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Temporal logic is a formal system for specifying and reasoning about propositions qualified in terms of time.

It offers a unified approach to program verification as it applies to both sequential and parallel programs

and provides a uniform framework for describing a system at any level of abstraction. Thus a number of
automated systems have been proposed to exclusively reason about either Computation-Tree Logic (CTL)

or Linear Temporal Logic (LTL) in the infinite-state setting. Unfortunately, these logics have significantly

reduced expressiveness as they restrict the interplay between temporal operators and path quantifiers, thus
disallowing the expression of many practical properties, for example “along some future an event occurs

infinitely often”. Contrarily, CTL∗, a superset of both CTL and LTL, can facilitate the interplay between
path-based and state-based reasoning. CTL∗ thus exclusively allows for the expressiveness of properties

involving existential system stabilization and “possibility” properties. Until now, there have not existed

automated systems that allow for the verification of such expressive CTL∗ properties over infinite-state
systems. This paper proposes a method capable of such a task, thus introducing the first known fully auto-

mated tool for symbolically proving CTL∗ properties of (infinite-state) integer programs. The method uses

an internal encoding that admits reasoning about the subtle interplay between the nesting of temporal oper-
ators and path quantifiers that occurs within CTL∗ proofs. A program transformation is first employed that

trades nondeterminism in the transition relation for nondeterminism explicit in variables predicting future

outcomes when necessary. We then synthesize and quantify preconditions over the transformed program
that represent program states that satisfy a CTL∗ formula.

This paper demonstrates the viability of our approach in practice, thus leading to a new class of fully-

automated tools capable of proving crucial properties that no tool could previously prove. Additionally, we
consider the linear-past extension to CTL∗ for infinite-state systems in which the past is linear and each

moment in time has a unique past. We discuss the practice of this extension and how it is further supported
through the use of history variables. We have implemented our approach and report our benchmarks carried

out on case studies ranging from smaller programs to demonstrate the expressiveness of CTL∗ specifications,

to larger code bases drawn from device drivers and various industrial examples.
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1. INTRODUCTION

1.1. Context and Motivation

In [Pnueli 1977], Amir Pnueli introduced the idea of utilizing temporal logic as a unify-
ing approach to program analysis for both sequential and parallel programs. He suggested
that temporal reasoning, in which propositions are qualified in terms of time, allows for
the logical basis of proving correctness properties of programs. Additionally, temporal logic
formalizes the intuitive reasoning that a programmer employs in the design and imple-
mentation of programs and systems. This lead to a surge of interest in the use of static
analysis techniques to automatically verify various temporal logics, both for finite-state and
infinite-state systems.

Pnueli came to find that the prevalent notions of what constitutes the correctness of a
program can all be reduced to two main temporal concepts: invariance and eventuality.
In [Lamport 1980], Leslie Lamport further refines these concepts as safety and liveness,
respectively. Safety, for example, covers the concepts of partial correctness (something bad
never happens) for sequential programs, mutual exclusion (two processes are not in their
critical sections at the same time), and deadlock-freedom (the program does not reach a
deadlocked state) for concurrent programs. Liveness covers the concepts of total correctness
in addition to the generalization of correct behaviors for programs that contain loops. For

2



example, termination (the program eventually does terminate) and starvation-freedom (a
process eventually serves) are liveness properties.1

In addition to supporting correctness properties of programs, temporal logic allows for
hierarchical specification and reasoning. From a developer’s standpoint, natural languages
are very expressive yet very imprecise. Contrarily, formal languages are not very expressive,
but they are precise. Temporal logic thus bridges the expression and precision gap by pro-
viding a single logical system for describing the program at any level of abstraction, from
the highest-level specification to the programming-language implementation. A statement
about the program at one level is a meaningful statement about any lower level. Thus, hier-
archical design methods are supported directly, with no extra mechanism needed to bridge
the different levels of description. One such temporal logic is the branching-time logic CTL.
Branching-time property verification requires reasoning about sets of states within a transi-
tion system that satisfy a particular temporal formula. Linear-time logic, the most common
being LTL, requires reasoning about sets of paths that satisfy a formula. However, these
logics have significantly reduced expressiveness as they can only reason about either states
or paths, but not the junction of both. Contrarily, CTL∗, a superset of both LTL and CTL,
can facilitate the interplay between state-based and path-based reasoning.

Proof systems for the verification of temporal logic, first introduced by [Emerson and
Halpern 1986; Lamport 1980], have been well-studied. It is well-known that CTL∗ model
checking for infinite-state systems generalizes termination and co-termination and is unde-
cidable. A decision procedure exploring the structure of finite-state ω-automata was first
introduced to determine the satisfaction of a CTL∗ formula over binary relations in [Emer-
son and Sistla 1984], and later extended in [Emerson and Jutla 1999]. A complete and sound
axiomatization of propositional CTL∗ then followed in [Reynolds 2001], which inspired the
first sound and relatively complete deductive proof system for the verification of CTL∗ prop-
erties over possibly infinite-state systems [Kesten and Pnueli 2005]. Proof rules for verifying
CTL∗ properties of infinite-state systems were implemented in STeP [Bjørner et al. 2000].
However, the STeP system is only semi-automated, as it still requires users to construct
auxiliary assertions and participate in the search for a proof.

Until now, no fully automatic CTL∗ proving methods for the undecidable general class
of infinite-state systems have been known. Fully automated implementations of these proof
systems have proven to be difficult over the years. Furthermore, despite the existence of auto-
mated verification tools for CTL and LTL for general integer manipulating programs [Beyene
et al. 2013; Cook et al. 2007; Cook and Koskinen 2011; 2013; Cook et al. 2014; 2015], these
tools still do not allow for the verification of CTL∗. A key problem is that CTL∗ formulae
cannot merely be partitioned into isolated CTL and LTL sub-formulae, as such a partition
fails to treat the intricate dependence between state-based and path-based reasoning. Find-
ing a way that allows us to symbolically move between representations of sets of states for
branching-time, and sets of paths for linear-time in a way that is conducive to automatic
analysis has thus been an outstanding problem in automatic program verification. This re-
striction on the interplay between linear-time and branching-time operators causes various
crucial properties to be inexpressible. Consider a property involving the assertion “along
some future an event occurs infinitely often”. This property cannot be expressed in either
LTL or CTL, yet is crucial when expressing the existence of fair paths spawning from every
reachable state in an infinite-state system. However, this property is expressible in CTL∗.

1Note that the first formal definition of both safety and liveness properties was not introduced until [Alpern
and Schneider 1986]. Alpern and Schneider represent a finite prefix of an execution as the set of all possible
continuations from that point on. This contrasts to the notions in [Lamport 1980], which only consider
infinite executions. This leads to a slightly more general notion of safety and liveness properties, with
liveness properties containing at least one continuation for every finite prefix.
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In section 1.2, we further demonstrate how CTL∗ is capable of expressing CTL, LTL, and
properties necessitating their interplay.

In this paper we address the application of CTL∗ properties in the (integer) infinite-state
setting, in addition to introducing a solution that admits the arbitrary nesting of state-
based reasoning within path-based reasoning, and vice versa. Our strategy allows us to
symbolically move between representations of sets of states and sets of paths, thus leading
to the first known fully-automatic method capable of proving CTL∗ properties of infinite-
state programs.

1.2. Expressiveness of Temporal Logics and Their Applications to Programs

In order to discern the difficulty of partitioning the subtle interplay between the arbitrary
nesting of path and state formulae, we must first delve into the differing temporal sub-logics
and their relation to each other. Note that for finite-state systems, the distinctions between
branching-time and linear-time logics are less crucial from an automation standpoint, as
verifying these logics is decidable. However, when considering the undecidable general class
of infinite-state systems (e.g., systems with unbounded arithmetic), the distinction is a
key issue. CTL and LTL are the most well-studied temporal logics given that they each only
require a homogenous approach to reason about computational systems. As previously men-
tioned, branching-time logic requires reasoning about sets of states while linear-time logic
requires reasoning about sets of paths. The two interpretations correspond to two different
ways of viewing time: as a continually branching set of possibilities, or as a single linear
sequence of actual events, respectively. In the branching time approach, all of the possible
futures are equally real and must be considered. Thus, when considering nondeterministic
transition systems (as we do), the present does not determine a unique future, but rather
a possibly infinite set of possible futures given that nondeterminism translates to many
possible computations. In the linear time approach, at each instance of time there is only
one future that will actually occur. Given that all assertions must be interpreted over one
real future, path quantifiers are thus not required for linear-time logics.

Despite their discrepancies, the expressiveness of CTL and LTL are incomparable given
that they simply provide differing interpretations of time. However, the restriction these two
logics impose on the interplay between linear-time operators and path quantifiers disallows
a great deal of properties vital to appropriately expressing the correctness of a system. For
example, although CTL can express a system’s interaction with inputs and nondeterminism,
a capability in which linear-time temporal logics (LTL) is inadequate to express, it cannot
model trace-based assumptions about the environment in sequential and concurrent set-
tings (e.g. schedulers) that LTL can express. Some of these deficiencies can be mitigated by
considering fairness for branching-time logic (CTL + Fair), as it allows for some interaction
between linear-time and branching-time reasoning, but only in specifying fairness assump-
tions pertaining to a system’s environment. CTL + Fair thus cannot be generalized to model
all trace-based properties. In recent work, we have considered practical applications of CTL
+ Fair model-checking [Cook et al. 2015]. In the sections below, we provide further exam-
ples of properties exclusive to CTL∗ in addition to an analysis of the crucial application of
CTL∗ properties in the infinite-state setting.

1.2.1. Expressiveness of CTL∗. First, we briefly give an informal description of CTL∗ syntax
to allow the reader to more intuitively understand the provided examples. Formal definitions
are provided in Section 2. CTL∗ formulae are made up of path quantifiers and temporal
operators. There exists two types of path quantifiers: All, written as Aψ, indicates that ψ
has to hold on all paths starting from a state. Exists, written as Eψ indicates that there
exists at least one path starting from a state where ψ holds. For both A and E, ψ denotes
a temporal formula, however in CTL∗, not every temporal operator has to be preceded by
a path quantifier. Temporal operators include:
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— Next or Xψ : ψ has to hold starting from the next position in a path.
— Globally or Gψ : ψ has to hold starting from all the positions along a path.
— Eventually or Fψ : ψ eventually has to hold.
— Strong Until or ψ1 U ψ2 : ψ1 has to hold starting from all positions until at some position
ψ2 starts to hold. ψ2 must be verified in the future.

— Weak Until or ψ1 W ψ2 : ψ1 has to hold starting from all positions until at some position
ψ2 starts to hold. Unlike the strong until, ψ2 does not have to be verified and, if such is
the case, then ψ1 has to hold forever.

The linear-time logic LTL is a fragment of CTL∗ that only allows formulae of the form
Aψ, where A is the only occurrence of a path quantifier within ψ. When taking LTL as
a subset of CTL∗, LTL formulae are implicitly prefixed with the universal path quantifier
A. For example, the LTL formula FG x asserts that for every trace of the system, variable
x will eventually become true and stay true forever. The branching-time logic CTL is a
restricted subset of CTL∗ in which a temporal operator is always directly preceded by a
path quantifier. Thus, CTL sub-formulae are always composed of pairs containing a path
quantifier and a temporal operator. For example, the CTL formula EF x is true in states
from which there exists a path where eventually there is a state in which x holds. Recall
that CTL∗ allows the unrestricted nesting of path quantifiers and temporal operators.
CTL∗ thus allows us to express properties involving existential system stabilization, stat-

ing that an event can eventually become true and stay true from every reachable state.
Additionally, it can express “possibility” properties, such as the viability of a system, stat-
ing that every reachable state can spawn a fair computation. Below are properties that can
only be afforded by the extra expressive power of CTL∗. These liveness properties are often
imperative to verifying systems such as Windows kernel APIs that acquire resources and
APIs that release resources, as later shown by our experiments.

The property EGF(x) asserts that there exists some path such that x holds infinitely
often along the path. This property is not expressible in CTL nor in LTL, yet is crucial when
expressing the existence of fair paths spawning from every reachable state in a system. The
CTL approximation EGAF x differs subtly in that it requires that there exists a path such
that from all states along the path, x will eventually be reached for all futures. In LTL one
can try to approximate a solution by trying to disprove FG ¬x. However, this approach
only goes so far, e.g. we cannot nest the property within another path quantifier, further
stressing the expressive deficiency of LTL.

The property EFG(¬x ∧ (EGF x)), results from nesting the property EGF(x) inside a
larger formula, and conveys the divergence of paths. That is, there is a path in which a
system stabilizes to ¬x, but every point on said path has a diverging path in which x holds
infinitely often. This property is expressible neither in CTL nor in LTL, yet is crucial when
expressing the existence of fair paths spawning from every reachable state in a system. In
CTL, one can only examine sets of states, disallowing us to convey properties regarding
paths. The CTL approximation EFAG(¬x ∧ (EGAF x)) differs in that it requires that there
is a state such that from all states along the path, a system stabilizes to ¬x, yet from every
point on said path, all states have a diverging path in which x holds infinitely often, thus
inducing a property that is unsatisfiable. The slightly weaker EFEG(¬x ∧ (EGAF x)) is also
unsatisfiable. The CTL under approximation EFEG(¬x ∧ (EGEF x)) does indeed entail that
there is a path in which a system stabilizes to ¬x, yet from every point on said path there
exists a state in which x holds at least once. This under approximation is thus not sufficient
given that it cannot satisfy that x must hold infinitely often in the diverging path. In LTL,
one cannot approximate a solution by trying to disprove either FG ¬x or GF x, as one
cannot characterize these proofs within a path quantifier.

Another CTL∗ property AG
[
(EG ¬x) ∨ (EFG y)

]
dictates that from every state of a

program, there exists either a computation in which x never holds or a computation in which
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y eventually always holds. The linear time property G(Fx→ FG y) is significantly stricter as
it requires that on every computation either the first disjunct or the second disjunct hold.
Finally, the property EFG

[
(x ∨ (AF ¬y))

]
asserts that there exists a computation in which

whenever x does not hold, all possible futures of a system lead to the falsification of y. This
assertion is impossible to express in LTL. In Section 8, we further demonstrate the use of
the aforementioned properties on I/O subsystems of the Windows OS kernel, the back-end
infrastructure of the PostgreSQL database server, and the Apache web server.

1.2.2. Extending CTL∗ to Support Linear Past. In the philosophical context of which they were
developed [Kamp 1968; Prior 1957], temporal logics have always provided temporal connec-
tives that refer to both the past and the future. Yet in the context of system verification,
past connectives have been often cast aside for the sake of minimality since they add no
expressive power to linear temporal logics given that a computation always has a definite
starting time and a unique past [Gabbay et al. 1980]. However, specifying temporal formu-
lae can often become overly convoluted when specifying a system’s correctness properties,
thus rendering the intuitiveness and preciseness of temporal logic obsolete. Extending CTL∗

to admit past-time connectives thus allows for exponentially more succinct temporal for-
mulae [Kupferman et al. 2012]. Furthermore, past-time connectives are known to make the
formulation of specifications more intuitive [Lichtenstein et al. 1985].

As with future sub-logics, there exist two interpretations corresponding to two possible
views regarding the nature of the past. In branching-time past (CTL∗bp), past is branching
and each moment in time may have several possible futures and several possible pasts.
In linear-time past (CTL∗lp), past is linear and each moment in time may have several
possible futures and a unique past. Both views assume that past is finite. Extensions to
branching-past connectives have been extensively studied [Kupferman et al. 2012]. The ef-
fect of adding such connectives on the expressiveness and computational complexity of CTL∗

differs from the linear-past results. Branching-past adds expressive power to CTL∗ (CTL∗bp),
while model-checking finite-state systems for CTL∗bp is in PSPACE, and its satisfiability is in
2EXPTIME [Kupferman et al. 2012]. These are the same known complexities as of CTL∗’s.
We have not found CTL∗bp to have beneficial expressiveness to the specific properties we wish

to verify, thus we do not address the extension CTL∗bp in this paper. Instead, we consider the

linear-past extension CTL∗lp for infinite-state systems in which the past is linear and each

moment in time has a unique past. Specifically, we consider a fragment of CTL∗lp in which

the addition of linear-past connectives to CTL∗ (CTL∗lp) does not increase the complexity
of the satisfiability result for finite-state systems [Kupferman et al. 2012]. Yet supporting
linear-past connectives is still sufficiently beneficial given that it enriches temporal logics
with more intuitive and succinct specifications. Automata-theoretic algorithms for the veri-
fication of CTL∗lp properties over finite-state systems have been introduced in [Bozzelli 2008;
Kupferman et al. 2012], however we are not aware of implementations of these techniques.
Additionally, we are not aware of any tools that considers past temporal operators in model
checking for infinite-state programs.

An example of how CTL∗lp can allow us to succinctly and intuitively express properties con-
cerns the verification of a Windows device driver taken from [Ball et al. 2006], where a prop-
erty requires that drivers mark an I/O request packet as pending (using IoMarkIrpPending)
before queuing it, that is:

AG(Queue(Irp)⇒ X−1 (¬Queue(Irp) U−1 IoMarkIrpPending(Irp)))

However, the property written solely in future-connectives would be:

¬Queue(Irp) W IoMarkIrpPending(Irp) ∧
G(Queue(Irp)→ X(¬Queue(Irp) W IoMarkIrpPending(Irp)))
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Note that we would be required to keep track of every queuing action, de-
noted by Queue(Irp), and ensure a queuing call cannot be made until a call to
IoMarkIrpPending(Irp) has been made. If a queuing call has indeed been made, then
we must ensure that future queuing calls cannot be additionally made until additional calls
to IoMarkIrpPending(Irp) have been made. A future-connective formulation is thus less
intuitive and succinct when compared to its past-connective alternative. Using past con-
nectives, we simply ensure that if we encounter a queuing call, then the I/O request packet
has been previously marked as pending, with no other queuing calls in between.

Further on, we discuss the support of a fragment of CTL∗lp using history variables, and
provide further examples of its usage. The fragment we tackle merely restricts that the newly
introduced past formulae be immediately followed by either an additional past formula, or
a state formula. That is, we disallow referring to the future of a path within a past formula.
Note that this does not affect the nesting of state formulae or the further nesting of past
formulae within a CTL∗lp property. We discuss the reasons for such a limitation in further
sections.

We have noted earlier that adding linear-past connectives to CTL∗ adds no additional
expressive power given that a computation always has a definite starting time and a unique
past [Gabbay et al. 1980; Kupferman et al. 2012]. One may speculate that an automated
translation from CTL∗lp to CTL∗ is a more suitable strategy than embedding additional his-

tory variables, however, we believe this not to be the case. For CTL∗lp, and more specif-
ically the fragment in which we tackle, the translation itself is non-elementary, and a
translation algorithm may induce combinatorial explosions, even with limited temporal
height [Laroussinie and Schnoebelen 1995; Kupferman et al. 2012]. The known lower bounds
for conversion from temporal logic with past to temporal logic without past are expressible
in the fragment we consider [Laroussinie and Schnoebelen 1995]. It follows that already
supporting this fragment offers succinctness of expression. Additionally, the conversion of
linear-past connectives to future connectives would likely produce sub-formulae resembling
the history variables we introduce. Hence, a translation strategy with an accompanying
combinatorial formulae explosion would not be beneficial in practice. We are not aware of
any implementations of the (non-elementary) translation from LTL with past, to LTL (and
clearly none for CTL∗lp).

1.3. Approach and Contribution

Our main contribution is an automated model-checking method that allows for the arbitrary
nesting of state-based reasoning within path-based reasoning, and vice versa. Our strategy
is to recursively partition a CTL∗ formula, and for each nested sub-formula synthesize a
precondition that ensures its satisfaction. The nested sub-formula would then be substituted
with its new-found precondition, and the process would be repeated for the next outer sub-
formula. The essence of our algorithm thus lies within acquiring sufficient preconditions for
path formulae that admit a sound interaction with state formulae. Towards this purpose
we recursively deconstruct a CTL∗ formula in a way that allows us to determine where
the subtle interplay between the arbitrary nesting of path and state formulae occurs. To
reason about the path sub-formulae, we find a sufficient set of branching nondeterministic
decisions within a program’s transition relation. We then devise a method of temporarily
substituting said nondeterministic decisions with a symbolically partially-determinized form.
That is, nondeterministic decisions regarding which paths are taken are determined by
variables that summarize some decisions regarding the future of the program execution.
When interchanging between path and state formulae, these determinized relations must
then be collapsed to incorporate path quantifiers. Preconditions for the given CTL∗ property
can then be acquired via existing CTL model checkers.
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Furthermore, we extend our CTL∗ algorithm to support part of CTL∗lp via the instrumen-

tation of a unique history variable per past connective present within a CTL∗lp formula. The
history variable tracks the state of the consequent nested temporal formula. If the conse-
quent nested formula within a past connective is a state sub-formula, the history variable is
satisfied based on the state of the sub-formula’s synthesized preconditions. However if the
nested formula is another past connective, the history variable is satisfied based on the state
of an additional history variable associated with the sub-formula. The satisfaction of a his-
tory variable is clearly dependent on which past connective is being verified. Additionally,
the history variables are analyzed within a larger context of a future formula, that is, they
are instrumented when verifying a future CTL∗ sub-formula which incorporates their corre-
sponding past sub-formulae. For the sake of clarity, we will first demonstrate our technical
contributions of exclusively verifying CTL∗, followed by further sections demonstrating how
we can extend our algorithm to support this part of CTL∗lp.

Based on our approach, we have developed a tool capable of automatically proving prop-
erties of programs that no tool could previously fully automate. The paper closes with
a description of our experimental results using the developed tool on various programs
drawn from industrial examples. Our tool is available under the MIT open-source license
at https://github.com/hkhlaaf/T2/.

Limitations. Our tool does not support programs with heap, nor do we support recursion
or concurrency. The heap-based programs we consider during our experimental evaluation
have been abstracted using an over-approximation technique introduced by [Magill et al.
2007]. Effective techniques for proving temporal properties of programs with heap remains
an open research question. Our technique relies on the availability of CTL model checking
and non-termination procedures. It is, in principle, applicable to every class of infinite-
state systems for which such procedures are available (provided that integer variables are
allowed). Additionally, our procedure is not complete as we use a series of techniques for
safety [McMillan 2006], termination [Podelski and Rybalchenko 2004; Cook et al. 2013],
nontermination [Gupta et al. 2008], and CTL [Beyene et al. 2013; Cook et al. 2014] that are
not complete. Furthermore, our determinization procedure is not complete. We will address
this issue in later sections.

2. PRELIMINARIES

2.1. Defining Programs and Transition Systems

As is standard [Manna and Pnueli 1995], we treat programs as control-flow graphs, where
edges are annotated by the updates they perform to variables. A program is a triple P =
(L, E,Vars), where L is a set of locations, E is a set of edges/transitions, and Vars is a
set of variables ranging over domain Vals. Each edge τ = (`, ρ, `′) in E, where `, `′ ∈ L
and ρ is a condition, specifies possible transitions in the program. The condition ρ is an
assertion in terms of Vars and Vars′, a primed copy of Vars, where constants range over Vals.
In general, Vars refers to the values of variables before an update and Vars′ refers to the
values of variables after an update. We use a similar notation for conditions, i.e., if a is a
condition over Vars, a′ is the same condition where every reference to a variable v is replaced
by reference to v′. For example, if a is x = 5 then a′ would be x′ = 5. Note that we do not
give exact details pertaining an assertion language as the technique (per-se) is not limited
to a specific one. Concretely, our implementation which depends on existing model-checker
technology, uses linear constraints over variables of the program. For example, x′ = x + 1
or x′ > 0 are possible assertions that would be handled by our model-checker while more
complicated assertions, such as x′ = x2, would not be.

The set of locations L includes the first location `
I
, which has no incoming transitions

from other program locations. That is, for every τ = (`, ρ, `′) ∈ E we have `′ 6= `
I
. Transi-

tions exiting `
I

have their conditions expressed in terms of Vars′. Locations with incoming
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transitions from `
I

are initial locations. This allows us to encode more complex initial con-
ditions. In figures, we omit `

I
and merely display the edges to locations with incoming

transitions from `
I
.

A program gives rise to a transition system T = (S,R), where S is the set of program
states of the form S = (L−{`

I
})×(Vars→ Vals) and R ⊆ S×S. A program state s is a pair

(`, f) where ` 6= `
I

and f is a valuation, i.e., a function from program variables to values.
That is, a state of a program is described by a certain location in the control-flow graph and
its corresponding variable valuation. Assertions, as above, represent both sets of program
states and updates to program variables. Assertions can relate variables to their values and
can refer to locations from the control-flow graph (but not necessarily). Assertions that refer
to locations treat locations as boolean propositions. For example, `1 ∧ x = 5 is an assertion
describing all states in which the program is in `1 and the value of variable x is 5. The
assertion x′ = x + 1 describes the update of the value of x by incrementing it by 1. With
regards to locations, a primed location indicates that it is the target transition. Later on,
we use the term preconditions for assertions that describe sets of states of the program that
satisfy a certain property, and thus probably include reference to locations.

A program can transition from (`, f1) to (`′, f2) if there exists a transition (`, ρ, `′) ∈ E
such that (f1, f2) |= ρ. The valuation (f1, f2) is a function from Vars∪Vars′ to Vals such that
for every v ∈ Vars, (f1, f2)(v) = f1(v) and (f1, f2)(v′) = f2(v). A state (`, f) is considered
initial if there is a transition (`

I
, ρ, `) such that (f−1, f) |= ρ, where f−1 is some arbitrary

valuation. Notice that in this case ρ is expressed in terms of Vars′ and hence the valuation
f−1 does not affect the satisfaction of ρ.

Given V ⊆ Vars, the valuation obtained from f by restricting the valuation to variables in
V is denoted by f⇓V . The restriction of states of the form (`, f) and paths in the program
is defined similarly, e.g., π⇓V .

Paths. A path or a trace π in P is an infinite sequence of states (`0, f0), (`1, f1),. . ., where
for every i ≥ 0, there exists some (`i, ρi, `i+1) ∈ E where (fi, fi+1) |= ρi. We say that π is
an (`, f)-path if `0 = ` and f0 = f . Given a program P , a location `, and a valuation f ,
we denote the set of (`, f)-paths in P by Path(P, `, f). We say that π is a computation in
P if (`, f) is initial. Note that we restrict our attention to infinite paths and computations.
In practice, we modify programs, transition systems, and temporal logic formulae to ensure
that all paths are infinite, as is done, e.g., in [Cook et al. 2015].

2.2. CTL∗ Syntax and Semantics

We are interested in verifying full computation tree logic (CTL∗) [Lamport 1980; Emerson
and Halpern 1986]. The syntax of CTL∗ (written in negation normal form) includes state
formulae ϕ, that are interpreted over states, and path formulae ψ, that are interpreted
over paths. We assume that atomic propositions (ranged over by α) are expressed in some
underlying theory over variables and constants (e.g. x < y). State formulae (ϕ) and path
formulae (ψ) are co-defined:

ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | Aψ | Eψ
ψ ::= ϕ | ψ ∧ ψ | ψ ∨ ψ | Gψ | Fψ | Xψ | [ψWψ] | [ψUψ]

For a program P and a CTL∗ state formula ϕ, we say that ϕ holds at a state s in P ,
denoted by P, s |= ϕ if:
— If ϕ = α, then P, s |= α iff s |= α
— If ϕ = ¬α, then P, s |= ¬α iff s 6|= α
— If ϕ = ϕ1 ∨ ϕ2, then P, s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2

— If ϕ = ϕ1 ∧ ϕ2, then P, s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

— If ϕ = Aψ, then P, s |= Aψ iff ∀π = (s, ...). P, π |= ψ
— If ϕ = Eψ, then P, s |= Eψ iff ∃π = (s, ...). P, π |= ψ
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Path formulae are interpreted over paths. For a program P and a CTL∗ path formula ψ,
we say that ψ holds on a path π = (s0, s1, . . .) in P for location i, denoted by P, π, i |= ψ if:
— If ψ = ϕ is a state formula, then P, π, i |= ϕ iff P, si |= ϕ.
— If ψ = ψ1 ∨ ψ2, then P, π, i |= ψ1 ∨ ψ2 iff P, π, i |= ψ1 or P, π, i |= ψ2

— If ψ = ψ1 ∧ ψ2, then P, π, i |= ψ1 ∧ ψ2 iff P, π, i |= ψ1 and P, π, i |= ψ2

— If ψ = Xψ1, then P, π, i |= Xψ1 iff P, π, i+ 1 |= ψ1

— If ψ = Fψ1, then P, π, i |= Fψ1 iff ∃j ≥ i. P, π, j |= ψ1

— If ψ = Gψ1, then P, π, i |= Gψ1 iff ∀j ≥ i. P, π, j |= ψ1

— If ψ = ψ1Wψ2, then P, π, i |= ψ1Wψ2 iff either ∃k ≥ i. P, π, k |= ψ2 and ∀i ≤ j <
k. P, π, j |= ψ1 or ∀j ≥ i. P, π, j |= ψ1

— If ψ = ψ1Uψ2, then P, π, i |= ψ1Uψ2 iff ∃k ≥ i. P, π, k |= ψ2 and ∀i ≤ j < k. P, π, j |= ψ1

A path formula ψ holds in a path π, denoted by P, π |= ψ, if P, π, 0 |= ψ. For a state
formula ϕ, ϕ holds on P , denoted by P |= ϕ, if for every initial state s we have P, s |= ϕ.
When the program P is clear from the context, we may write s |= ϕ for a state formula ϕ
or π, i |= ψ for a path formula ψ.

The branching-time logic CTL is a restricted subset of CTL∗ in which temporal operators
cannot be nested. That is, the only path formulae allowed are Gϕ1, Fϕ1, Xϕ1, ϕ1Uϕ2, and
ϕ1Wϕ2 for state formulae ϕ1 and ϕ2. The linear-time logic LTL is a fragment of CTL∗ that
only allows formulae of the form Aψ, where A is the only occurrence of a path quantifier
within ψ. When taking LTL as subset of CTL∗, LTL formulae are implicitly prefixed with
the universal path quantifier A.

2.3. Utilizing Strongly Connected Subgraphs

Identifying a program’s strongly-connected subgraphs allows us to find the set of branching-
relations that characterize instances of branching nondeterministic decisions within a pro-
gram’s transition relation. These branching-relations are distinguished if there exists two
nondeterministic transitions stemming from the same location and yet are not part of the
same strongly-connected subgraph. We provide some notation regarding strongly-connected
subgraphs followed by the definition of branching-relations below.

For a program P and n ≥ 1, we denote an ordered sequence of locations `0, ..., `n as a
cycle c if `n = `0 and for every i ≥ 0 there exists some (`i, ρi, `i+1) ∈ E. Let C be the set
of program locations such that ` ∈ L appears in some cycle c. That is, C = {` | ∃c. ` ∈ c}.
For a program P and the set of locations C, we identify SCS(P,C) as some maximal set
of non-trivial strongly-connected subgraphs (SCSs) of P such that every two subgraphs
G1, G2 ∈ SCS(P,C) are either disjoint or one is contained in the other and for every
` ∈ C, there exists at least one G ∈ SCS(P,C) such that ` ∈ G. The details regarding the
identification of C and SCS(P,C) are standard and thus omitted here (see, e.g., [Cormen
et al. 2001]). We denote the minimal SCS in SCS(P,C) that contains a location ` ∈ L by
MinSCS(P,C, `). This is well defined as every two SCSs in SCS(P,C) are either disjoint
or on is contained in the other. For example, consider the control-flow graph in Figure 1.
One possible partition is {`1, `2}, {`1, `2, `3}, and {`1, . . . , `4}. The minimal SCS containing
`1 is {`1, `2} and the minimal SCS containing `3 is {`1, `2, `3}. An alternative partition is
{`1, `4}, {`2, `3}, and {`1, . . . , `4}. According to this partition the minimal SCS containing
`3 is {`2, `3}.

Branching-relations are pairs (ρ1, ρ2) such that for some location `, (`, ρ1, `
′) and (`, ρ2, `

′′)
are transitions of P and `′ ∈ MinSCS(P,C, `) and `′′ /∈ MinSCS(P,C, `). That is, ρ1 is
the condition for remaining in the (minimal) SCS of ` and ρ2 is the condition for leaving
the (minimal) SCS of `. Consider Figure 1 again, the pair (ρ1, ρ7) is a branching-relation
over `1 when considering the first aforementioned partition. Indeed, ρ1 stays within the
MinSCS(P,C, `1) = {`1, `2} but ρ7 leaves it. The pair (ρ4, ρ8) is a branching-relation over
`4 when considering the second partition, but not the first. We note that one pair is sufficient
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`1 `2 `3 `4
ρ1 ρ2 ρ3

ρ4ρ5ρ6

ρ7

ρ8

Fig. 1: A control-flow graph with multiple possible partitions of SCSs.

evidence that some transitions are leaving the SCS. In the case that there are multiple
transitions leaving an SCS (or staying in the SCS), then multiple branching-relations can
identify the same location.

3. APPROACH OVERVIEW AND EXAMPLE

3.1. Overview

In this section, we present a quick overview of our CTL∗ verification procedure ProveCTL∗,
presented in Alg. 4 and Alg. 3 with an in-depth explanation provided later in Section 4.
The procedure is designed to recurse over the structure of a given CTL∗ formula, and for
each sub-formula θ we produce a precondition a that ensures its satisfaction. That is, a is
an assertion over program variables and locations characterizing the states of the program
that satisfy θ. We start by finding the precondition of the innermost sub-formula, followed
by searching for the preconditions of the outer sub-formulae dependent on it.

A given CTL∗ formula is deconstructed to differentiate between state and path sub-
formulae, as the crux of verifying CTL∗ formulae lies within identifying the interplay between
the arbitrary nesting of path and state formulae. Preconditions for branching-time logic
state formulae can be acquired via existing CTL model checking techniques that return
an assertion characterizing the states in which a sub-formula holds. The essence of our
algorithm is thus within how we acquire sufficient preconditions for path formulae that
admit a sound interaction with state formulae. The algorithm is based on the procedures
below, which are defined in later sections of the paper:

Approximate is a procedure that performs a syntactic conversion from a path formula to its
corresponding over-approximated universal CTL formula (ACTL)2. The over-approximated
formula can then be checked by an existing CTL model checker over a symbolically partially-
determinized form of the program to reduce path formula verification to state formula
verification.

Determinize allows us to reason about path characterization through state characteriza-
tion, as the satisfaction of an ACTL over-approximated formula implies the satisfaction of
the path formula. However, the inverse does not hold. The procedure thus constructs a form
of a partially-determinized program over the symbolic representations of all characterized
instances of branching nondeterminism (i.e. branching-relations), stemming from the same
program location `. That is, nondeterministic decisions regarding which paths are taken
would be determined by prophecy variables, which determine future outcomes of the pro-
gram execution, and their values [Abadi and Lamport 1991]. Recall that branching-relations
are distinguished if they are not part of the same strongly connected subgraph.

QuantElim acquires the proper set of states that satisfy a formula that has been verified
over a determinized program. This allows for the path quantification present within a CTL∗

formula, that is, whether all paths (or some paths) starting from a state satisfy a path

2ACTL is the universal subset of CTL where one can only address all possible paths with the universal
quantifier A (e.g. AG or AF), but not the existence of some paths with E (e.g. EG or EF).
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`1 `2

ρ1 : x′ = 1

ρ2 : x′ = x

ρ3 : x′ = 0

ρ4 : x′ = x

`1 `2

ρ1 : x′ = 1

ρ2 : n`1 6= 0
n′`1 = n`1 − 1
x′ = x

ρ3 : n`1 = 0
x′ = 0

ρ4 : x′ = x

(a) (b)

Fig. 2: (a) The control-flow graph of a program for which we wish to prove the CTL∗ property
EFG x = 1. (b) The control-flow graph after calling Determinize, it includes the prophecy
variable n`1 corresponding to the nondeterministic branching-relation (ρ2, ρ3).

formula. When a CTL∗ formula of the form θ ::= Aψ | Eψ is reached after acquiring a set of
states satisfying ψ, θ is verified on the same determinized program used for ψ. We then must
use quantifier elimination to acquire the proper set of states that satisfy θ, thus quantifying
the assertions over the values of the prophecy variables. If the formula is of the form Aψ,
we universally quantify the prophecy variables appearing in the set of states that satisfy
Aψ. If the formula is of the form Eψ, we existentially quantify the prophecy variables.

3.2. Example

Consider the program in Fig. 2(a) and the property EFG x = 1 stating that there exists
a possible future where x = 1 will eventually become true and stay true. This is a system
stabilization property, which can only be expressed in CTL∗. The property clearly holds for
the program as evidenced by the path (`1, 〈x 7→ 1〉), (`1, 〈x 7→ 1〉), . . ., which remains in `1
forever. In order to check this property we recursively handle its sub-formulae. We begin
by identifying that G x = 1 is a path formula, and thus use Approximate to return the
over-approximated state formula AG x = 1. We then initiate a CTL model checking task
where we seek a set of states aG such that EFaG holds, and for every state s such that s |= aG
we have s |= AG x = 1.

Our formula would now only be valid if we can find a set of states that are eventually
reached in a possible future from the program’s initial states such that AG x = 1 holds.
However, no such set of states exists as the nondeterministic choice from `1 to ρ2 and ρ3
does not allow us to determine if we will eventually leave the loop or not. That is, there
exists no set of states that can exemplify the infinite branching possibilities of leaving ρ2
to possibly reaching ρ3 or remaining in ρ2 forever. In order to reason about the original
sub-formula G x = 1, we must be observing sets of paths, not states. Given that we over-
approximated our formula in a way that allows us to only reason about states, we thus
symbolically determinize the program to simultaneously simulate all possible related paths
through the control flow graph and try to separate them to originate from distinct states
in the program.

Our procedure Determinize would then return a new symbolically partially-
determinized program in which a newly introduced prophecy variable, named n`1 in
Fig. 2(b), is associated with the branching-relation (ρ2, ρ3), and is used to make predic-
tions about the occurrences of relations ρ2 and ρ3. Recall that branching-relations are pairs
of nondeterministic transitions, one remaining in a SCS and the other leaving the same
SCS. In this case, ρ3 is indeed disjoint from the strongly connected subgraph of `1.

Given that we initialize n`1 to a nondeterministic value, for every path in the program,
a positive concrete number chosen at the nondeterministic assignment predicts the number
of instances that transition ρ2 is visited before transitioning to ρ3. That is, we remain in
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ρ2 until n`1 = 0, with n`1 being decremented at each passage through the loop. Once we
terminate the loop, the prophecy variable is nondeterministically reset (for the case that
we return to the same loop again). A negative assignment to n`1 denotes remaining in ρ2
forever, or non-termination. We note that this modification does not change the set of traces
of the program.

We can now utilize an existing CTL model-checker to return an assertion characterizing
the states in which G x = 1 holds by verifying the determinized program, denoted by PD,
using the over-approximated CTL formula AG x = 1. The assertion aG = (`1 ∧ n`1 < 0) is
returned. Indeed, from states where the program is in `1 and when n`1 < 0 the program
remains in `1 forever. We proceed by replacing the sub-formula with its assertion in the
original CTL∗ formula, resulting in EFaG. To verify the outermost CTL∗ formula, EF, note
that syntactically this is a readily acceptable CTL formula. However, we cannot simply use a
CTL model checker as the path quantifier E exists within a larger relation context reasoning
about paths given the inner formula FG. We thus must use the CTL model-checker to verify
EFaG over the same determinized program previously generated.

Our procedure returns with the same precondition (`1∧n`1 < 0). Indeed, the set of states
that eventually reach `1 with n`1 < 0 are those that start in `1 with n`1 < 0. We then use
quantifier elimination to existentially quantify out all introduced prophecy variables. The
existential quantification corresponds to searching for some path (or paths) that satisfy
the path formula. Thus, if there is a state s in the original program, and some value of
the prophecy variables v such that all paths from the combined state (s, n`1 = v) in PD
satisfy the path formula then clearly, these paths give us a sufficient proof to conclude
that EFG x = 1 holds from s in P . In our case, this indeed happens and the program, as
mentioned, satisfies the formula.

4. CHECKING CTL∗ FORMULAE

In this section, we describe the details of our CTL∗ model checking procedure ProveCTL∗.
We first define the procedures utilized by ProveCTL∗, namely Determinize and
Approximate, followed by our model checking procedure and its utilization of Quan-
tElim.

4.1. Determinization

The procedure Determinize constructs a form of symbolically partially-determinized pro-
gram by considering branching-relations that characterize instances of branching nonde-
terminism. Note that a partial determinization denotes that a program will still include
non-determinism following the transformation. We present our procedure in Alg. 1, where
a program P is given and a partially-determinized program PD, contingent upon nonde-
terministic branching-relations, is returned. Ultimately, Determinize is designed to allow
proof tools for branching-time logic state formulae to be used to reason about path formulae.

We begin by finding a sufficient set of branching-relations to symbolically determinize
the program to one which has the same set of paths as the original. These relations are
distinguished if there exist at least two nondeterministic relations stemming from the same
location and yet are not part of the same strongly-connected subgraph. Our procedure
thus begins by iterating over the set of a program’s edges, (`, ρ, `′) ∈ E on line 6. We
identify whether or not ` ∈ C given that G = MinSCS(P,C, `) and G 6= ∅ on lines 7 and
8. If from some location `, where G = MinSCS(P,C, `), there is an edge to `′ such that
MinSCS(P,C, `′) is not equivalent to G, we can conclude that the transition from ` to `′

leaves the SCS of `. We only desire that ` and `′ be elements of the most minimal SCS
as such an edge eludes to the nondeterministic decision point where a transition diverted
from remaining within an SCS. This nondeterministic point is key to the identification of
where determinization must occur to facilitate the application of state-based reasoning to
path-based reasoning for a given program P .
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ALGORITHM 1: Determinize identifies branching-relations and constructs a symbolically de-
terminized program over them.

1 Let Determinize(P ) : program =
2 PD = P
3 Synth = [ ]
4 (LD, ED,VarsD) = PD
5 C = CyclePoints(P )
6 foreach (`, ρ, `′) ∈ ED do
7 G = MinSCS(P,C, `) ∈ SCS(P,C)
8 if G 6= ∅ ∧MinSCS(P,C, `′) 6= G then
9 Synth = ` :: Synth

10 foreach (`, ρ, `′) ∈ ED do
11 if ` ∈ Synth then
12 VarsD = VarsD ∪ n` ∈ Z
13 if `′ ∈MinSCS(P,C, `) then
14 ρ = ρ ∧ (n` 6= 0) ∧ (n′` = n` − 1)

15 else
16 ρ = ρ ∧ (n` = 0)

17 return PD

If the strongly connected subgraphs of ` and `′ do differ, we add ` to Synth, a list
that tracks locations with nondeterministic branching points. For every such location, we
identify branching-relations corresponding to the decision of either remaining in the same
SCS, or leaving it. After finding all possible elements of Synth, on line 11 we iterate over the
program edges, and for the branching-relations encountered we introduce a new prophecy
variable to predict the future outcome of the decision. Recall that there may exist multiple
transitions leaving (or staying in) a strongly connected subgraph, as multiple branching-
relations can identify the same location. In such a case, only one prophecy variable is
produced for each location, and is utilized across these transitions. Indeed, our motivation
is to identify nondeterministic points so we can symbolically simulate all possible branching
paths through a program, yet decisions regarding which paths are taken are determined by
prophecy variables and their values. Information regarding different paths is now stored in
the state of the modified program. This allows for a correspondence such that the verification
path formulae can be reduced to the verification of ACTL formulae.

When an edge (`, ρ, `′) ∈ E is reached containing ` ∈ Synth, a prophecy variable
n` ∈ Z is added to the set of program variables Vars at line 13. If `′ is contained within
MinSCS(P,C, `), we constrain ρ by requiring that n` > 0, and then decrement n`. If `′ is
not contained within MinSCS(P,C, `), we constrain ρ by n` = 0, and n′` remains uncon-
strained, entailing a reset to a nondeterministic integer value. The nondeterministic decision
of the number of times a cycle is passed through is thus now determined by the prophecy
variable n`. In the case that n` < 0, this rule corresponds to behaviors where every visit
to ` is followed by a successor in the same SCS (i.e., the computation always remains in
the SCS of `). The nondeterminism within a transition relation is thus either determined
at initialization by the initial choice of values for n` or else later in a path by choosing new
nondeterministic values for n`.

We show that the determinization maintains the set of paths in the original program and
the prophecy variables introduced merely trade nondeterminism in the transition relation
for a larger, nondeterministic state space.
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Theorem 4.1. For every path π in P there is a path π′ in PD such that π′⇓Vars = π.
Furthermore, for every path π′ in PD it holds that π′⇓Vars is a path in P .

Proof.

— Consider a path π in P where π = (`0, f0), (`1, f1), . . .. Consider a location `j , an SCS
Gj such that Gj = MinSCS(P,C, `j), and the variable nlj . We can annotate each pair
(`i, fi) in π by the number of expected future visits to Gj . We call a transition (`, ρ, `′)
a reset transition for nlj if ` ∈ Gj and `′ /∈ Gj or if ` = `I . Notice that in PD, a reset
transition (`, ρ `′) is conjuncted to nlj = 0. This leaves the value of n′lj unconstrained,

assigning it an arbitrary value once such a transition is taken. We call a transition (`, ρ, `′)
an internal transition for nlj if ` ∈ Gj , `′ ∈ Gj and there is some `′′ /∈ Gj and a transition
(`, ρ′, `′′). Notice that in PD the transition (`, ρ, `′) is conjuncted to n′lj = nlj − 1. Also,

in PD every transition that is neither reset nor internal for nlj is conjuncted (implicitly)
to n′lj = nlj . It follows that for every i ≥ 0 the number of internal transitions for nlj
that appear until a reset transition is well-defined (and may be infinity). Clearly, this
annotation also matches the transition in PD. It follows that by adding an appropriate
annotation for every nl that is added to PD, we get a path in PD whose projection on
Vars is exactly that of path π.

— Consider an infinite path π′ in PD. Now consider a pair of states ((`, (f, v)), (`′, (f ′, v′))
appearing in π′, where v and v′ are the assignments to the prophecy variables appearing in
PD. By definition, there is a transition (`, ρ′, `′) in PD such that ((`, (f, v)), (`′, (f ′, v′)) |=
ρ′. However, ρ′ = ρ ∧ ξ, where ρ is an assertion over Vars and ξ is the assertion over the
prophecy variables. It then must be the case that (f, f ′) |= ρ. It follows that π = π′⇓Vars
is a path in P .

4.2. Approximation

In Alg. 2, we present a syntactic conversion from pure linear-time formulae in CTL∗, that
is LTL, to a corresponding over-approximation in ACTL. Our procedure is given a path
formula ψ and two atomic preconditions, aθ′1 and aθ′2 , corresponding to the satisfaction of the
nested CTL∗ formulae which appear within ψ. Recall that a precondition is an assertion over
program variables and locations, characterizing the states of a program that satisfy a certain
temporal formula. The precondition aθ′2 is a conditional parameter utilized only when LTL
formulae requiring two properties (e.g. W , U, ∧, ∨) are given. Due to the recursive nature
of ProveCTL∗, presented in the next section, these preconditions would have already been
priorly generated.

On lines 3 – 7, we instrument a universal path quantifier A preceding the appropriate
temporal operators. Not only so, but the sub-formulae θ′1 and θ′2 are replaced with their
corresponding preconditions aθ′1 and aθ′2 , respectively. This aligns with how ProveCTL∗

will recursively iterate over each inner sub-formula followed by search for the preconditions of
the outer sub-formulae dependent on it. Replacing a path formula by its CTL approximation
indeed is sound in the sense that if the modified formula holds then the original holds as
well. Note that in the context of a deterministic program, approximation is both sound and
complete. That is, both path formula and corresponding state formula have the same truth
value. This follows from every state having at most one possible future.

In the following Theorem, for notational convenience, we assume that every path operator
has an arity of two and refer to its operands. In case the second operand (or both) do not
exist then they are not important and can be ignored.

15



ALGORITHM 2: Approximate produces a syntactic conversion from a path formula to its
corresponding over-approximation in ACTL.

1 Let Approximate(ψ, aθ′1 , aθ′2) : ϕ =
2 match (ψ) with
3 Fθ′1 → return AFaθ′1
4 Gθ′1 → return AGaθ′1
5 Xθ′1 → return AXaθ′1
6 θ′1Wθ′2 → return Aaθ′1Waθ′2
7 θ′1Uθ

′
2 → return Aaθ′1Uaθ′2

8 θ′1 ∧ θ′2 → return aθ′1 ∧ aθ′2
9 θ′1 ∨ θ′2 → return aθ′1 ∨ aθ′2

Theorem 4.2. Consider a program P and a path formula ψ, where θ1 and θ2 are the di-
rect sub-formulae of ψ. Let aθi be an approximation of θi such that for every state s we have
P, s |= aθi implies P, s |= Aθi. Then, for every state s, we have P, s |= Approximate(ψ)
then P, s |= Aψ.

Proof. For propositions and Boolean combinations of simpler formulae, the proof is
immediate.

— Suppose that ψ = Gθ1. Then, Approximate(ψ, aθ1 , aθ2) is AG(aθ1). Suppose that s |=
Approximate(ψ, aθ1 , aθ2) but s 6|= Aψ. Then, there is a path π starting in s such that
π does not satisfy Gθ1. It follows that there is a suffix π′ of π that does not satisfy θ1.
Let s′ be the first state in π′. However, by assumption, s′ |= aθ1 . This contradicts the
assumption about aθ1 .

— Suppose that ψ = Fθ1. Then, Approximate(ψ, aθ1 , aθ2) is AF(aθ1). Suppose that s |=
Approximate(ψ, aθ1 , aθ2) but s 6|= Aψ. Then, there is a path π starting in state such
that π does not satisfy Fθ1. However, by s |= Approximate(ψ, aθ1 , aθ2), there is a suffix
π′ of π such that the first state s′ in π′ satisfies aθ1 . It follows that π′ satisfies θ1 and
that π satisfies AFθ1.

— The proofs for until and weak until are similar but take further corner cases into account.

Theorem 4.2 does not consider existential path quantification. In order to conclude that
the CTL∗ formula P, s |= Eψ for some path formula ψ, we require that there is some value
v of the prophecy variables such that PD, (s, v) |= Aψ. This means that when restricting
attention to a certain set of paths that start in a state s (those that match the valuation v
for prophecy variables), all paths in the set satisfy the formula ψ. Clearly, this satisfies the
requirement that there is some path that satisfies the formula.

4.3. CTL∗ Verification Procedure

In this section, we present our main CTL∗ verification procedure, ProveCTL∗. Alg. 3 de-
picts Verify, which wraps the main procedure ProveCTL∗, shown in Alg. 4. We generate
a determinized copy of the program, PD, using the aforementioned procedure Determinize.
This program is then passed into ProveCTL∗ along with the original program P and a
CTL∗ property θ. ProveCTL∗ then returns an assertion a, characterizing the states in
which θ holds. The second argument returned is disregarded, indicated by “ ”, as it is only
used within the recursive calls of ProveCTL∗. When ProveCTL∗ returns to Verify,
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ALGORITHM 3: Verify wraps ProveCTL∗ and then checks all initial states.

1 Let Verify(θ, P ) : bool =
2 (L, E,Vars) = P
3 PD = Determinize(P )
4 (a, ) = ProveCTL∗(θ, P, PD)
5 return ∀(`I , ρ, `) ∈ E ∀f : Vars→ Vals . (f−1, f) |= ρ implies (`, f) |= a

it is only necessary to check if the precondition a is satisfied by the initial states of the
program.

We now turn to the main procedure ProveCTL∗ in Alg. 4. In order to synthesize a pre-
condition for a CTL∗ property θ, a given CTL∗ formula is first deconstructed to differentiate
between state and path sub-formulae, as the crux of verifying CTL∗ formulae lies within
identifying the interplay between the arbitrary nesting of path and state formulae. On line
3, if θ can be identified as a state formula ϕ, we carry out the set of actions on lines 4 – 20.
If θ is identified as a path formula ψ, we then carry out the set of actions on lines 21 – 31.
Note that in our algorithm, we denote any temporal operator (i.e., F,G,X,W and U) by
◦. For both the state and path formulae cases, we recursively accumulate the preconditions
generated when considering the sub-formulae of θ at lines 7, 8, 10, 13, 24, 25, and 27. That
is, for each sub-formula θ, we produce a precondition aθ that ensures its satisfaction. We
note that the precondition of an atomic proposition α is the proposition itself, as shown on
line 13. The precondition is then utilized in the remaining actions of the algorithm.

4.3.1. Verifying Path Formulae. When a path formula ψ is reached, we begin by over-
approximating the path formula by syntactically converting it to the universal subset of
branching-time logic (ACTL) using the procedure Approximate. Recall that the precon-
ditions generated when considering the sub-formula(e) of ψ at lines 24, 25, and 27 will be
utilized by Approximate to replace θ′1 and θ′2 with their corresponding preconditions aθ′1
and aθ′2 , respectively. On line 29, Approximate would then return a corresponding state
formula ψ′ where a universal path quantifier precedes the temporal operator within ψ.

A precondition for the newly attained ACTL formula ψ′ can now be acquired via existing
CTL model checkers which return an assertion characterizing the states in which ψ′ holds.
Existing tools which support this functionality include [Beyene et al. 2013] and [Cook et al.
2014]. In our tool prototype, we build upon the latter. Recall that a precondition for a
path formula requires more than a precondition for the corresponding state formula, as ψ′

is merely an over-approximation. We thus must utilize the provided determinized program
PD when employing a CTL model checker rather than the original program P , as shown on
line 30. The assertion aθ is then returned characterizing the sets of states in which θ holds.

Recall that PD leads to better correspondence between ψ and ψ′. That is, we find a suffi-
cient set of branching-relations, which determinize the program to one which has the same
set of paths as the original, yet decisions regarding which paths are taken are determined by
introduced prophecy variables and their values, allowing us to reduce path-based reasoning
to state-based reasoning. The assertion aθ that is returned thus may be defined over the
introduced prophecy variables in PD.

Finally, on line 31, we set the boolean flag Path to true. This flag is the second argument
to be returned by ProveCTL∗. It indicates to the caller that the result aθ returned by
the recursive call is approximated. The value of Path is used for deciding whether to use
aθ as is or modify it (in the case that the verified sub-formula is a state or a path formula,
respectively), admitting a sound interaction between state and path formulae. Below, we
further demonstrate this point.
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ALGORITHM 4: Our recursive CTL∗ verification procedure employs an existing CTL model
checker and uses our procedures Approximate and QuantElim. It expects a CTL∗ property θ, a
program P , and its determinized version PD as parameters. An assertion characterizing the states
in which θ holds is returned along with a boolean value indicating whether the formula checked
was a path formula (and hence approximated).

1 Let rec ProveCTL∗ (θ, P, PD) : (formula, bool) =
2 (L, E,Vars) = P
3 match (θ) with
4 ϕ : stateformula →
5 match (ϕ) with
6 θ′1 ∨ θ′2 | θ′1 ∧ θ′2 | Aθ′1 ◦ θ′2 | Eθ′1 ◦ θ′2 →
7 (aθ′1 ,Path1) = ProveCTL∗(θ′1, P, PD)

8 (aθ′2 ,Path2) = ProveCTL∗(θ′2, P, PD)

9 A◦θ′ | E◦θ′ →
10 (aθ′1 ,Path1) = ProveCTL∗(θ′, P, PD)

11 (aθ′2 ,Path2) = (False,False)

12 match (ϕ) with
13 α → aθ = α;
14 →
15 ϕ′ = Replace(ϕ, aθ′1 , aθ′2)

16 if Path1 ∨ Path2 then
17 aθ = QuantElim(CTL(PD, ϕ

′), ϕ)

18 else
19 aθ = CTL(P,ϕ′)

20 Path = False

21 ψ : pathformula →
22 match (ψ) with
23 θ′1 ∨ θ′2 | θ′1 ∧ θ′2 | θ′1 ◦ θ′2 →
24 (aθ′1 ,−) = ProveCTL∗(θ′1, P, PD)

25 (aθ′2 ,−) = ProveCTL∗(θ′2, P, PD)

26 ◦θ′ →
27 (aθ′1 ,−) = ProveCTL∗(θ′, P, PD)

28 aθ′2 = False

29 ψ′ = Approximate(ψ, aθ′1 , aθ′2)

30 aθ = CTL(PD, ψ
′)

31 Path = True

32 return (aθ,Path)

4.3.2. Verifying State Formulae. In the case that a state formula ϕ is reached, we partition
the state sub-formulae by the syntax of CTL as shown on lines 6 and 9. Recall that temporal
operators are denoted by ◦. This allows us to not only utilize existing CTL model checkers,
but to also eliminate the redundant verification of a temporal operator, when it is already
preceded by a path quantifier. As a side effect of partitioning ϕ in such a way, a path
formula ψ will always be in the form of a pure linear-time path formula, that is, LTL.
This particular deconstruction of a CTL∗ formula is what allows us to identify the intricate
interplay between path and state formulae.
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We begin by recursively generating preconditions when considering the sub-formula(e)
of ϕ at lines 7, 8, and 10. Recall that the precondition of an atomic proposition α is the
proposition itself, we thus return the atomic sub-formula on line 13, where no further work
is necessary. Otherwise, the recursively acquired preconditions will then be utilized by the
procedure Replace on line 15. Replace substitutes θ′1 and θ′2 with their corresponding
preconditions aθ′1 and aθ′2 , respectively, and returns a new state formula ϕ′. Preconditions
for branching-time logic state formulae can be acquired via existing CTL model checkers.
However, in order to allow for the path quantification present within a CTL∗ formula to
range over path formulae, we must consider whether all or some paths starting from a
particular state satisfy a path formula. This is required in the case that the immediate inner
sub-formula is a pure linear-time path formula, which is identified by the aforementioned
boolean flag Path given the partitioning of θ. The role of Path is to track if a sub-formula
of the current formula is a path formula. That is, Path indicates that the path quantifier
exists within the context of verifying a path formula, and not a branching-time state formula.
Thus, it must be verified using PD, yet the set of states of PD that characterize it actually
represents a set of paths. This set of paths must be collapsed later to a characterization
of the set of states of P where the (state) formula holds. This is the key to allowing the
interplay between state and path formulae, as we further demonstrate below.

ALGORITHM 5: QuantElim applies quantifier elimination in order to convert path character-
ization to state characterization restricting attention to states from which an infinite path exists.

1 Let QuantElim(a, ϕ) : AP =
2 aEG = CTL(PD,EG True)
3 match (ϕ) with
4 Eψ → return QE(∃n`∈L.aEG ∧ a)
5 − → return QE(∀n`∈L.aEG → a)

4.3.3. Quantifier Elimination for Satisfying Preconditions. The procedure QuantElim, pre-
sented in Alg. 5, which converts path characterization to state characterization, is thus
executed at line 17 of ProveCTL∗. QuantElim takes in the assertion a returned from
calling a CTL model checker on the determinized program PD and the partitioned CTL
formula ϕ′, as well as the original formula ϕ. We then quantify the assertions over the
values of the prophecy variables. If ϕ is a universal CTL formula, we universally quantify
the prophecy variables appearing in the set of states that satisfy ϕ on line 5 in Alg. 5. If
ϕ is an existential CTL formula, we existentially quantify the prophecy variables on line 4.
Predictions of the prophecy variables may lead to finite paths to appear in the program,
thus quantification must be restricted to states for which there does exist a prophecy value
leading to infinite paths. For example, consider Fig. 2(b), and a path in which the loop has
not yet terminated, yet the prophecy variable n`1 can no longer be decreased given that it
has reached a value of 0. We thus cannot take another loop transition given that we can
no longer decrease n`1 , nor can we leave the loop given that it has not terminated. Hence,
on line 2 we acquire the precondition aEG satisfying the CTL formula entailing nontermi-
nation, that is EG True for PD. The precondition aEG is then conjuncted with a to ensure
that the quantification of prophecy variables does not include finite paths generated due to
invalid predictions of the prophecy variables. This is done according to the polarity of the
quantification (universal or existential). The assertion aθ is then returned by QuantElim
characterizing the set of states in which θ holds.

In the case that Path is false, the most immediate inner sub-formula would then be a
state formula. This indicates that we can indeed use a CTL model checker using ϕ′ and
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the original program P , as demonstrated on line 19. Upon the return of ProveCTL∗ to
its caller Verify, aθ will contain the precondition for the most outer temporal property
of the original CTL∗ formula θ. Now it is only necessary to check if the precondition aθ
is satisfied by the initial states of the program to complete the verification of our CTL∗

formula. Finally, Path is set to false, in order to carry out the above procedure again when
necessary.

Theorem 4.3. If Verify(θ, P ) returns true then P |= θ.

Proof. We show by induction on the number of path quantifiers in the CTL∗ formula
θ that the set of states computed as satisfying θ in line 17 of ProveCTL∗ is sound. That
is, if a state (`, f) is such that (`, f) |= aθ then (`, f) satisfies θ.

— Consider a state formula Aψ, where ψ does not include further path quantifications.
The computation of aθ uses recursive calls to Approximate() with preconditions for the
subformulae of ψ. By induction on the structure of ψ and repeated use of Theorem 4.2 we
can show that every precondition aθ′1 and aθ′2 appearing in the calls to Approximate()
is sound. That is, if P, s |= aθ′i then P, s |= Aθ′i. It follows that once we get to the check
of the state formula Aψ the precondition aθ is obtained from universal quantification of
a sound approximation of Aψ. It follows that in PD for every possible valuation v for
the prophecy variables either (`, (f, v)) has no infinite paths starting from it or (`, (f, v))
satisfies Aψ in PD.
Consider a path π that starts in (`, f) in P . We note that if (`, f) is reachable from some
initial state, i.e., there is a computation σ ·π for which π is a suffix, then by Theorem 4.1
there exists a computation σ′ · π′ of PD such that σ′ · · ·π′⇓Vars = σ · π. In particular,
π′ satisfies ψ as required and some state (`, (f, v)) for some assignment to prophecy
variables v is reachable in PD.

— Consider a state formula Eψ, where ψ does not include further path quantifications.
The computation of aθ uses recursive calls to Approximate() with preconditions for the
subformulae of ψ. By induction on the structure of ψ and repeated use of Theorem 4.2 we
can show that every precondition aθ′1 and aθ′2 appearing in the calls to Approximate()
is sound. That is, if P, s |= aθ′1 then P, s |= Aθ′i. It follows that once we get to the check
of the state formula Eψ the precondition aθ is obtained from existential quantification
of a sound approximation of Aψ. It follows that in PD for some possible valuation v for
the prophecy variables we have that (`, (f, v)) has an infinite path starting from it and
(`, (f, v)) satisfies Aψ in PD.
Similar to the case of Aψ, if an infinite path π′ of PD that starts in (`, f) is the suffix of
a computation of PD then (`, (f, v)) is reachable in PD.

— In the case of a state formula θ that includes nesting of path quantifiers the proof
proceeds as before. This part relies on the structure of θ being in negation normal form
and the soundness of previous approximations aθ′ for every state sub-formula θ′ of θ.

We note that the implication in Theorem 4.3 is only in one direction. That is, failing to
prove that a property holds does not implicate that its negation holds (though this might
be proved by negating the formula, converting it to negation normal form, and running our
procedure on it). This incompleteness stems from the over-approximation of path formulae
by a corresponding ACTL formulae, as although this over-approximation is checked over
PD, PD does not determinize all paths. In the next section we discuss the incompleteness
of this determinization scheme.
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x′ = 2 x′ = 2

x′ = 0 x′ = 1

x′ = 0 x′ = 1

x′ = 3 x′ = 3

Fig. 3: Program for which determinization is insufficient.

5. (IN)COMPLETENESS OF DETERMINIZATION

Given that our determinization technique has been adopted and repurposed from a similar
symbolic determinization technique introduced in [Cook and Koskinen 2011] for the verifi-
cation of LTL formulae, we have thus inherited the limitations found within their technique.
In this section we discuss the aforementioned limitations.

We begin with a contrived illustrative example in Fig. 3 that serves as a theoretical
exercise on the completeness of determinization. First, we characterize all properties that
represent the different paths which can be taken inside the loop:

ϕ1 := x=2→ X(x=0 U x=3)
ϕ2 := x=2→ X(x=0 U(x=1 U x=3))
ϕ3 := x=2→ X(x=1 U(x=0 U x=3))
ϕ4 := x=2→ X(x=1 U x=3)

Now consider the property ψ := EG(
∨4
i=1 ϕ1). This property holds given that there always

exists a path in which a computation satisfies one of the four ϕi properties. That is, each
property ϕi is representative of a possible passage through the loop. Unfortunately, our pro-
cedure would not be able to determine that the given program satisfies this property. Recall
that our procedure will determinize the program by replacing nondeterministic decisions
regarding which paths are taken using prophecy variables to determine future outcomes
of the program execution. We then would attempt to verify the over-approximated ACTL
variant of the properties introduced in ϕi. For example, ϕ1’s ACTL approximation would
be x=2→ AX(A(x=0 U x=3)). In particular, the sub-property A(x=0 U x=3) holds only at
`5 and `7. It follows that there exists no set of states that satisfy AX(A(x=0 U x=3)). Thus
the set of states satisfying the property is characterized by the precondition False; and the
ACTL approximation of ϕ1 does not hold given that we would be applying QuantElim
over the precondition False. Similarly, the remaining ACTL approximations of other sub-
formulae do not hold. Our procedure will thus fail to verify that the property ψ is true for
this program. The problem lies within the need to specify in advance one of uncountably
many choices.

Consider again the program in Fig. 3. Let ψ0 :=x=2∧X x = 0 and ψ1 :=x=2∧X x = 1.
That is, ψ0 describes the choice `1 7→ `2 7→ `4 and ψ1 describes the choice `1 7→ `3 7→ `4.
We can construct LTL formulae that search for a path that toggles between the choice of
ψ0 and ψ1. For example, E(x 6=2 U(ψ0 ∧ X(x 6= 2 U ψ1))), requires to identify the paths that
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first choose to go from `1 to `2 in the first run through the loop and go from `1 to `3 in the
second run through the loop. Now consider a word w ∈ {`2, `3}∗, we can write the CTL∗

formula Eϕw with the aforementioned pattern that corresponds to the existence of the path
that takes the choices as written in w. It follows that in order to use our determinization
strategy, we would have to include a choice for all possible future choices of whether to
branch from `1 to `2 or `3.

A possible solution would be to strengthen our determinization strategy to include a larger
number of choices encoded in one variable. For example, we could consider an arbitrary
integer nb (for branch) and whenever the value of nb is even, we choose the first branch and
whenever the value of nb is odd we choose the second branch. Thus whenever nb is used,
it must be divided by two (integer division), and when nb becomes 0 it is reset to a new
arbitrary value. Thus, nb would encode an arbitrarily large number of choices on how to
branch in a certain point. Given that the branch appears in a loop that could be repeated
forever, this suggested improvement still does not completely determinize the program.
Indeed, the computations that remain in the loop include new branching points whenever
the value of nb is reset. From the branching point at `4, it is possible to create a formula that
will search for a path that creates the pattern wω for a word w ∈ {`2, `3}∗. Thus, predictions
of arbitrarily many choices is not sufficient, as we would need to consider the predictions
in {`2, `3}ω. Unfortunately, there are uncountably many different words in {`2, `3}ω. Thus,
in order to fully determinize a program we would have to allow nondeterministic variables
ranging over the Reals (with infinite precision) and use a trick similar to the even/odd
choice with division by 2. Thus our determinization approach is limited and, in general, it
is impossible to completely determinize a program.

This is clearly a theoretical exercise in completeness of determinization, and we stress
that, in practice, we have found that our determinization procedure handles programs and
properties that we wish to verify quite well. The automata theoretic approach to LTL model
checking [Vardi and Wolper 1986] can be viewed as determinization that is tailored for
the formula to be verified. We are not aware of implementations that use the automata
theoretic approach for handling LTL sub-formulae within CTL∗ formulae for infinite-state
programs. However, in the future we wish to eliminate the limitations of our determinization
procedure, given that countable non-determinism in the context of nested nondeterministic
branching leads to incompleteness. A technique introduced in [Cook et al. 2015] allows for
some interaction between linear-time and branching-time over fairness assumptions per-
taining to a system’s environment. We suspect that building upon this technique may make
way for a more complete procedure supporting CTL∗ verification when reasoning about
path formulae. We hope to further examine both the viability and practicality of such an
extension.

6. CTL∗lp– ADDING PAST TO CTL∗

In this section, we consider an extension to CTL∗ that admits temporal operators that refer
to the past. As perviously mentioned, we specifically consider a fragment of the linear-
past logic CTL∗lp. We thus redefine our semantics to incorporate past-connectives below. In
addition we extend our recursive CTL∗ verification procedure to support the incorporation
of the past. We include an example that demonstrates the different stages of the algorithm in
Section 7. We additionally discuss the challenges of extending to full CTL∗lp in Section 6.3,

and further exhibit the usefulness of our CTL∗lp extension via a case study provided in
Section 8.1.

6.1. CTL∗lp Syntax and Semantics

Below, we define the fragment of CTL∗lp that we support in the paper. To avoid introducing

further names, we henceforth use CTL∗lp to refer to this fragment. When necessary we stress
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that we are referring to full CTL∗lp. As with CTL∗, the syntax of CTL∗lp includes state formulae
ϕ and path formulae ψ. Here, path formulae are partitioned to pure-past formulae τ , and
general path formulae ψ. The inclusion of the past modifies the semantics of formulae to
distinguish between distinct occurrences of the same state with differing histories. Hence,
the models of state formulae become histories of computations that end in a certain state,
and not just a state itself. We thus define histories as a non-empty finite sequence of states
s0, s1, . . . , sn such that for every i < n, we have (si, si+1) ∈ R and s0 is initial. For a history
σ we denote by |σ| the length of σ, i.e., the number of states in σ. Given that histories are
prefixes of computations, for a path π = (s0, s1, . . .), we let π|i denote the ith prefix of π,
that is, the history s0 . . . si for i ≥ 0. Similarly, for σ = s0, . . . , sn we denote by σ|i the
ith prefix of σ for i ≤ n. We use σ to denote histories and write Π(σ) to denote the set of
all computations starting with σ. A history σ = s0 . . . sn thus represents a current state,
sn, of a computation still in progress, with the additional information that the past has
been σ|n−1. State formulae (ϕ), past formulae (τ), and path formulae (ψ) are co-defined as
follows:

ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | Aψ | Eψ
τ ::= ϕ | τ ∧ τ | τ ∨ τ | G−1τ | F−1τ | X−1τ | [τW−1τ ] | [τU−1τ ]
ψ ::= τ | ψ ∧ ψ | ψ ∨ ψ | Gψ | Fψ | Xψ | [ψWψ] | [ψUψ]

When discussing temporal operators, we denote future connectives by ◦ and past connectives
by ◦−1. When addressing both future and past connectives we utilize ◦±. Note that other
literature may use the notation Y (yesterday) for X−1, P (past) for F−1, H (historically) for
G−1, S (since) for U−1, and B (before) for W−1.

For a program P and a CTL∗lp state formula ϕ, we say that ϕ holds at a history σ = s0 . . . sn
in P , denoted by P, σ |= ϕ if:
— If ϕ = α, then P, σ |= α iff sn |= α
— If ϕ = ¬α, then P, σ |= ¬α iff sn 6|= α
— If ϕ = ϕ1 ∨ ϕ2, then P, σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2

— If ϕ = ϕ1 ∧ ϕ2, then P, σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

— If ϕ = Aψ, then P, σ |= Aψ iff ∀π ∈ Π(σ). P, π, |σ| − 1 |= ψ
— If ϕ = Eψ, then P, σ |= Eψ iff ∃π ∈ Π(σ). P, π, |σ| − 1 |= ψ

Path formulae (τ and ψ) are interpreted over computations. Assume the inclusion of
future connectives as specified in Section 2.2. For a program P and a CTL∗ path formula
ψ, we say that ψ holds on a computation π in P for location i, denoted by P, π, i |= ψ if:
— If ψ = X−1ψ1, then P, π, i |= X−1ψ1 iff i > 0 and P, π, i− 1 |= ψ1

— If ψ = F−1ψ1, then P, π, i |= F−1ψ1 iff ∃j ≤ i. P, π, j |= ψ1

— If ψ = G−1ψ1, then P, π, i |= G−1ψ1 iff ∀j ≤ i. P, π, j |= ψ1

— If ψ = ψ1W
−1ψ2, then P, π, i |= ψ1W

−1ψ2 iff either ∃k ≤ i. P, π, k |= ψ2 and ∀k < j ≤
i. P, π, j |= ψ1 or ∀j ≤ i. P, π, j |= ψ1

— If ψ = ψ1U
−1ψ2, then P, π, i |= ψ1U

−1ψ2 iff ∃k ≤ i. P, π, k |= ψ2 and ∀k < j ≤
i. P, π, j |= ψ1

A path formula ψ holds in a computation π, denoted by P, π |= ψ, if P, π, 0 |= ψ. For
a state formula ϕ, ϕ holds on P , denoted by P |= ϕ, if for every initial state s we have
P, s |= ϕ, where s stands for the history with one state in it. When the program P is clear
from the context, we may write σ |= ϕ for a state formula ϕ or π, i |= ψ for a path formula
ψ.

6.2. Checking CTL∗lp Formulae

In this section, we describe the details of our CTL∗lp model-checking procedure ProveCTL∗lp
presented in Alg. 6. First, recall that a translation from CTL∗lp to CTL∗ as a solution to veri-

fying CTL∗lp could be non-elementary, and a translation algorithm may induce combinatorial
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ALGORITHM 6: Extending our recursive CTL∗ verification procedure to support CTL∗lp.

1 Let rec ProveCTL∗lp (θ, P, PD) : (formula, bool, program, program) =
2 (L, E,Vars) = P
3 match (θ) with
4 ϕ : stateformula →
5 match (ϕ) with
6 θ′1 ∨ θ′2 | θ′1 ∧ θ′2 | Aθ′1 ◦± θ′2 | Eθ′1 ◦± θ′2 →
7 (aθ′1 ,Path1, P, PD) = ProveCTL∗lp(θ

′
1, P, PD)

8 (aθ′2 ,Path2, P, PD) = ProveCTL∗lp(θ
′
2, P, PD)

9 A◦±θ′ | E◦±θ′ →
10 (aθ′1 ,Path1, P, PD) = ProveCTL∗lp(θ

′, P, PD)

11 (aθ′2 ,Path2) = (False,False)

12 match (ϕ) with
13 α → aθ = α;
14 θ′1 ∨ θ′2 | θ′1 ∧ θ′2 | A◦θ′ | E◦θ′ | Aθ′1 ◦ θ′2 | Eθ′1 ◦ θ′2 →
15 ϕ′ = Replace(ϕ, aθ′1 , aθ′2)

16 if Path1 ∨ Path2 then
17 aθ = QuantElim(CTL(PD, ϕ

′), ϕ)

18 else
19 aθ = CTL(P,ϕ′)

20 A◦−1θ′ | E◦−1θ′ | Aθ′1 ◦−1 θ′2 | Eθ′1 ◦−1 θ′2 →
21 (aθ, P, PD) = AddHistory(ϕ, ◦−1, aθ′1 , aθ′2 , P, PD)

22 Path = False

23 ψ : pathformula →
24 match (ψ) with
25 θ′1 ∨ θ′2 | θ′1 ∧ θ′2 | θ′1 ◦± θ′2 →
26 (aθ′1 ,Path1, P, PD) = ProveCTL∗lp(θ

′
1, P, PD)

27 (aθ′2 ,Path2, P, PD) = ProveCTL∗lp(θ
′
2, P, PD)

28 ◦±θ′ →
29 (aθ′1 ,Path1, P, PD) = ProveCTL∗lp(θ

′, P, PD)

30 (aθ′2 ,Path2) = (False,False)

31 match (ψ) with
32 θ′1 ∨ θ′2 | θ′1 ∧ θ′2 →
33 aθ = Approximate(ψ, aθ′1 , aθ′2)

34 Path = Path1 ∨ Path2

35 θ′1 ◦ θ′2 | ◦θ′ →
36 ψ′ = Approximate(ψ, aθ′1 , aθ′2)

37 aθ = CTL(PD, ψ
′)

38 Path = True

39 θ′1 ◦−1 θ′2 | ◦−1θ′ →
40 (aθ, P, PD) = AddHistory(ψ, ◦−1, aθ′1 , aθ′2 , P, PD)

41 Path = False

42 return (aθ,Path, P, PD)
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ALGORITHM 7: AddHistory produces history variables corresponding to past-connectives in
CTL∗lp.

1 Let AddHistory(ψ, ◦−1, aθ1 , aθ2 , P, PD) : formula, past-operator, program, program =
2 aθ = Hψ
3 match (◦−1) with
4 F−1 →
5 ι = (H ′ψ = a′θ1); ρh = (H ′ψ = Hψ ∨ a′θ1)

6 G−1 →
7 ι = (H ′ψ = a′θ1); ρh = (H ′ψ = Hψ ∧ a′θ1)

8 X−1 →
9 ι = (H ′ψ = False); ρh = (H ′ψ = aθ1)

10 W−1 →
11 ι = (H ′ψ = a′θ1 ∨ a

′
θ2

); ρh = (H ′ψ = (Hψ ∧ a′θ1) ∨ a′θ2))

12 U−1 →
13 ι = (H ′ψ = a′θ2); ρh = (H ′ψ = (Hψ ∧ a′θ1) ∨ a′θ2)

14 P = InstrumentHistory(Hψ, ι, ρh, P )
15 PD = InstrumentHistory(Hψ, ι, ρh, PD)
16 return (aθ, P, PD)

ALGORITHM 8: InstrumentHistory embeds conditions over history variables within a tran-
sition system P .

1 Let InstrumentHistory(H, ι, ρh, P ) : program =
2 (L, E,Vars) = P
3 foreach (`, ρ, `′) ∈ E do
4 if ` = `I then
5 ρ = ρ ∧ ι
6 else
7 ρ = ρ ∧ ρh

8 Vars = Vars ∪ {H}
9 return P

explosions, even with limited temporal height [Laroussinie and Schnoebelen 1995; Kupfer-
man et al. 2012]. We stress again that the lower bound in [Laroussinie and Schnoebelen 1995]
can be expressed in our fragment. We thus introduce a procedure that extends ProveCTL∗

by introducing the sub-procedures AddHistory and InstrumentHistory, which serve
to introduce history variables per past-connective present within a CTL∗lp formula. We pro-
vide an overview of these sub-procedures below, followed by a more in-depth explanation
regarding these extensions.

AddHistory & InstrumentHistory are procedures that produce a precondition for
a past sub-formula by introducing history variables into the program. A history variable
tracks the state of a consequent nested temporal formula within a program. AddHistory
creates a history variable and its appropriate satisfying assertions tailored to the past-
connective that is being verified. InstrumentHistory extends the transitions of P and
PD by instrumenting the assertions updating the truth values of the introduced history
variable. The Boolean truth value of the history variable within a program’s computation
corresponds to the truth values of the past formula in a given history. The history variable
produced can thus serve as the precondition for the past sub-formula at hand.
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We now describe the details of these additional procedures and their use in ProveCTL∗lp,
followed by a detailed example that explores the usage of history variables. As with
ProveCTL∗, we generate a determinized copy of the program, PD, using the procedure
Determinize. This program is then passed to ProveCTL∗lp along with the original pro-

gram P and a CTL∗lp property θ. Our extension can be observed on lines 20 – 21 and lines

39 – 41, where given a CTL∗lp formula, we not only deconstruct the formula to differentiate
between state and path sub-formulae, but also between past and future sub-formulae. On
line 20, if θ can be identified as a state formula with a past temporal operator, then we
carry out the set of actions on line 21. If θ is identified as a past path formula on line 39,
we carry out the set of actions on line 40.

Note that AddHistory indeed accepts the temporal operator ◦−1 in addition to the sub-
formula it operates on. This highlights a subtle difference between the treatment of state
formulae in the algorithm. In the treatment of future-state formulae, an existing model
checker for CTL is called. However, in the case of the past, a state formula characterizes
a set of histories rather than a set of states. Thus, a model checker would have to return
a characterization of the set of histories satisfying a given state formula rather a precon-
dition characterizing a set of states. The approach we take is to add history variables to
the program, hence allowing us to describe histories using preconditions that refer to the
introduced history variables. Hence, we further partition a state-formula in AddHistory
by treating the temporal operator as a path formula in order to instrument the correct his-
tory variable corresponding to the past-temporal operator ◦−1. We now turn to the detailed
description of AddHistory.

6.2.1. AddHistory & InstrumentHistory. In Alg. 7, we present a conversion from linear-
past formulae to corresponding history variable conditions to be embedded into the pro-
grams P and PD. That is, reasoning pertaining to a linear-past formula is reduced to
conditions over a history variable that captures the truth value of the CTL∗lp formula. Our

procedure is given a past-temporal operator ◦−1, its corresponding linear-past formula ψ,
and two preconditions, aθ1and aθ2 , corresponding to the satisfaction of the nested CTL∗lp
formulae which appear within ψ. This aligns with how ProveCTL∗lp will recursively it-
erate over each inner sub-formula followed by search for the preconditions of the outer
sub-formulae dependent on it, thus these preconditions would have already been priorly
generated. Due to the structure of CTL∗lp, note that aθ1 and aθ2 are either preconditions
describing state formulae, or preconditions describing the histories satisfying past path for-
mulae. It follows that both are expressed in terms of the variables of P alone and do not refer
to the prophecy variables that form part of PD. Recall that aθ2 is a conditional parameter
utilized only when a CTL∗lp formula requiring two properties (i.e., W−1, U−1) is given.

On line 2 we generate a unique history variable, Hψ, corresponding to the past-temporal
operator ◦−1 to be analyzed. The history variable is indeed a Boolean variable that has the
value true if the history of the computation so far satisfies the past property, and is false
otherwise. We thus define conditions ι and ρh and assign them assertions that depend on
◦−1. The condition ι is to be instrumented in the initial transitions of P and PD, that being
transitions leaving `I , while ρh is to be instrumented in the remaining transitions. If the
aforementioned temporal operator is:

— F−1, on line 5, Hψ is assigned the truth valuation of the atomic precondition a′θ1 in ι.3

For the remaining transitions, ρh, Hψ becomes true and stays true if a′θ1 is satisfied at
least once. These conditions reflect that sometime in the past, aθ1 held.

3Recall that a′θ1 refers to the value of aθ1 after an update, that is, references to all variables would be

replaced by references to primed versions.
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— G−1, on line 7, the dissatisfaction of a′θ1 will cause Hψ to become false and stay false in
ρh. That is, in order for Hψ to hold, then the valuation of a′θ1 must always remain true,
denoting that aθ1 must have always held in the past.

— X−1, on line 9, Hψ is initially false in ι, given that there exists no previous state in P
and PD where a′θ1 can be satisfied. As for the remaining transitions, if aθ1 is satisfied,
indicating the valuation before an update, then Hψ is true. That is, Hψ only holds if aθ1
held in the immediate previous state.

— W−1, on line 11, Hψ is assigned the truth valuation of the disjunction of a′θ1 or a′θ2 in
ι. For ρh, Hψ is satisfied if a′θ2 holds, otherwise the valuation of a′θ1 must be true in
addition to Hψ being previously true. These conditions thus reflect that in the past, aθ2
may hold before aθ1 holds indefinitely.

— U−1, on line 13, Hψ is assigned the truth valuation of the atomic precondition a′θ2 in ι.

As for ρh, Hψ is assigned the same valuation as in W−1. It is the initialization state that
enforces that aθ2 held at some time in the past, and aθ1 has been holding ever since. Hψ

can only ever become true in ι if aθ2 holds, thus in ρh, Hψ ∧a′θ1 will be falsified until aθ2
becomes true at least once.

Once ι and ρh are appropriately assigned in AddHistory, InstrumentHistory is called
on lines 14 and 15 with Hψ, ι, and ρh. InstrumentHistory instruments the conditions
over our history variable Hψ within the programs P and PD, respectively. Both ι and ρh
are defined in terms of variables of P and can be instrumented into both P and PD. As
demonstrated in Alg. 8, a program is iterated on line 3. When an edge (`, ρ, `′) ∈ E is
reached containing ` = `I , that is the initial location, then ι is conjuncted to the condition
ρ. Otherwise, ρh, our condition over the history variable H, is conjuncted with ρ. The
modified program with the history variable H is then returned on line 9.

Finally, on line 16 in Alg. 7, we return the transformed programs P and PD alongside the
history variable Hψ as an atomic proposition, serving as the precondition of our linear-past
formula. Given that we encode linear-past formulae within our programs, it is sufficient
to return Hψ as the precondition given that its truth valuation will be contingent upon
the newly embedded transitions. We now show that AddHistory is deterministic, that is,
the computations of the resulting program are the computations of the original program
annotated by additional information.

Theorem 6.1. Consider a sub-formula ψ in which the outermost operator is a past
temporal operator. Given a program P̂ = (L, E,Vars) and conditions aθ1 and aθ2 , let

( , P̂ ′, ) = AddHistory(ψ, aθ1 , aθ2 , P̂ , ). Then, for every computation π of P̂ there is

a unique computation π′ of P̂ ′ such that π′ ⇓Vars= π, and all computations of P̂ ′ are of this
form.

Proof.

— We construct π′ by extending π with assignment for the history variables. We do this
by induction on the positions in a computation π of P̂ . For the initial location, a unique
value for the history variable H ′ψ can be determined by a′θ1 and a′θ2 . This is carried out
by going over the five options for ι in Alg. 7.
By induction given that the values of Hψ are determined up to some location i, then
it is the case that the value of H ′ψ is determined by the value of Hψ and a′θ1 and a′θ2 .
This is carried out by one of the five options for ρh in Alg. 7. It thus follows that π is a
computation of P̂ ′, as a′θ1 and a′θ2 are givens and thus H ′ψ can be determined over every
computation π.

— In the other direction, consider a computation π′ of P̂ ′. For every transition (`, ρ̂, `′) of

P̂ ′ we know that there is a transition (`, ρ, `′) of P1 such that ρ̂ = ρ ∧ α, where α is a
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condition produced by AddHistory (either ι or ρh in terms of Alg. 7). It follows that

π′ ⇓Vars is a computation of P̂ , as the valuation obtained by restricting the valuation to
variables in Vars remains the same.

Consider a past formula ψ. We now show that given sound preconditions for the sub-
formulae nested within ψ, AddHistory soundly approximates the truth of ψ. This ap-
proximation is due to the value of preconditions for the sub-formulae themselves being an
over-approximation.

Theorem 6.2. Consider a past path formula ψ. Given a program P = (L, E,Vars) and
the preconditions aθ1 and aθ2 computed for the sub-formulae of ψ. Suppose that for every his-
tory σ such that σ |= aθi we have P, σ |= Aψi. Let ( , P ′, ) = AddHistory(ψ, aθ1 , aθ2 , P, ).
If P ′, σ |= Hψ then P, σ ⇓Vars|= Aψ.

Proof. By Theorem 6.1, the premises of the Theorem are well defined. Indeed, given
a history σ of AddHistory(ψ, aθ1 , aθ2 , P, ) the history σ ⇓Vars is well defined and for
every computation σ′ of P there is a history σ of AddHistory(ψ, aθ1 , aθ2 , P, ) such that
σ′ = σ ⇓Vars.

We consider the case of past path formulae.

— Suppose that ψ = θ1U
−1θ2. By assumption aθ1 and aθ2 are sound. We proceed by

induction on the length of σ. If |σ| = 1 then the value of Hψ soundly approximates the
truth value of ψ as aθ2 is sound and H ′ψ is initialized by ι to a′θ2 . If |σ| > 1 then the
value of Hψ soundly approximates the truth value of ψ as aθ1 and aθ2 are sound and ρh
updates H ′ψ to (Hψ ∧ a′θ1) ∨ a′θ2 .

— The cases of ψ = θ1W
−1θ2, ψ = G−1θ1, and ψ = F−1θ1 are similar.

— Suppose that ψ = X−1θ1. By assumption aθ1 is sound. We proceed by induction on the
length of σ. If |σ| = 1 then the value of Hψ is the truth value of ψ as H ′ψ is initialized

by ι to false. If |σ| > 1 then the value of Hψ soundly approximates the truth value of ψ
as aθ1 is sound and ρh updates H ′ψ to aθ1 .

We note that pure-past formulae can include disjunctions and conjunctions. However,
given that the precondition for α∧ β will be the conjunction of the preconditions for α and
β (and similarly for disjunction), the soundness of using Boolean connectives is immediate.

6.2.2. ProveCTL∗lp. We return to our main algorithm in Alg. 6. The treatment of path
formulae is somewhat different from our original ProveCTL∗. Future temporal operators
(lines 36 – 38) are treated just like the previous case. Past temporal operators (lines 39
– 41) are deterministically encoded as history variables and depend only on the variables
of P . Thus, we set Path to False. Finally, Boolean connectives can be either pure-past
formulae or include future temporal operators in them. In both cases, the precondition is
set to the Boolean combination of the preconditions for the sub-formulae (as is masked by
the call to CTL in the previous algorithm). However, the decision of whether the check
should continue over P or PD depends on the values of Path1 and Path2. Accordingly we
set Path to their disjunction on line 34.

Theorem 6.3. If Verify(θ, P ) returns true for a program P = (L, E,Vars) then,
P |= θ.
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Proof. We show by induction on the number of path quantifiers in a CTL∗lp formula θ
that the set of states computed as satisfying θ returned from ProveCTL∗lp is sound. That

is, for a program P returned from ProveCTL∗lp and a history σ, if P, σ |= aθ then P, σ ⇓Vars
satisfies θ.

— Consider a state formula Aψ, where ψ does not include further path quantification.
Suppose that P, σ |= aψ.
The computation of aψ uses recursive calls to AddHistory for the past sub-formulae
of ψ and calls to Approximate() with preconditions for the future sub-formulae of ψ.
Every call to AddHistory changes P and PD by adding history variables to them.
By induction on the structure of ψ and repeated use of of Theorem 6.2 we can show
that every preconditions aθ′1 and aθ′2 appearing in the calls to AddHistory are sound.
Then, by repeated use of Theorem 4.2 we can show that every preconditions aθ′1 and aθ′2
appearing in the calls to Approximate() are also sound.
The precondition aθ is obtained either in line 17, 19, or 21. If it is obtained in line 17,
then it is obtained from universal quantification of a sound approximation of Aψ on the
last version of PD. If it is obtained in line 19, then it is obtained from a call to a (sound)
CTL model checker. If it is obtained in line 21, then by Theorem 6.2 it is sound.
It follows that in PD for every possible valuation v of the prophecy variables either σ has

no infinite paths starting from it or σ satisfies Aψ̂ in PD, where ψ̂ is obtained from ψ by
repeatedly replacing sub-formulae by their approximated versions as done by recursive
calls of Approximate().
Consider a path π that starts in σ ⇓ V in P . By Theorems 4.1 and 6.1 the path π satisfies
ψ.

— Consider a state formula Eψ, where ψ does not include further path quantifications.
Suppose that P, σ |= aψ.
As in the universal case, aψ is obtained by using recursive calls to AddHistory for the
past sub-formulae of ψ and calls to Approximate() with preconditions for the future
sub-formulae of ψ. Every call to AddHistory changes P and PD by adding history
variables to them. By induction on the structure of ψ and repeated use of Theorem 6.2
we can show that every preconditions aθ′1 and aθ′2 appearing in the calls to AddHistory
are sound. By induction on the structure of ψ and repeated use of Theorem 4.2 we can
show that every preconditions aθ′1 and aθ′2 appearing in the calls to Approximate() are
sound.
The precondition aθ is obtained either in line 17, 19, or 21. If it is obtained in line 17,
then it is obtained from existential quantification of a sound approximation of Eψ on the
last version of PD. If it is obtained in line 19, then it is obtained from a call to a (sound)
CTL model checker. If it is obtained in line 21, then by Theorem 6.2 it is sound.
If follows that in PD for some possible valuation v of the prophecy variables σ has some

computation starting from it and σ satisfies Eψ̂ in PD, where ψ̂ is obtained from ψ by
repeatedly replacing sub-formulae by their approximated versions as done by recursive
calls of Approximate(). It follows that there is a computation π in PD that starts in σ
such that PD, π, |σ| − 1 |= ψ.
Consider a computation π that starts in σ in PD and consider their projections π′ =
π⇓Vars and σ′ = σ⇓Vars on the variables of P . By Theorem 4.1 π′ is a computation of P .
By Theorems 4.2 and 6.2 it follows that P, π′, |σ′| − 1 |= ψ.

— In the case of a state formula θ that includes nesting of path quantifiers, the proof
proceeds as before. This part relies on the structure of θ being in negation normal form
and the soundness of previous approximations of aθ′ for every state sub-formula θ′ of θ.
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6.3. Interaction of Histories and Prophecies

In this section, we discuss what would be required in order to extend our algorithm to handle
full CTL∗lp. The fraction of CTL∗lp that we consider ensures that there are no references to
the future (i.e., prophecy variables) appearing inside references to the past (i.e., history
variables). Indeed, the definition of past formulae τ ensures that the direct sub-formlae of a
past operator are either state formulae, past formulae, or Boolean operators that nest them.

Consider the removal of this restriction and an attempt to use our algorithm in the case of
a future path formula immediately nested within a past formula. Due to the determinization
arising from verifying a path formula, the preconditions that describe the approximation
of states that satisfy a future path formula could refer to the values of prophecy variables.
Such preconditions are relevant only with respect to PD as P does not include the prophecy
variables. Now consider a past sub-formula that refers to such a precondition. The history
variable instrumented in the program would describe the truth value of the past formula.
The assertions that govern the truth value of such a history variable – ι and ρH , as de-
scribed in AddHistory – would thus include a reference to prophecy variables. It follows
that we would be able to add these history variables only to PD and not to P . This would be
sound for PD and would produce correct approximations for PD. However, as in our CTL∗

algorithm, at some point the algorithm reaches the path quantification within which these
path formulae are nested. We would need to “collapse” the preconditions that now refer to
both prophecy variables and history variables to be relevant to P . Preconditions containing
prophecy variables would be handled by the appropriate quantification as is done now in
QuantElim. However, the conversion of path characterization back to state characteriza-
tion over preconditions alone is not sufficient in the case of CTL∗lp. We must quantify not
only over the preconditions, but the transitions of PD. Just as in QuantElim, we seek to
acquire the proper set of states that satisfy formulae, which have been instrumented into
the program as assertions over history variables, given that these assertions may depend on
prophecy variables that have been produced by previous calls to ProveCTL∗lp.

Now consider if our path quantification was indeed universal, then universally quantifying
the assertions ι and ρH would be sufficient to translate the truth of the history variables to
P . However, such is not the case with existential path quantification. It is not clear how one
can embed history variables into P if they do reason about prophecy variables, and require
existential quantification. We have chosen not to include the universal quantification option
formally here as it would lead to the definition of a very complex fragment of CTL∗lp, where
once future is used within past, it can be used only within universal path quantification
(and this remains the case also for the state formulae that contain this part).

We demonstrate this limitation further with a counterexample. First, consider the pro-
gram in Fig. 2(a) and the property EX−1X−1x = 0. Clearly, the property holds in `2 from the
second iteration and onwards of `2. It follows that the locations and variables of the program
do not provide sufficient information to express the truth value of this property, thus some
information must be added to the program in order to be able to express the truth value of
the formula [Lichtenstein et al. 1985]. This is the role of the history variables – instrument
information to the program that enables us to distinguish between histories that end in
the same state of the original program. Now consider the formulae ϕ0 = F−1FG x = 0,
ϕ1 = F−1FG x = 1, Eϕ0, Eϕ1, and Eϕ1 ∧ ϕ2. This would required the usage of the de-
terminized program in Fig. 2(b) for our analysis. The precondition for AG x = 0 is `2.
The precondition for AF `2 is a0 = `2 ∨ (`1 ∧ n`1 ≥ 0). The precondition for AG x = 1 is
`1 ∧ n`1 < 0. The precondition for AF(`1 ∧ n`1) is a1 = `1 ∧ n`1 < 0. Now, adding a history
variable for F−1a0 would add the condition H ′0 = n′`1 ≥ 0 to the initial transition, H ′0 = H0

to the transition looping on `1 and H ′0 = True to all transitions entering `2. Adding a
history variable for F−1a1 would add the condition H ′1 = n′`1 < 0 to the initial transition,
H ′1 = H1 to all other transitions.
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If we attempt to introduce these history variables in P once quantification is reached, we
arrive at a problem. Indeed, Eϕ0 should be true for every state of P and Eϕ1 should be
true for `1. If we indeed were to existentially quantify the introduced prophecy variables
over the transitions in PD as necessitated by E, E(ϕ0 ∧ ϕ1) would result in being true on
all transitions, however, this is not sound as it is indeed false everywhere. It follows that
existential quantification over transitions is not sufficient to transform history variables
instrumented in PD into sufficient conditions over P .

7. DEMONSTRATING CTL∗lp

In this section, we provide a CTL∗lp example that demonstrates the usage of history variables

to provide a comprehensive view of how the CTL∗ algorithm extends to verifying CTL∗lp.

Consider the program in Fig. 4(a) and the property EGFG−1 x = 1 stating that there
exists some path such that infinitely often there is a state in which x = 1 has always
held in the past. The property clearly holds for the program as evidenced by the path
(`1, 〈x 7→ 1〉)((`2, 〈x 7→ 1〉))ω, which never enters the loop in `1 and continues to remain in
the loop at `2 forever. Importantly (for the example), the path does pass through `1, where
the property AFG−1 x = 1 does not hold.

As discussed, in order to check this property we recursively handle its sub-formulae. The
most inner sub-formula is a past sub-formula, namely G−1 x = 1. We call the function Ad-
dHistory with the precondition x = 1, given that the precondition of an atomic proposition
is the atomic proposition itself. AddHistory produces a history variable corresponding to
the past-connective G−1 and calls upon InstrumentHistory to add conjuncts to the tran-
sitions of P and PD that update the value of this new history variable. In Fig. 4(b), we show
the history variable HG−1 introduced in P , and in Fig. 4(c) in PD. In the initial state, H ′

G−1

is set to the Boolean valuation of x′ = 1. For the remaining transitions, if x′ = 1 is satisfied
and HG−1 is true, indicating the valuation before an update, then H ′

G−1 is true after the
update. The history variable HG−1 is then returned by AddHistory as the precondition
satisfying G−1 x = 1. We now continue with the next inner sub-formula with HG−1 replacing
G−1 x = 1. Namely, F (HG−1).

We identify that F HG−1 is a path sub-formula, and thus produce the over-approximated
CTL formula AF(HG−1) , which is returned from Approximate. The property AF(HG−1)
does not hold on `1 in P . From `1, the nondeterministic choices to ρ2 and ρ3 mean that
not all successors satisfy HG−1 . In order to reason about the original (path) sub-formula
F HG−1 , we must be observing sets of paths, not states. Recall that we over-approximated
our formula in a way that allows us to only reason about states, we thus symbolically
determinize the program to simultaneously simulate all possible related paths through the
control flow graph and try to separate them to originate from distinct states in the program.

As before, Determinize returns a new symbolically partially-determinized program in
which a newly introduced prophecy variable, namely n`1 in Fig. 4(c), is associated with
the branching-relation (ρ2, ρ3), and is used to make predictions about the occurrences of
relations ρ2 and ρ3. As can be seen in Fig. 4(c), prophecy variables are initialized to a
nondeterministic value, are reset whenever exiting the minimal SCS associated with their
location, and are decremented whenever staying inside the same minimal SCS. As in the case
of CTL∗, we now utilize an existing CTL model-checker to return an assertion characterizing
the states in which the F (HG−1) holds by verifying the determinized program, denoted by
PD, using the over-approximated CTL formula AF (HG−1). The result of this CTL model-
checking task over PD is aF = (`1 ∧ n`1 = 0 ∧HG−1) ∨ (`2 ∧HG−1).

We then replace F HG−1 by aF and finally arrive at our outermost CTL∗lp formula EG aF.
As dictated by our ProveCTL∗lp algorithm, our final step is to verify EG aF , a syntactically
acceptable CTL formula. As discussed, we cannot simply use a CTL model checker as the
path quantifier E exists within a larger relation context reasoning about paths given the
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`1 `2

ρ1 : x′ = 1

ρ2 : x′ = 0

ρ3 : x′ = 1

ρ4 : x′ = x

(a)

`1 `2

ρ1 : x′ = 1
H ′G−1 = x′ = 1

ρ2 : x′ = 0
H ′G−1 = HG−1 ∧ x′ = 1

ρ3 : x′ = 1
H ′G−1 = HG−1 ∧ x′ = 1

ρ4 : x′ = x
H ′G−1 = HG−1 ∧ x′ = 1

(b)

`1 `2

ρ1 : x′ = 1
H ′G−1 = x′ = 1

ρ2 : n`1 6= 0
n′`1 = n`1 − 1
x′ = 0
H ′G−1 = HG−1 ∧ x′ = 1

ρ3 : n`1 = 0
x′ = 1
H ′G−1 = HG−1 ∧ x′ = 1

ρ4 : x′ = x
H ′G−1 = HG−1 ∧ x′ = 1

(c)

Fig. 4: (a) The control-flow graph of a program for which we wish to prove the CTL∗lp prop-

erty EGFG−1 x = 1. (b) The control-flow graph after calling AddHistory to instrument
the history variable necessary for reasoning about the past-connective G−1. (c) The control-
flow graph after calling Determinize, it includes the prophecy variable n`1 , corresponding
to the nondeterministic branching-relation (ρ2, ρ3)

inner formula GF. We thus must use the CTL model-checker to verify EGaF over the same
determinized program previously generated in Fig. 4(c). Our procedure then returns with
the same precondition (`1 ∧n`1 = 0∧HG−1)∨ (`2 ∧HG−1). The set of states that satisfy the
formula EGFG−1 x = 1 are indeed those that start in `1 with n`1 = 0.

Finally, we use quantifier elimination to existentially quantify out all introduced prophecy
variables. Recall that if there is a state s in the original program, and some value of the
prophecy variables v such that all paths from the combined state (s, n`1 = v) in PD sat-
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isfy the path formula then clearly, these paths give us a sufficient proof to conclude that
EGFG−1 x = 1 holds from s in P . In our case, the procedure QuantElim existentially
quantifies our precondition given the path quantifier E, and produces the precondition HG−1 .
History variables are instrumented in both P and PD and the precondition can be evalu-
ated over P . For this program, HG−1 does indeed hold at the initial state. The program, as
mentioned, does satisfy the formula.

8. CASE STUDY AND EVALUATION

In this section we discuss the results of our experiments with an implementation of the pro-
cedure from Alg. 6. Our implementation4 is built as an extension to the open source project
T2. T2 is an open-source framework that implements, combines, and extends techniques
developed over the past decade aimed towards the verification of temporal properties of
programs. T2 operates on an input format that can be automatically extracted from the
LLVM compiler framework’s intermediate representation, allowing T2 to analyze programs
in a wide range of programming languages (e.g. C, C++, Objective C, . . . ). T2 allows users to
(dis)prove temporal properties via a reduction to its safety, termination and nontermination
analysis techniques [Brockschmidt et al. 2016].

8.1. Case Study

First, we report on a case study that requires the application of our extended ProveCTL∗lp
algorithm presented in Alg. 6. Our case study concerns I/O request packets (IRP) in Win-
dows Device Drivers and the requirement that each IRP must have a Cancel routine that
allows the cancellation of an I/O operation. In Fig. 5, we thus provide an example in which
an IRP is queued in order to set and clear its Cancel routine. When setting the Cancel
routine for the IRP, one must use a spin lock, as shown on line 1, to protect the IRP pointer
and the queue. A spin lock is a lock that causes a thread trying to acquire it to simply wait
in a loop while repeatedly checking if the lock is available. However note that before queu-
ing an IRP, despite it being protected by a spin lock, it is a requirement that drivers must
mark an IRP as pending (using IoMarkIrpPending) before queuing it. In our example, the
driver does indeed mark the IRP as pending on line 3 after acquiring a spin lock, and then
continues to call the method InsertTailList on line 4, which queues the IRP in order to
set and clear its Cancel routine. The Cancel routine is then set and cleared on lines 9 – 22.
Given this requirement, we wish to verify the property requiring that drivers mark an IRP
as pending using IoMarkIrpPending before queuing it, that is:

AG(InsertTailList()⇒ X−1 (¬InsertTailList() U−1 IoMarkIrpPending()))

We thus call ProveCTL∗lp with the property above, the program in Fig. 5, which we

will denote as P , and a determinized variation (PD) attained from the Determinize algo-
rithm previously discussed in Alg. 1. Supplementary information regarding how we interpret
and parse a program’s commands to attain P can be found in [Brockschmidt et al. 2016].
Given that we recursively partition our CTL∗lp formula, we begin with the sub-formula

¬InsertTailList() U−1 IoMarkIrpPending() and identify it as a path formula contain-
ing a past-connective. We thus refer to our AddHistory algorithm in Alg. 7. Given that
InsertTailList() and IoMarkIrpPending() are call sites, they serve as the atomic propo-
sitions aθ1 and aθ2 , respectively. Our sub-formula is then matched on line 12 in Alg. 7 with
U−1 in which ι corresponds to the condition to be instrumented at the initial state of P and
PD, that being `I , while ρ denotes the condition to be instrumented in the remaining tran-
sitions. That is, ι = (H ′U−1 = a′θ2) and ρ = (H ′U−1 = (HU−1 ∧a′θ1)∨a′θ2) are to to be instru-

4The source-code of our implementation and our benchmarks are available under the MIT open-source
license at https://github.com/hkhlaaf/T2/.
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1 KeAcquireSpinLock(&deviceContext->irpQueueSpinLock, &oldIrql);
2

3 IoMarkIrpPending(Irp);
4 InsertTailList(&deviceContext->irpQueue, &Irp->Tail.Overlay.ListEntry);
5

6 oldCancelRoutine = IoSetCancelRoutine(Irp, IrpCancelRoutine);
7 ASSERT(oldCancelRoutine == NULL);
8

9 if (Irp->Cancel) {
10

11 oldCancelRoutine = IoSetCancelRoutine(Irp, NULL);
12 if (oldCancelRoutine) {
13

14 RemoveEntryList(&Irp->Tail.Overlay.ListEntry);
15

16 KeReleaseSpinLock(&deviceContext->irpQueueSpinLock, oldIrql);
17 Irp->IoStatus.Status = STATUS_CANCELLED;
18 Irp->IoStatus.Information = 0;
19 IoCompleteRequest(Irp, IO_NO_INCREMENT);
20 return STATUS_PENDING;
21

22 } else {
23

24 }
25 }
26

27 KeReleaseSpinLock(&deviceContext->irpQueueSpinLock, oldIrql);
28 return STATUS_PENDING;

Fig. 5: A Windows Device Driver driver setting a Cancel routine for an I/O request packet.

mented into P and PD. Our uniquely synthesized history variable HU−1 then serves as our
precondition for our sub-formula. That is, a true valuation over HU−1 would satisfy the sub-
formula ¬InsertTailList() U−1 IoMarkIrpPending(). We then substitute HU−1 in the
original sub-formula to attain the CTL∗lp formula AG(InsertTailList()⇒ X−1 (HU−1)).

Our next inner sub-formula happens to be another path formula containing a past-
connective. AddHistory would thus be called upon again with aθ1 = HU−1 given that
we substituted our previous linear-past sub-formula with its corresponding history variable.
The initial transition ι is then assigned False while ρ is assigned (H ′

X−1 = HU−1). As with
our previous sub-formula, ι and ρ are also instrumented into the transition systems P and
PD, with HX−1 serving as the precondition of X−1 (HU−1). We substitute our linear-past
sub-formula once more with its associated history variable, and thus finally arrive to our
outer-most CTL∗lp formula AG(InsertTailList()⇒ HX−1).

Given the above transformations, every transition within P and PD has now been embed-
ded with history variable conditions corresponding to our inner linear-past sub-formulae.
Our outer-most formula can now simply be treated as a CTL formula where a precondition
can be acquired via existing CTL model checkers which return an assertion characterizing
the states in which (InsertTailList() ⇒ HX−1) holds. Recall that existing tools that
support this functionality include [Beyene et al. 2013] and [Cook et al. 2014]. For this par-
ticular example, we will be utilizing our CTL model checker on P , given that all of our nested
sub-formulae are not future path formulae, hence determinization is not required. In this
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case, the model-checker does not return any counterexamples, deeming our precondition to
be True. We have thus proved that our property holds for Fig. 5.

8.2. Benchmarks

Program LoC Property Time(s) Res.

Cancel I/O 35 AG(InsertTailList()⇒ X−1 (¬InsertTailList() U−1 1.0 X

IoMarkIrpPending())

Cancel I/O 35 AG(InsertTailList()⇒ (F−1 KeAcquireSpinLock() ∧ 0.1 X

AF KeReleaseSpinLock()))

OS frag. 1 393 AG((EG(phi io compl ≤ 0)) ∨ (EFG(phi nSUC ret > 0)))) 17.4 ×
OS frag. 1 393 EF((AF(phi io compl > 0)) ∧ (AGF(phi nSUC ret ≤ 0)))) 23.8 X

OS frag. 2 380 EFG((keA ≤ 0 ∧ (AG keR = 0))) 13.7 X

OS frag. 2 380 EFG((keA ≤ 0 ∨ (EF keR = 1))) 3.5 X

OS frag. 3 50 EF(PPBlockInits > 0 ∧ (((EFG IoCreateDevice = 0) 10.4 X

∨ (AGF status = 1)) ∧ (EG PPBunlockInits ≤ 0)))

PgSQL arch 1 106 EFG(tt > 0 ∨ (AF wakend = 0)) 1.5 ×
PgSQL arch 1 106 AGF(tt ≤ 0 ∧ (EG wakend 6= 0)) 3.8 X

PgSQL arch 1 106 EFG(wakend = 1 ∧ (EGF wakend = 0)) 18.3 X

PgSQL arch 1 106 EGF(AG wakend = 1) 10.3 X

PgSQL arch 1 106 AFG(EF wakend = 0) 1.5 ×
PgSQL arch 2 100 AGF wakend = 1 1.4 X

PgSQL arch 2 100 EFG wakend = 0 0.5 ×
Bench 1 12 EFG(x = 1 ∧ (EG y = 0)) 0.2 X

Bench 2 12 EGF x > 0 0.1 X

Bench 3 12 AFG x = 1 0.1 X

Bench 4 10 AG((EFG y = 1) ∧ (EF x ≥ t)) 0.5 ×
Bench 5 10 AG(x = 0 U b = 0) T/O –

Bench 6 8 AG((EFG x = 0) ∧ (EF x = 20)) 0.1 ×
Bench 7 6 (EFGx = 0) ∧ (EFGy = 1) 0.4 ×
Bench 8 6 AG((AFG x = 0) ∨ (AFGx = 1)) 0.5 X

Fig. 6: Experimental evaluations of infinite-state programs drawn from the Windows OS,
PgSQL, and 8 toy examples. There are no competing tools available for comparison.

We have drawn out a set of CTL∗ problems from industrial code bases. Examples were
taken from the I/O subsystems of the Windows OS kernel, the back-end infrastructure of
the PostgreSQL database server, and the Apache web server. The tool was executed on
an Intel x64-based 2.8 GHz single-core processor. CTL∗ allows us to express “possibility”
properties, such as the viability of a system, stating that any reachable state can spawn a
fair computation. Additionally, we demonstrate that we can now verify properties involving
existential system stabilization, stating that an event can eventually become true and stay
true from any reachable state. For example, “OS frag. 1”, “OS frag. 3”, “PgSQL arch 1”,
and “Bench 2” are verified using said properties, described in detail in Section 1.2.1. Our
case study’s results, demonstrating our CTL∗lp extension, are also included under “Cancel
I/O”. We also include a few toy examples to further demonstrate further expressiveness of
CTL∗ and its usefulness in verifying programs.

Given that our benchmarks tackle infinite-state programs, the only existing automated
tool for verifying CTL∗ in the finite-state setting [Griffault and Vincent 2004] is not ap-
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plicable. In Figure 6 we display the results of our benchmarks. For each program and its
corresponding CTL∗ property to be verified, we display the number of lines of code (LoC),
and report the time it took to verify a CTL∗ property (Time column) in seconds. We provide
a “Res.” column which indicates the results of our tool. A X indicates that the tool was
able to verify the property. Likewise, an × indicates that the tool failed to prove the prop-
erty. The symbol “–” in the result column indicates that a result was not determined due
to a timeout. A timeout or memory exception is indicated by T/O. A timeout is triggered
if verification of an experiment exceeds 3000 seconds. Note that in various cases, we verify
the same program using a CTL∗ property and its negation. Our tool thus allows us to prove
each of the properties as well as disprove each of their negations.

Our experiments demonstrate the practical viability of our approach. Our runtimes show
that our tool runs well within the range of performance previously exhibited by specialized
tools such as as [Cook et al. 2007; Cook and Koskinen 2011; 2013; Beyene et al. 2013;
Cook et al. 2014], which can only verify significantly less expressive properties over infinite-
state programs. Our tool has successfully both verified and invalidated CTL∗ properties
corresponding to their expected results for all but one of the benchmarks. This is due
to the aforementioned limitation, that is, our countable nondeterministic determinization
technique is not complete.

9. RELATED WORK

There are various algorithms for model checking CTL∗ for finite-state programs and other
decidable settings. The approach of Emerson et al. [Emerson and Lei 1987] reduces a CTL∗

formula to µ-calculus using a system of fixed-point equations on relations with first-order
quantifiers and equalities. This approach has been implemented in [Griffault and Vincent
2004], where a µ-calculus model checker is invoked after the translation. The approach
described in [Clarke et al. 1999] calls for repeated calls to a (global) linear-time model
checker. The linear-time model checker computes the set of states that satisfies a given path
formula. This set of states can be used as a precondition that replace state sub-formulae of
super-formulae that include the said path formulae.

Contrarily, we seek to verify the undecidable general class of infinite-state programs sup-
porting both control-sensitive and integer properties. Given that µ-calculus model checking
is polynomial-time equivalent to the solution of parity games [Emerson and Jutla 1999], one
can conceive that the approach in [Beyene et al. 2014b] could potentially solve CTL∗ model
checking if the latter were reduced to solving parity games by combining [Griffault and Vin-
cent 2004] and [Emerson and Jutla 1999]. However, we note that the resulting infinite-state
game would integrate the (first-order µ-calculus) property within the program making it
difficult to extract invariants pertaining the program. For this reason, it is often the case
that such a series of reductions inhibits tool performance. Furthermore, [Beyene et al. 2014b]
requires a manual instantiation of the structure of assertions, characterizing subsets of the
infinite-state game, that are to be found by their tool. One can think of our approach as an
implementation of the technique described in [Clarke et al. 1999], but over infinite-state pro-
grams. We generalize an approach introduced by [Cook and Koskinen 2013], which reduces
linear-time model checking to branching-time model-checking. We extend this approach to
global model-checking instead of local model-checking by incorporating preconditions and
existential path quantifications, in addition to various improvements to their technique.

Existing automated tools for verification of infinite-state programs support either
branching-time only or linear-time only reasoning, e.g., [Bodden 2004; Cook et al. 2007;
Cook and Koskinen 2011; 2013; Beyene et al. 2013; Cook et al. 2014; Song and Touili
2012]. The important distinction however is that these tools do not allow for the interaction
between linear-time and branching-time formulae.

Finally, as we have previously discussed, we have adopted and repurposed a similar sym-
bolic determinization technique introduced in [Cook and Koskinen 2011] for the verification
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of LTL formulae in the infinite-state setting. Their symbolic determinization is based on the
counterexample-guided refinement of generated tree counterexamples, or counterexamples
with branching paths. That is, [Cook and Koskinen 2013] produce a semantics-preserving
transformation that encodes the structure of the nested CTL formulae within the state space,
allowing for the generation of tree counterexamples. This causes precondition generation for
syntactically partitioned formulae to be no longer possible, limiting the interplay between
linear-time operators and path quantifiers allowed by our strategy.

10. CONCLUDING REMARKS

We have introduced the first-known fully automatic method capable of proving CTL∗ prop-
erties for infinite-state (integer) programs. This allows us, for the first time ever, to auto-
matically verify properties of programs that mix branching-time and linear-time temporal
operators. We have developed an implementation capable of automatically proving prop-
erties of programs that no tool could previously prove. The method underlying our tool is
one that uses a symbolic representation capable of facilitating reasoning about the interac-
tion between sets of states and sets of paths. In addition, we provide a novel methodology
which extends our CTL∗ procedure to the verification of a fragment of CTL∗lp, providing users
with an exponentially more succinct logic to reason about linear-past. We have introduced a
transformation which embeds history variables corresponding to nested past-connective for-
mulae within the transition system. That is, the history variables track the truth valuation
of a past CTL∗lp formula along a computation.

In future work, we hope to eliminate the limitations of our determinization procedure by
potentially utilizing the technique introduced in [Cook et al. 2015] which allows for some
interaction between linear-time and branching-time over fairness assumptions pertaining
to a system’s environment. Additionally, when specifying the correct behavior of systems,
relating data at various stages of a computation is often crucial, as expressing program cor-
rectness often requires relating program data throughout different branches of an execution.
However, CTL∗lp alone cannot express this without the support of first-order quantification.
There does exist one automated model-checking tool that supports first-order CTL [Beyene
et al. 2014a]. The first-order quantification is encoded as a set of constraints within an
existing CTL model-checker to obtain an automatic verifier for first-order CTL. However,
it is unclear if a similar strategy can be integrated with our CTL∗ model-checker, as the
constraints reason about quantification over sets of states, and not paths. We thus hope to
further investigate the aforementioned approach to extend the support of CTL∗lp to include
first-order logic.
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