial state. On the other hand, the
set F represents the set of membership queries that the learner is asking about
the states in S. A table is closed if for all w € S and all a € A either wa € S or
there is a state v € S such that wa is equivalent to v w.r.t. membership queries
of words in E. If a table is not closed we extend S by adding words of the form
wa for w € S and a € A. Once it is closed, one can define a conjecture,' i.e., a
DFA with states in .S. The learner now asks the teacher whether the conjecture
is correct. If it is, the algorithm terminates. Otherwise the teacher provides a
counterexample: a word on which the conjecture is incorrect. The table is now
extended using the counterexample. As a result, the table is not closed anymore
and the algorithm continues again by closing the table.

Our version of L* introduces some key conceptual differences: tables are pairs
(S,¥) such that S (set of rows) is a selection of states of A and ¥ (set of
columns) is a collection of tests/formulas. Membership queries become checks
of tests in ¥ at states in S and equivalence queries verify whether or not the
learned structure is logically equivalent to the original one. A table (S,¥) is
closed if for all successors z’ of elements of S there exists an x € S such that x
and 7’ are equivalent w.r.t. formulas in ¥. The clear distinction between states
and tests in our algorithm means that counterexamples are formulas that have
to be added to ¥. Crucially, the move from words to formulas allows us to use
the rich theory of coalgebra and coalgebraic logic to devise a generic algorithm.

We consider two examples within our generic framework: classical DFAs,
yielding essentially the L* algorithm, and labelled transition systems, which is to
the best of our knowledge not covered by standard automata learning algorithms.

For the DFA case, let L = {u € {a,b}* | number of a’s mod 3 = 0} and
assume that the teacher uses the following (infinite) automaton describing L:

As outlined above, the learner starts to construct tables (S,%) where S is a
selection of states of the automaton and ¥ are formulas. For DFAs we will see
(Example 1) that our formulas are just words in {a,b}*. Our starting table is
({q0},0), i.e., we select the initial state and do not check any logical proper-
ties. This table is trivially closed, as all states are equivalent w.r.t. (). The first
conjecture is the automaton consisting of one accepting state gg with a- and
b-loops, whose language is {a,b}*. This is incorrect and the teacher provides,
e.g., aa as counterexample. The resulting table is ({go}, {¢,a,aa}) where the

! The algorithm additionally requires consistency, but this is not needed if counterex-
amples are added to E. This idea goes back to [22].
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second component was generated by closing {aa} under suffixes. Suffix closed-
ness features both in the original L* algorithm and in our framework (Sect.4).
The table ({qo},{g,a,aa}) is not closed as ¢i, the a-successor of gg, does not
accept € whereas qo does. Therefore we extend the table to ({qo,q1}, {€, a, aa}).
Note that, unlike in the classical setting, exploring successors of already selected
states cannot be achieved by appending letters to words, but we need to locally
employ the transition structure on the automaton A instead. A similar argument
shows that we need to extend the table further to ({qo, ¢1,42}, {€, a,aa}) which
is closed. This leads to the (correct) conjecture depicted on the right below. The
acceptance condition and transition structure has been read off from the original
automaton, where the transition from g» to qo is obtained by realising that ¢s’s
successor g3 is represented by the equivalent state gy € S.

A key feature of our work is that the L* algo-
rithm can be systematically generalised to new set-
tings, in particular, to the learning of bisimulation
quotients of transition systems. Consider the follow-
ing labelled transition system (LTS). We would like
to learn its minimal representation, i.e., its quotient modulo bisimulation.

Our setting allows us
to choose a suitable log-
ical language. For LTSs,
the language consists of
the formulas of stan-
dard multi-modal logic
(cf. Example 3). The
semantics is as usual where (a) ¢ holds at a state if it has an a-successor that
makes ¢ true.

As above, the algorithm constructs tables, starting with (S = {zo},¥ = 0).
The table is closed, so the first conjecture is a single state with an a-loop with no
proposition letter true (note that xo has no b or ¢ successor and no proposition
is true at xg). It is, however, easy for the teacher to find a counterexample. For
example, the formula (a) (b) T is true at the root of the original LTS but false
in the conjecture. We add the counterexample and all its subformulas to ¥ and
obtain a new table ({zo}, ¥’} with ¥/ = {{(a) (b) T, (b) T, T}. Now, the table
is not closed, as xo has successor x; that satisfies (b) T whereas zy does not
satisfy (b) T. Therefore we add x; to the table to obtain ({zg,x1},¥’). Similar
arguments will lead to the closed table ({xq, z1, 23,24}, ¥’) which also yields the
correct conjecture. Note that the state x5 does not get added to the table as it is
equivalent to x; and thus already represented. This demonstrates a remarkable
fact: we computed the bisimulation quotient of the LTS without inspecting the
(infinite) right-hand side of the LTS.

Another important example that fits smoothly into our framework is the well-
known variant of Angluin’s algorithm to learn Mealy machines (Example 2).
Thanks to our general notion of logic, our framework allows to use an intuitive
language, where a formula is simply an input word w whose truth value at a state
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x is the observed output after entering w at x. This is in contrast to [6] where for-
mulas had to be Boolean valued. Multi-valued logics fit naturally in our setting;
this is expected to be useful to deal with systems with quantitative information.

3 Preliminaries

The general learning algorithm in this paper is based on the theory of coalgebras,
which provides an abstract framework for representing state-based transition
systems. In what follows we assume that the reader is familiar with basic notions
of category theory and coalgebras [14,26]. We briefly recall the notion of pointed
coalgebra, modelling a coalgebra with an initial state. Let C be a category with
a terminal object 1 and let B: C — C be a functor. A pointed B-coalgebra is a
triple (X,v,x9) where X € C and v: X — BX and x¢: 1 — X, specifying the
coalgebra structure and the point (“initial state”) of the coalgebra, respectively.

Coalgebraic Modal Logic. Modal logics are used to describe properties of state-
based systems, modelled here as coalgebras. The close relationship between coal-
gebras and their logics is described elegantly via dual adjunctions [18,20,21,24].
Our basic setting consists of two categories C,D connected by func-
tors P,Q forming a dual adjunction P 4 @:C < D°. In other
words, we have a natural bijection C(X,QA) = DA PX)for X €
C,A € D. Moreover, we assume two functors, B: C — C,L: D — D,
see (1). The functor L represents the
syntax of the (modalities in the) logic: B O C Dop Q (1)
assuming that L has an initial algebra
a: Lé — & we think of @ as the col-
lection of formulas, or tests. In this logical perspective, the functor P maps an
object X of C to the collection of predicates and the functor Q maps an object
A of D to the collection QA of A-theories.
The connection between coalgebras and their logics is specified via
a natural transformation §: LP = PB, sometimes referred to as

the one-step semantics of the logic. The L[]

6 is used to define the semantics of L$-—->LPX — PBX

the logic on a B-coalgebra (X,v) by aJ/ 2 in (2)
initiality, as in (2). Furthermore, using - - - - -~ - —->=PX

the bijective correspondence of the dual
adjunction between P and @, the map [_] corresponds to a map th”: X — Q&
that we will refer to as the theory map of (X,~).
The theory map can be expressed Bih 5

directly via a universal property, by BX — - > BQ{PH QL®
making use of the so-called mate VT
6”: BQ = QL of the one-step semantics X _ R 0d
§ (cf. [18,24]). More precisely, we have

® = QLe 0 Q5Q o nBQ, where 7, are the unit and counit of the adjunction.
Then th": X — Q@ is the unique morphism making (3) commute.



Coalgebra Learning via Duality 67

Ezxample 1. Let C = D = Set, P = (Q = 2~ the contravariant power set functor,
B=2x—-"and L =1+ A x —. In this case B-coalgebras can be thought of as
deterministic automata with input alphabet A (e.g., [25]). It is well-known that
the initial L-algebra is & = A* with structure a = [, cons]: 1 + A x A* — A*
where ¢ selects the empty word and cons maps a pair (a,w) € Ax A* to the word
aw € A*, i.e., in this example our tests are words with the intuitive meaning
that a test succeeds if the word is accepted by the given automaton. For X € C,
the X-component of the (one-step) semantics 6: LP = PB is defined as follows:
Sx(¥) ={(i, f) €2x X4 |i=1},and 6x(a,U) = {(i,f) € 2x XA | f(a) € U}.
It is matter of routine checking that the semantics of tests in @ on a B-coalgebra
(X,7) is as follows: we have [¢] = {z € X | m1(y(z)) =1} and Jaw] = {z € X |
ma(y(z))(a) € [w]}, where m and 7y are the projection maps. The theory map
th” sends a state to the language accepted by that state in the usual way.

Example 2. Again let C = D = Set and consider the functors P = Q = O~
B=(0Ox—-)"and L = Ax (1+—), where A and O are fixed sets, thought of as
input and output alphabet, respectively. Then B-coalgebras are Mealy machines
and the initial L-algebra is given by the set AT of finite non-empty words over
A. For X € C, the one-step semantics dx: A x (1 + OX) — OBX is defined
by dx(a,inl(x)) = Af.m1(f(a)) and dx(a,inr(g)) = Af.g(m2(f(a))). Concretely,
formulas are words in AT; the (O-valued) semantics of w € AT at state x is the
output o € O that is produced after processing the input w from state .

Example 3. Let C = Set and D = BA, where the latter denotes the cate-
gory of Boolean algebras. Again P = 27, but this time 2% is interpreted as
a Boolean algebra. The functor Q maps a Boolean algebra to the collection
of ultrafilters over it [7]. Furthermore B = (P—)? where P denotes covariant
power set and A a set of actions. Coalgebras for this functor correspond to
labelled transition systems, where a state has a set of successors that depends
on the action/input from A. The dual functor L: BA — BA is defined as
LY = Fga({{a)y | a € A,y € Y})/ = where Fga: Set — BA denotes the
free Boolean algebra functor and where, roughly speaking, = is the congruence
generated from the axioms (a) L = 1 and (a) (y1 V y2) = {(a) (y1) V {(a) (y2)
for each a € A. This is explained in more detail in [21]. The initial algebra for
this functor is the so-called Lindenbaum-Tarski algebra [7] of modal formulas
(p:=L] dVo| ¢ | {(a)d) quotiented by logical equivalence. The definition of
an appropriate d can be found in, e.g., [21]—the semantics [_] of a formula then
amounts to the standard one [7].

Different types of probabilistic transition systems also fit into the dual
adjunction framework, see, e.g, [17].

Subobjects and Intersection-Preserving Functors. We denote by Sub(X) the col-
lection of subobjects of an object X € C. Let < be the order on subobjects
s:8— X,s": 8 — X given by s < & iff there is m: S — 5" s.t. s = s’ om. The
intersection \ J — X of a family J = {s;: S; — X };¢ is defined as the greatest
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lower bound w.r.t. the order <. In a complete category, it can be computed by
(wide) pullback. We denote the maps in the limiting cone by x;: A J — S;.
For a functor B: C — D, we say B preserves (wide) intersections if it
preserves these wide pullbacks, i.e., if (B(AJ),{Bx;i}icr) is the pullback of
{Bs;: BS; — BX}icr. By [2, Lemma 3.53] (building on [29]), finitary func-
tors on Set ‘almost’ preserve wide intersections: for every such functor B there
is a functor B’ which preserves wide intersections and agrees with B on all
non-empty sets. Finally, if B preserves intersections, then it preserves monos.

Minimality Notions. The algorithm that we will describe in this paper learns
a minimal and reachable representation of an object. The intuitive notions of
minimality and reachability are formalised as follows.

Definition 4. We call a B-coalgebra (X,~) minimal w.r.t. logical equivalence
if the theory map th”: X — Q® is a monomorphism.

Definition 5. We call a pointed B-coalgebra (X, xo) reachable if for any sub-
object s: S — X and sg: 1 — S with xg = sosq: if S is a subcoalgebra of (X,~)
then s is an isomorphism.

For expressive logics [27], behavioural equivalence coincides with logical equiv-
alence. Hence, in that case, our algorithm learns a “well-pointed coalgebra” in
the terminology of [2], i.e., a pointed coalgebra that is reachable and minimal
w.r.t. behavioural equivalence. All logics appearing in this paper are expressive.

Assumption on C and Factorisation System. Throughout the paper we will
assume that C is a complete and well-powered category. Well-powered means that
for each X € C the collection Sub(X) of subobjects of a given object forms a set.
Our assumptions imply [10, Proposition 4.4.3] that every morphism f in C factors
uniquely (up to isomorphism) as f = m o e with m a mono and e a strong epi.
Recall that an epimorphism e: X —
Y is strong if for every commutative
square in (4) where the bottom arrow is
a monomorphism, there exists a unique
diagonal morphism d such that the
entire diagram commutes.

=
~

(4)

>
<«——
R
N
EI = » lm
N

—
@

-
N

4 Subformula Closed Collections of Formulas

Our learning algorithm will construct conjectures that are “partially” cor-
rect, i.e., correct with respect to a subobject of the collection of all formu-
las/tests. Recall this collection of all tests are formalised in our setting as
the initial L-algebra (®,a: L& — &). To define a notion of partial correct-
ness we need to consider subobjects of @ to which we can restrict the theory
map. This is formalised via the notion of “subformula closed” subobject of .
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The definition of such subobjects is based on the
notion of recursive coalgebra. For L: D — D an
endofunctor, a coalgebra f: X — LX is called fT
recursive if for every L-algebra g: LY — Y there
is a unique ‘coalgebra-to-algebra’ map ¢’ mak-
ing (5) commute.

T
LX 2, Ly
lg (5)
.

X2 sy

Definition 6. A subobject j: ¥ — ® is called a subformula closed collection (of
formulas) if there is a unique L-coalgebra structure o: W — LW such that (¥, o)
is a recursive L-coalgebra and j is the (necessarily unique) coalgebra-to-algebra
map from (¥, o) to the initial algebra (P, ).

Remark 7. The uniqueness of o in Definition 6 is implied if L preserves
monomorphisms. This is the case in our examples. The notion of recursive coal-
gebra goes back to [23,28]. The paper [1] contains a claim that the first item
of our definition of subformula closed collection is implied by the second one
if L preserves preimages. In our examples both properties of (¥, o) are verified
directly, rather than by relying on general categorical results.

Ezample 8. In the setting of Example 1, where the initial L-algebra is based on
the set A* of words over the set (of inputs) A, a subset ¥ C A* is subformula-
closed if it is suffix-closed, i.e., if for all aw € ¥ we have w € ¥ as well.

Example 9. In the setting that B = (P—)" for some set of actions 4, C = Set
and D = BA, the logic is given as a functor L on Boolean algebras as discussed in
Example 3. As a subformula closed collection is an object in ¥, we are not simply
dealing with a set of formulas, but with a Boolean algebra. The connection to
the standard notion of being closed under taking subformulas in modal logic [7]
can be sketched as follows: given a set A of modal formulas that is closed under
taking subformulas, we define a Boolean algebra W C @ as the smallest Boolean
subalgebra of @ that is generated by the set A = {[¢]s | ¢ € A} where for a
formula ¢ we let [¢]g € @ denote its equivalence class in P.

It is then not difficult to define a suitable o: W5 — LW¥A. As W, is generated
by closing A under Boolean operations, any two states z1, x5 in a given coalgebra
(X,) satisfy (Vb€ Wa.z, € [b] & w2 € [B]) iff (Vb €Az eb] ©ase [[b]]).
In other words, equivalence w.r.t. ¥, coincides with equivalence w.r.t. the set of
formulas A. This explains why in the concrete algorithm, we do not deal with
Boolean algebras explicitly, but with subformula closed sets of formulas instead.

The key property of subformula thy
closed collections ¥ is that we can X QY
restrict our attention to the so-called ’YJ/ TQU (6)
V-theory map. Intuitively, subformula Bih? b
closedness is what allows us to define BX —% BQU —"—= QLW

this theory map inductively.
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Lemma 10. Let ¥ » & be a sub-formula closed collection, with coalgebra struc-
ture o: W — LW. Then thy, = Qj o th), is the unique map making (6) commute.
We call th), the ¥-theory map, and omit the ¥ if it is clear from the context.

5 Reachability and the Base

In this section, we define the notion of base of an endofunctor, taken from [8].
This allows us to speak about the (direct) successors of states in a coalgebra,
and about reachability, which are essential ingredients of the learning algorithm.

Definition 11. Let B: C — C be an endofunctor. We say B has a base if for
every arrow f: X — BY there exist g: X — BZ and m: Z — Y with m a
monomorphism such that f = Bmog, and for any pair ¢': X — BZ',m/: 7' »—
Y with Bm'og' = f and m’ a monomorphism there is a unique arrow h: Z — Z'
such that Bhog =g and m’ o h = m, see Diagram (7). We call (Z,g,m) the
(B )-base of the morphism f.

We sometimes refer to m: Z — Y as the !
base of f, omitting the g when it is irrelevant, BY
or clear from the context. Note that the ter- (7)
minology ‘the’ base is justified, as it is easily J,Bh
seen to be unique up to isomorphism. BZ’

For example, let B: Set — Set, BX =
2 x XA, The base of a map f: X — BY is given by m: Z — Y, where Z =
{(ma0 f)(z)(a) | z € X,a € A}, and m is the inclusion. The associated g: X —
BZ is the corestriction of f to BZ.

For B = (P—)4: Set — Set, the B-base of f: X — Y is given by the inclusion
m: Z— Y, where Z={yecY |Irx e X,Jac Ast.ye f(z)(a)}

Proposition 12. Suppose C is complete and well-powered, and B: C — C pre-
serves (wide) intersections. Then B has a base.

If C is a locally presentable category, then it is complete and well-powered [3,
Remark 1.56]. Hence, in that case, any functor B: C — C which preserves inter-
sections has a base. The following lemma will be useful in proofs.

Lemma 13. Let B: C — C be a functor that has a base and that preserves pre-
images. Let f: S — BX and h: X — 'Y be morphisms, let (Z,g,m) be the base
of f and let e: Z — W,m': W — Y be the (strong epi, mono)-factorisation of
hom. Then (W,Beo g,m’) is the base of Bho f.

The B-base provides an elegant way to relate reachability within a coalgebra
to a monotone operator on the (complete) lattice of subobjects of the carrier of
the coalgebra. Moreover, we will see that the least subcoalgebra that contains
a given subobject of the carrier can be obtained via a standard least fixpoint
construction. Finally, we will introduce the notion of prefix closed subobject of a
coalgebra, generalising the prefix closedness condition from Angluin’s algorithm.
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By our assumption on C at the end of Sect. 3, the collection of subobjects
(Sub(X), <) ordered as usual (cf. Section 3) forms a complete lattice. Recall that
the meet on Sub(X) (intersection) is defined via pullbacks. In categories with
coproducts, the join s V s9 of subobjects s1,s2 € Sub(X) is defined as the mono
part of the factorisation of the map [s1, s2]: S1+S2 — X, i.e., [s1, $2] = (81Vs2)o0e
for a strong epi e. In Set, this amounts to taking the union of subsets.

For a binary join sy V so we denote by s s X
inly: S1 — (S1V.S2) and inry : Sy — (S1V S2)
the embeddings that exist by s; < s1 V sy for gi lv (8)
i = {1,2}. Let us now define the key operator BI(S) BF’YB(S)BX

of this section.

Definition 14. Let B be a functor that has a base, s: S — X a subobject of
some X € C and let (X,v) be a B-coalgebra. Let (I'(S), g, ' (s)) be the B-base
of yos, see Diagram (8). Whenever B and 7 are clear from the context, we write
I'(s) instead of I'2(s).

Lemma 15. Let B: C — C be a functor with a base and let (X,v) be a B-
coalgebra. The operator I': Sub(X) — Sub(X) defined by s — I'(s) is monotone.

Intuitively, I" computes for a given set of states S the set of “immediate succes-
sors”, i.e., the set of states that can be reached by applying v to an element of .S.
We will see that pre-fixpoints of I" correspond to subcoalgebras. Furthermore,
I' is the key to formulate our notion of closed table in the learning algorithm.

Proposition 16. Lets: S — X be a subobject and (X, ) € Coalg(B) for X € C
and B: C — C a functor that has a base. Then s is a subcoalgebra of (X,~) if
and only if I'(s) < s. Consequently, the collection of subcoalgebras of a given
B-coalgebra forms a complete lattice.

Using this connection, reachability of a pointed coalgebra (Definition 5) can be
expressed in terms of the least fixpoint Ifp of an operator defined in terms of I".

Theorem 17. Let B: C — C be a functor that has a base. A pointed B-coalgebra
(X, v,x0) is reachable iff X = Ifp(I" V zq) (isomorphic as subobjects of X, i.e.,
equal).

This justifies defining the reachable part from an initial state xo: 1 — X as the
least fixpoint of the monotone operator I' V xy. Standard means of computing
the least fixpoint by iterating this operator then give us a way to compute this
subcoalgebra. Further, I provides a way to generalise the notion of “prefixed
closedness” from Angluin’s L* algorithm to our categorical setting.

Definition 18. Let sg,s € Sub(X) for some X € C and let (X,v) be a B-
coalgebra. We call s so-prefix closed w.r.t. v if s = \/]_s; for some n >0 and

a collection {s; | i =1,...,n} with sj41 < T'(\/1_ys;) for all j with 0 < j < n.
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6 Learning Algorithm

We define a general learning algorithm for B-coalgebras. First, we describe
the setting, in general and slightly informal terms. The teacher has a pointed
B-coalgebra (X, 7, s9). Our task is to ‘learn’ a pointed B-coalgebra (S,4, §p) s.t.:

— (5,4, 80) is correct w.r.t. the collection @ of all tests, i.e., the theory of (X,~)
and (S,%) coincide on the initial states so and 3¢, (Definition 25);

— (5,4, 80) is minimal w.r.t. logical equivalence;

— (5,4, 80) is reachable.

The first point means that the learned coalgebra is ‘correct’, that is, it agrees
with the coalgebra of the teacher on all possible tests from the initial state. For
instance, in case of deterministic automata and their logic in Example 1, this
just means that the language of the learned automaton is the correct one.

In the learning game, we are only provided limited access to the coalgebra
v: X — BX. Concretely, the teacher gives us:

— for any subobject S — X and sub-formula closed subobject ¥ of @, the

S
composite theory map S —— X % QV,

— for (5,4, 8p) a pointed coalgebra, whether or not it is correct w.r.t. the col-
lection @ of all tests;

— in case of a negative answer to the previous question, a counterezample, which
essentially is a subobject ¥’ of @ representing some tests on which the learned
coalgebra is wrong (defined more precisely below);

— for a given subobject S of X, the ‘next states’; formally, the computation of

the B-base of the composite arrow S —— X - BX.

The first three points correspond respectively to the standard notions of mem-
bership query (‘filling in’ the table with rows S and columns ¥), equivalence
query and counterexample generation. The last point, about the base, is more
unusual: it does not occur in the standard algorithm, since there a canonical
choice of (X, ) is used, which allows to represent next states in a fixed manner.
Tt is required in our setting of an arbitrary coalgebra (X,~).

In the remainder of this section, we describe the abstract learning algorithm
and its correctness. First, we describe the basic ingredients needed for the algo-
rithm: tables, closedness, counterexamples and a procedure to close a given table
(Sect. 6.1). Based on these notions, the actual algorithm is presented (Sect.6.2),
followed by proofs of correctness and termination (Sect.6.3).

Assumption 19. Throughout this section, we assume

— that we deal with coalgebras over the base category C = Set;

— a functor B: C — C that preserves pre-images and wide intersections;

— a category D with an initial object 0 s.t. arrows with domain 0 are monic;
— a functor L: D — D with an initial algebra L = P;

an adjunction P 4Q: C <= D, and a logic 6: LP = PB.
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Moreover, we assume a pointed B-coalgebra (X,~, sq).

Remark 20. We restrict to C = Set, but see it as a key contribution to state the
algorithm in categorical terms: the assumptions cover a wide class of functors
on Set, which is the main direction of generalisation. Further, the categorical
approach will enable future generalisations. The assumptions on the category C
are: it is complete, well-powered and satisfies that for all (strong) epis ¢: S —
S € C and all monos i: S’ — S such that g o4 is mono there is a morphism
g ': S — Ssuch that (i) gog ! =id and g toqoi =i.

6.1 Tables and Counterexamples

Definition 21. A table is a pair (S N X, v - ®) consisting of a subobject s
of X and a subformula-closed subobject i of ®.

To make the notation a bit lighter, we sometimes refer to a table by (S, %), using
s and i respectively to refer to the actual subobjects. The pair (S, ¥) represents
‘rows’ and ‘columns’ respectively, in the table; the ‘elements’ of the table are
given abstractly by the map thy, o s. In particular, if C =D = Set and Q = 27,
then this is a map S — 2%, assigning a Boolean value to every pair of a row
(state) and a column (formula). .

For the definition of closedness, Sr—= X — QU
we use the operator I'(S) from Def- kT / (9)
inition 14, which characterises the thY
successors of a subobject S — X. I(s) W

Definition 22. A table (S,¥) is closed if there exists a map k: I'(S) — S
such that Diagram (9) commutes. A table (S,¥) is sharp if the composite map
h’Y

S —— X ; QY is monic.

Thus, a table (S,%) is closed if all the successors of states (elements of I'(.S))
are already represented in S, up to equivalence w.r.t. the tests in ¥. In other
terms, the rows corresponding to successors of existing rows are already in the
table. Sharpness amounts to minimality w.r.t. logical equivalence: every row has
a unique value. The latter will be an invariant of the algorithm (Theorem 32).

A conjecture is a coalgebra on .S, g s D v BX

which is not quite a subcoalgebra of
X instead, it is a subcoalgebra ‘up to ‘Yl lBth” (10)
equivalence w.r.t. ¥’ that is, the suc- BS BX BQW

. . Bs Bth”
cessors agree up to logical equivalence.

Definition 23. Let (S,¥) be a table. A coalgebra structure 4: S — BS is called
a conjecture (for (S,¥)) if Diagram (10) commutes.

It is essential to be able to construct a conjecture from a closed table. The
following, stronger result is a variation of Proposition 16.

Theorem 24. A sharp table is closed iff there exists a conjecture for it. More-
over, if the table is sharp and B preserves monos, then this conjecture is unique.
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Our goal is to learn a pointed coalgebra X

which is correct w.r.t. all formulas. To V \thj (11)
this aim we ensure correctness w.r.t.

an increasing sequence of subformula 1 — S —— QY

closed collections V. th?

Definition 25. Let (S, %) be a table, and let (S,4, 30) be a pointed B-coalgebra
on S. We say (5,49, 80) is correct w.r.t. ¥ if Diagram (11) commutes.

All conjectures constructed during the learning algorithm will be correct w.r.t.
the subformula closed collection ¥ of formulas under consideration.

Lemma 26. Suppose (S,¥) is closed, and ¥ is a conjecture. Then th), o s =
thv S — QW. If 30: 1 — S satisfies sosg = sq then (5,4, 80) is correct w.r.t. ¥.
We next define the crucial notion of counterexample to a pointed coalgebra: a
subobject ¥’ of ¥ on which it is ‘incorrect’.

Definition 27. Let (S,%) be a table, and let (S,4,50) be a pointed B-coalgebra
on S. Let W' be a subformula closed subobject of @, such that ¥ is a subcoalgebra
of W'. We say W' is a counterexample (for (5,4, 3g), extending ¥) if (S,4, 30)
is not correct w.r.t. ¥'.

The following elementary lemma states that if there are no more counterexamples
for a coalgebra, then it is correct w.r.t. the object @ of all formulas.

Lemma 28. Let (S,¥) be a table, and let (S,4,50) be a pointed B-coalgebra on
S. Suppose that there are no counterexamples for (S,4,5¢) extending ¥. Then
(S,4, 80) is correct w.r.t. .

The following describes, for a given table, how to extend it with the successors
(in X) of all states in S. As we will see below, by repeatedly applying this
construction, one eventually obtains a closed table.

Definition 29. Let (S,¥) be a sharp table. Let (S,q,r) be the (strong epi,
mono )-factorisation of the map th” o (s V F(s)), as in the diagram:

Sves) Y x

\/

We define close(S,¥) := {3: S X | th" o5 =1,5 <5 < sV I'(s)}. For each
3 € close(S,¥) we have s <5 and thus s =5 o k for some k: S — S.

Lemma 30. In Definition 29, for eachs € close(S,¥), we have k = q o inly,.
We will refer to K = q o inl\, as the connecting map from s to s.

Lemma 31. In Definition 29, if there evists ¢~ ': S — SV I'(S) such that

qoq ' =id and ¢! o qoinly = inly, then close(S,¥) is non-empty.

By our assumptions, the hypothesis of Lemma 31 is satisfied (Remark 20), hence
close(S, ¥) is non-empty. It is precisely (and only) at this point that we need the
strong condition about existence of right inverses to epimorphisms.
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6.2 The Algorithm

Having defined closedness, counterexamples and a procedure for closing a table,
we are ready to define the abstract algorithm. In the algorithm, the teacher
has access to a function counter((S,%, o), ¥), which returns the set of all coun-
terexamples (extending ¥) for the conjecture (5,4, o). If this set is empty, the
coalgebra (5,4, 8g) is correct (see Lemma 28), otherwise the teacher picks one
of its elements ¥’'. We also make use of close(S,¥), as given in Definition 29.

Algorithm 1. Abstract learning algorithm

(S X) — (12 X)
§0<—id1
U —0

while true do
while (S — X,¥) is not closed do
let (S s X) € close(S, ¥), with connecting map k: S — S
(8= X) — (8= X)
S0 «— K0 Sp
9: end while

10: let (S,4) be a conjecture for (S, ¥)
11: if counter((S, 4, 50),%) = 0 then

12: return (S, 4, $)

13: else

14: WU — ¥’ for some ¥’ € counter((S,7, 30),¥)
15: end if

16: end while

The algorithm takes as input the coalgebra (X,7,so) (which we fixed
throughout this section). In every iteration of the outside loop, the table is
first closed by repeatedly applying the procedure in Definition 29. Then, if the
conjecture corresponding to the closed table is correct, the algorithm returns it
(Line 12). Otherwise, a counterexample is chosen (Line 14), and the algorithm
continues.

6.3 Correctness and Termination

Correctness is stated in Theorem 33. It relies on establishing loop invariants:

Theorem 32. The following is an invariant of both loops in Algorithm 1 in
Sect. 6.2: 1. (S,¥) is sharp, 2. so 8y = sg, and 3. s is so-prefix closed w.r.t. 7.

Theorem 33. If Algorithm 1 in Sect. 6.2 terminates, then it returns a pointed
coalgebra (S, 4, §o) which is minimal w.r.t. logical equivalence, reachable and cor-
rect w.r.t. .
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In our termination arguments, we have to make an assumption about the
coalgebra which is to be learned. It does not need to be finite itself, but it
should be finite up to logical equivalence—in the case of deterministic automata,
for instance, this means the teacher has a (possibly infinite) automaton repre-
senting a regular language. To speak about this precisely, let ¥ be a subob-
ject of . We take a (strong epi, mono)-factorisation of the theory map, i.e.,
thy, = (X Y | X |

my

QY | for some strong epi e and mono m. We call

the object | X |y in the middle the ¥-logical quotient. For the termination result
(Theorem 37), | X|¢ is assumed to have finitely many quotients and subobjects,
which just amounts to finiteness, in Set.

We start with termination of the inner while loop (Corollary 36). This relies
on two results: first, that once the connecting map & is an iso, the table is closed,
and second, that—under a suitable assumption on the coalgebra (X, ~v)—during
execution of the inner while loop, the map x will eventually be an iso.

Theorem 34. Let (S,¥) be a sharp table, let S € close(S,¥) and let k: S — S
be the connecting map. If k is an isomorphism, then (S,¥) is closed.

Lemma 35. Consider a sequence of sharp tables (S; 2, X,¥)ien such that
Sit1 € close(S;,¥) for all i. Moreover, let (k;: S; — Sit1)ien be the connect-
ing maps (Definition 29). If the logical quotient |X|s of X has finitely many
subobjects, then k; is an isomorphism for some i € N.

Corollary 36. If the ®-logical quotient | X|g has finitely many subobjects, then
the inner while loop of Algorithm 1 terminates.

For the outer loop, we assume that | X|g has finitely many quotients, ensuring
that every sequence of counterexamples proposed by the teacher is finite.

Theorem 37. If the ®-logical quotient |X|¢ has finitely many quotients and
finitely many subobjects, then Algorithm 1 terminates.

7 Future Work

We showed how duality plays a natural role in automata learning, through the
central connection between states and tests. Based on this foundation, we proved
correctness and termination of an abstract algorithm for coalgebra learning. The
generality is not so much in the base category (which, for the algorithm, we take
to be Set) but rather in the functor used; we only require a few mild conditions
on the functor, and make no assumptions about its shape. The approach is thus
considered coalgebra learning rather than automata learning.

Returning to automata, an interesting direction is to extend the present work
to cover learning of, e.g., non-deterministic or alternating automata [5,9] for a
regular language. This would require explicitly handling branching in the type of
coalgebra. One promising direction would be to incorporate the forgetful logics
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of [19], which are defined within the same framework of coalgebraic logic as the
current work. It is not difficult to define in this setting what it means for a table
to be closed ‘up to the branching part’, stating, e.g., that even though the table
is not closed, all the successors of rows are present as combinations of other rows.

Another approach would be to integrate monads into our framework, which
are also used to handle branching within the theory of coalgebras [16]. It is an
intriguing question whether the current approach, which allows to move beyond
automata-like examples, can be combined with the CALF framework [13], which
is very far in handling branching occurring in various kinds of automata.
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