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Abstract—In this study, we explore the use of a spatially-
variant penalty strength in penalized image reconstruction using
anatomical priors to reduce the dependence of lesion contrast on
surrounding activity and lesion location. This work builds on a
previous method to make the local perturbation response (LPR)
approximately spatially invariant. While the dependence of lesion
contrast on the local properties introduced by the anatomical
penalty is intentional, the method aims to reduce the influence
from surroundings lying along the lines of response (LORs)
but not in the penalty neighborhood structure. The method is
evaluated using simulated data, assuming that the anatomical
information is absent or well-aligned with the corresponding
activity images. Since the Parallel Level Sets (PLS) penalty is
convex and has shown promising results in the literature, it is
chosen as the representative anatomical penalty and incorporated
into the previously proposed preconditioned algorithm (L-BFGS-
B-PC) for achieving both good image quality and fast convergence
rate. A 2D disc phantom with a feature at the center and a
3D XCAT thorax phantom with lesions inserted in different
slices are used to study how surrounding activity and lesion
location affect the visual appearance and quantitative consistency.
A bias and noise analysis is also performed with the 2D disc
phantom. The consistency of the algorithm convergence rate
with respect to different data noise and background levels is
also investigated using the XCAT phantom. Finally, an example
reconstruction for a patient dataset with inserted pseudo lesions
is used as a demonstration in a clinical context. We show that
applying the spatially-variant penalization with PLS can reduce
the dependence of the lesion contrast on the surrounding activity
and lesion location. It does not affect the bias and noise trade-
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off curves for matched local resolution. Moreover, when using
the proposed penalization, significant improvement in algorithm
convergence rate and convergence consistency is observed.

I. INTRODUCTION

IN emission tomography (ET), the use of an image re-
construction algorithm based on penalized maximum-

likelihood (PML) is one of the strategies to control noise
amplification as iterations increase [1]–[3]. Desired properties
such as sharp edges and smoothness in uniform regions can
also be encouraged by appropriate choice of the penalty
function [4], [5]. However, the trade-off between noise and
resolution in reconstructed images can vary with the individual
dataset [6], making the tuning of the weight between the
likelihood term and the penalty term of the objective function
difficult. In addition, the effective penalty strength at each
voxel is determined by its activity level, and that of the
surrounding voxels [7]. This makes visual comparison and
quantitative analysis for regions with different activities or at
different locations difficult even for lesions in the same image.

These issues have been studied extensively for quadratic
priors, and analytical predictions of image resolution and
variance are available [7]–[11]. The dependence of lesion
interpretation on location, surrounding object and therefore
the individual can be largely eliminated by modifying the
weights of the penalty function using analytical models [7],
[9], [11]–[15]. Moreover, since the reconstruction properties
have become almost object independent, one can tabulate
the relationship between the overall penalty weight and the
corresponding resolution by performing reconstructions using
a set of Monte Carlo (MC) simulated or experimental data [7].

In contrast to the large literature on quadratic penalization,
limited studies exist for edge preserving priors. These priors
aim to encourage high resolution at edges and smoothness
in uniform regions. To be able to predict local resolution
(and variance), the analytical models proposed initially for
quadratic penalties were further generalized for non-quadratic
ones in [16]. The local resolution was characterized using the
local perturbation response (LPR). Instead of trying to achieve
uniform resolution, the authors of [16] proposed a similar
modification of the penalty weights to obtain uniform LPR
across the field-of-view (FOV) for lesions having similar local
features [16]. Since the local contrast of the “reconstructed”
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lesion, as determined by LPR, is one of the factors that affects
visual comparison and quantitative accuracy of the lesion
[17], [18], reducing the dependence of LPR on location or
surroundings could help to improve consistency and reliability
in many applications. For example, it could benefit positron
emission tomography (PET) 18F-FDG scans for treatment
response evaluation [19]–[21] or gross tumor volume delin-
eation [22], [23]. Since the modification is essentially a spatial
normalization method for the penalty function, it is referred
to as a spatially-variant penalty strength in this study.

In [16], the use of the modified penalty function was
validated with an edge preserving Huber prior using 2D MC
simulations. However, there is increased interest in priors using
anatomical information to tune local properties of the penalty.

This paper, an expansion of initial results presented in [24],
extends the theory developed in [16] to a wider class of penalty
functions such that it can be applied to any anatomical priors
defined in a given neighborhood structure. For computational
convenience, a different type of spatially-variant penalization
scheme is proposed. A further modification for reducing the
sensitivity of the scheme to data noise level is made as well.
We introduce two metrics of reconstruction algorithm perfor-
mance: one to measure the improvement of consistency in
lesion quantification and one to assess algorithm convergence
rate. The former is mainly evaluated with respect to different
surroundings and locations, while the latter is studied using
simulations representing different noise and background levels.
A bias and noise analysis is also performed with multiple
realizations for a simple disc phantom. A set of patient data is
also used as a demonstration of using an anatomical penalty
function with the proposed modification to achieve consistent
quantification and faster convergence rate in a clinical context.

II. METHODS

A. PML Image Reconstruction

Given the tracer distribution x = [x1, . . . , xJ ]> ∈ RJ and
the measured data y = [y1, . . . , yI ]> ∈ RI , PML image
reconstruction optimizes an objective function Φ consisting
of the log-likelihood L and the penalty function R with a
parameter β controlling its strength:

Φ(x,y) = −L(x,y) + βR(x) . (1)

We define the PML estimator as:

x̂(y) = arg min
x≥0

Φ(x,y) . (2)

In ET, the statistical nature of the measured data y can be
described using the Poisson distribution. Therefore, the log-
likelihood function L, omitting terms independent of x, can
be expressed as:

L(x,y) =
∑
i

yi log ȳi(x)− ȳi(x) , ȳ(x) , Ax+ n (3)

where ȳi is the mean measurement in bin i, A ∈ RI×J is
the system matrix and n is the expected background, due to
events such as scatter and random coincidences. Each element
[A]i,j = Ai,j denotes the probability that an emission from
voxel j is detected by bin i.

In this work, we focus on penalty functions R of the form:

R(x) =
∑
j

φj(x) , (4)

where each φj(x) only depends on xj and voxels in a given
neighborhood Nj of voxel j. Such penalty functions include
standard priors of the form φj(x) =

∑
k∈Nj

ωjkψ(xj − xk)
with ωjk indicating the weight between voxel j and its
neighbouring voxel k as well as local anatomical priors such
as the Bowsher prior [25] or the Parallel Level Sets (PLS)
prior [26]. One requirement on R is that Φ is strictly convex
and differentiable so that (2) is uniquely defined.

Since PLS has shown promising results and its convexity
is well-established [26], it is chosen to be the representative
anatomical prior in this study. The PLS penalty is defined as:

φj(x|z) =
√
α2 + ‖ [∇x]j ‖22 − 〈[∇x]j , [ξ]j〉

2
, (5)

[ξ]j :=
[∇z]j√

‖ [∇z]j ‖22 + η2
, α and η > 0

where ∇ is the gradient operator, 〈·, ·〉 is the Euclidean inner
product, z = [z1, . . . , zJ ]> ∈ RJ is the anatomical image and
‖ · ‖2 denotes the `2-norm. The edge preserving property of
the function is modulated by the pair of parameters (α, η)
[26]. Note that PLS does not require a segmentation of the
anatomical image and reduces to the (smooth) Total Variation
(TV) prior in the absence of the anatomical information.

B. Linearized Local Perturbation Response

We summarize the theoretical description of the image res-
olution proposed by Ahn & Leahy [16] for non-quadratically
penalized image reconstruction in this section. By further
exploring the property of the Fisher information matrix, a
different type of the spatially-variant penalty strength suitable
for 3D PET reconstruction is derived. To reduce its sensitivity
to data noise level, an approximation that avoids calculating
the inverse of the measured data is also proposed.

Let xt be a “true” activity image consisting of a background
xb and a signal of interest xs:

xt = xb + xs . (6)

One way to quantify resolution properties around the signal
xs is the local perturbation response (LPR) [16]:

¯̂xs , E[x̂t]− E[x̂b], (7)

where E[x̂t] and E[x̂b] are the mean reconstructed images for
the noisy measurements with and without the presence of the
signal. For reasonably high signal-to-noise ratio (SNR), the
mean perturbation ¯̂xs defined in (7) can be approximated by
the linearized local perturbation response (LLPR) [16]:

x̆s , x̆t − x̆b (8)

where
x̆t , x̂(ȳ(xt)), x̆b , x̂(ȳ(xb)) . (9)



0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2913889, IEEE
Transactions on Medical Imaging

3

With suitable Taylor expansions, the relationship between the
LLPR x̆s and the true perturbation xs can be described as:

[F (x̆b) + βΩ(x̆b; x̆s)] x̆s ≈ F (x̆b)xs , (10)

where F (x) ∈ RJ×J is the Fisher information matrix for
estimating x:

F (x) , A>D

[
1

ȳ(x)

]
A (11)

with D[·] an operator that constructs a diagonal matrix from
a vector. In [16], Ω(x̆b; x̆s) ∈ RJ×J is defined as:

Ω(x̆b; x̆s) ,
∫ 1

0

∇2R(x̆b + τ x̆s) dτ (12)

such that

Ω(x̆b; x̆s)x̆s = ∇R(x̆b + x̆s)−∇R(x̆b) . (13)

The notation ∇2 represents the Hessian operator.
Although F (x) is a non-diagonal matrix, it is concentrated

about its diagonal [7]. The image of each row (or column)
vector of F (x) is assumed to have a similar shape (i.e. 1/r
and 1/r2 blurring kernel for 2D and 3D PET acquisition,
respectively) and its peak center value is approximately pro-
portional to the sum of the image. The value depends on the
activity distribution and the spatial variations in sensitivity for
a shift-variant system. To investigate the spatial variance, it is
useful to define an alternative matrix that separates F (x) into a
data dependent κ(x) and an (approximately) data independent
F0(x):

F0(x) , D[κ(x)]−1F (x)D[κ(x)]−1 , (14)

where κ(x) is chosen such that F0(x) is an approximately
shift-invariant matrix, desirable for 3D PET reconstruction.
For example, the following κ(x) was used in [11] in the case
where detector blurring is not modeled:

κj(x) ,

√∑
i

A2
i,j/ȳi(x) , ∀j = 1, . . . , J . (15)

This choice1 leads to an approximately shift-invariant F0(x)
with diagonal elements being 1. Another choice is discussed
in Section II-D.

As κj(x) varies slowly with j, the following simplification
of (14) is valid around voxel j:

F0(x)ej ≈ κ−2j (x)F (x)ej (16)

where ej is the j-th unit vector of length J . With (16) and
assuming that x̆s is concentrated on voxel l, (10) can be further
approximated by:[

F0(x̆b) +
β

κ2l (x̆b)
Ω(x̆b; x̆s)

]
x̆s ≈ F0(x̆b)xs . (17)

1In the notation of Qi & Leahy [11], this is κ/ν.

C. Modified Prior for Data Independent LLPR

The dependence of LLPR on data in PML reconstructions is
due to the presence of κ2l (x̆b) in (17). Several approaches have
been proposed to modify R to eliminate the data-dependency
[7], [16]. With the more general form defined in (4), the
modified priors can be described as:

R̃(x) =
∑
j

κ2j (x)φj(x) . (18)

Given Ol a neighborhood of voxel l containing the non-zero
indices of the corresponding LLPR and x̃s the LLPR using
R̃, (13) can be rewritten as:

Ω̃(x̆b; x̃s)x̃s =
∑
j∈Ol

κ2j (x̆b)cj(x̆b; x̃s) (19)

where Ω̃ is defined as in (12) by replacing R with R̃ and

cj(x̆b; x̃s) = ∇φj(x̆b + x̃s)−∇φj(x̆b) .

Since cj(x̆b; x̃s) has non-zero entries [cj(x̆b; x̃s)]m only for
m in the neighborhood of l and κl varies slowly with location,
(19) is further approximated by:

Ω̃(x̆b; x̃s)x̃s ≈ κ2l (x̆b)
∑
j∈Ol

cj(x̆b; x̃s)

≈ κ2l (x̆b)Ω(x̆b; x̃s)x̃s . (20)

Substituting (20) into (17) gives:

[F0(x̆b) + βΩ(x̆b; x̃s)] x̃s ≈ F0(x̆b)xs , (21)

This result shows that the modified penalty R̃ is able to
eliminate the LLPR dependence on data. Note that it still
depends on the local properties introduced by the penalty.

D. Alternative choice for κ(x)

The above derivation holds for any “smooth” κ(x)
that makes F0(x) approximately shift-invariant and data-
independent. Existing formulations such as (15) are incon-
venient as they need access to the square of the elements of
the matrix A. Inspired by the “precomputed denominator” in
[27], we choose a different type of κ(x) using the square root
of the row-sums of F (x). In matrix notation:

κ(x) ,
√
F (x) 1 =

√
A>D

[
1

ȳ(x)

]
A1 , (22)

where 1 is a vector of ones. Note that this type of κ(x)
requires only forward and back-projection operations. Substi-
tuting (22) into (16), we find that the row-sums of F0(x) will
be approximately equal to 1:

F0(x) 1 ≈ D [κ(x)]
−2
F (x) 1 ≈ 1 . (23)

In other words, this type of κ(x) also leads to a shift-invariant
F0(x) for 3D PET reconstruction as the image of each row
(or column) vector of F0(x) would have a similar shape and
peak center value.

Since κ(x) in (22) is calculated with the mean or noiseless
measurement ȳ(x) which is unavailable in practice, a plug-in
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method that substitutes ȳ(x) by the noisy measurement y to
compute κ(x) was introduced in [16]. This leads to:

κ̃ ,

√
A>D

{
1

y

}
A1 , (24)

However, as it requires a division by the measured data, its
performance is sensitive to the noise level. The following
approximation is therefore proposed in this study:

κ̂ ,

√
A>D

[
y

ȳ2(xinit)

]
A1 , (25)

where xinit is the initial image. The matrix κ̂ is used to
construct the transformation matrix in Section II-E and in [28].
As A and A> are smoothing operators that reduce the noise
in xinit and y, both κ̃ and κ̂ is a reasonable approximation
of κ(x) defined in (22) when the initial image is close to
the solution and the noise level of data y is reasonably low.
To demonstrate that the proposed spatially-variant penalty
strength (25) is a better approximation of (22) compared to
the plug-in method (24) in the presence of noise, we have
investigated the difference between them using a simulated
noisy dataset in Appendix A.

E. Optimization Method: L-BFGS-B-PC

The modified penalty function (18) with the spatially-
variant penalty strength (25) was incorporated into a fast
convergent reconstruction algorithm, L-BFGS-B-PC, which
was previously proposed by our group [28]–[30]. The al-
gorithm performed L-BFGS-B [31], [32] in a transformed
coordinate system to circumvent its potential slow convergence
and sensitivity to global scale factors. As suggested in [28],
the transformation matrix P can be chosen to be the square
root of a diagonal approximation of the Hessian of Φ, which
consists of the Hessian of the likelihood function (3) and the
Hessian of the penalty function (4). Since (25) is also related to
a diagonal approximation of the Hessian of (3), we have used
it to construct P to reduce the total computation. As it is not
necessary that P is a precise approximation of the Hessian of
Φ [28], we further replaced the Hessian of the penalty function
by a small constant ε for simplicity and to avoid division by
zero. The transformation can therefore be described as:

x′ = Px , P = D
[√
κ̂2 + ε

]
, (26)

where ε = 10−4 in this study.
An update at each iteration is then found along a search

direction d with the transformed image x′:

x′t+1 = x′t + δ?dt, (27)

where δ? is the step length and dt = −Bt∇Φ′(x′t) with Bt,
an approximation of the inverse of the Hessian of Φ at x′t,
constructed by L-BFGS-B. Here ∇Φ′(x′t) is the transformed
gradient for Φ at x′t. In this section, the subscript t indicates
the iteration number instead of the voxel location for com-
pactness. To ensure convergence and sufficient progress, δ? is
generally obtained by performing a backtracking algorithm in

which a series of gradually decreasing δ from an initial value
δinit ≤ 1 are tested until the Wolfe conditions are met:

Φ′(x′t + δdt) ≤ Φ′(x′t) + λ1δ∇Φ′(x′t)
>dt (28)

‖∇Φ′(x′t + δdt)
>dt‖2 ≤ λ2‖∇Φ′(x′t)

>dt‖2 , (29)

where Φ′(x′t) = Φ(xt), 0 < λ1 < λ2 < 1. In this study, λ1
and λ2 were set to 10−4 and 0.9, respectively. We stopped the
algorithm if no step length δ? > 0 that satisfies the Wolfe
conditions can be found in 20 trials of backtracking. This
stopping criterion was checked using the results from [28].
More information about the algorithm can be found in [28].

Since both the objective function and its gradient have to
be recomputed for each candidate δ, extra forward and back-
projection operations are needed for the backtracking.

III. EVALUATION

In this study, we investigate the performance of the anatom-
ical prior, PLS, with and without the new approximation
of κ(x) in (25). The potential of applying the modified
PLS to improve the quantitative consistency and algorithm
convergence rate are investigated with two digital phantoms,
a 2D disc phantom and a more realistic 3D XCAT phantom.
As changes in the local resolution will influence the image
noise properties, a contrast and variance analysis with respect
to various penalty strengths using several noise realizations
is included for the disc phantom. The multiple realizations
are reconstructed with and without anatomical information
to simulate the mismatch between emission and anatomical
images as well. Finally, a patient dataset with inserted pseudo
lesions is used as an example reconstruction closer to the
clinical context.

A. Data

1) 2D disc phantom: To demonstrate that the uniformity
of the local perturbation for lesions in different surroundings
can be improved by applying the modified PLS, a 2D disc
phantom with a sphere (value = 3) inserted right at the center
of a large hot (value = 5) or cold (value = 1) uniform region
was used (see Fig. 3). The phantom was a 111× 111 matrix
with voxel size of 2.397 × 2.397 mm2 and the diameter of
the sphere was 21.573 mm. An attenuation map (µ) was also
used to provide anatomical information, consisting of 0.096
and 0.172 cm−1 for the feature and the surrounding matter,
respectively. Note that, relative to the surrounding region, the
sphere had the same absolute activity difference and, hence,
the effect of PLS would be the same for the spheres in both
cold and hot surroundings.

The projection data were generated by using STIR [33]
projectors to simulate data from a GE Discovery STE in
2D acquisition mode [34]. The phantom with either high
or low surrounding activity was used to generate 100 noise
realizations using the Poisson noise model. The total counts
were around 302 K and 424 K for the phantom with cold
and hot surroundings, respectively. Physical effects, such as
attenuation and system blurring (modeled as smoothing in
image space with full width at half maximum (FWHM) =
5.2 mm in tangential and radial directions) were simulated.
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A uniform projection with a constant intensity was added
to the generated data to simulate the background events. It
is equivalent to 90% and 64% of the total prompts for the
phantom with cold and hot surroundings. For analysis purposes
(see Section III-C for more information), we also generated
data using the same phantom but with no sphere at the center
of both activity and anatomical images. The total counts were
301 K and 422 K for the cold and hot sphere-free phantom.

2) 3D XCAT thorax phantom: An XCAT phantom [35] was
used to generate data representing typical 18F-FDG scans in
the thorax. The resulting volume was of size 152× 152× 47
with voxel size 3.125 mm in all directions. We rescaled the
phantom to give voxel intensities between 0 to 2.

To evaluate the dependence of local perturbation on lo-
cation, 6 hot lesions with size of 3 × 3 × 3 voxels were
inserted in different slices (see Fig. 1). None of the lesions
were in the central slice and 2 of them were in the liver.
The uptake of the liver was either high (value = 1.6) or low
(value = 0.4) to simulate change of surroundings for lesions
in the liver. Each lesion had the same absolute difference
to its surrounding in both activity (difference = 0.8) and
anatomical images (difference = 20 Hounsfield units (HU))
hence the same influence of the anatomical prior. As lesions
in liver would have a similar linear attenuation coefficient to
liver, our simulations roughly correspond to using CT with
injected contrast to provide anatomical information. Note that
the distribution of the contrast agent in the enhanced CT
images was assumed to be locally uniform and all lesions
in the activity image were exactly aligned with those in the
anatomical image. Fig. 1 shows the XCAT phantom with high
liver uptake and its corresponding contrast enhanced CT image
as an example. The phantom was forward projected using
vendor supplied software into sinograms simulating data from
the GE Discovery STE in 3D acquisition. The background
events were simulated by adding a constant value to the
generated sinograms. The amount of background events was
equivalent to 56% and 55% of total prompts for phantom with
low and high liver uptake, respectively. Here we performed
the evaluation of local perturbation on noiseless datasets.
Similarly, the phantom with and without lesions was used to
generate data for analysis purposes.

The phantom with high liver uptake was also used for
investigating the influence of the modified PLS on the per-
formance of L-BFGS-B-PC with respect to different noise
and background levels. These factors had been proven to
influence the convergence rate of L-BFGS-B-PC when using
non-anatomical priors with spatially invariant weights in our
previous study [28]. For assessing effects of the noise level, we
generated three datasets (G0) with total counts Stot of 50 M,
250 M and 1252 M. The Poisson noise model was used. The
true to background event ratio (TBR) for each of them was
fixed at 0.6. The possible influence of background events was
studied using four more datasets, which were divided into two
groups. For the first group (G1), each dataset had the same
total counts as the data representing medium noise level, i.e.,
Stot = 250 M, but with 5 times lower or higher TBR. For
data in the second group (G2), we kept Strue the same as
that in the data with Stot = 250 M counts, but changed Sbg

Fig. 1. The central coronal view of the XCAT phantom with high liver uptake
(left) and the corresponding contrast enhanced CT image used to provide
anatomical information (right). Note that given the small difference in HU
value between the lesions and their surroundings compared to the image scale,
the enhanced lesions are not apparent without using a specific display window
for lesions in different surroundings.

TABLE I
A SUMMARY OF THE SIMULATED DATA FOR EVALUATING THE INFLUENCE

OF THE BACKGROUND.

Strue Sbg Stot

G0
TBR = 0.6 19 M 31 M 50 M
TBR = 0.6 94 M 156 M 250 M
TBR = 0.6 469 M 783 M 1252 M

G1 TBR = 3 187 M 63 M 250 M
TBR = 0.12 27 M 223 M 250 M

G2 TBR = 3 94 M 31 M 125 M
TBR = 0.12 94 M 783 M 877 M

by 5 times lower or higher. Note that these two groups had
identical TBR for the same background level: TBR = 0.12 for
the high background data and TBR = 3 for the low background
data. A summary of the simulated data in these two groups
can be found in Table I. Note that all simulations took into
account the attenuation effect and system blurring modeled in
image space using FWHM = 5.2 mm in tangential and radial
directions and 5.7 mm in the axial direction.

3) Patient data: A patient dataset of the thorax region
acquired on the GE Discovery STE PET/CT scanner was
used for this retrospective study. The patient was injected
with 315 MBq of 18F-FDG approximately 1 hour before
the scan started. The acquisition included a cine-CT scan
(140 kVp, 60 mA, 4 s duration, 0.5 s rotation period, 0.45 s
time between reconstructed images, 9 bed positions, 8 axial
slices per bed position), followed by a PET scan in fully
3D mode. The total number of counts in the PET data was
Stot = 219M. Since the true lesion value and location are
unknown, three pseudo lesions with size of 9.375 mm in all
directions were forward projected and attenuated using vendor-
provided software (the GE PET Toolbox, not commercial).
A Poisson noise realization was then generated based on the
projection data using a built-in function in MATLAB. The final
dataset was a sum of the noisy data for the pseudo lesions and
the measured data. The locations of the pseudo lesions (two
in the liver and one in the right lung of the patient, none of
these in the central slice) were determined from a preliminary
reconstruction. The difference between each pseudo lesion and
its surroundings was 0.8 MBq/cc. The corresponding contrast
enhanced CT with lesions inserted at the same locations was
simulated from the average cine-CT to provide anatomical
information. Based on the results in [36]–[38], an absolute
difference of 150 HU to the surroundings was assigned to
all pseudo lesions in the simulated enhanced CT image. We
ignored the possible non-uniform distribution of the contrast
agent in clinical practice and the attenuation change induced
by the inserted lesions. The vendor-provided software was also
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used for binning the PET data into sinograms and modeling
the detection efficiency, attenuation, scatter and randoms.

B. Reconstruction

Based on our previous study [28], L-BFGS-B-PC initialized
by 1 full iteration of ordered-subsets expectation maximization
(OS-EM) with 35 subsets was adopted for image reconstruc-
tion. The initial image was also used to calculate the spatially-
variant penalty strength κ̂ and the transformation matrix P .
We reconstructed each dataset with and without using the
proposed κ̂ to modify PLS. For simulated data, the recon-
structed image had the same matrix size as the corresponding
phantom. The reconstructed voxel size was 3.125×3.125 mm2

for the disc phantom and 3.947 × 3.947 × 3.27 mm3 for the
XCAT phantom. We chose different voxel sizes for phantom
definitions and image reconstructions to avoid artifacts induced
by discretization. The reconstructed image for the patient
datasets had 192 × 192 × 47 voxels with voxel size of
3.125 × 3.125 × 3.27 mm3. The system blurring was also
modeled during reconstruction. To exclude the dependence
of the penalty function on the selection of parameters, the
parameter set (α, η) in PLS was chosen according to the scale
of the anatomical and activity images, respectively. We kept
the strength of α and η to 12.5% and 25% of the intensity dif-
ference between the lesion and its surroundings in anatomical
and activity images for all reconstructions. Therefore, the set
of parameters was (0.25, 0.019 cm−1) for the disc phantom,
(0.1, 5 HU) for the XCAT phantom and (0.1, 37.5 HU) for
the real patient data. We defined a different global penalty
strength β̂ = βκ̂20 for reconstructions without applying κ̂,
where κ̂0 represents the value at the center of κ̂ calculated with
a reference dataset. Therefore, the effective penalty strength
at the image center is identical in both reconstructions with
and without using κ̂ when the reference dataset is considered.
The influence of the global penalty strength on quantification
is discussed further in Section V. We selected a different
reference dataset for different evaluations (see section IV for
more information). A series of global penalty strengths β were
used for the disc phantom to study the resolution and noise
trade-off at different penalty strengths. The evaluated set of
strengths started from 0.05 and increased by 0.05 to 0.3. The
strength was fixed at 10−3 for the noiseless XCAT datasets.
A stronger β = 10−2 was chosen for XCAT data with noise
and the real patient data. For reconstructions simulating the
absence of the anatomical information, a uniform image was
used to replace the anatomical image z while calculating PLS.
For the 2D disc phantom, this is equivalent to using a uniform
anatomical image with no lesion feature (except for the object
boundary).

C. Analysis

The potential benefits of using the modified PLS were
investigated in terms of visual interpretation, noise, local
perturbation and algorithm convergence rate. To be able to
quantify the last two features, we adopted two metrics to
measure the local contrast recovery ratio (CR) and the distance
between the converged image and current estimate (M ). The

latter was initially introduced in [28]. Given the reconstructed
image with lesion(s) x̂total and that without lesion(s) x̂bg, the
metrics are defined as:

CR =
|ROImean(x̂total

c − x̂bg
c )|

True Difference
× 100%, (30)

Mt =

√
1

N

‖x̂total
t − x̂total

c ‖22
mean(x̂total

c )2
, (31)

where ROImean(·) is an operator that calculates the mean
value of the ROI, “True Difference” is the assigned activity
difference between the lesion and its background and N is
the number of voxels. The subscript t indicates the iteration
number and c denotes that the converged image of L-BFGS-
B-PC (see section II-E for the definition of convergence of
L-BFGS-B-PC). The CR value defined in (30) is essentially
a normalized difference in intensity between the lesion and
background. To prevent additional bias introduced by the
variation of intensity in location, we drew the ROI in the same
place on x̂total and x̂bg while calculating CR. The value is
comparable to the common concept of lesion contrast in which
a local background region in the same image is used. The ROIs
were drawn in the center of the sphere or lesion with size of
9 × 9 voxels for the disc phantom and 3 × 3 × 3 voxels for
both the XCAT phantom and real patient data.

In the first part of the study, we used 100 noise realizations
of the 2D disc phantom to study the bias and variance trade-off
of the proposed weighting. In that case, the average CR value
for the disc phantom and the standard deviation (STD) for
the voxel at the image center over 100 realizations were used
respectively to quantify the bias (or local resolution) and noise
properties of the estimated image with respect to different
global penalty strengths. For quantifying the algorithm conver-
gence rate, we used plots of the convergence measure M (31)
against the total number of projection operations. One projec-
tion operation means a forward or back-projection of the full
dataset. We chose the number of projection operations instead
of iterations as it takes into account the extra computational
demand induced by the backtracking algorithm. Fast decrease
of M values indicates fast convergence rate to the solution of
the reconstruction problem. To further explore the performance
of the algorithm with and without applying the modified
PLS, the required number of projection operations and the
corresponding iterations for achieving “effective” convergence
were computed as well. The corresponding iteration number
was determined by:

t?M = min {t : Mt ≤ 0.01} . (32)

Note that the dependence of the local perturbation on
location was evaluated using noiseless data.

IV. RESULTS

A. Bias & variance analysis (disc phantom)

The noise realizations for the disc phantom with either hot
or cold surroundings were used to investigate the potential
influence of applying κ̂ on the bias and noise trade-off.
We defined κ̂0 as the value at the center of κ̂ calculated
with the corresponding noiseless dataset for the phantom
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with hot background region. Fig. 2 shows the bias and noise
trade-off curves for different surroundings and reconstruction
conditions. Since similar local resolutions were enforced at
the center of the image reconstructed with and without ap-
plying the modified penalty function for the phantom with
hot surroundings, the bias and noise trade-off points for these
two reconstruction conditions are nearly identical when the
same β is considered, in contrast to the case with the cold
surroundings. For each evaluated global penalty strength β,
much more similar CR values are obtained for hot and cold
surrounding activities when κ̂ is applied than without using
κ̂. Example reconstructions at convergence for one realization
for different surroundings are shown in Fig. 3 for β = 0.2.
Although the sphere has a relatively high visual contrast to
cold surroundings when κ̂ is not applied (Fig. 3 (f) and (h)),
a more consistent lesion contrast, insensitive to the change
of the surrounding activity, is observed for images recon-
structed using κ̂ (Fig. 3, first and third columns). Consistent
with the trade-off curves, similar reconstructed images are
obtained for the phantom with hot surroundings, regardless
of the use of κ̂ or not (Fig. 3, (a) and (b) for PLS and (c)
and (d) for smooth TV). The images for the phantom with
cold surroundings reconstructed with and without using κ̂,
however, are quite different as the effective penalty strength
is different for each condition (Fig. 3, (e) and (f) for PLS
and (g) and (h) for smooth TV). In the absence of anatomical
information, all curves for different surrounding activities and
penalization schemes shift to the lower left (Fig. 2, bottom,
as compared to Fig. 2, top), indicating lower CR and STD
values, hence smoother reconstructed images (Fig 3, third and
fourth columns).

B. Dependence of contrast ratio on location (XCAT phantom)

We used noiseless datasets for the XCAT phantom to
study the dependence of local contrast (quantified by CR) on
different lesion locations. We selected the data generated using
the phantom with high liver uptake as the reference dataset.
Fig. 4 shows the central coronal view of the converged images
reconstructed with and without applying κ̂ for the phantom
with high liver uptake. The corresponding difference images
obtained by subtracting the image reconstructed from data
without lesions from the one with lesions are also provided
to assist the visual comparison. As shown in the figure,
a relatively uniform visual contrast for lesions at different
locations is observed in reconstructions using κ̂ (Fig. 4 (a) and
(c)). When κ̂ is not applied (Fig. 4 (b) and (d)), the lesion near
the end slices has a lower visual contrast (indicated with purple
arrows). Although not shown, similar results were obtained
for data simulated with low liver uptake. CR values for
each lesion under different data simulation and reconstruction
conditions are calculated and listed in Table II. Consistent with
the visual comparison, the variation of the contrast recovery
ratio in locations is reduced when κ̂ is used. However, the
influence of surrounding activity is not obvious for the XCAT
phantom as lesion 5 and 6 show similar CR values when
the activity level of their surroundings (liver) is changed,
regardless of κ̂ being applied or not.

Fig. 2. Bias (CR) and noise (STD) trade-off curves for PLS (top) and smooth
TV (bottom) with and without applying κ̂. The data were generated with
the disc phantom with either hot or cold surrounding activity. Each marker
indicates a value of the global penalty beta. The same values were used in
sequence for all cases (see main text). When the anatomical information is
available (top), the mean absolute differences in CR values between sphere
in hot and cold surroundings are 2.68 and 4.16 for the reconstructions with
and without using κ̂. For the reconstructions without using the anatomical
information (bottom), they are 3.43 and 8.08, respectively.

Fig. 3. Converged images for the disc phantom with high (top row) or low
(bottom row) activity uptake in surroundings (β = 0.2). Images reconstructed
with and without using κ̂ are presented in odd and even columns, respectively.
The first two columns are for PLS, while the last two are for smooth TV.
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Fig. 4. Converged images reconstructed with (a) and without (b) using κ̂ for
the XCAT phantom having high liver uptake. The corresponding difference
images obtained by subtracting the image reconstructed from data without
lesions from the one with lesions are given in (c) and (d), respectively.

TABLE II
CR VALUES (30) FOR LESIONS AT DIFFERENT LOCATIONS IN THE XCAT

PHANTOM.

1 2 3 4 5 6 mean± std

with κ̂ HL1 91 87 89 90 92 88
89± 1.78CL 91 88 89 90 88 86

without κ̂ HL 95 93 95 96 89 59
88± 13.35CL 96 93 95 96 88 61

1 HL and CL stand for hot and cold liver uptake, respectively.

TABLE III
REQUIRED NUMBER OF PROJECTIONS AND ITERATIONS (IN BRACKETS)

FOR ACHIEVING EFFECTIVE CONVERGENCE OF M VALUES (31) FOR
DATASETS REPRESENTING DIFFERENT NOISE LEVELS.

with κ̂ without κ̂
Stot = 50 M 82 (39) 412 (200)
Stot = 250 M 92 (45) 686 (334)
Stot = 1252 M 132 (65) 812 (398)

C. Dependence of convergence rate on noise & background
level

Simulated data with Stot = 50 M, 250 M and 1252 M,
representing high, medium and low noise level, were recon-
structed with and without using κ̂ to study the influence of
the noise level. The κ̂ for the dataset with Stot = 250 M was
chosen as the reference. Fig. 5 shows the central coronal view
of the converged image of each reconstruction. Noisier end
slices (the bottom two slices) of the reconstructed images are
observed when the modified PLS is applied compared to those
without using κ̂. The effect becomes less apparent as the noise
level of the data decreases. In addition to visual comparison,
the performance of the algorithm was also evaluated by plot-
ting convergence estimates M (31) against the total projection
operations (Fig. 6) and by listing the required number of
projection operations and iterations to achieve the effective
convergence defined in (32) (Table III). The former illustrates
the convergence rate in early iterations while the latter gives
an insight to late iterations. The convergence rate is improved
significantly when applying κ̂. Moreover, it also reduces the
difference in convergence rate for data with different noise
levels.

The effect of the background level on the performance of L-
BFGS-B-PC with and without using κ̂ was investigated with
data in both groups of fixed Stot (G1) and fixed Strue (G2).
The results were compared to those from the data having
medium noise and background level (Stot = 250 M, Strue =
94 M, Sbg = 156 M and TBR = 0.6). The reference strength

Fig. 5. Converged images reconstructed with (left column) and without (right
column) using κ̂ for the XCAT phantom with high liver uptake. From top to
bottom row are images for high, medium and low noise level.

Fig. 6. Convergence estimates M (31) plotted against the total number of
projection operations for datasets representing different noise levels.

TABLE IV
REQUIRED NUMBER OF PROJECTIONS AND ITERATIONS (IN BRACKETS)

FOR ACHIEVING EFFECTIVE CONVERGENCE OF M VALUES (31) FOR
DATASETS REPRESENTING DIFFERENT BACKGROUND LEVELS.

with κ̂ without κ̂

G1 TBR = 3 82 (40) 644 (313)
TBR = 0.12 92 (43) 522 (251)

G2 TBR = 3 82 (40) 512 (253)
TBR = 0.12 142 (56) 624 (300)

κ̂0 was also calculated with this dataset. For both groups
of data, the converged images are slightly more affected by
noise when the modified PLS is used (Fig. 7 and 8). In
terms of convergence rate, plots of M values against the
total number of projection operations for each dataset in
both groups are provided in Fig. 9. The required number of
projection operations for achieving the effective convergence
of M values are listed in Table IV. Based on the results, the
use of the spatially-variant penalty strength shows the ability
to improve not only the convergence speed in both early and
late iterations but also the consistency of the convergence rate
among data with different background levels.

D. Demonstration with Patient Data

Fig. 10 shows the coronal plane through the inserted lesions
for both reconstructions with and without using κ̂ for the
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Fig. 7. Converged images reconstructed with (left column) and without (right
column) using κ̂ for data in G1. From top to bottom row are images for high,
medium and low TBR.

Fig. 8. Converged images reconstructed with (left column) and without (right
column) using κ̂ for data in G2. From top to bottom row are images for high,
medium and low TBR.

TABLE V
CR VALUES (30) FOR EACH PSEUDO LESION.

1 2 3 mean± std
with κ̂ 41 53 44 46± 6.25

without κ̂ 55 49 17 40± 20.43

TABLE VI
REQUIRED NUMBER OF PROJECTIONS AND ITERATIONS (IN

PARENTHESES) FOR ACHIEVING EFFECTIVE CONVERGENCE OF M VALUES
(31) FOR THE PATIENT DATASET WITH LESIONS.

with κ̂ without κ̂
Stot = 219 M 42 (20) 262 (129)

patient data. A relatively uniform visual contrast for lesions
at different locations is observed when κ̂ is available. CR
values for all lesions in both reconstruction conditions are
listed in Table V. Consistent with the visual comparison, a
smaller variation in the contrast recovery ratio is obtained for
data reconstructed using κ̂. The required number of projection
operations for achieving the effective convergence (32) is also
provided in Table VI. Again, the convergence rate of the
reconstruction is substantially improved when using κ̂.

V. DISCUSSION

This study demonstrates the feasibility of using the
spatially-variant penalty strength κ̂ with an anatomical penalty
to reduce the dependence of local contrast (and LPR) on
surroundings and location. Note that the contrast will still
depend on the local features in the emission image [16] and
the anatomical information. Potential benefits of applying κ̂

Fig. 9. Convergence estimates M (31) plotted against the total number of
projection operations for data sets in G1 (top) and G2 (bottom).

Fig. 10. Converged images reconstructed with (top) and without (middle)
using κ̂ for the patient dataset with inserted pseudo lesions. The lesions are
marked from 1 to 3 as illustrated in the top image. The corresponding coronal
view of the enhanced CT is provided at the bottom.
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to the convergence rate and convergence consistency are also
explored with a previously proposed reconstruction algorithm,
L-BFGS-B-PC.

As discussed in [16], the dependence of the local pertur-
bation on surrounding activity can be explained using the
analytical model defined in (17). For any voxel j in the image,
the local perturbation around j depends on the strength of
κj(x̆b). When the activity level of x̆b is high around j, a small
κj(x̆b) hence a strong penalization around j is introduced in
the original (unweighted) case. In this study, we used a 2D
disc phantom and a 3D XCAT phantom representing 18F-FDG
distribution in the thorax region to investigate the influences
of surrounding activity and location on the local contrast,
respectively. Different activity levels were assigned to the liver
in the XCAT phantom to simulate the change of surroundings
for lesions in the liver as well. For the disc phantom, the
dependence of the local contrast on different surroundings is
reduced by applying κ̂ (Fig. 2). Regardless of the use of κ̂,
the dependence of the contrast recovery on surroundings is
not obvious for the XCAT phantom, judging from the small
differences in CR values for lesions in different liver uptakes
(lesion 5 and 6 in Table II). In contrast, without applying κ̂
there was a large difference in CR for lesions near the center
of the FOV vs. the end slices (lesion 6 in Table II). This
implies that the main reason for variation in local contrast
when using spatially-invariant penalty weights is location for
18F-FDG studies using 3D PET. In fact, for a uniform activity
distribution, κj(x̆b) can be interpreted as an index of the
spatial variations in sensitivity. Using the spatially-variant
penalty strength is therefore roughly equivalent to applying
sensitivity compensation across the FOV.

The results for the bias and variance trade-off indicated
that the reconstructions with and without using κ̂ follow an
essentially identical curve while the local resolution is matched
(Fig. 2, curves for hot surroundings). This implies that one
can achieve similar local properties for images reconstructed
with and without applying κ̂ by tuning β. Similar observations
were reported in [7] for quadratic penalization. In the case
of applying κ̂, there would therefore be a trade-off between
the image noise level and the stability of LPR, especially
for lesions near the end slices. Fortunately, as multiple bed
positions are often used in clinical practice, the increased
noise level of end slices can be compensated by averaging
across neighboring bed positions. Although it seems likely
that the bed position averaging would help with the stability
of the lesion uptake values in the case without using κ̂, the
potential dependence on the surrounding activity and a slower
and relatively inconsistent convergence rate among different
datasets are still inevitable.

Regardless of the use of κ̂, the LPR varies with the global
strength β that controls the influence of the penalty over
whole objective function and parameters that determine the
weight of the edge information in the anatomical or functional
image. For example, since β used for the patient dataset
(β = 10−2) was larger than that for noiseless data generated
using the XCAT phantom (β = 10−3), a lower CR value
was observed for lesions in the patient dataset (Table II
and V). When the same β is chosen, lesions in the patient

data are able to converge to similar CR values as those in
the XCAT phantom (not shown). However, the reconstructed
image becomes noisier due to the reduction of the penalty
strength.

To be able to compare the results with and without κ̂,
we matched the local resolution at the center of the images
reconstructed with a reference dataset. This means that dif-
ferent effective penalty strengths are introduced to lesions
off the image center in different reconstruction conditions.
It explains the relatively low CR values for lesions in the
lung region of the XCAT phantom while κ̂ is used (lesion
1 to 4 in Table II). As the sphere is located at the image
center for the 2D disc phantom, almost identical local contrasts
are observed for reconstructions with and without using κ̂
when the reference dataset is considered (Fig. 2, curves for
hot surroundings). Tuning the global penalty strength β as
well as other parameters that control the local property of the
penalty function would be necessary for particular application.
The strength of β should be handled with caution for both
reconstructions with and without using κ̂. For unrealistically
high β, the strong penalty across the boundaries can lead to
a redistribution of the activity hence unpredictable CR values
(results not shown).

The main motivation of rescaling α and η in PLS according
to the scale of the functional and anatomical images is to have
a similar local influence from the penalty function for different
datasets. In this way, the comparison of CR values depends
mainly on the global parameter β and the use of the spatially-
variant penalty strength κ̂. As the smoothness enforced by
PLS in a uniform region (or also across the boundary when
β is large) is modulated by α and η, the benefit of using κ̂
might be affected by these two parameters. This means that the
redistribution of the activity across the boundaries for large β
might be less severe with small α such that using κ̂ would be
less beneficial. However, as this study focuses on achieving
consistent local contrast instead of accurate quantification,
discussions on the dependence of the quantitative accuracy and
image quality on parameters that control the global strength of
the penalty or the strength of the local information are beyond
the scope of this paper.

We have demonstrated that the convergence rate of the
algorithm can be improved significantly when κ̂ is applied
(Fig. 6 and 9). Moreover, the variability of the algorithm
performance for different datasets is reduced. As shown in
Table III and IV, all data representing different noise and back-
ground levels show the ability to achieve practical convergence
in 150 projection operations. This implies that a more reliable
quantitative comparison among different datasets can be ob-
tained when a fixed number of projection operations is chosen.
The reason for this improved convergence rate is not clear but
we hypothesize that the optimization problem becomes better
conditioned when using the spatially-variant weight. However,
as here we used the previously proposed algorithm L-BFGS-
B-PC with the same κ̂ used in the transformation matrix
P as for the penalty weight, investigating if the improved
convergence rate is algorithm dependent remains future work.
Note that when the matrix P was constructed, we replaced
the Hessian of the penalty function with a small constant
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ε = 10−4. This approximation of the Hessian of the objective
function is suboptimal for large β and the convergence rate
of the algorithm might become slow. For future investigation
on convergence rate with large (but reasonable) β, it could be
helpful to include the penalty while constructing P .

In this study, we have proposed a new type of κ(x) that
uses the square root of the row-sums of F (x). Since it
was reused to construct the transformation matrix P in L-
BFGS-B-PC, no additional computation was required. The
computational efficiency combined with reduced sensitivity to
noise make the proposed κ̂ a practical substitution for κ(x). A
systematic comparison between the proposed and other types
of κ(x), such as the one defined in (15), in capturing the shift
variance of the Fisher information matrix and improving the
convergence rate as well as the convergence consistency of the
reconstruction algorithm is left for future research. Although
the performance of the proposed κ̂ can be influenced by the
initial image, the results in the Appendix indicate that the
proposed method with the suggested initial condition (1 full
iteration of OS-EM with 35 subsets) outperforms the “plug-
in” one in (24) and has no potential division-by-zero problem
(2). However, as the SNR of the noisy dataset used for the
comparison was relatively high, further investigations on the
highest limit of data noise level for applying κ̂ to improve the
uniformity of local contrast and algorithm performance are
required.

For the XCAT phantom and patient dataset, we used sim-
ulated contrast enhanced CT images to provide anatomical
information. This could have wide-ranging implications to the
work-flow and economics of the procedure in clinical use.
The overall radiation dose received by the patient can also
be increased due to the additional contrast enhanced CT scan.
Moreover, as the contrast agent does not accumulate uniformly
in lesions in clinic, evaluations on the influence of the non-
uniformity in local regions of the anatomical image to the
proposed method are necessary. Since the application of the
method is not limited to PET studies with contrast enhanced
CT images, the anatomical information can be provided by
other anatomical images, such as magnetic resonance (MR)
images. In fact, for lesions involving density change, the at-
tenuation map can simply be used to provide the corresponding
anatomical information. The potential benefits and limitations
of applying the proposed strategy with different anatomical
resources should be assessed in future work.

VI. CONCLUSION

In this study, we demonstrated the use of a spatially-variant
penalty strength with a convex anatomical penalty function to
reduce the dependence of local perturbation on surrounding
activity and location. The proposed weighting scheme for the
penalization can be precomputed. Moreover, when using L-
BFGS-B-PC, the weights can be reused for constructing the
preconditioner such that the overall computational demand
remains unchanged. Based on the results for simulated data,
the effective convergence rate of M values is considerably
improved when the spatially-variant penalization is applied.
Moreover, the variation of the convergence rate for different

Fig. 11. κ(x), κ̃ and κ̂ values (left column, top to bottom images) for the
central coronal plane of the XCAT phantom with high liver uptake. Poisson
noise was considered and the total counts of the data was 250 M. Horizontal
and vertical profiles through the central point of each map are also provided
(right column, top and bottom profiles, respectively).

data noise and background levels is considerably reduced
when the weighting is taken into account. The idea is further
demonstrated using a real patient dataset with inserted pseudo
lesions in different slices. Consistent with the simulation
results, significant improvement in quantitative consistency
and algorithm performance is observed.

APPENDIX A
COMPARISON BETWEEN κ̃ & κ̂

The comparison between κ̃ (24) and κ̂ (25) was conducted
with a simulated dataset for the XCAT phantom with high
liver uptake in the presence of noise. The total counts of the
data was 250 M, close to that of the patient data used in this
study. The initial image was reconstructed by 1 full iteration
of OS-EM with 35 subsets. For each approximation of κ(x),
the central coronal plane and profiles along its central point
are provided in Fig. 11. Results were compared with those
from κ(x) calculated with the corresponding noiseless dataset.
Although the central coronal planes for both approximations
are visually identical, profiles for κ̃ and κ̂ are not the same.
The former show higher values than those for κ(x), while the
latter are nearly indistinguishable from those for κ(x). The
results support the feasibility of using κ̂, instead of κ̃, as an
alternative to κ(x).
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