
Separation Logic

Peter O’Hearn
Facebook and University College London

Dedicated to John C Reynolds

1. Introduction
A fundamental technique in reasoning about programs is the use of
logical assertions to describe properties of program states. Turing
used assertions to argue about the correctness of a particular pro-
gram in 1949 [40], and they were incorporated into general formal
systems for program proving starting with the work of Floyd [21]
and Hoare [22] in the 1960s. Hoare logic, which Separation Logic
builds upon, is a formal system for proving specifications of the
form

{precondition}code {postcondition}
where the precondition and postcondition are assertions describing
properties of the input and output states. For example,

{x == N}code {x == N ∧ y == N !}
can serve as a specification of an imperative program that computes
the factorial of the value held in variable x and places it in y.

Hoare logic and related systems worked very well for programs
manipulating simple primitive data types such as for integers or
strings, but proofs became more complex when dealing with struc-
tured data containing embedded pointers. One of the founding pa-
pers of Separation Logic summarized the problem as follows [32].

The main difficulty is not one of finding an in-principle ad-
equate axiomatization of pointer operations; rather there is
a mismatch between simple intuitions about the way that
pointer operations work and the complexity of their ax-
iomatic treatments. ... when there is aliasing, arising from
several pointers to a given cell, an alteration to a cell may af-
fect the values of many syntactically unrelated expressions.

Bornat provided a good description of the struggles in reasoning
about mutable data structures up to the year 2000 [6].

In joint work with John Reynolds and others we developed
Separation Logic to address the fundamental problem of reasoning
about programs that mutate data structures. From a special logic
for heaps it gradually evolved into a general theory for modular
reasoning about concurrent as well as sequential programs. Efforts
by many researchers established that the logic provides a basis for
efficient proof search in automatic and semi-automatic proof tools,
for example giving rise to the Infer static analyzer, a tool that is
in deployment at Facebook where it catches thousands of bugs per
month before code reaches production in products used by over a
billion people daily.

Published in Communications of the ACM, February 2019, vol. 62, no. 2.
doi:10.1145/3211968

Key Insights

• Separation Logic supports in-place updating of facts as we
reason, in a way that mirrors in-place update of memory during
execution, and this leads to logical proofs about imperative
programs that match computational intuition.
• Separation Logic supports scalable reasoning by using an infer-

ence rule (the Frame Rule) that allows a proof to be localized to
the resources that a program component accesses (its footprint).
• Concurrent Separation Logic shows that modular reasoning

about threads that share storage and other resources is possible.

Separation logic (SL) is an extension of Hoare logic which em-
ploys novel logical operators, most importantly the separating con-
junction ∗ (pronounced “and separately”), when writing assertions.
For example, we might write

{x 7→ 0 ∗ y 7→ 0}
[x] = y;
[y] = x
{x 7→ y ∗ y 7→ x}

as a specification of code that wires together two memory locations
into a cyclic linked list. Here x 7→ v says that pointer variable x
holds the address of a memory location where v is stored (or more
briefly, x points to v), and a command of the form [x] = v updates
the location referred to by x so that its contents becomes v′. The use
of ∗ rather than the usual Boolean conjunction ∧ ensures that x and
y are not aliases – distinct names for the same location – so that
we have a two-element cyclic list in the postcondition. A central
principle is that a command that mutates a single location affects
only one ∗-conjunct: operational in-place update is mirrored in the
logic, addressing the key difficulty where “an alteration to a cell
may affect the values of many syntactically unrelated expressions”.

Reynolds was the first to describe a program logic including
the separating conjunction; he defined an intuitionistic (construc-
tive) logic with ∗ [37], building on earlier ideas of Burstall [10].
O’Hearn and Ishtiaq [26] realized that the assertion language could
be seen as an instance of the resource logic BI of O’Hearn and
Pym [31]; they independently discovered the same intuitionistic
logic as Reynolds, and also saw that a more powerful Boolean (non-
constructive) variant was possible in which one could reason about
explicit memory management (Reynolds had assumed garbage col-
lection). They also introduced the separating implication −∗ .

Separation Logic for sequential programs reached maturity in
a further paper of O’Hearn, Reynolds and Yang [32]. In that work
O’Hearn proposed the following principle of local reasoning, both
as a way to describe what was special about SL and as a guiding
principle for development of reasoning methods.

To understand how a program works, it should be possible
for reasoning and specification to be confined to the cells
that the program actually accesses. The value of any other
cell will automatically remain unchanged.

A proof rule, the Frame Rule, allowed to infer that cells remain
unchanged when they are not mentioned in a precondition. The
Frame Rule was named in homage to the frame problem from
Artificial Intelligence, which concerns axiomatizing state changes
without enumerating all of the things that don’t change. The Frame
Rule is the key to scalable reasoning in SL.

An influential survey article of Reynolds summarized the early
developments up to 2002 [38]. At the end of this early period
O’Hearn circulated a note which proposed a Concurrent Separation
Logic (CSL). CSL showed efficient reasoning about threads that
share access to storage, proofs which mirrored design principles
espoused by Dijkstra at the birth of concurrent programming [16].
The correctness of CSL’s proof rules (its ‘soundness’) turned out to
be a formidable problem, solved eventually by Brookes. Brookes
and O’Hearn were awarded the 2016 Gödel prize for their papers on
CSL [30, 8], the significance of which was summed up as follows.

For the last thirty years experts have regarded pointer ma-
nipulation as an unsolved challenge for program verification
and shared-memory concurrency as an even greater chal-
lenge. Now, thanks to CSL, both of these problems have
been elegantly and efficiently solved; and they have the
same solution. 2016 Gödel Prize citation1

It is worth remarking that the first part of this citation, about pointer
manipulation, applies to sequential and not just concurrent SL.

After the early papers, research on SL expanded rapidly. Start-
ing from a special logic for heaps SL has evolved into a general the-
ory for modular reasoning. Non-standard models of SL based on an
abstract model theory due to Pym provided many potential avenues
for wider application, and Gardner and others realized that there
exist non-standard models that support modular reasoning about
intertwined structures as if they were separate. SL has even been
applied to interfering processes using fine-grained concurrency, a
situation far removed from the original intuitions of the logic.

SL is the basis of numerous automated proof tools, and it has
been used in significant verification efforts. It has been used to
provide the first verification of a crash-proof file system [14], and
to provide the first verification of a commercial, preemptive OS
microkernel [41]. These verification efforts are semi-automatic,
done by a human together with a proof assistant (in these cases,
the Coq proof assistant). SL has also been used in static program
analysis, where weaker properties than full correctness are targeted
but with higher automation, so that the tool can scale better both
in the sizes of codebases covered and the number of programmers
served. Static analysis with SL has matured to the point where it has
been applied industrially in the Facebook Infer program analyzer,
an open-source tool which is used at Facebook, Mozilla, Spotify,
Amazon Web Services and other companies (www.fbinfer.com).

The purpose of this paper is to describe the basic ideas of SL as
well as these and other developments.

2. Separating Conjunction and Implication
Mathematical semantics has been critical to the discovery and fur-
ther development of Separation Logic, but many of the main points
can be gleaned from a “picture semantics”. Consider the first pic-
ture in Figure 1. We read the formula at the top of this figure as
“x points to y and separately y points to x”. Going down the mid-
dle of the diagram is a line which represents a heap partitioning: a

1 http://eatcs.org/index.php/component/content/article/1-news/2280-2016-godel-prize

(x 7→ y) ∗ (y 7→ x)

decomposes into

x 7→ y

And
Separately

y 7→ x

Figure 1. Picture Semantics

separating conjunction asks for a partitioning that divides the heap
into parts, heaplets, satisfying its two conjuncts. At the bottom of
the first picture is an example of a concrete memory description
that corresponds to the diagram. There, x and y have values 10 and
42 (in the “environment”, or “register bank”), and 10 and 42 are
themselves locations with the indicated contents (in the “heaplet”,
or even “RAM”).

The indicated separating conjunction above is true of the pic-
tured memory because the parts satisfy the conjuncts, as indicated
in the second picture. The meaning of “x points to y and yet to
nothing” is precisely disambiguated in the RAM description below
the diagram: x and y denote values (10 and 42), x’s value is an al-
located memory address which contains y’s value, but y’s value is
not allocated. The separating conjunction splits the heap/RAM, but
it does not split the association of variables to values.

Generally speaking, the separating conjunction P ∗Q is true of
a heap if it can be split into two heaplets, one of which makes P
true and the other of which makes Q true. A distinction between ∗
and Boolean conjunction ∧ is that P ∗ P 6= P where P ∧ P = P .
In particular, x 7→ v ∗ x 7→ v is always false: there is no way to
divide any heap in such a way that a cell x goes to both partitions.
∗ is often used with linked structures. If list(x, y) describes an

acyclic linked list running from x to y, then we can describes a
structure with a list segment, followed by a single pointer, followed
by a further list running up to 0 (null), as follows:

list(x, t) ∗ t 7→ y ∗ list(y, 0)

This is the kind of structure you might need to consider when
deleting an element from a list, or inserting one into it.

There is a further connective, the separating implication or
“magic wand”. P−∗Q says that whenever the current heaplet is ex-
tended with a separate heaplet satisfying P , the resulting combined
heaplet will satisfy Q. For example, (x 7→ –) ∗ ((x 7→ 3)−∗Q)

• Assume a partial commutative monoid (H, ◦, e), where ◦ :
H ×H ⇀ H and e ∈ H . Pre/post assertions denote elements
of the powerset P(H).
• ∗ lifts ◦ to the powerset P(H): P ∗Q is

{hP ◦ hQ | hP ◦ hQ defined and hP ∈ P and hQ ∈ Q}

• emp denotes the singleton set of the empty heaplet: {e}.
• −∗ is an implication quantifying over separate heaps: P−∗Q is

{h | ∀hP . h ◦ hP defined and hP ∈ P implies h ◦ hP ∈ Q}

• In the RAM model H is the set of finite partial functions from
positive integers (addressible locations) to integers, h◦h′ is the
union of functions with disjoint domain, and undefined when
h and h′ overlap. e is the empty partial function. The assertion
n 7→ m denotes the singleton set {f} where f maps n to m
and is undefined elsewhere.
• To deal with variables and also quantifiers consider functions
s from variables to integers, and extend the above semantics
pointwise to pairs (s, h).

Figure 2. Mathematical Semantics

says that x is allocated in the current heap, and that if you mutate
its contents to 3 then Q will hold. This describes the “weakest pre-
condition” for the mutation [x] = 3 with postcondition Q [26].

Finally, there is an assertion emp which says “the heaplet is
empty”. emp is the unit of ∗, so that P = emp ∗ P = P ∗ emp.
Also,−∗ and ∗ fit together is a way similarly to how implication⇒
and conjunction∧ do in standard logic. For example, the entailment

A ∗ (A−∗B) ` B

(where ` reads “entails”) is a SL relative of “modus ponens”.
Although we will concentrate on the informal picture semantics

in this paper, for the theoretically inclined we have included a
glimpse of the formal semantics in Figure 2.

3. Rules for Program Proof
Figure 3 contains a selection of proof rules of SL. The rules are
divided into axioms for basic mutation commands (the “small ax-
ioms”) and inference rules for modular reasoning. An inference
rule says “if you can derive what is above the line, then so can
you what is below”, and the axioms are derivable true statements
that are given. The small axioms are for a programming language
with load and store instructions similar to an assembly language. If
we vary the programming language the small axioms change. The
Concurrency Rule uses a composition operator ‖ for running two
processes in parallel, derived from Dijkstra’s parbegin/parend [16].

The first small axiom just says that if x points to something
beforehand, then it points to v afterwards, and it says this for a
small portion of the state in which x is the only active cell.

The second axiom says that if x points to v and we read x into y,
then y will have value v. Here, we distinguish between the value in
a variable or register (x and y) and the r-value in a heap cell whose
l-value is the value held in x. The second axiom assumes that x
does not appear in syntactic expression v (see [32] for a precise
description of this and other variable side conditions).

The Allocation axiom says: if you start with no heap, then you
end with a heap of size 1. Conversely the De-Allocation axiom
starts with a hap of size 1 and ends with the empty heap. The
Application axiom assumes that allocation always succeeds. To
model a case where allocation might fail we could use a disjunctive

SMALL AXIOMS

Pointer Write (Store)
{x 7→ –}[x] = v {x 7→ v}

Pointer Read (Load)
{x 7→ v}y = [x] {y == v ∧ x 7→ v}

Allocation
{emp}x = alloc() {x 7→ –}

De-Allocation
{x 7→ –}free(x) {emp}

LOCAL REASONING RULES

Frame Rule
{pre}code {post}

{pre∗frame}code {post∗frame}

Concurrency Rule
{pre1}process1 {post1} {pre2}process2 {post2}
{pre1 ∗ pre2}process1 ‖ process2 {post1 ∗ post2}

Figure 3. Separation Logic Proof System (a Selection)

postcondition, like x 7→ – ∨ x == 0; this is what tools such as
SpaceInvader and Infer, discussed later, do for malloc() in C.

The small axioms are so named because each mentions a small
amount of memory: a single memory cell. When people first see the
axioms they can come as a shock: aren’t they too simple? Previous
approaches had complex descriptions accounting for the effect of
mutations on global properties of graph-like structures [6].

In actuality, there is a sense in which the small axioms capture
all that is needed to know about the statements they describe. In
intuitive terms we can say that imperative computation proceeds by
in-place update, where these primitive statements update or access
a single memory cell at a time; describing what happens to only
that cell should be enough. The small axioms are thus an extreme
illustration of the principle of local reasoning.

The Frame Rule in Figure 3 provides logical support for this
intuition. It allows us to extend reasoning from one to multiple
cells; so the seeming restriction to one cell in the small axioms is
not a restriction at all, but rather a pleasantly succinct description.
For instance, if we choose x 7→ y as our frame then the first
instance in Figure 4 gives the reasoning for the second step of the
code to wire up a cyclic linked list described at the start of the paper.

The ultimate theoretical support for the small axioms came from
a completeness theorem in Yang’s PhD thesis [42]. He showed
that the small axioms and Frame Rule and several other inference
rules (particularly Hoare’s rules for strengthening preconditions
and weakening postconditions, and a rule for existential quantifiers)
can be used to derive all true Hoare triples for these statements.
Locality properties of program behaviour, and their connection to
logic [44, 13], are critical for these results:

An assertion talks about a heaplet rather than the global
heap, and a spec {P}C {Q} says that ifC is given a heaplet
satisfying P then it will never try to access heap outside of
P (other than cells allocated during execution) and it will
deliver a heaplet satisfying Q if it terminates. [2]

In-place reasoning as with the two-element cyclic list has been
applied to many imperative programs. As an example, consider the

{y 7→ 0} [y] = x {y 7→ x}
{(y 7→ 0)∗(x 7→ y)} [y] = x {(y 7→ x) ∗ (x 7→ y)}

{x 7→ 0} [x] = y {x 7→ y} {y 7→ 0} [y] = x {y 7→ x}
{(y 7→ 0) ∗ (x 7→ 0)} [x] = y ‖ [y] = x {(y 7→ x) ∗ (x 7→ y)}

Figure 4. Frame and Concurrency Examples

insertion of a node y into a linked list after position x. We can do
this in two steps: first we swing x’s pointer so that it points to y,
and then we swing y to point to z (the node after x).

{x 7→ z ∗ list(z) ∗ y 7→ −}
[x] = y
{x 7→ y ∗ list(z) ∗ y 7→ −}
[y] = z
{x 7→ y ∗ list(z) ∗ y 7→ z}

Here, in the precondition for each step we write the frame in red; it
is the blue that is updated in place. The reader can see how, using
the small axiom for free together with the Frame Rule, we could
reason about the converse case of removing an element from a list.

This example generalizes to many other list and tree algorithms:
insertion, deletion, reversal, etc. The proofs in SL resemble the box-
and-pointer arguments which have long been used informally in
describing data structure mutation.

These ideas extend to concurrent programs; for example, the
second rule instance in Figure 4 uses the Concurrency Rule to rea-
sons about our two-element cyclic list, but wired up concurrently
rather than sequentially. The ∗ in the precondition in this instance
ensures that x and y are not aliases, so that there is no data race in
the parallel program.

The Concurrency Rule is the main rule of CSL. In applying CSL
to languages with dynamic thread creation instead of parbegin/-
parend different rules are needed, but the basic point that separation
allows independent reasoning about processes carries over.

SL’s Concurrency Rule took inspiration from the “disjoint con-
currency rule” of Hoare [23]. Hoare’s rule used ∧ in place of ∗
together with side conditions to rule out interference2. ∗ allows us
to extend its applicability to pointer structures. But even without
pointers, the CSL rule is more powerful. Indeed, upon seeing CSL
Hoare immediately exclaimed to the author: “we can prove parallel
quicksort!”. A direct proof can be given using ∗ to recognize and
unite disjoint array partitions [30].

4. Frames, Footprints and Local Reasoning
The previous section describes how the separating conjunction
leads to simple proofs of the individual steps of heap mutations,
and how the Frame Rule embeds reasoning about small chunks
of memory within larger memories. In this section we explain the
more fundamental role of the rule as a basis for scalable reasoning.

We illustrate by reasoning about a recursive program for delet-
ing the nodes in a binary tree. Consider the C program in (1) of
Figure 5. This program satisfies the specification in (2) of the fig-
ure, where the tree predicate says that its argument points to a
binary tree in memory. The predicate is defined recursively in (3),
with a picture below depicting what is described by the else part
of the definition. Note that here we are using a “points-to” predicate
root 7→ [l : x, r : y] for describing records with l and r fields.

2 In some presentations of SL there are variable conditions, which can
technically be done away with by using a version of ∗ that separates
variables as well as heap [34]. In this paper we will gloss over this issue.

(1) void deletetree(struct node *root)
{ if(root != 0)

{ struct node *left = root->l, *right = root->r;
deletetree(left);
deletetree(right);
free(root);

} }

(2) Spec: {tree(root)} deletetree(root) {emp}

(3) tree(root) = if root == 0 then emp
else ∃xy. root 7→ [l : x, r : y] ∗ tree (x) ∗ tree(y).

(4) { root 7→ [l : left, r : right] ∗ tree(left) ∗ tree (right)}
deletetree(left);
{ root 7→ [l : left, r : right] ∗ emp ∗ tree(right)}
deletetree(right);
{ root 7→ [l : left, r : right] ∗ emp ∗ emp}
free(root);
{emp ∗ emp ∗ emp}
{emp}

Figure 5. deletetree Example

The use of emp in the if branch of the definition means that
tree(r) is true of a heaplet which contains all and only the cells
in the tree; there are no additional cells. Thus, the specification of
deletetree(r) does not mention nodes not in in the tree. This
is analogous to what we did with the small axioms for basic state-
ments in Figure 3, and is a typical pattern in SL reasoning: “small
specifications” are used which mention only the cells touched by
the program component (its footprint).

The critical part of the proof of the program is presented in (4),
where the precondition at the beginning is obtained by unwinding
the recursive definition using the if condition root != 0. The proof
steps then follow the intuitive description of the algorithm: the
first recursive call deletes the left subtree, the second call deletes
the right subtree, and the final statement deletes the root node. In
the pictured reasoning, the overall specification of the procedure is
applied as an induction hypothesis at each call site, together with
the Frame Rule for showing that the parts not touched by recursive
calls are left unchanged. For instance, the assertions for the second
recursive call are an instance of the Frame Rule with the triple
{tree(right)} deletetree(right) {emp} as the premise.

The simplicity of this proof comes about because of the prin-
ciple of local reasoning. The Frame Rule allows in-place reason-
ing for larger-scale operations (entire procedures) than individual
heap mutations. And it allows the specification to concentrate on
the footprint of a procedure instead of the global state. Put contra-
positively, the deletetree procedure could not be verified without
the Frame Rule, unless we were to complicate the initial specifi-
cation by including some representation of frame axioms (saying
what does not change) to enable the proofs at the recursive call
sites.

The above reasoning uses a tree predicate that is suitable for
reasoning about memory safety; it mentions that we have a tree,
but not what data it holds. For functional correctness reasoning it is
typical to use inductive predicates that connect memory structures
to mathematical entities. In place of tree(root) we could have
a predicate tree(τ, root) which says that root points to an area
of memory representing the mathematical binary tree τ , where a

mathematical tree is either empty or an atom or a pair of trees.
We could then specify a procedure for copying a tree using a
postcondition of the form

tree (τ , oldroot) ∗ tree (τ , newroot)

which says that we have two structures in memory representing the
same mathematical tree. An assertion like this would tell us that we
could mutate one of the trees without affecting the other (at which
point they would cease to represent the same tree).

For data structures without much sharing, such as variations on
lists and trees, reasoning in SL is reminiscent of reasoning about
purely functional programs: you unroll an inductive definition,
then mutate, then roll it back up.Inductive definitions using ∗ and
mutation go well together. The first SL proof to address complex
sharing was done by Yang in his PhD thesis, where he provided a
verification of the classic Schorr-Waite graph marking algorithm.
The algorithm works by reversing links during search, and then
restoring them later: a space-saving representation of the stack of a
recursive algorithm. Part of the main invariant in Yang’s proof is(

listMarkedNodesR(stack, p)
∗ (restoredListR(stack,t)−∗ spansR(STree, root))

)
capturing the idea that if you replace the list of marked nodes by
a restored list, then you get a spanning tree. Yang’s proof reflected
the intuition that the algorithm works by a series of local surgeries
that mutate small parts of the structure: the proof decomposed into
verifications of the surgeries, and ways of combining them.

The idiomatic use of −∗ in assertions of the form A ∗ (B−∗C)
to describe generalized update was elevated to a general principle
in work of Hobor and Villard [25]. They give proofs of a number of
programs with significant sharing, including graphs, dags, overlaid
structures (e.g., a list overlaying a tree), and culminating in the
copying algorithm in Cheney’s garbage collector.

Many papers on SL have avoided −∗ , often on the grounds that
it complicates automation and is only needed for programs with
significant sharing. However, −∗ is recently making something of
a comeback. For example, it is used routinely as a basic tool in the
Iris higher-order logic [29].

5. Concurrency, Ownership and Separation
The Concurrency Rule in Figure 3 says: To prove a parallel compo-
sition we give each process a separate piece of state, and separately
combine the postconditions for each process. The rule supports
completely independent reasoning about processes. This rule can
be used to provide straightforward proofs of processes that don’t
share access to storage. We mentioned parallel quicksort before,
and deletetree() provides another illustration: we can run the
two recursive calls in parallel rather than sequentially, as presented
in the proof outline (1) in Figure 6.

In work on CSL, proof outlines are often presented in a spatial
fashion like this: this outline shows the premises of the concurrency
rule in the left and right Hoare triples, the overall precondition (the
pre1 ∗ pre2) at the beginning, and the post at the end.

While this reasoning is simple, if CSL had only been able to
reason about disjoint concurrency, where there is no inter-process
interaction, then it would have rightly been considered rather re-
strictive. An important early example done with CSL was a pointer
transferring buffer, where one thread allocates a pointer and puts it
into a buffer while the other thread reads it out and frees it. Cru-
cially, not only is the pointer deemed to transfer from one process
to another, but the “knowledge that it is allocated” transfers with the
proof. The proof establishing absence of memory errors is shown
in (2) of Figure 6. A way to implement the buffer code for put and
get is to use locks to synchronize access to a shared variable and a
Boolean to signal when the buffer is full. We will not delve into the

(1) {tree(left) ∗ tree(right)}
{tree(left)} {tree(right)}
deletetree(left) ‖ deletetree(right)
{emp} {emp}

{emp ∗ emp}

(2) {emp ∗ emp}
{emp} {emp}
x = alloc(); ‖ get(y);
{x 7→ –} {y 7→ –}
put(x); free(y);
{emp} {emp}

{emp ∗ emp}

Figure 6. Concurrency Proofs

subproofs of buffer operations here – for that, consult [30] – but we
want to talk about a shift in perspective on the meanings of logical
assertions that the proof (2) led to.

Notice the assertion emp after the put(x) statement in the left
process. We could not prove a mutation were we to place it there,
because emp is not a sufficient precondition for any mutation; that
is fortunate as such a mutation could lead to a race condition. But it
is not the case that we know that the global heap is empty, because
the pointer x could still persist. Rather, the knowledge that it points
to something has been forgotten, transferred to the second process
where it materializes as y 7→ –. A reading of assertions began to
form based on the “right to dereference” or “ownership” (taken
as synonymous with right to dereference). On this reading emp
says “I don’t have permission to dereference any heap”, or “I own
nothing”, rather than “the heap is empty”. Similarly, x 7→ – says “I
own x” (where “I” is the process from which the assertion is made).

The ownership transfer example made it clear that quite a few
concurrent programs would have much simpler proofs than be-
fore. Modular proofs were provided of semaphore programs, of a
toy memory manager, and programs with interacting resources. It
seemed as if the proofs mirrored design principles used to simplify
reasoning about concurrent processes, such as in Dijkstra’s idea of
loosely connected processes:

“apart from the (rare) moments of explicit intercommuni-
cation, the individual processes are to be regarded as com-
pletely independent of each other. [16]”

However, the very feature that gave rise to the unexpected
power, ownership transfer, made soundness (whether the rules
prove only true statements) nonobvious. O’Hearn worked on
soundness during 2001 and 2002, without success. In May of 2002
he turned to Brookes who eventually (with important input from
Reynolds), in 2004, proved the theorem which justified the logic

6. Abstraction and the Fiction of Separation
After the early papers there was considerable work on extending
SL. Some of it concentrated on different programming paradigms,
such as object-oriented programming or scripting languages, or on
additional programming primitives such as message passing, re-
entrant lock and fork/join concurrency. Besides extensions to cover
an ever greater variety of programming, two conceptual develop-
ments opened up major new directions.

• In his PhD thesis Parkinson showed how abstract predicates
(predicate variables) fit together nearly with ∗ in the description
of classes and other stateful data abstractions [33].

• Gardner and others emphasized a concept of fictional separa-
tion, where strong separation properties could be assumed of
data abstractions, even for implementations relying on sharing.

These ideas were first described in a sequential setting. Dinsdale-
Young, Gardner and Wheelhouse described an implementation of
a module of sequences in terms of linked lists and noted a mis-
match: at the abstract level an operation might affect a small part
of a sequence, where at the implementation level its footprint could
involve the entire list; conversely, locality can increase with ab-
straction [19]. Meanwhile, Parkinson initially targeted a sequential
subset of Java. Subsequent work showed how abstract predicates
could be understood using higher-order versions of SL [5].

While they could be expressed in a sequential setting, the ideas
took flight when transported to concurrency. The CAP logic [18]
combined insights on abstract predicates and fiction, along with
those of CSL, to reason about data abstractions with interference in
their implementations. The Views theory [17] provided a founda-
tion where separation does not appear in the normal execution se-
mantics of programs, but only in an abstraction of it. Views showed
that a simple version of CSL can embed many other techniques
including even the classic rely-guarantee method [27]; this is sur-
prising because rely-guarantee was invented for reasoning about
interference, almost the opposite of the basis of original SL.

Nowadays, advanced logics are often formulated as variations
on the theme of “higher-order concurrent separation logic”. One of
these, Verifiable C, is the foundation of Appel’s Verified Software
Toolchain [1], and includes an expressive higher-order logic sup-
porting recursive predicates. Another, Iris [29], encompasses rea-
soning about fine-grained concurrency and even relaxed memory,
based on different instantiations of a single generic model. Iris has
been used to provide a foundation of the type system of the Rust
programming language [28], which is very natural when you con-
sider that ownership transfer is one of the central ideas in Rust.

Technically, these works are based on “non-standard models”
of SL, different from the heaplet model but instances of Pym’s re-
source semantics as in Figure 2; see [36]. There are many such
models, including ones incorporating read and other permissions
[7], auxiliary state [39], time [39], protocols [29] and others. Ab-
stract SL [13] showed how a general program logic could be de-
fined based on these models, and the works just mentioned and
others showed that some of them had surprising ramifications.

Fictional separation and Views re-imagined fundamental con-
cepts. The programs being proven go beyond the loosely connected
processes that CSL was originally designed for. Significant new
theoretical insights and soundness arguments were needed to jus-
tify the program-proof rules supporting the fine-grained concur-
rency examples [17]. This led to a flowering of interest and new
ideas which is still in progress. A recent survey on CSL provides
many more references in addition to those mentioned here [9].

7. Directions in Mechanized Reasoning
SL spawned new approaches to verification tools. In order to pro-
vide a taste of where the field has gotten to we present a sampling
of practical achievements; that is, we focus on the end points rather
than the (important) advancements along the way that helped get
there. Further references to the literature, including discussion on
intermediate advances, may be found in the appendix.

Mostly Automatic Verification Smallfoot [2], due to Calcagno,
Berdine and O’Hearn, was the first SL verification tool. Given
procedure pre/post specs, loop invariants and invariants governing
lock usage, Smallfoot attempts to construct a proof. For the pointer-
transferring buffer, given a buffer invariant and pre/post specs for
put and get it can verify memory safety and race freedom.

Smallfoot used a decidable fragment of SL dubbed “symbolic
heaps”, formulae of the form B ∧H where H is a separating con-
junction of heap facts and B is a Boolean assertion over non-heap
data. The format was chosen to make in-place symbolic execution
efficient. Smallfoot’s heap facts were restricted to points-to asser-
tions, linked lists and trees. Subsequent works extended symbolic
heaps in numerous directions, covering more inductive definitions
as well as arrays and arithmetic; see appendix.

Some of the most substantial automatic verifications done with
SL have been carried out with the VeriFast tool of Jacobs and col-
leagues. VeriFast employs a symbolic execution engine like Small-
foot, but integrates a dedicated SL theorem prover with a classical
SMT solver for non-heap data. A paper reports on the verification
of several industrial case studies, including Java Card programs and
device drivers written in C [35]; see VeriFast’s GitHub site for these
and many other examples (https://github.com/verifast/verifast).

Interactive Verification In an automatic verifier like Smallfoot
the proof construction is automatic, given the pre/post annotations
plus invariants. In interactive verification the human helps guide
the proof search, commonly using a proof assistant such as Coq,
HOL4 or Isabelle. Interactive verification can often prove stronger
properties than automatic verifiers, but the cost is higher.

Interactive verifiers have been used to prove small, intricate
algorithms. A recent paper reports on the verification of low-level
concurrent algorithms including a CAS-lock, a Ticketed lock, a GC
allocator, and a non-blocking stack [39]. An emphasis is placed on
reusability; for instance, the stack uses the GC allocator, which in
turn uses a lock, but the stack uses the spec of the allocator and the
allocator uses the spec rather than the implementation of a lock.

The Verifiable C logic [1] has been used to prove crypto code.
For example, OpenSSL’s HMAC authentication code, comprising
134 lines of C, was proven using 2832 lines of Coq [4].

A larger example is the FSCQ file system [14]. The code and the
proof are both done in Coq, taking up 31k lines of proof+code. This
compares to 3k lines of C for a related unverified file system. Al-
though the initial effort, which included development of a program
logic framework in Coq, took several person years, experiments
show incremental, lower cost when modifying code+proof.

A commercial example concerns key modules of a preemptive
OS kernel, the µC/OS-II [41]. Modules verified include the sched-
uler, interrupt handlers and message queues. 1.3k lines of C were
proven using 216k lines of Coq. It took 4 person years to develop
the framework, 1 person year to prove the first module, and then the
remaining modules, around 900 lines of C, took 6 person-months.

Automatic Program Analysis. With a verification-oriented pro-
gram analysis the annotations that a human would supply to a
mostly automatic verifier like Smallfoot – invariants and pre/post
specs – are inferred. A tool will be able to prove weaker properties
when the human is not supplying annotations, but can more easily
be deployed broadly to many programmers.

Program analysis with SL has seen a lot of attention. At first,
analysis was formulated for simple linked lists [20], and progres-
sively researchers moved on to more involved data structures. A
practical high point in this line of work was the verification of
pointer safety in Linux and Windows device drivers up to 10k LOC
by the SpaceInvader program analyzer [43]. SpaceInvader was an
academic tool; its sibling, SLAyer [3], developed in parallel at Mi-
crosoft, was used internally to find 10s of memory safety errors
in Windows device drivers. SpaceInvader and SLAyer were able to
analyze complex, linear data structures: for example, one Windows
driver manipulated five cyclic doubly linked linked lists sharing a
common header node, three of which had acyclic sublists.

Like much research in verification-oriented program analysis
these techniques worked in a whole-program fashion: you start

from main() or other entry points and explore the program graph,
perhaps visiting procedure bodies multiple times. This can be ex-
pensive. While accurate analysis of 10k LOC can be a leading re-
search achievement, 10k is tiny compared to software found in the
wild. A single company can have tens of millions of lines of code.
Progress towards big code called for a radical departure.

8. Bi-Abduction and Facebook Infer
In 2008 Calcagno asked: what is the main obstacle blocking appli-
cation of SpaceInvader and similar tools to programs in the millions
of LOC? O’Hearn answered: the need for the human to supply pre-
conditions. He proposed that a “truly modular” analysis based on
local reasoning could accept a program component with no human
annotations, and generate a pre/post spec where the precondition
approximates the footprint. The analysis would then “stitch” these
specifications together to obtain results for larger program parts.
The analysis would be compositional, in that a spec for a procedure
could be obtained without knowing its callers, and the hypothesis
was that it would scale because procedures could be visited inde-
pendently. This implied giving up on whole-program analysis.

Calcagno, O’Hearn, Distefano and Yang set to work on realizing
a truly modular analysis. Yang developed a scheme based on glean-
ing information from failed proofs to discover a footprint. Diste-
fano made a breakthrough on the stitching issue for the modular
analysis, that involved a new inference problem:

Bi-abduction: given A and B, find ?frame and ?anti-frame
such that

A ∗ ?anti-frame ` B ∗ ?frame

where ` is read ‘entails’ or ‘implies’. The inference of ?frame (the
leftover part in A but not B) was present in Smallfoot, and is used
in many tools. The ?anti-frame part (the missing bit needed to es-
tablish B), is abduction, or inference of hypotheses, an inference
problem identified by the philosopher Charles Peirce in his con-
ceptual analysis of the scientific method. As a simple example,

(x 7→ –) ∗ ?anti-frame ` (y 7→ –) ∗ ?frame.

can be solved with ?anti-frame = y 7→ – and ?frame = x 7→ –.
With bi-abduction we can automate the local reasoning idea by

abducing assertions that describe preconditions, and using frame
inference to keep specifications small. Let us illustrate with the pro-
gram we started the paper with. We begin symbolic execution with
nothing in the precondition, and we ask a bi-abduction question,
using the current state emp as the A part of the bi-abduction query
and the pre of the small axiom for [x] = y as B.

• Execution state: {emp}[x] = y; [y] = x {???}
• Bi-abduction query: emp ∗ ?anti-frame ` x 7→ – ∗ ?frame
• Solution: ?anti-frame = x 7→ – ; ?frame = emp.

Now, we move the abduced anti-frame to the overall precondition,
we take one step of symbolic execution using the small axiom for
Pointer Write from Figure 2, we install the post of the small axiom
as the pre of the next instruction, and we continue.

• Execution state: {x 7→ –}[x] = y {x 7→ y} [y] = x {???}
• Bi-abduction query: x 7→ y ∗ ?anti-frame ` y 7→ – ∗ ?frame
• Solution: ?anti-frame = y 7→ – ; ?frame = x 7→ y.

The formula y 7→ – in the bi-abduction query is the precondition
of the small axiom for the pointer write [y] = x: we abduce it as
the anti-frame, and add it to the overall precondition. The Frame
Rule tells us that the inferred frame x 7→ y is unaltered by [y] = x,
when it is separately conjoined with y 7→ –, and this with the small

axiom gives us our overall postcondition in

{x 7→ – ∗ y 7→ –}[x] = y; [y] = x {x 7→ y ∗ y 7→ x}
So, starting from specifications for primitive statements, we can
infer both a precondition and a postcondition for a compound
statement by repeated applications of bi-abduction and the Frame
Rule. This facility leads to a high degree of automation. Also, note
that the precondition here is more general than the one at the start
of the paper, because it does not mention 0. Bi-abductive analysis
not infrequently finds more general specifications than a top-down
analysis that dives into procedures at call sites; finding general
specs is important for both scalability and precision.

The main bi-abduction paper [12] contributed proof techniques
and algorithms for abduction, and a novel compositional algorithm
for generating pre/post specs of program components. Experimen-
tal results scaled to hundreds of thousands of lines, and a part of
Linux of 3M lines. This form of analysis finds preconditions sup-
porting safety proofs of clusters of procedures as well as indicating
potential bugs where proofs failed.

This work led to the program proof startup Monoidics, founded
by Calcagno, Distefano and O’Hearn in 2009. Monoidics devel-
oped and marketed the Infer tool, based on the abductive tehnique.
Monoidics was acquired by Facebook in 2013 at which point
Calcagno, Distefano and O’Hearn moved to Facebook with the
Monoidics engineering team (www.fbinfer.com).

The compositional nature of Infer turned out to be a remarkable
fit for Facebook’s software development process [11]. A codebase
with millions of lines is altered thousands of times per day in “code
diffs” submitted by the programmers. Instead of doing a whole-
program analysis for each diff, Infer analyzes changes (the diffs)
compositionally, and reports regressions as a bot participating in
the internal code review process. Using bi-abduction, the Frame
Rule picks off (an approximation of) just enough state to analyze
a diff, instead of considering the entire global program state.. The
way that compositional analysis supports incremental diff analysis
is even more important than the ability to scale; a linear-time anal-
ysis operating on the whole program would usually be too slow for
this deployment model. Indeed, Infer has evolved from a standalone
SL-based analyzer to a general framework for compositional anal-
yses (http://fbinfer.com/docs/checkers.html and appendix).

9. Conclusion
Some time during 2001, while sitting together in his back garden,
Reynolds turned to me and exclaimed: “the logic is nice, but it’s
the model that’s really important.” My own prejudice for semantics
made me agree immediately. We were both beguiled by the fact that
this funky species of logic could be described using down-to-earth
computer science concepts like RAMs and access bits.

What happened later came as a surprise. The specific heap/RAM
model gave way in importance to a more general class of non-
standard models based on fictional rather than down-to-earth sepa-
ration. And the logic itself, particularly its proof theory, turned out
to be extremely useful in automatic verification, leading to many
novel research tools and eventually to Facebook Infer.

Still, I expect that in the long run it will be the spirit rather than
the letter of SL that is more significant. Concepts of frames, foot-
prints and separation as a basis for modular reasoning seem to be
of fundamental importance, independently of the syntax used to de-
scribe them. Indeed, one of the more important directions that I see
for further work is in theoretical foundations that get at the essence
of scalable, modular reasoning in as formalism-independent a way
as possible. Theoretical synthesis would be extremely useful for
three reasons: (i) to make it easier for people to understand what
has been achieved by each new idea; (ii) to provide a simpler
jumping-off point for future work than the union of the many spe-

cific advances; and (iii) to suggest new, unexplored avenues. Hoare
has been advancing an abstract, algebraic theory related to CSL,
which has components covering semantics, proof theory and test-
ing [24], and work along these lines is well worth exploring further.
Other relevant reference points are works on general versions of SL
[13, 17], abstract interpretation [15], and work on “Separation with-
out SL” discussed in the appendix. Semantic fundamentals would
be crucial to an adequate general foundation, but I stress that proof
theoretic and especially algorithmic aspects addressing the central
problem of scale should be covered as well.

In conclusion, scalable reasoning about code has come a long
way since the birth of SL around the turn of the millennium, but it
seems to me that much more is possible both in fundamental un-
derstanding and in mechanized techniques that help programmers
in their daily work. I hope that scientists and engineers will con-
tinue to innovate on the fascinating problems in this area.

ACKNOWLEDGEMENTS. This paper is dedicated to the memory of
John C Reynolds (1935-2013). Our work together at the formative
stage of Separation Logic was incredibly intense, exciting, and
huge fun. I am fortunate to have worked so closely with such a
brilliantly insightful scientist, who was also a valued friend.

I thank my many other collaborators in the development of this
research, particularly David Pym, Hongseok Yang, Richard Bornat,
Cristiano Calcagno, Josh Berdine, Dino Distefano, Steve Brookes,
Matthew Parkinson, Philippa Gardner and Tony Hoare. Finally,
thanks to my colleagues at Facebook for our work together and
for teaching me about applying logic in the real world.

References
[1] A. W. Appel. Program Logics for Certified Compilers. Cambridge

University Press, 2014.

[2] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In FMCO, volume
4111 of LNCS, pages 115–137, 2005.

[3] J. Berdine, B. Cook, and S.Ishtiaq. SLAyer: Memory Safety for
Systems-Level Code. In CAV, pages 178–183, 2011.

[4] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel. Verified
correctness and security of OpenSSL HMAC. In 24th USENIX
Security Symposium, pages 207–221, 2015.

[5] B. Biering, L. Birkedal, and N. Torp-Smith. BI-hyperdoctrines,
higher-order separation logic, and abstraction. ACM TOPLAS, 29(5),
2007.

[6] R. Bornat. Proving pointer programs in Hoare logic. In MPC, volume
1837 of LNCS, pages 102–126, 2000.

[7] R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson.
Permission accounting in separation logic. In POPL, pages 259–
270, 2005.

[8] S. Brookes. A semantics for concurrent separation logic. Theor.
Comput. Sci., 375(1-3):227–270, 2007.

[9] S. Brookes and P. W. O’Hearn. Concurrent separation logic. SIGLOG
News, 3(3):47–65, 2016.

[10] R. M. Burstall. Some techniques for proving correctness of programs
which alter data structures. Machine Intelligence, 7(1):23–50, 1972.

[11] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer,
M. Luca, P. W. O’Hearn, I. Papakonstantinou, J. Purbrick, and
D. Rodriguez. Moving fast with software verification. In NASA
Formal Methods Symposium, pages 3–11, 2015.

[12] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Composi-
tional shape analysis by means of bi-abduction. J. ACM, 58(6):26,
2011. Preliminary version in POPL’09.

[13] C. Calcagno, P. W. O’Hearn, and H.Yang. Local action and abstract
separation logic. In LICS, pages 366–378, 2007.

[14] H. Chen, F. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and

N. Zeldovich. Using Crash Hoare logic for certifying the FSCQ file
system. In SOSP, pages 18–37, 2015.

[15] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL, pages 238–252, 1977.

[16] E. W. Dijkstra. Cooperating sequential processes. In Programming
Languages, pages 43–112. Academic Press, 1968.

[17] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. J. Parkinson, and
H. Yang. Views: compositional reasoning for concurrent programs.
In POPL, pages 287–300, 2013.

[18] T. Dinsdale-Young, M. Dodds, M. Gardner, M. J. Parkinson, and
V. Vafeiadis. Concurrent abstract predicates. In ECOOP, pages
504–528, 2010.

[19] T. Dinsdale-Young, P. Gardner, and M. J. Wheelhouse. Abstraction
and refinement for local reasoning. In VSTTE, pages 199–215, 2010.

[20] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis
based on separation logic. In TACAS, pages 287–302, 2006.

[21] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz,
editor, Proceedings of the Symposium on Applied Mathematics,
volume 19, pages 19–32. AMS, 1967.

[22] C. A. R Hoare. An axiomatic basis for computer programming. C.
ACM, 12(10):576–580, 1969.

[23] C. A. R. Hoare. Towards a theory of parallel programming. In
Operating Systems Techniques. Academic Press, 1972.

[24] T. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene
algebra and its foundations. J. Log. Algebr. Program., 80(6):266–296,
2011.

[25] A. Hobor and J. Villard. The ramifications of sharing in data
structures. In 40th POPL, pages 523–536, 2013.

[26] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for
mutable data structures. In POPL, pages 14–26, 2001.

[27] C. B. Jones. Specification and design of (parallel) programs. In IFIP
Congress, pages 321–332, 1983.

[28] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer. RustBelt:
Securing the foundations of the Rust programming language.
PACMPL 1(POPL), 2018, 2018.

[29] R. Krebbers, R. Jung, A. Bizjak, J.-H. Jourdan, D. Dreyer, and
L. Birkedal. The essence of higher-order concurrent separation logic.
In ESOP, pages 696–723, 2017.

[30] P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, 2007.

[31] P. W. O’Hearn and D. J. Pym. The logic of bunched implications.
Bulletin of Symbolic Logic, 5(2):215–244, 1999.

[32] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In CSL, pages 1–19, 2001.

[33] M. J. Parkinson. Local reasoning for Java. PhD thesis, University of
Cambridge, 2005.

[34] M. J. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in
Hoare logics. In 21th LICS, pages 137–146, 2006.

[35] P. Philippaerts, J. T. Mühlberg, W. Penninckx, J. Smans, B. Jacobs,
and F. Piessens. Software verification with verifast: Industrial case
studies. Sci. Comput. Program., 82:77–97, 2014.

[36] D. Pym, P. O’Hearn, and H. Yang. Possible worlds and resources: the
semantics of BI. Theoret. Comp. Sci., 315(1):257–305, 2004.

[37] J. C. Reynolds. Intuitionistic reasoning about shared mutable
data structure. In Millennial Perspectives in Computer Science,
Cornerstones of Computing. Palgrave Macmillan, 2000.

[38] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, pages 55–74, 2002.

[39] I. Sergey, A. Nanevski, and A. Banerjee. Mechanized verification of
fine-grained concurrent programs. In 36th PLDI, pages 77–87, 2015.

[40] A. M. Turing. Checking a Large Routine. In Report of a Conference
on High Speed Automatic Calculating Machines, Univ. Math. Lab.,
Cambridge, pages 67–69, 1949.

[41] F. Xu, M. Fu, X. Feng, X. Zhang, H. Zhang, and Z. Li. A practical
verification framework for preemptive OS kernels. CAV, 2016.

[42] H. Yang. Local Reasoning for Stateful Programs. PhD thesis,
University of Illinois, 2001.

[43] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. W. O’Hearn. Scalable shape analysis for systems code. In CAV,
pages 385–398, 2008.

[44] H. Yang and P. W. O’Hearn. A semantic basis for local reasoning. In
FoSSaCS, pages 402–416, 2002.

A. Appendix on Mechanized Reasoning
There has been a significant amount of research on tools that use
Separation Logic, only a small selection of which we were able to
reference in the main body of the paper. Tools are the main vehicle
for practical impact of the theory, and yet there is no comprehensive
survey to point to on tools work. This appendix fills in some of
the context by providing additional references as well as a brief
summary of developments in the main lines of work.

A.1 Mostly Automatic Verification
The Smallfoot tool referenced in the paper follows a style of
verification where a program procedure is annotated with loop
invariants and pre/post specs: then the rules of program logic
can be used to reduce its correctness to a number of theorem
prover calls which ask whether entailments of the form A ` B
are valid. This type of verification tool was pioneered by James
King in the early 1970s [45]; prominent examples of such tools
include ESC Java (https://en.wikipedia.org/wiki/ESC/Java), VCC
(https://www.microsoft.com/en-us/research/project/vcc-a-verifier-
for-concurrent-c/) and SPARK (https://www.adacore.com/sparkpro).
Smallfoot attempted to do similar work with a fragment of SL, to
explore whether the logic’s simple by-hand proofs could be of ben-
efit in an automatic setting.

Smallfoot did automatic verification for a fragment of SL by
defining a symbolic execution mechanism [46] to generate prover
calls, which fell within a decidable fragment of the logic. For
example, the following specifies that if you start with two acyclic
linked lists occupying separate memory then a pointer to an acyclic
list is returned.

1 list_append(x,y) [Pre: list(x) * list(y)] {
2 local t;
3 if (x == NULL) { x = y
4 } else {
5 t = x; n = t->tl;
6 while (n != NULL)
7 [Inv: lseg(x,t) * t |-> n * list(n)]
8 { t = n; n = t->tl;
9 }
10 t->tl = y;
11 } /* lseg(x,t) * t |-> y * list(y) */
12 } [Post: list(x)]

Here, the loop invariant does not include list(y), where with prior
tools it would be needed: Smallfoot guesses that this is a frame
for the loop. Smallfoot’s theorem prover also needs to establish
the entailment lseg(x, t) ∗ t 7→ y ∗ list(y) ` list(x) at the
end of the loop, automatically, without enumeratively searching
possible induction hypotheses when reasoning about linked list
predicates. (lseg(x, t) here is a predicate for linked list segments,
and is Smallfoot’s notation for what we wrote list(x, t) in the main
body of the paper.)

Research on mostly automatic verification with SL has pro-
ceeded in several directions.

Richer programming features. Smallfoot considered a toy pro-
gramming language, designed to be close to the theory of SL. Sub-
sequent tools have targeted real languages and varied language fea-
tures, for instance: C [47], Java [48], JavaScript [49], message-
passing concurrency [50], GPGPU programs [51] and fine-grained
concurrency [52, 53].

Richer assertions. Smallfoot only included fixed hardwired in-
ductive predicates for simple linked lists and trees. Furthermore, it
did not reason about the contents of the data structures, concentrat-
ing instead on their shapes and on showing memory safety proper-
ties of programs. How far one can go in relaxing these restrictions

is not obvious as retaining decidability is challenging. Indeed, even
propositional SL is undecidable when it includes−∗ [54]. But there
have been impressive advances incorporating general classes of in-
ductive definitions [55, 56].

Integration with classical theorem proving. Many of the works
on automating SL use specialized SL proof rules for reasoning
about heap data, such as

Subtraction Abstraction

A ` B
A ∗H ` B ∗H x 7→ y ∗ y 7→ nil ` lseg(x, nil)

Subtraction rules make assertions spatially smaller, where Abstrac-
tion rules forget information (e.g., we forget we have a list of
length 2, and remember that we have a list of some arbitrary
length). Berdine and Calcagno initially devised a proof theory for
whereby iterated application of Abstraction and Subtraction rules
like these would eventually reduce theorem prover questions about
heap shape to “pure” facts which don’t describe the shape of the
heap [46]. They implemented their own prover for a certain kind
of pure fact (simple equalities and disequalities), but this sort of
proof theory lends itself as well to using a classical automatic the-
orem prover, such as those based on SMT (Satisfiability Modulo
Theories), for richer types of pure facts such as about integers
[48, 57, 55]. The VeriFast tool mentioned in the body of the pa-
per is also of this variety.

Instead of hybrid reasoning mixing application of SL proof
rules with calls to a classical prover, there is also the option to
embed a fragment of SL entirely into a decidable fragment of
first-order logic. The most obvious encodings make heavy use
of existential quantifiers, by mapping the SL semantics of ∗ to
formulae existentially quantifying over heaps, but existentials cause
difficulty for automatic theorem provers. This originally led some
researchers to the conclusion that SL was difficult to automate,
while it led others to pursue approaches based on proof theory.
Completeness properties of proof-theoretic procedures are linked
to semantic control over existentials by means of logic restrictions
[58, 46]. And controlling what the existentials can do in turn opens
up the possibility of more effective direct encodings into SMT [59],
leading to the automatic verification of many small C programs
[47].

Separation without SL. A related strand of work has developed
logics aimed at bringing the same benefits as regards modular
reasoning as SL, but in a way that meshes more directly with
classical first-order theorem proving. Some logics axiomatize the
concept of footprint directly, in a sense formalizing a relative of
SL’s semantics [60, 61]. Other logics aim to preserve SL’s implicit
treatment of footprints (the precondition mentions all the resources
used by a program fragment) [62], and they employ a relative of the
Frame Rule, but are not identical to existing Separation Logics [63].
Dafny is a verification framework based on the former “explicit
footprints” approach, and Viper [64] is a verification framework
based on “implicit footprints” which has been used to host several
verifiers based both on SL and on other related logics.

A.2 Interactive Verification
In interactive verification the human participates more directly in
finding proofs. Interactive verification can be hard work, but strong
results can be proven, as illustrated by the referenced applications
[39, 4, 14, 41] in the main body of the paper.

Proof assistants such as Coq and HOL4 come with native type
theories that can represent powerful higher-order set theories. One
way to embed a logic like SL is by encoding its semantics in the
type theory of the logic (what is called a “shallow” embedding),
with the rules of SL then appearing as lemmas proven in the

proof assistant’s base logic. For instance, we could define a binary
operator [[∗]] on a powerset of states. A basic lemma such as that ∗
is commutative can then be proven by set-theoretic reasoning in the
semantics, and adopted as a lemma which can be reused by proof
tactics in the proof assistant. Likewise, the Frame Rule and other
rules of SL are proven as lemmas.

The earliest embeddings of SL in proof assistants followed the
approach of the original heap model of SL closely [65, 66]: they
would define State as consisting of partial functions from locations
to values. Then, researchers began to adopt a more abstract point
of view [67], employing variations on Pym’s resource semantics,
where State is assumed to be any set with certain structure such as
that of a partial commutative monoid. Nowadays it is common to
develop a very general form of SL inside a proof assistant, and then
to specialize to applications by either picking a particular monoid
or considering axioms on such monoids as the model of separation
[29].

This ability to “pick a monoid” conveys an important additional
level of flexibility compared to the automatic reasoning systems
which, thus far, have essentially had to bake a particular monoid in.
Bringing more automation to the “pick a monoid” step is a direction
for future work.

An interesting point is that, given a (shallow) embedding of
a logic in a proof assistant, the higher-order features of the host
logic transfer to the embedded logic, and proceeding as above so
one automatically obtained a “higher-order separation logic” to
work with. Higher-order logic and type theory have been repeatedly
shown to be useful for reasoning about data abstraction, and this
carries over to SL. A consequence is summarized as follows in a
paper of Chlipala on his system Bedrock:

Verifications based on automated theorem proving have
omitted reasoning about first-class code pointers, which is
critical for tasks like certifying implementations of threads
and processes [68]

This aspect of reasoning in higher-order logics is prominent in a
line of work starting with the CAP project at Yale, an early example
being a verification framework for interrupts [69] and a more recent
development the verification of the industrial microkernel referred
to in the main body of the paper [41].

Program proofs that require involved non-heap reasoning ben-
efit from the existing theories and proofs often hosted in a proof
assistant. For example, the proof of HMAC in [4] used a Coq li-
brary, the Foundational Cryptography Framework, to specify cryp-
tographic primitives, and SL reasoning to connect crypto properties
to the implemented C code.

One of the benefits often quoted for verification with proof
assistants is that they are “foundational”, meaning the soundness of
the proof systems represented as lemmas reduces in a mechanized
way to an assumed, foundational set/type theory. This foundational
point of view supports meta-theoretic work. New logics are often
developed in a way that mechanically verifies their soundness [1,
29]. Verified verifiers can be produced, such as verified versions of
Smallfoot [70, 71]. The metatheory of a representative fragment of
Rust [28], mentioned in the main paper, is a good example of an
output of this line of work.

When doing interactive proofs there are a number of issues to
balance which affect both generality and the degree of automation.
The effectiveness of automated proof tactics, the style of semantic
encoding, and the level of abstraction of proof steps all play off
against one another. These issues are tackled to varying degrees and
in different ways in almost all the referenced works in this section;
see the recent work on “Iris Proof Mode” [72] and the earlier paper
on structuring proofs [67] for an overview of the problems as well
a comparison of different approaches.

A.3 Automatic Program Analysis
Where an interactive verifier asks more of the tool user in the way
of direction than a mostly automatic verifier, an automatic program
analyzer asks for less. In the extreme case an analysis tool can act
on bare code, without any user annotations whatsoever. But most
research papers assume at least that a precondition is given, like
at the beginning of the list append program; then, the job of the
analyzer is to infer any loop invariants and a postcondition. (Instead
of a precondition a tool might instead assume a main program, or a
verification analogue of the concept of a test harness.)

The early 2000s saw a surge in interest in verification-by-static-
analysis, with prominent success stories such as SLAM’s verifica-
tion of temporal safety properties in Windows device drivers [73]
and ASTRÉE’s proof of the absence of run-time errors in Airbus
code [74]. But, most practical tools for verification-oriented static
analysis ignored pointer-based data structures, or used coarse mod-
els that are insufficient to prove basic properties of them; for ex-
ample, ASTRÉE works only on input programs that do not use
dynamic allocation, and SLAM assumes memory safety (it thus
misses memory safety bugs). Accurate treatment of the heap was
considered a major open problem in practical verification. The first
papers on SL appeared around the same time and there was imme-
diate interest in using it to address this problem.

The first SL-based program analyses discovered loop invariants
for separating conjunctions of list predicates and points-to facts,
starting from a given precondition, they worked for a toy program-
ming language similar to Smallfoot’s, and they were used to certify
memory-safety properties of small programs only [20, 75]. They
can be seen as abstract interpreters [15], where the states of the in-
terpreter are SL formulae and loop invariants (fixed points) are cal-
culated using Abstraction proof rules like the one in the previous
subsection. This work represented a new foray into shape analysis
[76], a known hard problem in static analysis, which caused great
challenges for both precision and scaleability: Most research papers
at the time reported results for illustrative programs only in the 10s
or, rarely, hundreds of LOC.

After these initial results, SL-based program analyses were
gradually extended in a way that roughly mirrored advances in SL-
based theorem proving. Larger ranges of inductive predicates [77],
or data such as arithmetic [78], or both [79] were considered. Re-
markably, recent works discover invariants automatically for graph
algorithms exhibiting general sharing [80], a non-trivial distance
from the simple list programs analyzed in the beginning works.
Some of the the more significant examples of reasoning about pro-
grams with sharing were given in proofs of memory safety of the
Linux deadline IO scheduler and AFS server, programs that use
red-black trees overlaid with doubly-linked lists [81].

In most cases, the human needs to at least provide the predicate
definitions an analysis will use before getting started, though there
have been some attempts to infer predicate definitions [82, 83]. The
practical verification results on device drivers discussed in the main
paper with SLAyer and SpaceInvader relied on a restricted form of
predicate synthesis concerning the layout of data within a (possibly
doubly) linked list [84]. That is, enough automation was built in
to cover the data structures found in a collection of device drivers
rather than only one, but not so much automation as to be able to
approach general data structures in general programs (this remains
out of reach).

Although we have described forwards-running program analy-
ses above, it is possible in principle to consider algorithms which
run backwards, from post to pre. Both backwards and forwards al-
gorithms were emphasised from the very beginning of the program
analysis field, such as in the founding work of Kildall on data flow
analysis [85]. However, while possible in principle backwards anal-
ysis for heap manipulation has proven to be difficult to do with non-

trivial precision, because the number of aliasing possibilities leads
to an explosion. One might view the abductive program analysis
algorithm of [12] as a way to infer preconditions while still going
forwards, thus avoiding the explosion that had been encountered
with backwards; indeed, a backwards analysis had been attempted
by the authors of [12], but it was abandoned for efficiency reasons.

While pure backwards heap analysis has proven challenging,
backwards reasoning can be used effectively to refine an abstraction
after a forwards run finds initial, coarse information (and avoids the
aliasing explosion). Forwards-backwards alternation is a standard
technique in abstract interpretation [15], and it has been used in
a hybrid SL/SMT analysis that reasons about shape using SL and
properties of data using the logical technique of interpolation [86];
it can be used, for instance, to discover that a program preserves
sortedness of linked lists.

The compositional nature of the bi-abduction analysis is fun-
damental for the deployment of Facebook Infer against a large,
rapidly changing codebase. The essential ideas behind this anal-
ysis method are, however, more general and, as mentioned in the
main body of the paper, Infer now has a framework for composi-
tional analyses, named Infer.AI because of its use of abstract in-
terpretation (http://fbinfer.com/docs/checkers.html). Alongside the
bi-abduction analysis are several others that share its composition-
ality and incremental deployment, and they use the footprint idea
to obtain succinct and general specs, but they do not literally use
SL. For example, the data race detector RacerD [87] calculates a
collection of memory accesses for each procedure (analogous to
the footprint), and it performs sequential reasoning related to that
of CSL, but it does not literally use CSL. This illustrates our point
in the paper about intuitions concerning modular reasoning being
formalism-independent, as well as the need for a general founda-
tion explaining these and other instances.

Most of the SL-based analysis and automatic verification work
has targeted proving safety properties of programs (such as mem-
ory safety), or finding safety bugs. But SL has been used as well
for liveness properties such as in program termination analysis [88]
and in automatic parallelization [89]. These advances then fed into
the synthesis of hardware circuits from code [90, 91]. Note that
this is distinct from program synthesis, which seeks to generate
programs from specifications; the latter has, however, also seen SL
developments, building on the previously referenced work on the
Dryad verification framework for C programs [92]. Of course, there
is then the eventual prospect of composing hardware and software
synthesis, by first synthesizing a program from a spec, then further
analyzing the synthesized program to obtain hardware.

I am grateful to Josh Berdine for advice on the material in this
appendix.

Additional References for Appendix
[45] J. C. King. A program verifier. In IFIP Congress (1), pages 234–249,

1971.

[46] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with
separation logic. In APLAS, pages 52–68, 2005.

[47] E. Pek, X. Qiu, and P. Madhusudan. Natural proofs for data structure
manipulation in C using separation logic. In PLDI, pages 440–451,
2014.

[48] D. Distefano and M. J. Parkinson. jStar: towards practical verification
for Java. In OOPSLA, pages 213–226, 2008.

[49] J. F. Santos, P. Maksimovic, D. Naudziuniene, T. Wood, and
P. Gardner. JaVerT: JavaScript Verification Toolchain. PACMPL
1(POPL), 2018, 2018.

[50] J. Villard, E.Lozes, and C. Calcagno. Tracking heaps that hop with
Heap-Hop. In TACAS, pages 275–279, 2010.

[51] S. Darabi, S. C. C. Blom, and M. Huisman. A verification technique

for deterministic parallel programs. In NASA Formal Methods
Symposium, pages 247–264, 2017.

[52] C. Calcagno, M. J. Parkinson, and V. Vafeiadis. Modular safety
checking for fine-grained concurrency. In SAS, pages 233–248, 2007.

[53] T. Dinsdale-Young, P. da Rocha Pinto, K. J. Andersen, and
L. Birkedal. Caper - automatic verification for fine-grained con-
currency. In ESOP, pages 420–447, 2017.

[54] J. Brotherston and M. I. Kanovich. Undecidability of propositional
separation logic and its neighbours. J. ACM, 61(2):14:1–14:43, 2014.

[55] Q. L. Le, M. Tatsuta, J. Sun, and W.-N. Chin. A decidable fragment
in separation logic with inductive predicates and arithmetic. In CAV,
pages 495–517, 2017.

[56] R. Iosif, A. Rogalewicz, and J. Simácek. The tree width of separation
logic with recursive definitions. In CADE, pages 21–38, 2013.

[57] J. A. Navarro Pérez and A. Rybalchenko. Separation logic +
superposition calculus = heap theorem prover. In PLDI, pages 556–
566, 2011.

[58] J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of
Separation Logic. In FSTTCS, pages 97–109, 2004.

[59] R. Piskac, T. Wies, and D. Zufferey. Automating separation logic
using SMT. In CAV, pages 773–789, 2013.

[60] I. T. Kassios. The dynamic frames theory. Formal Asp. Comput.,
23(3):267–288, 2011.

[61] A. Banerjee, D. A. Naumann, and S. Rosenberg. Local reasoning
for global invariants, part I: region logic. J. ACM, 60(3):18:1–18:56,
2013.

[62] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames. ACM
TOPLAS., 34(1):2:1–2:58, 2012.

[63] M. J. Parkinson and A. J. Summers. The relationship between
separation logic and implicit dynamic frames. Logical Methods in
Computer Science, 8(3), 2012.

[64] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In VMCAI, pages
41–62, 2016.

[65] N. Marti, R. Affeldt, and A. Yonezawa. Formal verification of the
heap manager of an operating system using separation logic. In
ICFEM, pages 400–419, 2006.

[66] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and
separation in Hoare type theory. In ICFP, pages 62–73, 2006.

[67] A. Nanevski, V. Vafeiadis, and J. Berdine. Structuring the verification
of heap-manipulating programs. In POPL, pages 261–274, 2010.

[68] A. Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. In PLDI, pages 234–245, 2011.

[69] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low-level programs
with hardware interrupts and preemptive threads. In PLDI, pages
170–182, 2008.

[70] T. Tuerk. A formalisation of Smallfoot in HOL. In TPHOLs, pages
469–484, 2009.

[71] A. W. Appel. VeriSmall: verified Smallfoot shape analysis. In CPP,
pages 231–246, 2011.

[72] R. Krebbers, A. Timany, and L. Birkedal. Interactive proofs in
higher-order concurrent separation logic. In POPL, pages 205–217,
2017.

[73] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGar-
vey, B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough static
analysis of device drivers. In EuroSys, pages 73–85, 2006.

[74] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The ASTRÉE analyzer. In ESOP, pages 21–30, 2005.

[75] S. Magill, A. Nanevski, E. Clarke, and P. Lee. Inferring invariants
in Separation Logic for imperative list-processing programs. 3rd
SPACE Workshop, 2006.

[76] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems
in languages with destructive updating. ACM TOPLAS, 20(1):1–50,
1998.

[77] B.-Y. E. Chang, X. Rival, and G. C. Necula. Shape analysis with
structural invariant checkers. In SAS, pages 384–401, 2007.

[78] S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. THOR: A tool for
reasoning about shape and arithmetic. In CAV, pages 428–432, 2008.

[79] B.-Y. E. Chang and X. Rival. Modular construction of shape-numeric
analyzers. In Semantics, Abstract Interpretation, and Reasoning
about Programs: Essays Dedicated to David A. Schmidt on the
Occasion of his Sixtieth Birthday, Manhattan, Kansas, USA, 19-20th
September 2013., pages 161–185.

[80] H. Li, X. Rival, and B.-Y. E. Chang. Shape analysis for unstructured
sharing. In SAS, pages 90–108, 2015.

[81] O. Lee, H. Yang, and R. Petersen. A divide-and-conquer approach for
analysing overlaid data structures. Formal Methods in System Design,
41(1):4–24, 2012.

[82] B. Guo, N. Vachharajani, and D. I. August. Shape analysis with
inductive recursion synthesis. In PLDI, pages 256–265, 2007.

[83] J. Brotherston and N. Gorogiannis. Cyclic abduction of inductively
defined safety and termination preconditions. In SAS, pages 68–84,
2014.

[84] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn,
T. Wies, and H. Yang. Shape analysis for composite data structures.
In CAV, pages 178–192, 2007.

[85] G. A. Kildall. A unified approach to global program optimization. In
POPL, pages 194–206, 1973.

[86] A. Albarghouthi, J. Berdine, B. Cook, and Z. Kincaid. Spatial
interpolants. In ESOP, pages 634–660, 2015.

[87] S. Blackshear, N. Gorogiannis, I. Sergey, and P. O’Hearn. RacerD:
Compositional static race detection. In OOPSLA, 2018.

[88] J. Berdine, B. Cook, D. Distefano, and P. O’Hearn. Automatic
termination proofs for programs with shape-shifting heaps. In CAV:
Computer Aided Verification, 18th International Conference, 2006.

[89] M. Raza, C. Calcagno, and P. Gardner. Automatic parallelization with
separation logic. In ESOP, pages 348–362, 2009.

[90] B. Cook, A. Gupta, S. Magill, A. Rybalchenko, J. Simsa, S. Singh,
and V. Vafeiadis. Finding heap-bounds for hardware synthesis. In
FMCAD, pages 205–212, 2009.

[91] F. J. Winterstein, S. R. Bayliss, and G. A. Constantinides. Separation
logic for high-level synthesis. TRETS, 9(2):10:1–10:23, 2016.

[92] X. Qiu and A. Solar-Lezama. Natural synthesis of provably-correct
data-structure manipulations. PACMPL, 1(OOPSLA):65:1–65:28,
2017.

