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Solving inverse electromagnetic scattering problenis via
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This paper is dedicated to the memory of our friend and colleague ArminrLechleiter.

Abstract

We employ domain derivatives to solve inverse electromagnetic scattering problems
for perfect conducting or for penetrable obstacless, Using a variational approach, the
derivative of the scattered field with respect tofboundary sariations is characterized as
the solution of a boundary value problem of the game type as the original scattering
problem. The inverse scattering problemiof reconstructing the scatterer from far field
measurements for a single incident field ‘can thus be solved via a regularized iterative
Newton scheme. Both the original forward problem and the problem characterizing
the domain derivative are formulatedsas boundary integral equations and we carefully
describe how these formulations are ebtained in the case of Lipschitz domains. The
integral equations are solved using the boundary element library Bempp. A number of
numerical examples of shape reeonstructions are presented.

1 Introduction N

The use of iterative methods based/on derivatives with respect to variations of the boundary
has been a standard tool for solving inverse problems of shape reconstruction for many years.
For many types of boundary wvalue problems characterizations of such shape derivatives have
been given, either based on variational approaches or using boundary integral equations, and
these characterizations have been employed with great success for computing derivatives in
actual implementations of reconstruction algorithms. See e.g. Chapters 4 and 5 in [5] and [10]
and the many references given by these authors for an overview on what has been accomplished
in this direction, andsalso |7] for examples of actual reconstructions obtained by this approach
in three-dimensional acoustic wave scattering.
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However, much less has been achieved so far for time-harmonic electromagnetic wave scat-
tering problems. The difficulties originate from the much more complicated regularity theory
of solutions to Maxwell’s equations as compared to solutions of elliptic PDEs. Only in re-
cent years have characterizations of shape derivatives been found [6, 9] that are suitable for
implementations.

The situation under consideration in this paper is that of an electromagnetic wave in vacaum
being scattered by either a perfectly conducting or penetrable homogeneous obstaele. In this
case, the total electromagnetic field is a solution to a boundary value problem consisting of
the Maxwell system with constant coefficients, the Silver-Miiller radiation»condition for the
scattered field and a boundary or transmission condition on the boundary of the obstacle. It
turns out that the derivative of the far field of the scattered field with respect to variations of
the boundary only depends on the domain derivative of the scattered field which solves essen-
tially the same type of boundary or transmission problem, only withsar different inhomogeneity
in the boundary or transmission condition. Thus, the domain derivative ¢an be computed by
essentially the same numerical methods as the scattered field itselfi However, the conditions
that characterize the domain derivative involve traces and surface derivative operators that
are not implemented in most libraries for computational electromagnetism.

One numerical method that is well suited to the problem typewe areconsidering is the Galerkin
boundary element method. The numerical library Bempp (https://bempp.com) |16, 17| pro-
vides the necessary implementations of boundary element spaces, potentials, integral operators
and Calderon-based preconditioners to efficiently Solve suclyscattering problems. Moreover,
as we will show below, it is not difficult to implement all the necessary boundary operators for
implementing domain derivatives in this framework: ‘Thus, gradient-type iterative methods
become a feasible tool to solve inverse electromagnetic scattering problems.

Using these techniques, in this paper we present,boundary integral equations of the problems
characterizing the domain derivatives and forathe first time present an implementation and
actual reconstructions of domains using this techniques in full 3D inverse electromagnetic
wave scattering. Availability of ' Bempp has facilitated the implementation of this algorithm
tremendously. Nevertheless, the.mathematical foundation of the application of boundary
integral equations to electromagnetics and the analysis of corresponding boundary element
methods is neither elementary nor straight-forward. For the full theory, we refer to [2, 3,
4, 14]. We will provide a brief synopsis of those parts of the theory that are vital to the
characterization of domain derivatives.

In Section 2, we state theformulation of the direct problems both in variational form and as
boundary integral equations. o obtain these formulations, we provide a brief description of
how to define the proper Sebolev spaces and boundary differential operators for the Maxwell
system. In Section 3,:the inverse problem is formulated and gradient based solution schemes
are discussed. /A boundary integral formulation of the domain derivative of the boundary-
to-far-field operator is provided. Details on how to discretize this scheme by choosing an
appropriatesspace of boundary parameterizations are given in Section 4. Section 5 discusses
the necessary extensions of the Bempp library to implement the iterative solution algorithm
and in Section 6, we provide various numerical examples.
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2 Electromagnetic scattering problems and boundary in-
tegral formulations

The Maxwell system,
curl B —ikH =0, curl H +ikE =0 (1)

with constant wavenumber k = w,/ep describes the propagation of time harmoni¢ electromag-
netic waves of frequency w in a linear isotropic homogeneous medium with electric permittivity
¢ and magnetic permeability p. In this notation, the time-dependent physical electric field is
given by E(z,t) = Re(¢™/2 E(z) e7 ) and the magnetic field H(xz,t) = Im(p "/ Hx) e 7*),
respectively. Nevertheless, to simplify nomenclature, we will also refer to.E asithe electric and
H as the magnetic field.

Consider a scatterer given by a bounded Lipschitz domain D C R? which.may/represent either
a perfect conducting obstacle or a penetrable inhomogeneity. We agsume throughout that
R?\ D is connected. Outside of D, u and ¢ are assumed to be equalto thé material constants
in vacuum, € = €g, [t = lo.

Consider an incident field (E*, H') which is assumed to bé"asolution of (1) in all of R? with
k = ko = wy/Eofto- The presence of the scatterer gives risé tova seattered field £°, H* in R®\ D
which is also a solution to (1) and additionally satisfies the Silver-Miiller radiation condition
lim [H*(z) x x — |a/E¥(x)]=0. (2)

L

|z|—o00

In the case of a perfect conductor, the totalufield (EpH) = (E', H') + (E*, H*) satisfies the
boundary condition
Exv=0 onoD ,

where v denotes the outward drawn nermal tendD. In the case of a penetrable scatterer, we
will assume that (e, ) are constant in D bug, different from (g, pto). In addition to (E*, H?),
the scatterer gives rise to a transmitted field inside of D which we will also denote by (E, H).
The tangential traces of the physieal fields outside and inside of D do not jump across the
interface D, which in our notation translates to

[e12 Eg v] =g (W PHxv] =0  ondD. (3)
Throughout this papety;ave will, consider solutions of these problems in the weak sense. For
a Lipschitz domain Q,“wewill use the Sobolev space H(curl, Q). Let us briefly outline how
the relevant trace and surface differential operators may be defined in this setting. See [2, 3]

and the references eontained therein for a comprehensive presentation of this subject. For any
connected boundary component I' of €2, define the tangential trace operators

o =wlr Xw, Arv=vx (v|p x V), veC™(Q,CY),
which can/be extended continuously to v, yr : H'(2,C3) — L?(T"). The range spaces
V= (H'(92,C%), Ve =~r (H'(,C%) ,
are in general different from each other. They are Banach spaces with the norms

lellve = mf{fjvllar = o =y}, ([@llve = mf{{jolla : ¢ = yro}
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Suppose that u, v € H'(, C?) vanish outside of a neighborhood of T'. As a consequence of
the divergence theorem, we obtain the integral identity

/(u-curlv—curlu-v)dx:/fytu-yTvds:—/vTu-thds. (4)
Q r r

From (4) we can deduce that ~; : H(curl,Q) — VJ and vr : H(curl,2) — V/ are bounded
with

/Q (u-curlv —curlu - v)de = vy {(eu, ’yTU>VT = v (vru, %U>Vt (5)
for any u € H(curl,Q), v € H'(2, C?) which vanish in a neighborhood ¢f any component of
99 different from T'. [2, Proposition 3.4] states that the surface gradientsVr «H!(T") — L?(T")

maps W = {¢p = v|r : v € H*(Q)} to V. Thus, the weak definition of the sutface divergence
as the adjoint of Vr,

~

a1 @ Dive 0, ¥) 1 ) = —/Fso Vrds, e LM e (D), (6)

has a well-defined bounded extension Divr : V] — W’ .4Using (5), it turns out that for
u € H(curl, (), there holds Divr(y;(u)) € HY?(T) and that the.mapping

v : H(curl, Q) — H™Y2(Divy, I') = {p @V, : Divp(p) € HV(I)}

is bounded and surjective. In a similar way, the scalar surfase curl operator Curly is defined
and it is proved that

vr @ H(curl, Q) — HY2(Curly, B) = € V/ : Curlp(p) € HV4(D)}

is also bounded and surjective. It cafimbe shown |2, Lemma 5.6] that the right hand side of
(4) extends to a duality (-, -, )r betweenH /2(Divr, ') and H~'/?(Curlp,T') such that

{(nu, 7Tv>r = / (u-curlv — curlu - v) dzx
0

for all u, v € H(curl,{2) which wanish in a neighborhood of any component of 02 different
from T N

We additionally define the maghetic trace operator vy : H(curl?, Q) — H~'/2(Divp,T'), where
YNV = o i curl v .

The term magnetic:comes from the fact that yyv is the tangential trace of the magnetic field
whenever v is an'electrie field.

With these tools, ave are able to state weak formulations of our scattering problems for the
scatterer Dg"Denote by B an open ball sufficiently large such that D C B. On the artificial
boundary/0 B, weduse the Calderon operator A : H~'/2(Divyp, 0B) — H~Y/?(Divyp, 0B) that
maps the tangential traces on OB of a radiating electric field in R?\ B to the tangential traces
of the corresponding magnetic field, Ay E® = vy E® (see |14, Section 9.4]).

Define the space o
Vo={ue H(curl, B\ D) : vu =0 on 0D} .

4
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A weak solution of the perfect conductor problem is a field E € V[ such that

/ [curlE -curlv — kjg E- E] dx + <ik0 A E, fyTv>8B
B\D
= <il€o Ay, E' — ikrngEi,yTv>aB for all v’ € Vg (7)
For a penetrable scatterer, we additionally introduce the space
Wo={u€ H(curl, D) : yyu =0 on 0D} .
Denote by x = w,/ei the wavenumber in D. We look for a field £ € €*(B, C?) such that
E|p € H(curl, D), E|gp € H(curl, B\ D) with
/ [curlE curlv — k3 E - 6] dx + <ik0 A E, 7TU>aB

B\D

~

— <jk;0 A%Ei — ikwNEi, 7TU>8B for all v € 1}, (8a)

/ [cwl E - curlv — k* E - 7] dz =0 for all v € Wy,  (8b)

D

together with the transmission conditions (3) on @D Here and in what follows, let super-
scripts -* and -~ indicate traces taken from R? \ [D and Dyfespectively. Then (3) translates
to
~1/2 _1/2 — ~1/2 12—
&0 P E =2 T BN NG E = pTV2 AR E. (8¢)

Solutions to these problems can be computed using boundary integral equations. Our deriva-
tion follows the presentation in [4, 12]; butisee also [5] for a classical derivation for smooth
boundaries. For the perfect conductor problem, introduce the electric potential

& - HY2(Divyp, 0D) — H(curl®, D)

as
: \> 1 : 3
Erp(z) =ik o(y) Pr(zq) ds(y) = & grad Divap ¢(y) Pr(z,y)ds(y), x € R’\0D,
oD oD
where
3 eik|$—y| R?,
k(x,y)—m, ,y eR”, z#y,

denotes the fundamental solution of the Helmholtz equation. The corresponding electric
boundary operator By H‘%(Divap,aD) — H’%(Divap,aD) is defined by averaging the
traces of the potential fromnboth sides of the boundary,

1
Ep =5 (0 &+ &)

A soldtion to'the perfect conductor problem (7) is then given by F = E' — &, ¢ if ¢ €
H~2(Divyp,0D) is a solution to the electric field integral equation (EFIE),

E¢ =7 E' on 0D . 9)

5
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Note that the EFIE is not uniquely solvable if k2 is an interior electric eigenvalue (cf. [3,
Definition 4]). Thus, from here on we will assume that this is not the case.

For the transmission problem, the magnetic potential H,; : H_I/Q(DiVQD, oD) — H(curlz, D)
is required additionally. It is defined as

Hip(z) = curl /6 ) Bula)dsly), 7 €R\OD.

and the corresponding magnetic boundary operator

1
He=3 (v Hy + v He)

The traces of & and H;, are related to E;, and Hy, in the following way:

1 ~
Vi & = Eg, 7ﬁ5k=:F§I+Hk,
. 1 ) (10)
’YtHkZZF§I+Hk, YwHE = —Ey,
where I denotes the identity operator.
Using the multitrace operator
H;, Eg
A, —
" [—Ek Hk] e
from the Stratton-Chu representation formulas we obtain/the equations
+ + — —
o) = (7= a) (i) \ W] - (52) 2
=(=I-A , ol =1 =1+ A, G 11
[ﬁ ] (2 * ) lak WE| ~\2 T E (11)
The operators Cf = %I F Ay are called Calderon projectors and map pairs of elements in
H~2(Divgp, dD) to admissibletCauchy datalef the Maxwell system. We write (8c) as
ArRe @ SR i BN
w(E® + E) 0 ' PI| [wE B
where €, = ¢/eq, p, = 1/ po. The Calderon projectors satisfy
¥ [%*ES} _ {%*ET C- {%E} _ {%E}
wBq | wWEs] wE]  wE]
so that y ) N o
T E°+ EY _ v E v, B® v, B
SC sl{% s i]:SC [t }:(ﬁ[t s}+{t A
NS + EY) wE WE ] T WE
This equatienrcan be rewritten as
+Es 1 +Ez'
SA S A | L= (21-8A,8") |17, 12
( + ko) {’Y;\?ES} (2 ) |:’Y]TIEZ ( )

which'is a boundary integral formulation of (8). Theorem 12 in [3| establishes that this
equation is uniquely solvable for every incident data pair.

6
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3 Inverse scattering problems and domain derivatives

So far we have discussed formulations of the direct problems of computing the scattered fields
from knowledge of the incident field and the shape and physical properties of the scatterer.
Now we wish to discuss the inverse problem of reconstructing the shape of the scatterer from
knowledge of the incident field and of the scattered field away from the scattever. We will
approach this problem using iterative regularization methods. For this type of‘“methods it is
also important to know a priori if the scatterer is penetrable or a perfect conductor.

The scattered electric field £* in R?\ D satisfies an asymptotic representation

E T o

3 = T [e'S) r T ) — )

)= g (=@ +0 ()| el

with & = z/|x|. Ew is called the electric far field pattern. It is an analytietangential vector
field on the unit sphere S?, and E., uniquely defines £*. Howeverythe reconstruction of E°
from F., is a severely ill-posed problem.

We fix an incident field (E?, H') and restrict ourselves tohan appropriately chosen class of
admissible boundaries ). We define the non-linear (electrie) boundary-to-far-field operator

o { Y — L8
| 0D — 4 By
L
The inverse problem can then concisely be formulated as: given an E., € L(S?), find 9D € Y
that satisfies the equation
FOD)= B (13)

In order to formulate an iterative solutionstechnique for this non-linear equation, we need
to find its linearization. To do this in a‘mathematically rigorous way requires to formulate
variational problems in perturbéd domains generated by boundary variations. We consider
variations of D, described by sufficiently small € C*(R3? R3), compactly supported in a
neigborhood of 9D such that the/diffeomorphism £ defined by {(z) = x+n(z) gives a perturbed
domain D, with admissible boundary dD, = {y = {(x) : * € 0D}. For such variations of
D there exists the so called domainderivative E' [8, 9|, a radiating solution of Maxwell’s
equations with far field E’_depending linearly on 7, such that

1

T=—||F(0D,) = F(D) — E_ |l12s2) — 0, n— 0. (14)
HTI||01(R3)

If we choose a certain type of parameterizations ) in a subset of a normed space X, for
example star like domains; (14) means, that the operator F possesses a Frechét derivative for
any admissible boundary 0D, with

F'[0D]: X — LX(S?), F'[0Dln=E..

In orderito solve/(13), we use a regularized iterative Newton scheme as follows. First, we
choose a starting guess 0D°. Every iteration i € N consists of the following steps:

(i) Caleulate F(0D").
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(i) Check residual r = |F(0D?) — Ey||.
(ili) Solve for 7 € X in the linearization of F(OD}) = Ex.

(iv) Update 0D — 0D by adding 7 to the parametrization.

We stop the iteration, if the residual r falls below a chosen threshold. The step (iii) needs some
further explanation. Assuming that for small 7 the linearization F(9D,) ~ F(dD)-+ F'[dD]n
is a good approximation, we consider the equation

F'[0Di]n = E. — F(OD,). (15)

In general we cannot expect (15) to be solvable. However, applying Tikhonoy regularization
with some regularization parameter o > 0, transforms (15) to the uniquely solvable equation

~

(F'[OD,)"F'[0D:] + al)y = F'[OD:]*(E. — FODS)) . (16)

The regularization in (iii) is needed both for solvability of (15) andufor damping in (iv) since
we need to enforce that the updated boundary is admissible. The identity in the Tikhonov
equation (16) corresponds to a penalty with respect toshesnormyof X'. Stronger norms can
be considered, which will be explained below. Consider [I1]ufor details on such iterative
regularization schemes and convergence results, which ate to our knowledge not known for
inverse scattering problems. .

The implementation of the algorithm above requires the computation of F'[0D] or, equiva-
lently, of the domain derivative E’. It is possible to ¢haracterize the domain derivative via
a boundary value problem [8, 9|, however, it is neecessary to impose additional regularity on
the boundary D to do so. Hence, we will from now on assume that D is of class C!. Note
that this assumption has strong implications‘for.the regularity of the solutions to the scatter-
ing problems (7) and (8), respectively: wewbtain E, H € HY(D), E*, H* € H*(B\ D) [1]
whenever the incident field is smoeth enough.

We will briefly outline how domain derivatives can be obtained for electromagnetic scattering
problems. We use the approach from [8, 9]¥ia variational methods. Different approaches exist
[6, 13, 15]. The case treateddn |9} is that of a penetrable scatterer. Introducing the normal
trace operator

Y =v-v|ap,

we conclude that v,v € HY2(OD) where v denotes any of the fields E, H, E*, H°. By [2,
Proposition 3.6, we/also have Vyp(n) x v € H=Y/?(Divgp, dD) for any n € HY/2(dD), as this
operator is nothingselse than the vectorial surface curl in disguise.

The domain defivative E“depends linearly on a variation of the geometry 7. In [9] a char-
acterization of E’ s the weak solution of Maxwell’s equations with a certain transmission
condition ig«derived. The jumps across 0D depend on the normal component of 1 on 0D,
h = ~,n &€ CY(dD). Tt is proved that E’ is a solution of (8a), (8b) with E* = 0 such that the

Page 8 of 23
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following transmission conditions are met
551/2 o 5_1/2%_E’ _ 551/2< v (hVZLE) X v+ iko hv{ﬁH)
42 (VaD (hv, E) x v — i/ﬁh’y;H>
po P H = AT Y = g (= Von (i H) x v — iko h 7 ) "
+M_1/2<V8D (hv, H) x V"‘i"@hV:FE)

Using the scaling matrix S from Section 2, we abbreviate these conditions as

+ - + -
W E . v E _ Fi Fi
i) s bes] = [ +s 7] - .

Arguing as in the derivation of (12), we obtain the system of intégral@equations

(SAKS*l v Ak0> D%g] - (%1 - SAHS*) [g} +S (AK ’ %1) [gﬂ (19)

Note that (19) differs from (12) only in the right handidepi.c. the same solver can be used
to compute E and E'.

For a perfectly conducting obstacle, the derivation of E“follows along the same lines. The final
result is that E' € H(curl, B\ D) is a solution ofl (7)for B**= 0 together with the boundary
condition

WwE' = —Vap [hp Byx v +iko hyrH .

The corresponding boundary integral equation is
Ew, o = Voap [hy, Bl.X v =iko hyr H on 0D, (20)

which again is an equation with the same integral operator as in (9).

4 Discretization of - the Newton scheme

As mentioned above, the derivation of the Newton scheme requires that the set ) of admissible
boundaries is an open.subset of a normed space. Thus, let ) be the set of smooth starlike
domains with center in'the origin. The boundaries can then be identified by positive functions
on the unit sphere $? via spherical coordinates, i.e.

OD={x cR*: 2z =r(d)d, deS°}
for some smoothi : S/~ R-,. To be more precise, we choose the open set
Y={recC=$?*:r(d) >0, decS§?}

in thé normed space X = C°°(S?) as domain for the boundary-to-far-field operator F.

There are two straight forward possibilities to discretize (16). One can discretize the full
Tikhonov eperator F'[0D]*F'[0D] + ol or one can discretize every operator involved and

9



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-102051.R1 Page 10 of 23

multiply them on the discrete level. In general, one expects differences in the results. Here,
we choose the second idea.

We start by discretizing X. Let Y.*, n € Ny, |m| < n denote the normalized spherical surface

harmonics, i.e. eigenfunctions of the Laplace-Beltrami Operator Agz with eigenvalue =n(n+1)

AgY " +n(n+1)Y," =0,

explicitly given in spherical coordinates (z,y, z) T = (cos psin 6, sin ¢ sin fgcos ) "€ R? by

Y™(0, ) = \/(2”4:(;)51”;“;1') Pl™l(cos @)™, o e (0,27)40.€ (0, 7)

with the associated Legendre functions P, n € Ny, m < n. The functions ¥," form an

n

orthonormal system in L?*(S? C). Since we are looking for real-valued functions, we choose as

discretization of X the finite dimensional subspace Xy, given by ~
N n Niwn
Xy ={reC>S* :r= Z Z alReY," + Z Z S Im Y, "},
n=0 m=0 n=1 m=1

which leads to the set of admissable boundaries Vy, givén by funetions » € Xy with r > 0.

We furthermore pick M € N evaluation points 21, . .., & € S? for'the far fields. Now, equation
(13) reads as
F(a,8) = (BX(11), ..., EX (@ )herC>™,

where a and [ denote the vectors of coefficients af', n < N, m < n and 8", n < N,
1 < m < n. Using the linearity of the domain derlvatlve we can write

N n N n
F'[oDln =Y "> ol F@DIReX,™) + > > ArF[0D|(ImY;"). (21)
n=0 m=0 n=1 m=1
Again, using only finitely many evaluation points we have for fixed n and m:

F'[OD](ReY™) HE' (2;ReY™), ..., E (&9;ReY™)) € C¥*M,
F'[0D](Im Y,"y=(Bly(i Im Y,™), ..., B (Z9;ImY,™)) € C*>*M,

where E!_(#;n) denotes the far field of the domain derivative E’ with respect to the pertur-
bation 7, evaluated at &€ S?."Choosing the ordered basis B of Yy, given by

B={ReY,Re¥ ReY}, ..., Re Yy , ImY!' ImY;} ... . ImYY},
we arrive at the representation matrices

F[oD]: RVEL® — M
(FUDYije =AE (Z5;m%))i, i=1,2,3,7=1,.... M, k=1,...,(N+1)?

where 7, denotes the k-th element of B. The product of F'[0D]*F'[0D] is a complex quadratic
(N + 1% (IV.+4)? matrix, given by

(F'[0D]*F'[0D]); Z E! (zg;mi) - Bl (23 m;) € C. (22)

10
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Note, that the adjoint of the discrete F'[0D] is just given by complex conjugation. Similarly,
if we denote by E°°(&, 0D) the far field with respect to D, evaluated in # € S? the right hand
side of equation (16) is an element of CN*1?  given by

(F'[OD]*(E® = F(OD)))r = > _ EL(&j,m) - (E® (&) — E®(2;,0D)), k=1,.. g+ 72

=1

Instead of the the identity I, we choose the diagonal penalty matrix J, given' by (J)xx =04 (k),
k=1,...,(N +1)% Here

A(k) :=n(n+1), suchthatn, =ReY," or ImY,".

This corresponds to an H?(S?)-penalty, since the H*(S?)-norm is equivalent to{the graph norm
| - lla,, of the Laplace-Beltrami Operator Agz, given by

~

|- llage =11 llzes2y + 1As2 - [l z2(sz)

and since the basis elements 1 € B are eigenfunctions of As2. “Se, solving the Tikhonov
equation (16) after discretization of ) becomes solving a lineax system of (N + 1)? equations.

The solution n = (ad,a?,...,aN, 8L, 8L, ..., BN) € CWED  ofithe discrete system
(F'[OD)'F'[9D] + o)y = F[9BI(B> — F(9D)) (23)

- 4
is in general complex-valued. For the update in (iv), we discard the imaginary part.

The full discretization of equation (23) follows by numericéally evaluating F for a boundary 0D
of a given scatterer D and by evaluation of the far field of the domain derivative for a given
perturbation 7. We realized this with.the help of the boundary element software Bempp.

5 Implementation remarks

The actual implementation of the Newton scheme requires the solution of many integral equa-
tions (9), (12), (19) or (20). Ahedibrary Bempp (https://bempp.com/) provides a sophisti-
cated basis for such calculations{ Foran introduction on how to solve electromagnetic scatter-
ing problems with Bempp, wetefer to the overview paper [16] for the case of the perfect con-
ductor and to the commented Jupyter Notebook on FElectromagnetic scattering from multiple
dielectric spheres available onytlie Bempp homepage (https://bempp.com/documentation).

The application of Bempp'is particularly attractive for mathematicians as the formulation
of discrete problems is exactly analogous to the corresponding full mathematical problem.
Thus, in this section, we will only write down equations for the full problem, in the Sobolev
space H (curl, D)or its trace spaces. Once it is known how to discretize each operator, the
corresponding equations in the boundary element spaces are exactly the same.

As mentioned before, the boundary integral equations for the domain derivatives (19) and
(20) differ onlysin the right hand side from the boundary integral equations for the scattering
problems (9)%@nd (12), respectively. Let us recall the right hand sides for the perfect conductor

F :=Vplhv,(E)] x v —ikoy,hyr H (24)

11
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and for the penetrable scatterer

(r-sas) [E] s 1) ]

with
FF Vop(hyfE) x v —ikghvfH
Frl | Vap (h% ) Xv—ikhy H (25)
ES | |Vop(hyfH) x v +ikohvi E
Fy Vap(h% ) Xv+ikhy E

This leads to the following tasks:

1. Calculation of the normal traces v of E and H.
2. Calculation of the product of A and the traces of E and H G
3. Calculation of the surface gradient of these products.

4. Rotation of the surface gradient and calculation of thetrace v¢ of £ and H.

By solving the direct scattering problem, we gain access to ¢, the solution of

,y:‘E’L = Ek0(207 on O S

in the case of the perfect conductor and to (945 E*, v ) in'the case of the penetrable scatterer.
We use
Divap(yw) = 7, curlw, w € H(curl, D), (26)

see [2], the corresponding equation for w' @ (cutl, B \ D) and Maxwell’s equations to obtain

the relations
Yo koE| _ _l YNE YokoH | 1 . % E
[%‘HE] =1 R VNE e | T PR R

For the case of a penetrable scatterer, we arrive at explicit formulas for the normal traces. In
the case of the perfect conductors we.can calculate the unknown Neumann trace vy E with the
help of the jump conditions. If‘y is the solution of the EFIE (9), i.e. E® = —&, ¢, we have

1
W’ = —VNnEryp = (51 — Hko><P

Again using (26), weiobtain normal traces using the surface divergence Divgp. One can see
from (6) that ghe weak formulations for the surface divergence and the surface gradient are
coupled. Assuming further smoothness, we can write:

Y Divgp pds = —/ v - Vapds

oD oD

Up to the sign, the left hand side can be seen as weak formulation of the surface gradient and
the right hand side as weak formulation of the surface divergence. Bempp supports the weak
formulation of a number of surface differential operators. The details of the implementation

12
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are documented in a Jupyter notebook associated with this paper available through the Bempp
homepage (https://bempp.com/publications).

In order to calculate the product of two discrete functions f and g and represent the result in
a given basis {¢;} we solve the linear system of equations

Zai . ¢i($)¢j(x) ds = /aD ¢j(9€) (f(2)g(x))ds, j=1,...

i

to obtain the L? projection of the function product on the basis {¢;}. Herepdepending on
whether the product is scalar (in the case of v,hv, E), or vectorial (in the case of qphyrE) we
choose the basis {¢;} to be either scalar or vectorial.

So far, we have explained, how we can fulfill tasks 1. - 3. The remaining task is the rotation
of the surface gradient Vyp x v and the calculation of the traces vz of F and H. Since the
two traces v and yr are formally connected to each other by rotation: =

g =v X (Pxv)=—(¢xXv)xXv=—"Ho XV,

we only need to implement the rotation. Considering

/aDsto-wﬁds:/aD(yx(gpr)).wxy)ds:/ ¢ - (x v)ds

oD

E— aDw-(¢XV)ds——/(9D(VX(@/}Xy))-(cexy)ds——/ Yo - b ds,

oD

we observe that (-,-)sp can be seen as weak, formulation for the operator R with Ryrp =
v and — (-, -)op for the converse operator. ‘Again, Bempp provides the tools to implement
this as demonstrated in the associated Jupyter notebook available at https://bempp.com/
publications. Observe that for every tangential vector field ¢, we have (v x (¢ X v)) = .
Therefore, rotating the surface gradient of,¢ can be seen as applying A, i.e. (Vopp) x v =

A(VaDQO>.

6 Numerical results\

In this section we present the sesults of some of the numerical experiments we have carried
out.

We have successfullyarun reconstructions for the perfect conductor and for the penetrable
scatterer. In both cases we have considered exact and noisy data. Below, we present the
results for the penetrable scatterer. Results for the perfect conductor are similar, but require
less computational effort.

In order to test our implementation of the reconstruction algorithm, we have picked the fol-
lowing shapes; see figure 1:

1. Areunded euboid, implicitly given by
(1/r1)" + (22/12)" + (23/r3)" = d"

with'some exponent n € N, positive radius d and side lengths ry, 75,73 > 0.

13
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2. A peanut shaped object, implicitly given by

2
() + () + 8- %

with R: [-1,1] - R, R(z) = £ — 2 cos (32).

1.5 - 1.5+ | |
1 -1
0 0

- 1 -1 1

Figure 1: The rounded cuboid with n = 6 and (rf,ro43) ={1,1.3,0.7) and d = 1 on the left
and the peanut with d = 2.5 on the right.

We chose the first object in order to have an object close to the non-smooth cuboid. Of
course, the actual rounded cuboid issmooth for every n € N, but does not lie in the span
of our shape basis functions. Our implementation requires starlike shaped objects, but no
convexity. Therefore we picked the second object as an example for a non convex object. To
cancel positive effects due to symmetry, we applied a translation such that the center of the
two starlike objects does not coineide with the center of our starlike reconstruction in 0.

First, we generated the exact data E,, = F(0D). We have picked 168 evaluation points ;,
i=1,...,168 on the unit sphére'S%,so that the discrete version of E., is an element of C3*168,
In order to avoid an inverse erimeé, wé ran calculations of the exact data with meshes unrelated
to those used in the reconstruction and yielding a higher accuracy. In the case of noisy data,
we multiplied every component of F,, € C>*!68 with some perturbation factor of the form

1 + 5)\1€2ﬂi)\2 y

where Aj, Ay arg’on (0, b)=tmiformly distributed random numbers and the noise level § > 0.
We call this noise ap to 0. Fhe effective noise level is given by

B~ BL|

5eff =
(2

(27)

Since the noigy far field E?_ is no longer a (discrete) tangential vector field on the sphere, one
might think of cancelling the non tangential parts of E2_, but since we apply the adjoint of
F[0D;] on'the right hand side of (16), non tangential parts get canceled automatically. For the

14
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Exact shape D Best approximation using N = 2 Best approximation using N = 4

-1 1 -1 1

- 1
Best approximation using N =6 Best approximation using N = 8 Best approximation using N = 10

14 14 14
0+ 0+ 0-
1 1 14
0 0 0 0 0 0
1 1 1 1 4 1

Figure 2: The best approximation of the roundedseubeid using (N + 1)? basis elements.
L

calculation of d.g, we did not see any relevamt difference,/if we just considered the tangential
part of ES in (27).

As initial guess, we have chosen Dy = B;(0) ={x € R3, ||z|| < 1}, the ball of radius one. We
have observed that we have to either increase the regularization parameter o drastically or
use some a-priori information about the size of the scatterer for successful reconstructions.

We have chosen the regularization,parameter ‘@ by experience. Using too small parameters,
especially in the case of noisy data; leads to updates of the parameterization, where negative
radii occur, i.e. degenerated objects. Butiabove some critical level, we have observed robust
reconstructions. Using larger thanmecessary a slows down the reconstruction speed, but the
effect is barely noticeable. In the case of exact data, we have used @ = 3 and for noisy data
a = 7 for the peanut and @ = 12 for the rounded cuboid, which seems to be necessary for
reasonable noise levels.  Reconstructions with lower values of o have failed from time to time.

Choosing a fixed numbérof basis elements for the construction, one can calculate the L?(S?)
projection of the parameterization onto these elements. The resulting shapes are in this sense
the best reconstructions, one can hope for. In Figure 2, one can see the best approximation
of the rounded/cuboid using different numbers of basis elements.

For our reconstructions, we have chosen the material parameters
e =21, pu =10, ky=1.0472, Kk =1.5175,

whicli correspond to the scattering of Teflon (CyFy) illuminated by VHF radiation with wave-
length of 6 m.



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-102051.R1 Page 16 of 23

] Relative error of the far field
10 T T T T

—+&— rounded cuboid, § =0

—— rounded cuboid, § = 0.3

10%% peanut, § =0 =
—+—— peanut, § =0.3 ]

107

0 5 10 15 20 25
Iterations

Figure 3: Residuals || E* —F(0D;)|| during the reconstructions ofthe peanut and the rounded
cuboid with and without noise.

We have considered one incoming pair of plane waves (E°, H%), given by

with polarization p € C? and direction d € §%,satisfyingp-d = 0. Again, to avoid any positive
effects due to symmetry, we have chosen
141 1

1
p= 2 and d=— |2

a1+ 1 VI4\3

Let us present our reconstructions. In“all cases, we have run 21 iterations without stopping
rule. We have chosen N = 7, i.e.swe have used (N + 1)? = 64 basis functions. In Figure 3,
the normalized residuals 2
|E> — F(OD;||

£

are plotted for the reconstruction of the peanut and the rounded cuboid with and without
noise. Note the relativelyilarge initial error ey with eq ~ 0.4 for the rounded cuboid and
eo ~ 1.0 for the peanut. Also observe that after some iterations, the residuals stay at the same
level. For noisefrée data.we have achieved final errors of ey ~ 2 - 1072 for the peanut and
ea1 A~ 4 - 1073 for the rounded cuboid. Considering noisy data, we achieved ey = 4 - 1072 for
the peanut and es; = 6.5 - 1072 for the rounded cuboid.

€; =

In Figures 4, 5, 6 and 7 reconstructions of the peanut and the rounded cuboid, each with exact
and noisy ‘data are represented. The arrow in the picture with the exact shape D indicates
the direction d of the incoming plane wave. Observe the indention of the reconstruction of the
peanut along d even for noise free data, which is a known phenomena for acoustic scattering
problems:

16
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We have applied noise up to 0 = 0.3, which lead to the effective noise level d.¢ ~ 0.13 for the
rounded cuboid and d.g ~ 0.12 for the peanut.

For our calculation, we have used machines with 32 or 64 CPU cores. With the help of some
parallelization, we have been able to run one iteration of our algorithm in about 10,to 20
minutes.

In conclusion, we have shown how iterative regularization schemes that have Jbeen used in
inverse acoustic scattering problems for some time, can also be implemented and applied to
electromagnetic scattering problems. The results of the numerical experiments have,been
obtained with a reasonable computational effort and are very promising.| In particular, the
reconstructions appear to be of better quality than those obtained for acoustic scattering in
[7]. We believe that this is due to the vectorial as opposed to scalar nature of the, fields which
provides additional information for the reconstruction. Hence, Newton type schemes may be
particularly attractive for inverse electromagnetic scattering probléms. o
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Exact shape D Initial guess D0
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Iteration 2 Iteration 7 Iteration 21
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-1

—_

A 1

igure 4: Reconstruction of the Peanut without noise.
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I I (o )
NoubhwNn-=0

_ -
O 00

N
o

-1 1 o 10 -1 1
Iteration 2 Iteration 7 Iteration 21

NN
N —
o
o

W W INDNNDNNNN
O VWO NOULDW

w W
w N

w
D

\\\//—
1 0 0 -1

-1 1
Cut with plane x =y

w w
o

-1 1
Cutplanesz =0andx=y

A DA DD DMDDMDMWWW
NOubdhWwWN=OUVO\
o N

D
O
!
N
-

w
o

A 1

o n
N —

Figure 5: Reconstruction of the Peanut with up to 30% noise.
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