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1Genomics, Bioinformatics and Evolution, Departament de Genètica i de Microbiologia, Universitat Aut�onoma de Barcelona, Cerdanyola del Vallès,

Spain
2Evo-Devo Helsinki Community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology,

University of Helsinki, Finland
3Department of Genetics, Evolution and Environment, University College London, United Kingdom
4Bioinformatics Research Center, Aarhus University, Denmark
5Centre de Recerca Matem�atica, Cerdanyola del Vallès, Spain

†These authors contributed equally to this work.

*Corresponding authors: E-mails: antonio.barbadilla@uab.cat; isaac.salazar@helsinki.fi.

Accepted: April 16, 2019

Abstract

Previous studies of the evolution of genes expressed at different life-cycle stages of Drosophila melanogaster have not been able to

disentangle adaptive from nonadaptive substitutions when using nonsynonymous sites. Here, we overcome this limitation by

combining whole-genome polymorphism data from D. melanogaster and divergence data between D. melanogaster and

Drosophila yakuba. For the set of genes expressed at different life-cycle stages of D. melanogaster, as reported in modENCODE,

we estimate the ratio of substitutions relative to polymorphism between nonsynonymous and synonymous sites (a) and then a is

discomposed into the ratio of adaptive (xa) and nonadaptive (xna) substitutions to synonymous substitutions.

We find that the genes expressed in mid- and late-embryonic development are the most conserved, whereas those expressed in

early development and postembryonic stages are the least conserved. Importantly, we found that low conservation in early devel-

opment is due to high rates of nonadaptive substitutions (high xna), whereas in postembryonic stages it is due, instead, to high rates

of adaptive substitutions (high xa).

By using estimates of different genomic features (codon bias, average intron length, exon number, recombination rate, among

others), we also find that genes expressed in mid- and late-embryonic development show the most complex architecture: they are

larger, have more exons, more transcripts, and longer introns. In addition, these genes are broadly expressed among all stages. We

suggest that all these genomic features are related to the conservation of mid- and late-embryonic development. Globally, our study

supports the hourglass pattern of conservation and adaptation over the life-cycle.
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Introduction

The relationship between phylogeny and ontogeny has been a

hotly debated topic in evolutionary biology since its origins

(Darwin 1872; Gould 1977; Raff 1996). Any change in an

organism’s morphology is first a change in the developmental

process leading to that morphology (Alberch 1980) and, thus,

morphological divergence between species in evolution implies

divergence in their development. It seems, thus, intuitive, that

there should be a relationship between divergence in species in

a phylogeny and different stages along development. Several

theories and hypotheses about this relationship have been pro-

posed over the years (Gould 1977; Irie and Kuratani 2014).

According to von Baer’s hypotheses or laws (1828), early de-

velopment stages are the most similar between species within a

phylogenetic group (e.g., vertebrates), whereas late develop-

ment stages are the most divergent.
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Multiple theoretical justifications for this “law” have been

proposed (Irie and Kuratani 2011). The most immediate is that

changes in early development can have consequences in later

development, because late developmental processes are caus-

ally dependent on the correct functioning of earlier develop-

mental processes, whereas late developmental processes do

not retroactively affect early developmental processes (Arthur

1977). As a result, early development should be more

constrained.

The advent of developmental genetics in mouse and

Drosophila and some observations in comparative embryol-

ogy (Sander 1983) led to a different hypothesis: the hourglass

hypothesis of embryonic development evolution (Medawar

1954; Slack et al. 1993; Duboule 1994). According to this

hypothesis, early and late development would be more diver-

gent between species than intermediate developmental

stages (middevelopment). There is no consensus about which

would be, exactly, these middevelopment conserved stages,

but many researchers suggest that it should be some short

time after gastrulation (Wilt and Hake 2004). The most con-

served stage within a phylum is called the phylotypic stage

(Sander 1983). There is no consensus either on what is actu-

ally conserved: embryonic morphology (von Baer 1828), de-

velopmental mechanisms (Raff 1996), or expression patterns

of specific genes (Slack et al. 1993; Duboule 1994).

There is an extensive literature about the processes that

may lead to an hourglass pattern. Some propose that many

whole-body scale interactions take place during middevelop-

ment, whereas during early and late development interactions

are at a much more restricted spatial scale (Raff 1996), both at

the level of mechanical interactions and molecular signaling

between tissues. Accordingly, changes in middevelopment

would be much more likely to affect the whole embryo and

changes at other stages would have much more spatially re-

stricted effects. Other authors argue that the hourglass pat-

tern arises from different selection pressures acting in early

and late development (Slack et al. 1993; Kalinka and

Tomancak 2012).

There is also a long ongoing discussion about whether the

hourglass hypothesis or the von Baer’s law (or something else)

fit the observed patterns of divergence among developmental

stages in phylogenies (Richardson et al. 1997; Poe and Wake

2004; Salazar-Ciudad 2010; Kalinka and Tomancak 2012; Hu

et al. 2017; Yang et al. 2018). In principle, the von Baer and

hourglass hypotheses could equally apply at the morpholog-

ical, gene expression, or genomic level and there are indeed

studies at these three levels. In here, we briefly explain their

main conclusions to clarify why the questions, approaches,

and results in this article significantly add to the understanding

of the relationship between phylogeny and development. We

focus, however, on studies combining the transcriptomic and

genomic levels.

Many studies measure conservation at the DNA sequence

level for genes expressed at different developmental stages to

explore whether some stages are indeed more conserved

than others. The dN/dS ratio, also known as Ka/Ks or x (x
from now on), is widely used as a proxy for conservation at

the sequence level (Yang and Nielsen 1998; Hurst 2002). x
quantifies the level of constraint by comparing the rate of

nonsynonymous substitutions per nonsynonymous site (dN),

which are presumably under selection, to the rate of synon-

ymous substitutions per synonymous site (dS), which are pre-

sumably neutral. Departures of neutrality are detected when

x is different of 1. Davis et al. (2005) used this statistic on

4,028 genes that were orthologous between Drosophila mel-

anogaster and Drosophila pseudoobscura. By combining

these analyses with D. melanogaster microarray expression

data through development, they found that genes with the

highest rates of nonsynonymous substitutions were expressed

at low levels in late embryonic development and at high levels

in the larva, pupa, and adult. The genes with the lowest rates

of nonsynonymous substitution (the most conserved genes)

were expressed at high levels in late embryonic development

and at low levels before and after late embryonic develop-

ment. This suggests, according to these authors, an hourglass

pattern where embryonic stages spanning from 12 to 22 h are

highly conserved between D. melanogaster and Drosophila

pseudoobscura.

In another study by Kalinka et al. (2010), the number of

nonsynonymous substitutions, dN, was calculated for 3,019

genes in six different Drosophila species and their expression

was measured by microarrays in each species in eight 2-

h intervals during development. Consistently with the hour-

glass model, the study found that middevelopment, around

the 10-h stage, is the period in which gene expression is the

most conserved among the six species. The set of genes

expressed in those stages has also the lowest average dN

values across the six species. A similar study by Mensch

et al. (2013) estimated x for more than 2,000 genes across

six different Drosophila species for three categories of genes:

maternal genes, genes expressed in early development, and

genes expressed in late development. Maternal genes (whose

mRNA is left by the mother in the egg) and late embryonic

genes show higher x than early expressed genes. In contrast,

another D. melanogaster study by Artieri et al. (2009) found

that genes expressed in the adult have higher x than genes

expressed in the pupa and those of the pupa have higher x
that those expressed in the embryo (for 7,180 analyzed

genes), thus favoring von Baer’s law. In another study

(Drost et al. 2015), the x of the genes expressed in each stage

are weighted by their expression to provide a stage-

conservation measure. This measure supports the hourglass

hypothesis in the zebrafish, D. melanogaster, and in the plant

Arabidopsis thaliana. Similar studies exist for other species of

animals (Roux and Robinson-Rechavi 2008; Piasecka et al.

2013; Liu and Robinson-Rechavi 2018b). The latter of such

studies found that the genes expressed in middevelopment

tend to be expressed in more developmental stages and that,
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thus, they can be seen as more pleiotropic. This higher degree

of pleiotropy would then explain the higher degree of con-

servation in middevelopment, at least in Caenorhabditis ele-

gans, D. melanogaster, Danio rerio, the mouse Mus musculus

(Liu and Robinson-Rechavi 2018b), and in other eight species

of chordates (Hu et al. 2017).

A limitation of the aforementioned studies is that x is not

able to disentangle adaptive from nonadaptive substitutions.

In fact, nonsynonymous substitutions can turn out to be adap-

tive, neutral, or slightly deleterious (strongly deleterious muta-

tions are purged from the population and so they do not

contribute to differences between species). In other words,

a high x can be the result of relaxed selection (low conserva-

tion), a high adaptive substitution rate, or a combination of

both. Because adaptive substitutions tend to be fixed quickly

(McDonald and Kreitman 1991), they will rarely be detected

as polymorphic variants but only as divergent ones between

species. Thus, adaptive substitutions can be inferred when

there is an excess of nonsynonymous substitutions between

species relative to nonsynonymous substitutions within a pop-

ulation, this is an excess of divergence in respect to polymor-

phism. Thus, in the McDonald and Kreitman test (MKT)

(McDonald and Kreitman 1991), the divergence ratio (Dn/

Ds) is divided by the polymorphism ratio (Pn/Ps) and adaptive

substitutions are inferred if the ratio is larger than 1 [(Dn/Ds)/

(Pn/Ps) > 1]. From that MKT, the proportion of adaptive to

nonadaptive substitutions that have been fixed, a, can be

estimated (Smith and Eyre-Walker 2002). The divergence

and polymorphism in synonymous sites, which are assumed

to be neutral, are used to estimate the underlying mutation

rate and the expected polymorphism and divergence under a

neutral scenario.

To try to circumvent known biases in the MKT, several

modifications have been proposed over the years

(Bustamante et al. 2002, 2005; Smith and Eyre-Walker

2002; Sawyer et al. 2003; Bierne and Eyre-Walker 2004;

Mackay et al. 2012; Messer and Petrov 2013). Under station-

ary population size, slightly deleterious mutations lead to an

underestimation of a because they tend to contribute more to

polymorphism than to divergence (Eyre-Walker 2002).

Because slightly deleterious substitutions tend to segregate

at low frequency, its effect can be partially controlled by re-

moving low-frequency polymorphisms from the analysis (Fay

et al. 2001). However, Charlesworth and Eyre-Walker (2008)

showed that even removing low-frequency variants, a esti-

mates are always downwardly biased. Mackay et al. (2012)

proposed an extension to the MKT, which we will call here

extended MKT (eMKT), in which the count of segregating

sites in nonsynonymous sites is partitioned into the

number of neutral variants and the number of weakly dele-

terious variants. This increases the power for detecting

selection and allows the independent estimation of both

adaptive and weakly deleterious selection (see Materials and

Methods).

Other methods correcting for the potential biases of the

MKT estimates are based on the estimation of the distribution

of fitness effects (DFE of mutations from DNA sequence poly-

morphism data) at functional sites (Bustamante et al. 2002,

2005; Eyre-Walker 2006; Eyre-Walker and Keightley 2007,

2009; Keightley and Eyre-Walker 2007; Boyko et al. 2008).

One of the most popular DFE-based methods is the DFE-alpha

(Eyre-Walker and Keightley 2009). The DFE-alpha method

corrects for the segregation of slightly deleterious substitu-

tions by first estimating the DFE at selected sites by a gamma

distribution and then calculating how many nonadaptive sub-

stitutions are expected to become fixed given the inferred DFE

from polymorphism data. Additionally, this method attempts

to correct for possible effects of demography. Although this

method is relatively recent, it has been used to estimate the

rate of adaptive nonsynonymous substitutions in a number of

studies (Strasburg et al. 2011; Carneiro et al. 2012;

Kousathanas et al. 2014; �Avila et al. 2015; Santpere et al.

2015; Cagan et al. 2016; Galtier 2016; James et al. 2016;

Murray et al. 2017; Steige et al. 2017).

There is no reason to expect that the patterns of adaptation

and conservation in the genes expressed over developmental

stages should be directly related to each other. It could be, for

example, that middevelopment would be the most conserved

stage but that it would still accumulate more adaptive non-

synonymous substitutions than other stages of development

because nonsynonymous substitutions in the latter would be

mostly neutral. We expect, however, that most adaptive sub-

stitutions occur in the adult, the larva, or the late stages of

embryonic or pupal development. The reason for that would

be that the larva and the adult have simply more functional

aspects of the phenotype to select from (more cell types,

more tissues, more organs), than developmental stages where

most of the phenotype is still in the making. In addition, be-

cause Drosophila is a holometabolous genus, the larva and

the adult effectively live in different habitats and, thus, one

may exhibit larger rates of adaptive nonsynonymous substitu-

tions than the other.

In this article, we study 1) whether D. melanogaster devel-

opment follows the hourglass model or the von Baer’s law, 2)

whether there are differences not just in conservation but also

in the rates of adaptive substitutions between stages, and 3)

how these rates are related to specific genomic features such

as gene size, codon usage bias, average intron length, inter-

genic distance, Guanine–Cytosine (GC) content, number of

protein–protein interactions (PPI), number of exons and tran-

scripts, expression bias, or recombination rates.

Question (2) has been recently approached through a

completely different method (Liu and Robinson-Rechavi

2018a): the branch-site likelihood test (Zhang et al. 2005).

This test is an extension of the x ratio (Yang and Nielsen

1998; Hurst 2002), for the detection of positive selection for

at least some codons in a phylogenetic branch of interest.

Using this method, Liu and Robinson-Rechavi study three
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phylogenetic branches, the Clupeocephala branch, the

Murinae branch, and the Melanogaster group branch for fo-

cal species Danio rerio, Mus musculus, and D. melanogaster,

respectively. The test contrasts two hypotheses: no positive

selection occurred (H0) in the phylogenetic branch of interest

versus at least some codons experienced positive selection

(H1). One major advantage of the test is that it allows positive

selection to vary both among codon sites and among phylo-

genetic branches. In our study, we use tests (MKT, DFE-alpha)

that use both polymorphic and divergence data. Polymorphic

data allow taking into account purifying selection in the di-

vergent x ratio, strongly increasing the power of detecting

positive selection. These tests covers a shorter time scale, from

the divergence of the outgroup species to the present, low-

ering the contingencies associated with longer evolutionary

processes in the branch-site likelihood test. These include, for

example, the poor sequence alignments due to increased di-

vergence, which in turn can result in false positives.

In our study, we used the expression data in the

modENCODE project (Graveley et al. 2011) from FlyBase.

This is the most complete gene expression database through

D. melanogaster life-cycle (it includes 17,788 genes over most

developmental and life-cycle stages). We used divergence and

polymorphism data for the genes expressed in each develop-

mental stage to estimate four selection statistics a, x, xa, and

xna. xa is x� a, or the rate of adaptive substitutions per

nonsynonymous site divided by the synonymous substitution

rate (dS) (Gossmann et al. 2012), whereas xna is x�(1 � a),

the rate of nonadaptive substitutions divided by dS (Galtier

2016). In other words, xa is a measure of the rate of adaptive

nonsynonymous substitutions, xna is the same measure for

nonadaptive substitutions. Thus, xa informs about the overall

rate of adaptive substitutions occurred in respect to the neu-

tral mutation rate, the overall level of adaptation, whereas a
simply measures how much common are adaptive substitu-

tions in respect to nonadaptive ones (but does not tell if there

has been many of them or not, as xa does). Polymorphism

data come from the Drosophila Genetic Reference Panel

(DGRP) project (Mackay et al. 2012) and divergence comes

from comparing the genomes of D. melanogaster and

Drosophila yakuba. Choosing D. yakuba as outgroup has

been reported to provide a more reliable estimation of the

selection statistics than the closest Drosophila simulans

(Keightley and Eyre-Walker 2012) (see Materials and

Methods).

Materials and Methods

Gene Expression

Gene Expression through the Developmental and Life-
Cycle Stages

Gene expression data of 17,875 genes comes from RNA-seq

experiments in the modENCODE project (Graveley et al.

2011). The data set contains the expression data for 30 stages

of the whole life-cycle of D. melanogaster, including 12 em-

bryonic samples collected at 2-h intervals for 24 h, six larval, six

pupal, and three sexed adult stages at 1, 5, and 30 days after

eclosion (Graveley et al. 2011). These data were downloaded

from FlyBase (release 6.06, July 2015, file: “gene

_rpkm_report_fb_2015_03,” last accessed December

2015). The downloaded file reports gene expression values

as reads per kilobase per million reads (RPKM). RPKM values

are provided only for exonic regions of the gene (excluding

segments that overlap with other genes), except for genes

derived from dicistronic/polycistronic transcripts, where all

exon regions were used for the estimation of RPKM expres-

sion. See Gelbart and Emmert (2013) for details. All RPKM

values were log2-transformed.

We tried different criteria to consider whether a gene is

expressed in a stage or not. The following five criteria were

applied: A “low stringent criterion,” in which a gene is con-

sidered expressed in a stage if its RPKM is larger than 0 in that

stage. This criterion is used in many other publications (e.g.,

Hebenstreit et al. 2011; Wagner et al. 2013; Guill�en et al.

2019). A “low stringent criterion with 2-fold differential

expression,” in which a gene is considered expressed in a

stage if its RPKM is larger than 0 in that stage and if, in ad-

dition, its maximal gene expression (over all the stages) is at

least twice that of its minimal gene expression (also over all

the stages). A “low stringent criterion with a 4-fold differen-

tial expression” that is as the 2-fold criterion but with a 4-fold

differential expression criterion. A “medium stringent

criterion,” in which a gene is considered expressed if its

RPKM is equal or higher than 2 and a “high stringent

criterion” in which a gene is considered expressed if its

RPKM is equal or higher than 10. This criterion is also used

as a stringent criterion in RNA-seq analysis by other authors

(e.g., Dezso et al. 2008). Supplementary figure S1,

Supplementary Material online, shows the number of genes

for each criterion and stage. As a result of applying each of

these five criteria on the same modENCODE RNA-seq data,

we obtain five different lists of genes for each developmental

and life-cycle stages.

Gene Expression Profile Clustering

To identify shared temporal expression patterns among the

genes of the modENCODE RNA-seq experiments, we applied

a soft clustering method to the log2-transformed expression

values. We used a fuzzy c-means algorithm with the mfuzz()

function of the R package Mfuzz (Futschik 2015). The Mfuzz

soft clustering algorithm uses Euclidean distance as distance

statistic and requires two main parameters (c ¼ number of

clusters and m ¼ fuzzification parameter). For the clustering,

we z-standardized the log2-transformed expression values, so

that the average expression value for each gene is 0 and the

standard deviation is 1. The fuzzy soft clustering method is
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different from hard clustering (like hierarchical clustering), in

that genes are not uniquely assigned to one cluster. Instead of

this, a gene i has gradual degrees of membership lij to a

cluster j. High membership values indicates a high correlation

between gene i with the cluster centroid cj (Futschik 2015).

The mfuzz() function uses the fuzzy c-means algorithm, based

on minimization of a weighted square error function with

which the clusters centroids cj result from the weighted sum

of all clusters members. The membership value (lij) indicates

how well the gene i is represented by cluster j. Soft clustering

is especially useful when clusters are not well defined, as in

gene expression time-course data (Futschik and Carlisle

2005). We discarded genes that were constitutively expressed

in all stages. Genes having a cluster membership lower than

0.8 were excluded. This resulted in 3,819 genes in eight clus-

ters (one of the clusters was discarded as it was mostly noise)

for the embryonic development out of the 5,514 genes that

are expressed during the embryo development under the low

stringent criteria, and 8,167 genes in nine clusters for the life-

cycle of the 9,241 genes expressed in the whole life-cycle

(discarding females). The values of c and m were optimized

using the procedure described in Futschik and Carlisle (2005)

and Futschik (2015), resulting in c¼ 9 for both data sets and

m¼ 1.23 and 1.08 for the embryonic development and life-

cycle, respectively. Supplementary tables S1 and S2,

Supplementary Material online, show the number of genes

expressed in each cluster for the two analyzes (for the embryo

development and the whole life-cycle, respectively).

Testis and Immune Genes

For determining testis- and immune-related genes, we imple-

mented the developed pipeline in Castellano et al. (2016). We

downloaded the Gene Ontology (GO) terms for our gene set

through the R package biomaRt (Durinck et al. 2005) using

the D. melanogaster ENSEMBL database. When a gene was

associated to any term related to the testis or the immune

system (see supplementary table S3, Supplementary Material

online, for the related GO terms) we removed it from the data

set (a total of 171 out of 2,869 genes were removed). Those

171 exhibit higher rates of adaptation as it would be expected

(permutation test, xa, P¼ 0.028; x, P< 0.001) when com-

pared against our whole data set (6,690 genes).

Sex-Biased Genes and Sex-Linked Genes

To control for the effect of genes with a sex-biased expres-

sion, we estimated the gene sex-bias ratio with the

expression:

sex bias ratio ¼ log2

RPKM$

RPKM#

� �
:

And we discarded genes with a sex-biased above a >j2j
threshold in any of the three sampled adult points.

Additionally, we also removed genes that were exclusively

expressed in one sex but no in the other. See supplementary

table S4, Supplementary Material online, for the genes

analyzed.

To control for the effect of the sex chromosome, we dis-

carded X-linked genes from the analyses. See supplementary

table S5, Supplementary Material online, for the genes

analyzed.

Maternal, Maternal–Zygotic, and Zygotic Genes

A list of maternal, maternal–zygotic, and zygotic genes was

obtained from Thomsen et al. (2010) data using egg and early

development microarray analyses. Maternal genes are those

genes whose mRNA is laid in the egg and are never tran-

scribed by the embryo, maternal–zygotic those genes whose

mRNA is laid in the egg by the mother but that are also tran-

scribed by the embryo and zygotic genes are genes whose

mRNA is not laid in the egg by the mother. The maternal gene

list was obtained joining the original Thomsen’s categories for

not transcribed genes: “maternal decay,” “mixed decay,”

“stable,” and “zygotic decay” categories (4,942 genes).

The maternal–zygotic gene list was created by joining the

categories of genes that are both present in the egg and

transcribed later (1,332 genes analyzed): “maternal decay þ
transcription” and “stable transcription” categories. Finally,

the zygotic gene list equals the “purely zygotic” category

(850 genes). In the end, we get three lists of genes, one for

the maternal genes, one for the maternal–zygotic, and one

for the zygotic genes. See supplementary table S6,

Supplementary Material online, for the genes analyzed.

Population Genomics

Selection Statistics

We used three different tests to estimate the selection statis-

tics on the lists of genes expressed in each life-cycle stage:

MKT standard (McDonald and Kreitman 1991), eMKT

(Mackay et al. 2012), and DFE-alpha (Eyre-Walker and

Keightley 2009). For the gene expression profiles and for ma-

ternal, maternal–zygotic, and zygotic gene categories, we

used only the DFE-alpha method.

These three methods rely on polymorphism and divergence

data to estimate adaptation. For obtaining this data, coding

exon annotations from D. melanogaster were retrieved from

FlyBase (release 5.50, www.flybase.org , last accessed March

2013). Genes 1:1 orthologs across D. yakuba–D. mela-

nogaster were obtained from FlyBase (www.flybase.org, last

accessed March 2013). We used D. yakuba as outgroup spe-

cies because, aside from its high coverage (9.1�, Clark et al.

2007), the time elapsed because its divergence from D. mel-

anogaster (7.4 Ma, Tamura et al. 2004) is more suitable for

estimating adaptation (Keightley and Eyre-Walker 2012). In

closely related species (as is the case of D. melanogaster and
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D. simulans, which diverged 4.3 Ma [Cutter 2008]), the esti-

mated rate of adaptive substitution can be biased due to 1) an

erroneous attribution of polymorphism to divergence, 2) an-

cestral polymorphism contributing to divergence, and 3) dif-

ferences in the rate of fixation of neutral and adaptive

mutations (Keightley and Eyre-Walker 2012). The authors

(Keightley and Eyre-Walker 2012) find that the adaptive

rate estimated from closely related species (as in the case of

D. melanogaster and D. simulans) may be underestimated by

10% or more. Choosing D. yakuba as outgroup gives a more

reliable estimation of the adaptive rate than the closest D.

simulans (Keightley and Eyre-Walker 2012).

The population genomic data comes from 168 inbred lines

of D. melanogaster sequenced in the Freeze 1.0 of the DGRP

project (Mackay et al. 2012). The DGRP population was cre-

ated collecting gravid females from a single population of

Raleigh, NC, followed by the full-sibling inbreeding approach

during 20 generations to obtain full homozygous individuals.

After this, the residual heterozygosis in the samples is

expected to be 1.4% (inbreeding coefficient F¼ 0.986). The

expected 1.4% of residual heterozygosis was true for 90% of

the sequenced chromosome lines. DGRP lines showing high

values of residual heterozygosity (>9%) were observed to be

associated with large polymorphic inversions and, they were

not included in our analyses (Huang et al. 2014). The inbreed-

ing approach can alter the frequency spectrum of the strongly

deleterious recessive mutations. However, alternative resour-

ces such as the Drosophila Population Genomics Project

(DPGP) (Langley et al. 2012) would encounter the same prob-

lem. In fact, previous works comparing adaptation and DFE

estimates between DGRP and DPGP data sets have shown no

differences between those data sets (Castellano et al. 2016,

2018). And given that the DPGP sample size is smaller than

the DGRP sample size, it is likely that these mutations contrib-

ute very marginally to the estimations of polymorphisms, DFE,

and adaptation in both databases.

A multiple genome alignment between the DGRP isogenic

lines (Mackay et al. 2012) and the D. yakuba genome using

the BDGP 5 coordinates (Berkeley Drosophila Genome Project

5) was obtained from the publicly available database at http://

popdrowser.uab.cat (R�amia et al. 2012) (last accessed May

2010). For each gene, we took all nonoverlapping coding

exons, independently of their inclusion levels. When two

exons overlapped, the largest was chosen for subsequent

analyses. Only exons without frameshifts, gaps, or early stop

codons were retained. In this way, we tried to avoid potential

alignment errors that would inflate our mutation rate esti-

mates and create an artifactual positive correlation between

them. Exonic sequences were trimmed in order to contain

only full codons. We calculated the number of substitutions

and the folded site frequency spectrum (SFS, Ronen et al.

2013) of the minor allele frequency (MAF) for short introns,

0-fold and 4-fold degenerate sites, using an ad hoc Perl script.

The SFS was folded to avoid difficulties with misidentification

of the ancestral state (Hernandez et al. 2007) and because it

performs well for inferring deleterious DFE (Eyre-Walker and

Keightley 2007; Boyko et al. 2008; Tataru et al. 2017). We

used a custom-made Perl script to estimate the number of

short-intron substitutions and to compute the folded SFS.

Jukes and Cantor correction for multiple hits was applied

(Jukes and Cantor 1969). For computational reasons, one of

the programs used for estimating adaptation (DFE-alpha,

Eyre-Walker and Keightley 2009, see below) needs that all

sites are sampled in the same number of individuals (Eyre-

Walker and Keightley 2009). Hence, the original data of

168 lines set have been reduced to 128 isogenic lines by ran-

domly sampling the polymorphisms at each site without re-

placement. Finally, residual heterozygous sites and sites with

no quality value were excluded from the analysis.

MKT, Standard McDonald and Kreitman Test

The MKT (McDonald and Kreitman, 1991) was developed to

be applied to protein-coding sequences, combining both di-

vergent (D) and polymorphic (P) sites, and categorizing muta-

tions as synonymous (PS, DS) and nonsynonymous (PN, DN). If

all mutations are either strongly deleterious or neutral, then

DN/DS is expected to roughly equal PN/PS. In contrast, adaptive

mutations rapidly reach fixation and thus contribute relatively

more to divergence than to polymorphism when compared

with neutral mutations, and then DN/DS > PN/PS. Assuming

that adaptive mutations contribute little to polymorphism but

substantially to divergence, the proportion of adaptive non-

synonymous substitutions than have been fixed by selection

can be inferred as a¼ 1 � (PN/PS)/(DN/DS) (Smith and Eyre-

Walker 2002). The significance of effect can be easily quan-

tified using a simple 2� 2 contingency table (see table 1).

eMKT or Extended MKT

The null hypothesis of neutrality is rejected in a MKT not only

when DN/DS > PN/PS inferring adaptation but also when PN/PS

> DN/DS. In this later case, there is an excess of polymorphism

relative to divergence for the nonsynonymous class N, due to

1) slightly deleterious variants segregating at low frequency in

the population, which contribute to polymorphism but not to

divergence or 2) relaxation of selection where sites previously

under strong or weak purifying selection have become neu-

tral, causing an increased level of polymorphism relative to

divergence.

Adaptive mutations and weakly deleterious selection act in

opposite directions on the MKT, so a will be underestimated

when the two selection regimes occur. Because slightly dele-

terious mutations tend to segregate at lower frequencies than

do neutral mutations, they can be partially controlled for by

removing low-frequency polymorphisms from the analysis,

generally the 5% (Fay et al. 2001). However, this method is

still expected to lead to biased estimates (Charlesworth and

Eyre-Walker 2008). To take adaptive and slightly deleterious
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mutation into account, PN, the count of segregating sites in

the nonsynonymous class, should be separated into the num-

ber of neutral variants and the number of weakly deleterious

variants, PN ¼ PN neutral þ PN weakly del. If both numbers are

estimated, adaptive and weakly deleterious selection can be

evaluated independently. Consider the following pair of 2� 2

contingency tables (table 1).

The table on the left represents the standard MKT table

with the theoretical counts of segregating sites and divergent

sites for each cell. The table on the right contains the count of

PN and PS for two-frequency categories. Mackay et al. (2012)

showed using DGRP data that the ideal threshold to separate

neutral and weakly deleterious mutations is a 5%, and that

similar results were obtained using a 10% threshold, suggest-

ing that most of the weakly deleterious variants are below a

5%, whereas the mutations above can be considered as

nearly neutral variants. The estimate of the fraction of sites

segregating neutrally within the MAF< 5% is f neutral MAF<5%

¼ PS MAF<5%/PS. The expected number of segregating sites in

the nonsynonymous class which are neutral within the

MAF< 5% is PN neutral MAF<5% ¼ PN � fneutral MAF<5%. The

expected number of neutral segregating sites in the nonsy-

nonymous class is PN neutral ¼ PN neutral MAF<5% þ PN MAF�5%.

To estimate a from the standard MKT table correcting by

the segregation of weakly deleterious variants, we have to

substitute the PN by the expected number of neutral segre-

gating sites, PN neutral. The correct estimate of a is then a¼ 1�
(PN neutral/Ps)/(DN/DS).

DFE-alpha

DFE-alpha (Eyre-Walker and Keightley 2009), an extension of

the MKT, also corrects for the segregation of slightly delete-

rious alleles, providing a more accurate estimation than the

MKT and other methods that do not take polymorphism data

into account. Briefly, this software uses a maximum-likelihood

method based on polymorphism data to infer the DFE of new

mutations. It assumes two classes of sites in the genome:

neutral sites (synonymous) and selected sites (nonsynony-

mous) and contrasts the SFS at these two classes. As a neutral

reference, we used positions 8–30 of short introns (�65 bp)

following Halligan and Keightley (2006) (and 4-fold degener-

ated sites for some cross-validating analysis). As selected sites,

we used 0-fold degenerate sites. Provided the SFS at both

neutral and selected sites together with divergence data,

the DFE-alpha method allows calculating of the proportion

of fixed substitutions that are adaptive (a) and the rate of

adaptive substitutions relative to the neutral rate (xa, esti-

mated as x� a, Gossmann et al. 2012). Furthermore, in

our analysis, we include another statistic, xna (estimated as

x � xa), which represents the proportion of nonadaptive

substitutions (slightly deleterious and neutral) relative to the

neutral rate (Galtier 2016). Thus, we are able to decompose

the classical x ratio, into these two statistics: xa and xna, and

differentiate whether high rates of x are due to adaptive or

nonadaptive nonsynonymous substitutions. We estimated

natural selection on coding regions under a two-epoch de-

mographic model.

Finally, to estimate these selection statistics with DFE-alpha,

it is necessary to concatenate data from several genes because

estimates from a single gene cannot be obtained due to the

lack of segregating (or divergent) sites for some site classes.

Thus, we calculated the selection statistics for the genes

expressed in each stage and calculated the confidence inter-

vals by randomly resampling the genes expressed in each

stage, cluster or gene category (bootstrapping) 100 times

with replacement (see Bootstrapping section).

Genomic Features

For the genes in each list and gene expression profile, we

measured a number of genomic features. Coding exons

and short-intron annotations from D. melanogaster were

obtained from FlyBase (release 5.50, www.flybase.org, last

accessed March 2013).

Average intron length. It is the average distance, in base

pairs, between the successive exons of a gene. The effect of

average intron length and total intron length into x has been

reported to be very similar (Marais et al. 2005).

Intergenic distance. It is the average distance, in base pairs,

between the two closest genes to a given gene.

Gene size. Length of the coding DNA of a gene sequence

(CDS).

Number of exons and transcripts. Number of different

exons and transcripts of a gene, respectively. For the latter,

we count all the transcripts reported for a gene in Fly Base.

This is not the same as the number of different transcripts

expressed in a stage.

Codon bias. Measured as the frequency of optimal codons,

Fop. We used the software CodonW for the estimation of Fop

(Peden 1999, www.codonw.sourceforge.net, last accessed

June 2012). The index is estimated as the ratio of optimal

Table 1

Standard MKT and eMKT Tables

Standard MKT Table Number of Segregating Sites by MAF Category

Site Class Polymorphism Divergence Site Class MAF < 5% MAF � 5%

S (neutral class) PS DS S (neutral class) PS MAF < 5% PS MAF � 5%

N (selected class) PN DN N (selected class) PN MAF < 5% PN MAF � 5%
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codons to synonymous codons. Values range between 0 (no

optimal codons are used) and 1 (only optimal codons are

used).

Expression bias. Proportion of development stages in which

a gene is expressed according to modENCODE. Following

Yanai et al. (2005) and Larracuente et al. (2008), we esti-

mated the expression bias, s, as (eq. 1):

s ¼
Pn

j¼1 1� log Sjð Þ
log Smaxð Þ

n� 1
; (1)

where log(S) is the logarithm of the RPKM and n is the num-

ber of developmental stages. s ranges from 0 to 1. Values

close to 0 indicate broadly expressed genes and values close

to 1 indicate genes with highly biased expression. s¼ 1 means

that expression is only detectable in a single sample.

Recombination rates. Recombination rates estimates at

100-kb nonoverlapping windows and microscopically ob-

served crossing-over (CD) events were obtained from

Comeron et al. (2012).

CG content. We used the software CodonW (Peden 1999,

www.codonw.sourceforge.net, last accessed June 2012) to

calculate the GC content of each protein-coding gene.

PPI. We downloaded PPIs for 10,631 protein-coding genes

available at the DroiD database, version DroID_v2018_08

(Murali et al. 2011, http://www.droidb.org/Downloads.jsp;

last accessed January 2019). We integrated the information

of six data sets available in DroiD: PPI Curagen yeast two-

hybrid, DPIM co-AP/MS, Finley Lab yeast two-hybrid, FlyBase

curated, from other databases (BioGRID, IntAct, MINT, and

BIND) and Hybrigenics yeast two-hybrid and counted the total

unique protein interactions of each protein-coding gene. The

number of genes included in FlyBase curated database was

too small to base our analysis only on it.

Statistical Analysis

Bootstrapping

As explained before, to estimate the rate of adaptive evolu-

tion with the DFE-alpha method (Eyre-Walker and Keightley

2009), it is necessary to pool several genes together. The sam-

pling distribution of parameters estimated by the DFE-alpha

method at each stage, cluster or gene category was estimated

by randomly sampling 100 times with replacement the genes

at each temporal stage (or cluster or category). This concate-

nation was not necessary for the MKT and eMKT methods

and, in fact, the same results are obtained with and without

concatenation.

Permutation Test

To assess whether stages, gene clusters, or gene categories

undergo differential selection compared with the genes not

expressed in such stage, gene cluster or gene category, a

permutation test was applied. For obtaining a null distribution

for the differences between gene groups, we shuffled with-

out replacement 1,000 times the complete list of genes by

means of ad hoc bash and Perl scripts. We estimated the rates

of adaptive nonsynonymous substitutions and nonadaptive

synonymous substitutions in each randomized list, obtaining

an expected null distribution. The two-tailed P value was

obtained by counting the number of replicates below and

above the observed difference divided by the total number

of replicates (i.e., 1,000), thus obtaining a two-tail P value.

Multiple comparisons for each analysis were corrected by the

false recovery rate approach.

See in the following supplementary table S7,

Supplementary Material online, a summary of the permuta-

tion analysis performed in this study and supplementary figure

S2, Supplementary Material online, for a graphical summary

of the permutation procedure.

Spearman’s Rank Correlations

Correlations between temporal profiles were carried

out bySpearman’s rank correlations, calculated by using the

cor.test() function of the R program (R Core Team 2015).

Spearman’s Partial Correlations

In order to test for the joint effect of ten genomic features on

the selective statistics, we performed three independent mul-

tiple regression linear models, one for each selection statistic

(x, xa, and xna).

The selection statistics were considered response variables

in each model and the ten genomic features as main effects

(no interaction terms were included). Some of the ten geno-

mic features showed significant pairwise correlations (supple-

mentary table S16, Supplementary Material online) as

determined using Spearman’s partial correlations (Kim

2015). The analysis using multiple regression models were

intended to disentangle their effects on the selection statistics.

To assess the relative importance of each analyzed genomic

feature in each linear regression model, we used the pmvd

metric introduced by Feldman (2005) included in the R pack-

age relaimpo (Grömping 2006), that averages the R2 of each

regressor over all possible orderings using weighted averages.

Results

Overall Temporal Pattern of Adaptation and Conservation

We calculated four selection statistics (three based on poly-

morphism and divergence data xa, xna, and a and one based

on divergence data alone, x) for the set of genes expressed in

each developmental and life-cycle stage.

We estimated these statistics using three different meth-

ods, DFE-alpha (Eyre-Walker and Keightley 2009) (fig. 1), the

standard MKT (McDonald and Kreitman 1991)
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(supplementary fig. S3, Supplementary Material online), and

the eMKT (Mackay et al. 2012) (supplementary fig. S3,

Supplementary Material online), and using different criteria

to consider whether a gene is expressed in a stage or not

(supplementary figs. S4–S6, Supplementary Material online).

In these calculations, the mutation rate was estimated using

short introns (fig. 1) and 4-fold degenerated sites (supplemen-

tary fig. S7, Supplementary Material online). Finally, we also

explored whether the number of genes in a stage has an

effect on the values of the estimated metrics. For that, we

repeated the analyses by sampling 350 genes per stage (with

replacement) 100 times and calculating the mean values for

the selection metrics (supplementary fig. S8, Supplementary

Material online). For each combination of methods and ex-

pression criteria, we obtain very similar patterns of change of

xa, xna, x, and a over stages (what we call the temporal

pattern of these selection statistics).

Figure 1 shows the temporal pattern found when using the

DFE-alpha method, short-intron sites as a proxy for the mu-

tation rate, and considering all the genes with nonzero ex-

pression (excluding the 6,655 genes that were constitutively

expressed throughout all stages, see Materials and Methods

and supplementary table S8, Supplementary Material online,

for the genes analyzed). A total of 2,869 genes are considered

with this criterion. The rate of adaptive (xa) and, especially,

nonadaptive (xna) nonsynonymous substitutions on the set of

genes expressed in each developmental stage (fig. 1) was the

highest in the first embryonic stage. Both rates gradually de-

crease until the 10-h embryo stage. The next developmental

stages (across mid- and late-embryonic development) show,

on the contrary, the lowest rates of fixation of substitutions

(either adaptive or not). At the third larval stage (L3), the rates

of adaptive substitution (xa), and to a lesser extent of non-

adaptive substitution (x), increase and remain high through

all the pupal stages. Finally, in the male adult stage, xa and x
values are very similar to those of the pupa, whereas female

adults exhibit lower values.

Overall, all the selection statistics show a similar tem-

poral trend except for nonadaptive substitutions being

seemingly more abundant in the genes expressed in the

very early stages as compared with later stages (a differ-

ence we further analyze in a coming section). To analyze

whether these differences between stages were statisti-

cally significant, we merged stages into eight develop-

mental periods: embryo 0–2 h, embryo 2–6 h, embryo

6–24 h, larva 1–3, larva 4–6, pupa, female, and male

adults (see supplementary table S9, Supplementary

Material online, for the genes analyzed). We calculated

by a permutation test the chances that the genes

expressed in a period undergo differential selection com-

pared with the genes not expressed in that period. First,

we calculated the difference in selection statistics be-

tween the two groups, that is, the genes of a period

and the genes not expressed in that period. To obtain

the null distribution, we shuffled without replacement

1,000 times the complete list of genes expressed during

the whole life-cycle (2,869 genes) and randomly assigned

the genes into one of the two groups. We estimated the

selection statistics in each randomized list, obtaining an

expected null distribution than we then compared with

the observed difference. Multiple comparisons were cor-

rected by the false recovery rate approach. This analysis

shows that mid- and late-embryonic development, the

beginning of the larva and genes expressed in female

adults show significantly low rates of nonsynonymous

substitutions (supplementary fig. S9, Supplementary

Material online). The relatively high rates of substitutions

in early development and in the larva, pupa, and males are

not significant in this analysis (P values can be consulted

on supplementary table S10, Supplementary Material

online).

However, if the same permutation test is done using all

genes (expressed in all stages or not) the test shows that, in

addition, early development, late larva, pupa, and male adult

exhibit significantly high xa, x, and a values (supplementary

fig. S10, Supplementary Material online). See the P values of

all comparisons in supplementary table S11, Supplementary

Material online.

Immune system and testis-related genes have been

reported to be under faster rates of adaptation than other

genes (Pröschel et al. 2006; Obbard et al. 2009). Immune

system genes are expressed mostly in adults, and testis genes

are expressed only in adult males. It could then be that the

low rates of conservation in the genes expressed in the male

adult stages would be explained by the low rates of conser-

vation of immune- and testis-related genes. To explore this

possibility, we repeated our analysis excluding immune sys-

tem and testis genes. The exclusion of these genes does not

modify our results much (supplementary fig. S11,

Supplementary Material online, see supplementary table

S3, Supplementary Material online, for the GO terms ex-

cluded), so the high rates of substitution we observed in

adult males are not exclusively due to these immune- and

testis-related genes. We additionally controlled for the effect

of genes with a sex-biased expression (see Materials and

Methods) by removing genes with a sex-biased ratio above

a ratio of 2 (supplementary fig. S12, Supplementary Material

online). As expected, sex-biased genes are responsible of the

observed differences between males and females adaptation

rates. When removing sex-biased genes the female stages

exhibit selection statistics values similar to those of males.

This indicates that the genes that are overexpressed in

females tend to be more constrained.

X-linked genes are known to be under faster rates of evo-

lution compared with autosomal genes (faster-X

effect) (Meisel and Connallon 2013). When we excluded X-

linked genes from the analyses (supplementary fig. S13,

Supplementary Material online) the selection pattern
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remained similar, so the rates of substitutions observed are

not exclusively due to X-linked genes.

Gene Expression Profiles Clustering

There are at least three different scenarios that could explain

the observed temporal pattern of change in the selection sta-

tistics. In the case of xa, for example, it could be that a subset

of genes with high xa is expressed just with the observed

temporal pattern (everywhere but in mid- and late-develop-

ment and in females). Alternatively, it could be that each of

the time periods with high xa would express a distinct group

of genes that have high levels of adaptive substitutions. It

could also be that no simple correspondence exists between

the high xa in a time period and the expression of a specific

subset of genes in it.

To explore these possibilities, we categorized all the ana-

lyzed genes into classes based on their temporal profiles of

expression. To do that we use an unsupervised soft clustering

algorithm (Futschik and Carlisle 2005) as explained in the

Materials and Methods. Genes within each temporal expres-

sion class show relatively similar changes in gene expression

levels over time. We consider eight such classes for embryonic

development (fig. 2A, number of genes analyzed in each clus-

ter in supplementary table S1, Supplementary Material online)

and nine classes for the whole life-cycle (see supplementary

fig. S14, Supplementary Material online, for the temporal

profiles, number of genes analyzed in each cluster in

FIG. 1.—Temporal pattern of the four selection statistics estimated with DFE-alpha (xa, a, xna, and x). (A) xa, the rate of adaptive nonsynonymous

substitutions relative to the mutation rate. (B) a, the proportion of base substitutions fixed by natural selection. (C) xna, the rate of nonadaptive non-

synonymous substitutions relative to the mutation rate. (D) x, the rate of nonsynonymous substitutions relative to the mutation rate. Each boxplot (A–E, 100

bootstrap replicates per stage) in a plot is calculated for a randomly drawn sample of the set of genes expressed in a stage with replacement. The solid line

going through the boxplot is inferred by LOESS. For the male and female stages, the line is simply a linear regression. The dashed line shows the mean value

of each statistic for the genes that are expressed in all stages (again with 100 bootstrap replicates). The embryonic stages are named by the hour’s intervals

(from 0 to 24h), the larval stages are the first instar (L1), second instar (L2), and third instar (L3). The L3 stages are subdivided into the first 12h (L3-12h) and

several puff stages (L3-PS1 to L3-PS7). WPP is the white prepupae stage. The pupal stages with RNA-seq are phanerocephalic pupa, 15 h (P5), 25.6 h pupa

(P6), yellow pharate, 50.4h (P8), amber eye-pharate, 74.6 h (P9–10), and green meconium pharate, 96h (P15). Adult stages are 1, 5, and 30 days after

eclosion (1, 5, and 30days). Number of genes analyzed is in supplementary table S8, Supplementary Material online. The earliest stages show more variation

in the selection statistics because they have less genes.
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supplementary table S2, Supplementary Material online). For

embryonic development, clusters 1 and 2 are the ones show-

ing significantly the highest xa and x compared with

the other clusters using a permutation test (cluster 1, x:

P< 0.001; xa: P¼ 0.008; cluster 2, x: P< 0.001; xa:

P¼ 0.059) (fig. 2B–E). These clusters correspond to the genes

that are expressed at high levels in the earliest development

and that rapidly decrease their expression to very low levels

(fig. 2A). xa, x, and a values in clusters 1 and 2 are larger than

those in the first three developmental stages and, thus, it is

likely that the genes in these clusters, but not the other genes

that are expressed in these three stages, are responsible for

the high xa, x, xna, and a values in the earliest development.

The decline in the values of these selection statistics over early

development would then just be a simple reflection of the

decrease in expression of the genes in those clusters over

time. Cluster 8 also shows larger x than that observed in

the other clusters (x: P< 0.001). This cluster is composed of

genes whose expression increases only in the last stages of

embryonic development. This high xa cannot be detected

when directly analyzing the genes in each stage because

the other genes expressed in these late stages have lower x
values, as it can be seen for cluster 5, which expresses genes

from the 10-h onward. Thus, the temporal pattern of change

in the selection statistics seems to come from the temporal

dynamics of expression of three different sets of genes (those

of clusters 1, 2, and 8). P values can be consulted on supple-

mentary table S12, Supplementary Material online. Similar

results were found when the clustering was done over the

whole life-cycle (supplementary fig. S15 and table S13,

Supplementary Material online).

Genomic Features

To search for sequence properties affecting the tempo-

ral pattern of the selection statistics, we measured a

number of genomic features for each of the genes

expressed in development (see Materials and

Methods). These are gene size (the length of the coding

sequence of a gene), number of exons (total number of

exons of a gene; not to confuse with the number of

exons a gene expresses in a specific developmental

stage), codon usage bias (measured as frequency of op-

timum codons, Fop), number of transcripts per gene

(this is not the number of alternative transcripts of a

gene in a stage but the total number of alternative tran-

scripts of a gene according to FlyBase annotations), av-

erage intron length (measured as the average distance

in base pairs between the exons of a given gene), inter-

genic distance (average distance in base pairs between

two adjacent genes), expression bias (a measure of how

evenly distributed the expression of a gene is over time),

recombination rate (based in observed cross-overs in

100-kb intervals, from Comeron et al. [2012]), the GC

content of each gene, and the number of PPIs (Murali

et al. 2011).

First of all, we assessed the relationship between the ge-

nomic features and selection statistics, clumping all expressed

genes together irrespectively of the stage in which they are

expressed. For that, we categorized the genes in our data set

in five different categories based on each genomic feature

(see supplementary table S14, Supplementary Material online,

for the number of genes considered in each category) and

resampled with replacement 100 times the genes in each

category and estimated the selection statistics in each such

category. We found clear negative correlations between xa

and gene size, number of exons, number of transcripts, aver-

age intron length, codon bias, GC content, and PPIs (similar

correlations were found for xna [supplementary fig. S16,

Supplementary Material online], x, and a [data not shown])

and positive correlations between xa and expression bias, re-

combination rate, and intergenic distance (supplementary fig.

S17, Supplementary Material online). Thus, in general, less

complex genes (shorter, with fewer exons and transcripts

and short introns), expressed in only a small number of stages,

with lower GC content and/or less PPIs are more likely to

accumulate adaptive substitutions (high xa).

We performed linear multiple regression models to test for

the dependence of the selective statistics (x, xa, and xna)

estimated on each protein-coding gene using the eMKT on

the ten genomic features (supplementary table S15 and fig.

S18, Supplementary Material online). Supplementary table

S16, Supplementary Material online, show the matrix of cor-

relation coefficients from the pairwise correlations between

the ten genomic features included in the linear models. The

coefficient of determination (multiple R2) was the highest for

x, explaining a 21.21% of the total variance

(P¼ 2.2� 10�16). For xa, it was 3.34% (P¼ 2.2� 10�16)

and for xna it was 9.36% (P¼ 2.2� 10�16). Average intron

length, size, and PPI are the only genomic features that do not

have a significant effect on any of the selective regimes.

Expression bias is the genomic feature with the highest effect

on x, as observed in Guill�en et al. (2019).

When considered over developmental stages we found

that these genomic features exhibit a temporal pattern that

is either very similar to that of xa or its opposite (see fig. 3). To

analyze that we calculated the correlation between each

stage’s average xa and the average of each genomic feature

in each stage (see table 2). Gene size, number of exons, codon

usage bias, and number of transcripts per gene follow a tem-

poral pattern that is the reverse of that of xa. Average intron

length also shows a temporal pattern contrary to that of xa

except that no clear differences between stages are found

after embryonic development. The intergenic distance shows

a temporal pattern similar to that of xa, except that this dis-

tance is low in the earliest stages in which xa is high. The

average expression bias shows a temporal pattern similar to

that of xa except for an overall increase over time. The same
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FIG. 2.—Clusters of temporal profiles of expression of embryonic development genes and their xa, a, xna, and x estimated using DFE-alpha. (A)

Temporal expression profile for all the genes belonging to each cluster. (B) x for each cluster. (C) xa sampling for each cluster. (D) xna for each cluster. (E) a
for each cluster. Each point in the plots in (B)–(E) is calculated for a randomly drawn sample of the set of genes in each cluster with replacement (100

bootstrap replicates per cluster). Asterisks represent the significance by a permutation test, the color indicates whether the value was higher (red) or lower

(blue) than expected (•, 0.1–0.05, *<0.05, **<0.01, and ***<0.001). Number of genes analyzed in supplementary table S1, Supplementary Material

online. Permutation P values are shown in supplementary table S12, Supplementary Material online.
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FIG. 3.—Nine genomic features over developmental stages. Lines and stages as in figure 1. (A) Size is the coding sequences length of a gene in base

pairs. (B) Number of exons is the number of exons for the genes expressed in a stage. (C) Number of transcripts is the number of different isoforms of each

gene expressed in a stage. (D) Fop is a measure of codon usage bias: the ratio of optimal codons to synonymous codons. (E) Average intron length is the

average distance, in bases, between the exons of a gene. (F) The expression bias is a measure of how much the expression of a gene is restricted to one or few

stages estimated as equation (1) (see Materials and Methods). (G) Recombination rate is estimated in 100-kb nonoverlapping windows. (H) CG content of

each gene. (I) PPIs are estimated as the number of PPIs of each gene. Mean sampling distribution was obtained by resampling 100 times with replacement

the genes from each stage. See supplementary table S8, Supplementary Material online, for the genes analyzed. The same patterns are found when using 4-

fold data, see supplementary figure S19, Supplementary Material online.
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correlations are found when we used 4-fold degenerated sites

as a proxy for the mutation rate (see supplementary table S17

and fig. S19, Supplementary Material online). A similar pat-

tern is found when we analyze the genomic features in the

gene expression clusters for the embryo development and

life-cycle (see supplementary fig. S20, Supplementary

Material online, and P values in supplementary table S18

and fig. S21, Supplementary Material online, and P values in

supplementary table S19, Supplementary Material online,

respectively).

Analysis of Maternal, Maternal–Zygotic, and Zygotic Genes

To further explore why xa and xna were high in the ear-

liest developmental stages, we analyzed separately mater-

nal, maternal–zygotic, and zygotic genes. For that

purpose, we used a microarray study (Thomsen et al.

2010) that categorized developmental genes as maternal,

zygotic, and maternal–zygotic by determining which gene

transcripts are already present in the egg and which ones

are not. Maternal genes are defined as genes whose

mRNA is laid within the egg by the mother and are never

transcribed by the embryo. The embryo contains, thus,

mRNAs coming from two different genomes, that of the

mother and that of the embryo. Maternal–zygotic genes

are genes whose mRNA is laid in the egg by the mother

but that are also transcribed by the embryo. Zygotic genes

are genes whose mRNA is not laid in the egg by the

mother. We analyzed the genes reported in Thomsen

et al. (2010) for each category with a permutation test,

testing if the genes in each category undergo differential

selection compared with the genes in the other two cat-

egories (see Materials and Methods for details). We found

that xa was not significantly different between categories

when assessed with a permutation test (fig. 4). This

implies that the large xa of the earliest stages is not due

to any specific gene category. Consistent with the hypoth-

esis of lower efficiency of natural selection on maternal

genes both x (P¼ 0.024) and xna (P¼ 0.003) were higher

for maternal genes than for zygotic genes (and interme-

diate for the maternal–zygotic genes). Zygotic genes show

lower values of xa and xna than expected from the per-

mutation test (P¼ 0.035 and P¼ 0.036, respectively).

Supplementary table S20, Supplementary Material online,

contains permutation P values. Finally, this analysis was

repeated but using the gene that are in common with

the genes expressed in the first hours according to

modENCODE to check whether maternal genes account

for the high xna in the first stages of the development

(fig. 1). Very similar results are obtained, thus, indicating

that the high xna values in the earliest stages are due to

the maternal genes in these stages (supplementary fig.

S22, Supplementary Material online). Even so, the xa in

these earliest stages is still larger than in mid-and late-

development.

Discussion

Three main conclusions can be derived from our analyses.

First, the rate of adaptive substitution (xa) measured along

the life-cycle of D. melanogaster reveals two peak periods:

one encompassing the four initial hours of the embryonic

development and one encompassing from the L3 larval stage

onward. Drosophila melanogaster, as all holometabolous

insects, has an indirect development with two active free-

roaming phases, the larva and the adult, and two inactive

sessile developmental phases, the embryo and the pupa.

The larval and adult phenotypes, especially their morphology,

arise primarily through the genetic, cellular and tissue inter-

actions of embryonic and pupal (metamorphosis) develop-

ment, respectively. Therefore, adaptation in the larva and

the adult should be reflected, not only in the substitution rates

of the genes expressed in the larva and adult but also in those

expressed during embryonic development (for the larva) and

pupal development (for the adult). The observation that genes

expressed in mid-and late-embryonic development show rel-

atively lower rates of nonsynonymous substitution than the

genes expressed in the larval and pupal stages suggests that

adaptation has occurred preferentially in the adult rather than

in the larva. In contrast to a previous report using a smaller

gene set (Artieri et al. 2009), we do not find that adults have

higher rates of nonadaptive substitutions, neither in x nor in

xna, than the pupa. In a previous study, it was found that the

150 genes with the highest number of nonsynonymous sub-

stitutions (this is the highest x) are more intensively expressed

in the larva and pupa than in the embryo and that their high-

est level of expression is in the male adults (Davis et al. 2005).

An important novelty of our analysis is the incorporation of

polymorphism data, which allows us to more precisely distin-

guish between the rates of nonsynonymous substitutions

(with conservation indicated by low x), adaptive nonsynon-

ymous substitution (measured by xa), nonadaptive nonsynon-

ymous substitution (measured by xna), and the proportion of

fixed adaptive substitutions (a). In a previous study (Salvador-

Mart�ınez et al. 2018), we have estimated the same selection

statistics over the embryonic anatomy of D. melanogaster, in

this study, we do it over developmental time. This has allowed

us to infer that the relatively lower level of conservation in

early pupal and male stages is due to adaptive nonsynony-

mous substitutions and not to nonadaptive nonsynonymous

substitutions. In the earliest developmental stages, instead,

we can infer that the lower sequence conservation is due,

mostly, to nonadaptive substitutions. Our results are, thus,

compatible with those of Liu and Robinson-Rechavi (2018a)

but the methods we use and the inclusion of polymorphism

data, however, allow us to infer the nonadaptive nature of the

nonsynonymous substitutions in the earliest stages of

development.

Our analysis shows that the latter is due, mostly, to mater-

nal genes. Previous studies have already pointed out that
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selection in maternal genes is less efficient (although these

studies do not relate that to the lower conservation of early

development [Cruickshank and Wade 2008; Wade et al.

2009]). This is because, in females, the alleles in the loci of

maternal genes can affect the fitness of the offspring but that

is not the case for males (because males lay no eggs and thus

no maternal mRNAs in their offspring). As a result, for mater-

nal genes, selection cannot act as effectively on males as on

females. Natural selection is then less effective and many non-

adaptive variants cannot be eliminated from the population

(leading to the higher xna).

The high rate of nonsynonymous nonadaptive substitu-

tions in the earliest developmental stages parallels recent find-

ings in developmental genetics: the genes expressed in the

earliest developmental stages were found to be different

within Diptera, whereas the zygotic genes expressed right

after, the gap genes, were found to be the same in all the

Diptera species analyzed so far (Wotton et al. 2015).

A second conclusion of our study is that the temporal pat-

tern of the selection statistics mirrors that of the genomic

features analyzed. Thus, mid- and late-embryonic develop-

ment express genes that have, on average, more exons,

more different transcripts, a more optimal codon usage,

larger introns, and larger gene size. Some of these genomic

features were previously found to correlate with x, and in

some few cases with xa. However, their distribution over de-

velopmental stages and their relationship with the von Baer’s

law or the hourglass model have not been analyzed before,

except for intron length (Liu and Robinson-Rechavi 2018b)

and gene length (Liu and Robinson-Rechavi 2018a; Yang

et al. 2018). This latter study also reports how other measures

of gene complexity (such as the number of protein domains)

are higher among developmentally expressed genes.

The negative correlation between codon bias and adaptive

nonsynonymous substitution at the protein level was already

known (Hershberg and Petrov 2008; Presnyak et al. 2015).

Such negative correlation should be expected by mere

probability because, for any given protein, the codon changes

that improve a protein function would often be different from

the codon changes associated with more efficient codon us-

age (Hershberg and Petrov 2008; Presnyak et al. 2015), espe-

cially for highly expressed genes (Pal et al. 2001). The

relationship between codon bias and GC content we observe,

that is, identical temporal trends over development (see

fig. 3), is explained by many optimal codons ending in G or

C in D. melanogaster (Bierne and Eyre-Walker 2006).

Similarly, it has previously been reported that genes with a

large expression bias tend to be less conserved (low x,

Larracuente et al. 2008) and we found, that in addition,

they also show higher rates of adaptive substitutions. On av-

erage, if a gene is expressed in a very specific time window, it

is likely involved in regulating a smaller number of develop-

mental interactions than if it is expressed in through many

stages. Changes in such gene are then less likely to interfere

with many different developmental processes and, thus, these

changes are less likely to be deleterious. Similarly, it has been

shown that genes with a high connectivity, as measured with

the total number of PPIs, tend to be under selective constraint

because they are involved in complex functions (Valdar and

Thornton 2001; Caffrey et al. 2004). We do indeed find that

our selection statistics correlate with PPI, although the tem-

poral pattern of PPI is not similar to the temporal pattern of

any of the selection statistics.

Gene size, measured as the protein’s primary structure

length, has also been shown to negatively correlate with x
(Comeron et al. 1999; Duret and Mouchiroud 1999;

Larracuente et al. 2008) and even with a measure of the

rate of adaptive substitutions (Liu and Robinson-Rechavi

2018a). A possible explanation for this observation could be

the fact that for a given adaptive mutation, longer genes

would have more adaptive segregating sites competing

against each other in different haplotypes. This would pro-

duce a kind of intergenic or interexonic Hill–Robertson inter-

ference (Hill and Robertson 1966). Consistent with this

Table 2

Spearman’s Correlations between xa and Genetic Features

Genomic Feature Relation with xa Correlation (r2) for Females (P Value) Correlation (r2) for Males (P Value)

Average intron length Negative 0.802 (1.12 � 10�6) 0.808 (1.08 � 10�6)

Size Negative 0.731 (1.56 � 10�6) 0.764 (1.39 � 10�6)

Number of exons Negative 0.862 (6.53 � 10�7) 0.886 (4.82 � 10�7)

Number of transcripts Negative 0.874 (5.70 � 10�7) 0.870 (5.94 � 10�7)

Fop Negative 0.759 (1.42 � 10�6) 0.688 (1.71 � 10�6)

Expression bias Positive 0.508 (4.89 � 10�5) 0.552 (1.58 � 10�5)

Recombination Positive 0.330 (2.07 � 10�3) 0.334 (1.91 � 10�3)

Intergenic distance N.S. 0.043 (0.299) 0.082 (0.148)

CG content Negative 0.905 (3.647 � 10�7) 0.772 (1.34 � 10�6)

PPI Negative 0.152 (0.045) 0.075 (0.165)

NOTE.—Spearman’s correlations performed between each stage’s average xa and the average of each genomic feature in each stage. Females and males are separated
because their gene expression is measured separately in the last three stages in the modENCODE. Thus, the data considered for females and males are the same for all the stages
but the last three. Methodological details about how each genomic feature was calculated are explained in the Materials and Methods. Fop: frequency of optimum codons.
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previous work, we found that gene size correlates negatively

with both x and xa over developmental time.

To our knowledge, the number of exons and transcripts

themselves have never been directly associated with neither x
nor xa, as we found in our study. As one would expect,

however, the number of exons correlates with gene size

(data not shown). In a similar way, the larger the number of

exons, the larger the number of different transcripts that can

be produced by reshuffling exons by alternative splicing.

Then, the relationship between the number of exons and

the number of transcripts with the selection statistics could

be either direct or indirect through the correlation of these

genomic features with each other and gene size.

It is not possible to establish whether the temporal pattern

of adaptation is a consequence of differences in genomic

features over the life-cycle, or if, on the contrary, these geno-

mic features are a consequence of differential adaptation over

the life-cycle. To establish what leads to what, one would

have to devise experiments, or at least some form of model-

ing, that is beyond the state of the art for fly’s development

and its underlying genetic bases. There are, however, some

intrinsic characteristics of development that can be used to

suggest that the first possibility is more likely.

A possible explanation for that would be that, as suggested

from a more qualitative evo-devo perspective (Gellon and

McGinnis 1998; Kennison 1993), embryonically expressed

genes have a more complex regulation than postembryoni-

cally expressed genes. Although the former are expressed in

wider areas of the embryo, their expression changes more in

time and space than that of postembryonically expressed

FIG. 4.—Selection statistics (xa, x, xna, and a) for maternal, maternal–zygotic and zygotic genes. Maternal genes are those genes whose mRNA are laid

by the mother in the egg and are never zygotically transcribed, maternal–zygotic are those genes whose mRNA is present in the egg but that are also

transcribed by the zygote. Zygotic genes are genes whose mRNA is not laid in the egg by the mother. (A) xa is not statistically different between these gene

categories. (B) x is significantly higher in maternal genes than the other two gene categories (P¼0.024). (C) xna is significantly higher in maternal genes than

in the other two gene categories (P value¼ 0.003). (D) a is marginally lower in maternal genes compared with the other two categories. Each point in a plot

(100 bootstrap replicates per group) is calculated for a randomly drawn sample of the set of genes in each gene category. Asterisks represent the significance

by a permutation test, the color indicates whether the value was higher (red) or lower (blue) than expected (•, 0.1–0.05, *<0.05, **<0.01, and

***<0.001). The number of genes analyzed is shown in supplementary table S6, Supplementary Material online. P values in supplementary table S20,

Supplementary Material online.
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genes (Salvador-Mart�ınez and Salazar-Ciudad 2015). This

more complex regulation may require a more complex ge-

netic structure, such as manifested by those genes having

more exons, more transcripts, larger genes and larger introns

(Kennison 1993; Gellon and McGinnis 1998). The larger av-

erage intron length of developmental genes may also be a

reflection of complex regulation, but at the level of cis-regu-

latory elements, because cis-regulatory elements can be lo-

cated within introns too. Larger expression areas, less

temporally restricted expression and more complex gene

structure, may also reflect that mid- and late-development

genes interact with more other genes than genes expressed

later. This would make them, in rough terms, more pleiotropic

and, thus, less likely to adapt. This explanation would be the

reflection at the genomic level of the idea that there are wider

and higher levels of interdependence among body parts in

middevelopment than in late and early development

(Duboule 1994; Raff 1996). From this perspective, genomic

features would not be a consequence of differential adapta-

tion over the life-cycle. Instead, the pattern of differential ad-

aptation over the life-cycle would be a consequence of how

genomic features have to be over development.

The above arguments would not apply to the earliest em-

bryonic stages because of the low efficiency of natural selec-

tion on maternal genes. In addition, it has been suggested

that the small intron and gene size of the genes expressed in

the first hours of D. melanogaster development (Anderson

1973; Heyn et al. 2014) would be imposed by the very fast

cell divisions occurring in those hours. Because cells divide very

rapidly in early D. melanogaster development, there is no time

to transcribe, splice, and translate long genes and genes with

long introns. This would preclude the earliest expressed genes

from having the complex regulatory gene structure (no long

introns and no long genes) that in the later-expressed genes

correlates with lower rates of nonsynonymous substitutions.

This hypothesis is consistent with the reasoning of the previ-

ous paragraph because, in fact, there are not many genetic

interactions, signaling or cell movement during these early

fast cell-division states. In other words, no complex genetic

regulation occurs until the early fast division stages have fin-

ished. This applies not only to the fly but also to many other

animal groups, including vertebrates (O’Farrell et al. 2004;

Heyn et al. 2014; Siefert et al. 2015). The hourglass model

has also been suggested for vertebrates and it is then tempt-

ing to suggest that, in them, the relative lack of conservation

of early development would also be related to the simpler

gene structure required for short cell cycles and, possibly, to

maternal genes. This simpler gene structure would be consis-

tent with our results of shorter genes with fewer exons,

shorter introns, and less transcripts in the genes expressed

in the earliest stages of development.

A third main conclusion of our study is that our results are

consistent, roughly, with the hourglass model but not with

the von Baer’s law. However, the fit to the hourglass model is

rather weak, because there are no major differences in x
between embryonic stages after the 8-h, except for genes

in cluster 8. During the first 2 h, x is significantly high (hours

0–2 h: P¼ 0.032), but from 6–8 h to 22–24 h x is lower than

expected based on the permutation test (P< 0.001). This is

also the case for xa (supplementary table S10, Supplementary

Material online). In contrast with some previous studies

(Kalinka et al. 2010; Levin et al. 2016), we do not find that

the latest stages of embryonic development are less conserved

(this previous study measures only dN and dS). However,

genes, whose expression is high only in late embryonic devel-

opment (cluster 8, fig. 2), show a significant high x and mar-

ginally significant high xa. These genes are only a small

proportion of the genes expressed in the last embryonic de-

velopmental stages and, thus, have a minor effect on our

calculations of xa, x, and a of these stages (thus likely explain-

ing the differences between our study and Kalinka et al.

[2010]). The difference in dN between mid- and late-

development stages in Kalinka et al. (2010) is however rather

subtle too. Overall, thus, our results are compatible with

Kalinka et al. (2010). The hourglass model was proposed on

the basis of what was understood of D. melanogaster and

vertebrate’s development (Slack et al. 1993; Duboule 1994;

Raff 1996). The life-cycles of the fly and the mouse are quite

different. Mice, as all amniotes, are direct developers, mean-

ing that development gives rise to a juvenile and later, grad-

ually, to an adult. Flies are indirect developers in which

embryonic development gives rise to a free-roaming larva

and that, by a rather abrupt process of metamorphosis, to

an adult. If the hourglass model is understood for the whole

of the life-cycle then our results are roughly consistent with it

at the genetic level: genes expressed during embryonic devel-

opment are highly conserved, except for the genes expressed

in the earliest stages, whereas the genes expressed later, from

the larval stage L3 onward, show less conservation and more

adaptation. On the other hand, this temporal hourglass pat-

tern can also be understood as development generally obey-

ing von Baer’s law, but departing from it in the earliest stages.

We hypothesize that this departure would arise, in one hand,

from the lower efficiency of selection on maternal genes and,

in the other hand, as a consequence of the reduced gene

structure complexity required for fast nuclei divisions in early

development.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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