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Abstract:
Background and Objective: There is increasing interest in multi-state modelling
of health-related stochastic processes. Given a fitted multi-state model with one
death state, it is possible to estimate state-specific and marginal life expectancies.
This paper introduces methods and new software for computing these expectancies.
Methods: The definition of state-specific life expectancy given current age is an
extension of mean survival in standard survival analysis. The computation involves
the estimated parameters of a fitted multi-state model, and numerical integration.
The new R package elect provides user-friendly functions to do the computation in
the R software.
Results: The estimation of life expectancies is explained and illustrated using the
elect package. Functions are presented to explore the data, to estimate the life
expectancies, and to present results.
Conclusions: State-specific life expectancies provide a communicable representation
of health-related processes. The availability and explanation of the elect package
will help researchers to compute life expectancies and to present their findings in an
assessable way.
Keywords:
Gompertz distribution, interval censoring, Markov model, panel data, sojourn time,
stochastic process
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1 Introduction

This paper presents methods and the R package elect for computing state-specific
and marginal life expectancies using the estimated parameters of a continuous-time
multi-state model with one death state. Explaining and illustrating elect is the main
aim of this paper.

Multi-state models can be used to describe health-related stochastic processes
over time. States can represent health stages or death, and to formulate the model,
potential transitions between these states are distinguished. It is possible to have
a model with multiple dead states representing different causes of death. In this
package, we focus on models with one dead state only. Given such a model, it is
often of interest to know how much of remaining total life expectancy at a given age
subdivides into life expectancies in the living states. As an example, consider the
three-state illness-death model for an older population defined by a healthy state, an
ill-health state, and the dead state (Figure 1). For an individual at a specified age,
we can distinguish between two types of residual life expectancies, namely expected
remaining time spent in the healthy state and expected remaining time spent in
the ill-health state. The sum of these expectancies constitutes the total residual life
expectancy.

Important methodological work on continuous-time multi-state models for longi-
tudinal data is presented in Kalbfleisch and Lawless (1985), Hougaard (2000), and
Aalen et al. (2008). Continuous-time models are based on theory for continuous-
time Markov chains as discussed in, for example, Norris (1997). Jackson (2011) and
de Wreede et al. (2010) present R packages that provide a flexible framework for
fitting continuous-time multi-state models to longitudinal data.

The elect package is available from the Comprehensive R Archive Network (CRAN,
R Core Team, 2018) at https://CRAN.R-project.org/package=elect. The pack-
age is developed as an add-on to msm, the R package created by Jackson (2011). If
msm is used to fit a Gompertz model with age as the time scale, then elect can be
used to estimate state-specific life expectancies. The name “elect” is inspired by the
functionality of the package: estimating life expectancies using continuous time.

Estimating life expectancies is about estimating mean sojourn time in states. The
msm package has a function for estimating sojourn times: sojourn.msm. However, this
function is only defined for exponential models. For estimating life expectancies, the
exponential model is not suitable—models are needed that allow transition hazards
to change with age. The Gompertz model is such a model and it is often used to
describe morbidity and mortality; see, for example, Mueller et al. (1995), Hougaard
(2000), and Blossfeld and Rohwer (2002).

The Gompertz model can be fitted in msm by defining age as a time-dependent
covariate. In this case, the likelihood function involves a piecewise-constant approx-
imation of the age dependence in the model. Nevertheless, there are no functions
in msm that directly provide inference for life expectancies given a fitted Gompertz
model. In addition, for marginal life expectancies, additional modelling of the state
distribution is needed. Because of this, we developed elect: a user-friendly frame-
work for estimating state-specific life expectancies using a Gompertz model that is
fitted in msm. Early versions of the functions in elect show a wide range of applica-
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tions; see, for example, Van den Hout et al. (2014), Robitaille et al. (2018), Van der
Noordt et al. (2018), Hoogendijk et al. (2019)

Willekens and Putter (2014) discuss software for multi-state analysis in detail.
Their discussion include an early version of elect and two other programs for esti-
mating life expectancies: IMaCh (Lièvre et al., 2003) and SPACE (Cai et al., 2010).
These three programs are also briefly reviewed in Saito et al. (2014). Both IMaCh

and SPACE are based on discrete-time Markov models, whereas elect is based on a
continuous-time model. IMaCh is a stand-alone program, SPACE is programmed in
SAS.

SPACE works under the assumption that there is at most one transition between
two successive observations. This assumption may be too restrictive for certain lon-
gitudinal data. When using elect, this assumption is not used, since the model
underlying elect is a time-continuous model.

The multistate package in STATA by Crowther and Lambert (2017), makes it
possible to estimate life expectancies based on a continuous-time multi-state model.
multistate includes semi-Markov models, which are not available in msm. The soft-
ware allows for a wide range of parametric distributions and has recently been ex-
tended to allow reversible transitions. multistate requires exactly observed transi-
tion times.

The flexsurv package by Jackson (2016) allows for a wide range of parametric
multi-state models and can estimate total length of stay in particular states. However
flexsurv also requires exactly observed transition times.

For estimating life expectancies, elect is the only software that is available in R,
for Gompertz models that are estimated using interval-censored data. It allows users
to compute life expectancies for any number of states and is not limited to progressive
processes. Observation times can be exact or interval-censored, or a mixture of these.
Because of the extensive functionality in msm, elect can work with hidden Markov
models; see, for example, Robitaille et al. (2018) where misclassification of state is
taken into account.

In what follows, we summarise the standard method of estimating life expectan-
cies, introduce the computation in elect, and give two examples of using elect.
Some familiarity with using msm is recommended; for details of fitting the multi-state
model in msm, see Jackson (2011).

2 Methods

2.1 Life expectancies

State-specific life expectancy based on a multi-state model is a generalisation of mean
survival in a standard survival model where there is one living state and one dead
state. For an extended discussion of life expectancy and estimation for multi-state
models see, for example, Izmirlian et al. (2000), Lièvre et al. (2003), and Van den
Hout (2017).

Let the finite state space be given by {1, 2, ..., D} where D is the dead state. Let Yt
denote the state at age t and let x denote the time-independent vector with covariate
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Figure 1: Three-state model for health and ill health in the older population.

values. Life expectancy in living state s given state r at age t, for r, s ∈ {1, 2, ..., D−1},
is defined by

ers(t|x) =

∫ ∞
0

P(Yt+u = s| Yt = r,x)du, (1)

where P(Yt+u = s| Yt = r,x) is the transition probability of being in state s at age
t+u, given starting state r at age t and covariate values x. Marginal life expectancy
in state s is irrespective of the initial state at age t and is defined by

e•s(t|x) =
∑
r 6=D

P(Yt = r|x)ers(t|x), (2)

where P(Yt = r|x) is the probability of being in state r at age t for r ∈ {1, 2, ..., D−1}.
Total life expectancy at age t is defined as

e(t|x) =
∑
s6=D

e•s(t|x) . (3)

2.2 Models and estimation

To be able to estimate life expectancy, transition probabilities and the state distri-
bution are estimated using longitudinal data. Using the same notation as in the
previous section, we assume that data for individual i and observation j are given by
(yij , tij , xi), for i ∈ {1, ..., N} and j ∈ {1, ..., ni}. For ease of exposition, we use only
one covariate in the example. What follows also applies to models with more than
one time-independent covariate.

Transition probabilities are derived from a multi-state model where the hazards
are defined by

hrs(tij) = exp
(
βrs + ξrstij + γrsxi

)
, (4)
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for those pairs (r, s) that define a transition in the stochastic process. Model param-
eters are estimated by maximum likelihood. The definition of the likelihood function
can take into account whether observation times tij are exact or interval censored.

The dependency on age t in (4) defines the hazard of a Gompertz distribution,
which implies that transition hazards are either increasing or decreasing exponentially.
In order to use elect, this model has to be fitted using msm in R. When msm is used
to fit a Gompertz hazard model, it will use a piecewise-constant approximation for
the parametric time-dependency. Specifically, for a time interval (tij , tij+1] in the
data, the contribution to the log-likelihood function is defined by fixing the hazard to
hrs(tij) throughout (tij , tij+1]. Although piecewise-constant approximation is thus
used to estimate model parameters, the fitted model is not piecewise constant. The
parameter estimates are used to define a smooth Gompertz model.

When investigating an ageing process, we recommend to model the dependency
of age on a shifted scale. For example, if the minimum age in the data is 65, define
t = age − 65. In model (4), the multiplicative effect of age is exp

(
ξrst) and large

values of t can cause numerical problems when fitting the model. Shifting the age
scale may prevent these problems.

In line with the functionality of elect, model (4) is restricted to time-independent
covariates. It is possible to fit a model with time-dependent x(t) if we use a piecewise-
constant approximation. However, in that case, we would not have a model for the
change of x(t) over time and hence we would not be able to estimate residual life
expectancies.

The distribution of the state at age t is modelled using a multinomial regression
model defined by

P(Yt = r|x) =
exp

(
ηr(t)

)
1 +

∑
r 6=D exp

(
ηr(t)

) with ηr(t) = αr0 + αr1t+ αr2x , (5)

for r ∈ {1, 2, ..., D − 1}. By restricting α10 = α11 = α12 = 0, we make r = 1 the
reference category. This model is estimated in elect using the function multinom in
the package nnet (Venables and Ripley, 2002).

Life expectancies (1), (2), and (3) can be derived using the parameters in the
multi-state model and the multinomial regression model. The specification of x is
undoubtedly important, but the specification of age t will in most cases be the most
influential. To approximate the integral (1), a maximum age tmax has to specified
such that we may safely assume that the integrand P(Yt+u = s| Yt = r,x) is zero
when t+ u > tmax.

Note that with a fitted multi-state model and specified x, the integrand in (1) can
be computed for any u. In the computation of this integrand, a piecewise-constant
approximation is used to account for changing age over time. Computationally, it
is convenient to use the same grid for the piecewise-constant approximation and the
numerical approximation of the integral. This is how it is implemented in elect.

The above provides a point estimate of life expectancies. To estimate the uncer-
tainty (standard errors and/or confidence intervals) we make use of the asymptotic
properties of the maximum likelihood estimator of the parameters for the multi-state
model and the multinomial regression model. The two models are fitted indepen-
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dently from each other, and for each we define a multivariate normal distribution
with expectation equal to the maximum likelihood estimate of the parameter vector
and the covariance matrix equal to the estimated covariance matrix at the opti-
mum. The sample variation in the estimation of the life expectancies is evaluated by
drawing parameter values from the two multivariate distributions and computing the
life expectancies for the drawn values. This simulation-based approach is a general
method for deriving standard errors or confidence intervals for a complex function of
a maximum likelihood estimate; see Mandel (2013).

3 Results

3.1 Example

Consider a progressive three-state illness-death process for an older population. State
1 is defined as the healthy state, state 2 is the ill-health state, and state 3 represents
death; see Figure 1. For this process, simulated data are available in elect under the
name electData. This data set contains simulated trajectories for 150 individuals.
Transition times for moving from state 1 to state 2 are interval censored; entry times
for the dead state are known. The data reflect the context of longitudinal data
collection in ageing research: pre-scheduled interview times (panel data for the living
states) and exact times for death during the study time.

The longitudinal data format in electData is such that there is one row per
observation. The first 6 records in the data are:

R> library(elect)

R> head(electData)

id state age x bsline

1 1 1 7.26 1 1

2 1 1 9.36 1 0

3 1 2 11.28 1 0

4 1 2 13.38 1 0

5 1 3 14.24 1 0

6 2 1 19.61 0 1

The identifier for individuals is id. Variable state denote states 1, 2, and 3.
Variable age is age in years on a shifted scale (age at the observation time minus 70
years). The binary time-independent covariate x is specified as 0 for women and 1 for
men. Variable bsline is an indicator for the baseline observation and will be used to
define the data for the multinomial regression model (5). The number of records per
individual varies:

R> table(table(electData$id))

2 3 4 5 6 7

16 24 22 13 18 57
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An important data summary with respect to multi-state modelling is the state
table which can be produced by statetable.msm in msm:

R> statetable.msm(state, id, data = electData)

to

from 1 2 3

1 358 56 53

2 0 94 53

This frequency table shows the number of times each pair of states is observed
at successive observation times. For example, there are 53 individuals who were
observed in state 3 after being observed in state 1. Due to the interval censoring, we
do not know whether these individuals moved directly from state 1 to state 3, or via
state 2.

For the three-state model with the three transitions as illustrated in Figure 1, we
specify model (4) as

hrs(age) = exp
(
βrs + ξrsage + γrsx

)
, (6)

where (r, s) ∈ {(1, 2), (1, 3), (2, 3)}.
The model can be fitted using msm:

R> Q <- rbind(c(NA, 0.01, 0.01), c(0, NA, 0.01), c(0, 0 ,NA))

R> model <- msm(state~age, subject = id, data = electData,

center = FALSE, qmatrix = Q, deathexact = 3,

covariates = ~age+x)

The specification of matrix Q defines the transitions that are possible according
to the model (only the off-diagonal entries of Q are used). Matrix Q also provides the
starting values for the transition intensities in the maximum likelihood estimation in
msm; for details see Jackson (2011).

The Gompertz model is fitted using a piecewise-constant approximation; see Sec-
tion 2.2. Once the model parameters are estimated, we use them to derive the smooth
Gompertz hazards. A function in elect can be used to depict these fitted hazards
of the age-dependent model. For a woman aged 70, we have age = 0 and x = 0 and
use:

R> hazards(model, b.covariates = list(age = 0, x = 0),

no.years = 20, max.haz = 0.2, age.shift = -70)

Figure 2 depicts the hazards on the original age scale (derived from the argument
age.shift = -70). All three hazards increase with increasing age.

To enable using elect, there are prerequisite elements in the msm call: using names
state and age in the data, and using the option center = FALSE. For covariates
that are encoded as factors, dummy variables have to be used instead when fitting
the model with msm.

To estimate life expectancies, the user has to provide the data for the state-
distribution model (5). Because elect uses age by default as a covariate for the
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Figure 2: Fitted hazards of the age-dependent model (6) for women at age 70 and
older.

state-distribution, this variable has to be included. In the current case, we assume
that the baseline of electData is representative of the population state distribution.
Given this assumption, it makes sense to use the baseline records as the data for the
state-distribution model:

R> sddata <- electData[electData$bsline == 1,]

The range of the (shifted) age in this subset is from about 1 up to 23. We assume
that the subset represents the population of interest for the marginal life expectancies.
The definition of the data for the state-distribution model is application specific; see
also the example in Section 3.2.6 and the discussion in Section 4.

Say we want the life expectancies for a man aged 70. The elect call and the
summary commands are:

R> LEs <- elect(x = model, b.covariates = list(age = 0, x = 1),

statedistdata = sddata, h = 0.1,

setseed = 1234, age.max = 50, S = 500)

R> summary(LEs)

In the above, we specify age = 0 because of the shifted age scale, and x = 1 for
men. Value h = 0.1 is the parameter for the grid in the integral that is used in the
estimation of the life expectancies. In this case, the integral is approximated on a
0.1-year grid.
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The specification of age.max should be such that the probability to survive beyond
age.max is assumed to be negligible. This specification should take into account the
transformation of age before the model was fitted. In the example, specifying age.max

= 50 corresponds with an assumed maximum age of 70 + 50 = 120 years.
If no estimation of the uncertainty is required, the default S = 0 should be used.

In that case only point estimates of the life expectancies will be provided. In the call
above, the estimated uncertainty is estimated using 500 replications.

The summary function provides the following output:

-----------------------------

elect summary

-----------------------------

Covariate values in the multi-state model:

age x

0 1

Covariates in the state-distribution model:

age

Life expectancies:

Using simulation with 500 replications

Point estimates, and mean, SEs, and quantiles from simulation:

pnt mn se 0.025q 0.5q 0.975q

e11 8.627 8.402 1.174 6.137 8.375 10.564

e12 2.399 2.376 0.505 1.494 2.349 3.496

e21 0.000 0.000 0.000 0.000 0.000 0.000

e22 5.360 5.387 1.379 2.823 5.351 8.191

e.1 7.496 7.151 1.201 4.766 7.125 9.432

e.2 2.787 2.828 0.616 1.795 2.799 4.146

e 10.283 9.979 1.233 7.532 10.002 12.306

-----------------------------

The output for the life expectancies consists of state-specific (1), marginal (2),
and total life expectancies (3) derived from the maximum likelihood point estimate
of the model parameters (pnt). In addition, means (mn), standard errors (se) and
quantiles (0.025q, 0.5q, and 0.975q) of the simulated distribution are derived from
the maximum likelihood estimation.

The output for the life expectancies shows that for a man aged 70, the to-
tal life expectancy is estimated at 10.283 years with a 95%-confidence interval of
(7.532, 12.306). If this man is healthy when aged 70, then he is expected to spend
8.627 years in good health. If we do not know whether he is healthy at age 70, he
is expected to spend 7.496 years in good health. Because of the small sample size in
this example, the uncertainty on these statistics is large.

Because the uncertainty is estimated by simulation, small differences are expected
when rerunning elect. The argument setseed in elect can be used to produce the
same results across reruns.
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Figure 3: Life expectancies for men conditional on their age (with 95% confidence
bands). Solid lines for total life expectancy, dashed lines for marginal life expectancy
in the healthy state.

Figure 3 shows estimated life expectancies for 70 up to 90 years old. This graph
is constructed by using elect repeatedly on single years of age between 70 and 90.
Confidence bands are based on 500 simulations.

For the state-distribution model, the default in elect is to use a multinomial logis-
tic regression model with age as the only covariate. This can be extended to include
additional covariates. This option is relevant for the estimation of the marginal life ex-
pectancies only. Further to the example above, when adding statedist.covariates

= c("age","x") to the elect call, we obtain point estimates e.1 = 7.677, and
e.2 = 2.725, which are quite close the previous estimates. More information about
the fitted logistic regression can be obtained by augmenting the above command:
summary(LEs, sd.model = TRUE).

3.2 Additional functionality in elect

3.2.1 Data exploration

Predicting life expectancies typically involves extrapolation of the model beyond the
age range in the data. For this reason, it is important to know the distribution
of age in the data. To explore the data before fitting the multi-state model, the
function explore produces basic statistics with respect to sample size, number of
observations, and age. The function also provides information on the length of the
time interval between observations. The latter is important given the piecewise-
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constant approximation that is underlying the estimating of the age-dependent model.
For the example data set, the command is explore(electData). In this data set,

the median length of time intervals is 1.98 years. This has to be interpreted relative
to the expected rate of change in the health process that is of interest. For example,
if ill health is defined as cognitive impairment in older age, following individuals up
about every 2 years seems suitable; see, for example, the English Longitudinal Study
of Ageing (ELSA, Taylor et al., 2007).

3.2.2 Numerical settings

The user can specify the method for the numerical approximation of the integral in
(1). In the elect call, specification method = "step" is the default. Additional
options are "MiddleRiemann" and "Simpson". Typically, this makes little difference
if a small h is specified in the elect call; see the example in Section 3.2.6.

3.2.3 More complex multi-state models

The function msm allows for a wide range of multi-state models. For example, it
is possible to fit hidden Markov models that allow for misclassification of state. In
this case, elect can still be used and it will compute life expectancies for the latent
process (as opposed to the manifest process which is assumed to be confounded by
misclassification).

It is also possible to fit multi-state models in msm with restrictions on parameters.
These can be equal-to-zero restrictions (e.g. γ23 = 0), constraints across transitions
(e.g. ξ13 = ξ23), or a combination thereof. Equal-to-zero restrictions are taken
into account in elect automatically. Constraints, however, have to be formulated
explicitly in the elect call by using the argument RestrAndConst. The function
check.RestrAndConst can help the user to check the specification.

Typically, msm is used to fit a model for interval-censored data, however, the
software can also be used for data with exact times of transitions for all states. The
use of elect does not have to be adapted when exact-time data are used.

3.2.4 Functions of life expectancies

It is possible to compute functions of life expectancies. Further to the example
in Section 3.1, one might want to know about the difference of life expectancies
given either state 1 or state 2 at a given age. In the notation in Section 2.1 this is(
e11(t|x) + e12(t|x)

)
−
(
e21(t|x) + e22(t|x)

)
given age t. To obtain the uncertainty,

the function plusmin can be used:

R> plusmin(LEs, index = c(1, 2, 3, 4),

func = c("plus", "minus", "minus"), digits = 2)

pnt mn se 0.025q 0.5q 0.975q

func(LEs) 5.67 5.39 1.66 1.96 5.51 8.34
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3.2.5 Plotting the estimated life expectancies

The computation of the uncertainty of the estimated life expectancies is based on the
asymptotic properties of the maximum likelihood estimator. However, assuming that
the uncertainty of the parameters can be described by a normal distribution does
not imply that the uncertainty of the life expectancies can be described by a normal
distribution. The life expectancies are a non-linear function of the model parameters,
and their estimated distribution can be skewed. For a plot of this distribution in the
example in Section 3.1: plot(LEs).

3.2.6 Additional example

To illustrate some of the additional functionality in elect, we use data from heart
transplant patients on cardiac allograft vasculopathy (CAV); see Sharples et al.
(2003). This dataset contains information for 622 patients and is available in the msm

package as cav. Four states are defined: state 1 for no CAV, state 2 for mild/moderate
CAV, state 3 for severe CAV, and state 4 for death. Each patient is assigned to state
1 at the baseline examination. Subsequent interval-censored data are available from
examinations that are approximately a year apart. Death times during the follow-up
are known exactly. Sharples et al. (2003) assumed that CAV is a progressive process,
and fitted a four-state model that allows misclassification of state. The misclassifi-
cation makes it possible to explain backward transitions in the data by attributing
these transitions to measurement error in CAV diagnosis.

With the CAV data, we illustrate using elect with a model with four states,
misclassification of state, and parameter restrictions. The following model is for
illustrative purpose only—extended models can be investigated in a similar way.

We start by defining the data using variables names that link up with the elect

requirements:

R> library(elect)

R> dta <- as.data.frame(cbind(id = cav$PTNUM, age = cav$years,

state = cav$state, x = cav$dage,

firstobs = cav$firstobs))

R> Q <- rbind(c(NA, 0.01, 0, 0.01), c(0, NA, 0.01, 0.01),

c(0 , 0 , NA, 0.01), c(0, 0, 0, NA))

Note that age represents time since the heart transplant in years and that matrix Q

defines the five allowable transitions for a progressive four-state model with state 4
as an absorbing state.

Next we define the potential misclassification by defining a 4× 4 matrix:

R> E <- rbind(c(0, 0.1, 0, 0), c(0.1, 0, 0.1, 0),

c(0, 0.1, 0, 0), c(0, 0, 0, 0))

The off-diagonal entries in matrix E that are not zero define the misclassification
model. A latent state 1 can be observed as state 2, a latent state 2 can be observed
as state 1 or 3, and a latent state 3 can be observed as state 2. Value 0.1 is used
here as starting value for the maximum likelihood estimation—other choices within
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(0,1) are possible. To fit the multi-state model with misclassification, we call the msm

function:

R> model <- msm(state ~ age, subject = id, data = dta,

covariates = ~ age + x, center = FALSE, ematrix = E,

qmatrix = Q, fixedpars = c(7:10), obstrue = firstobs,

deathexact = 4, constraint = list(x = c(1,2,1,2,2)))

The argument obstrue = firstobs implies that we assume that the first state 1 of
each patient is not misclassified. With age and x as covariates, there are three sets
of five parameters in this model. The first set includes the intercepts for the five
transitions; the order is 1 → 2, 1 → 4, 2 → 3, 2 → 4, and 3 → 4. The next set
includes the effects of age in the same order. The argument fixedpars is used to fix
covariate effects to their initial values, which are zero by default. The specification
fixedpars = c(7:10) uses the ordering above to restrict the effect of age to be zero
for all the transitions but the first one. The last five parameters are for the effect of x.
The argument constraint = list(x=c(1,2,1,2,2)) uses again the same ordering
and implies that transitions 1 → 2 and 2 → 3 have the same effect of x, and that
transitions 1→ 4, 2→ 4, and 3→ 4 have the same effect of x. In other words, there
are two effects for x, one for moving forward through the living states, and one for
dying.

The estimated misclassification matrix is

> round(model$Ematrices$baseline,2)

State 1 State 2 State 3 State 4

State 1 0.97 0.03 0.00 0

State 2 0.17 0.77 0.07 0

State 3 0.00 0.10 0.90 0

State 4 0.00 0.00 0.00 1

This implies, for example, that the probability to classify a latent state 2 as an
observed state 1 is 0.17. Estimated effects of age and x on the hazards can be
assessed in a standard way and we will not discuss them here.

The estimation of life expectancies in elect is based on the fitted latent pro-
gressive four-state process; the estimated misclassification is not taken into account.
This is because we are interested in duration in state after we have take into account
the measurement error. The code for elect starts with defining the data for the
state-distribution model and specifying the parameter restrictions:

R> sddata <- dta[dta$firstobs == 1,]

R> RestrAndConst <- c(1,2,3,4,5, 6,0,0,0,0, 7,8,7,8,8)

R> CHECK <- check.RestrAndConst(model, RestrAndConst, PRINT = FALSE)

<RestrAndConst> correctly defined.

Note that the vector RestrAndConst is in line with the parameter restrictions in
the msm call. The function check.RestrAndConst is used to check this vector with
the fitted model produced by msm. The function has an argument PRINT = TRUE to
provide more details. Estimated life expectancies are next obtained by
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R> LEs <- elect(x = model, b.covariates = list(age=0, x=1),

statedistdata = sddata, h = 0.01, setseed = 1234,

RestrAndConst = RestrAndConst, age.max = 50, S = 500)

R> summary(LEs, sd.model = TRUE)

-----------------------------

elect summary

-----------------------------

Covariate values in the multi-state model:

age x

0 1

No state-distribution model was fitted.

Life expectancies:

Using simulation with 1000 replications

Point estimates, and mean, SEs, and quantiles from simulation:

pnt mn se 0.025q 0.5q 0.975q

e11 7.983 8.024 0.738 6.670 7.987 9.578

e12 3.711 3.615 0.662 2.491 3.524 5.077

e13 1.969 1.974 0.642 0.950 1.895 3.550

...

-----------------------------

Because all patients start in state 1 at age = 0, elect does not need to fit a model for
the distribution of state at age = 0. In this case, e•s(t|x) = e1s(t|x), for s = 1, 2, 3;
that is, the marginal life expectancies are equal to the life expectancies for state s
given initial state 1.

Expected duration in state 3 for severe CAV is shorter than expected duration in
state 2 for mild/moderate CAV:

R> plusmin(LEs, index = c(2, 3), func = "minus", digits=2)

pnt mn se 0.025q 0.5q 0.975q

func(LEs) 1.74 1.64 0.77 0.08 1.66 3.33

Since the elect estimation is based on numerical integration, arguments in the
elect call can be used to specify the approximation that is involved. In general,
smaller h and larger age.max will give better results, but are computationally inten-
sive.

For the CAV example, Table 1 shows the impact of varying the specification of
h, age.max, and method. The specification of h should take the time scale of the
model into account. In the model for CAV, years since heart transplant is the time
scale; for example, if h = 0.5, then the integral is approximated on a half-year grid.
The specification of age.max should be such that the probability to survive beyond
age.max is assumed to be negligible.

Clearly, specifications of h and age.max have an impact. However, Table 1 also
shows that beyond some point, a smaller h or a larger age.max does not lead to a

14



Table 1: Exploring the effect of argument specifications on the elect estimation in
the CAV example. Point estimates only.

Argument specification e11 e12 e13 Fixed arguments
h 0.005 7.984 3.711 1.969 age.max = 50

0.010 7.983 3.711 1.969 method = "step"

0.050 7.970 3.710 1.969
0.100 7.954 3.708 1.968
0.500 7.829 3.693 1.961
1.000 7.676 3.669 1.952

age.max 100 7.983 3.714 1.974 h = 0.010
75 7.983 3.714 1.974 method = "step"

50 7.983 3.711 1.969
25 7.976 3.387 1.601
10 6.418 1.289 0.383

method "step" 7.983 3.711 1.969 h = 0.010
"MiddleRiemann" 7.981 3.711 1.969 age.max = 50
"Simpson" 7.978 3.711 1.969

relevant change in the estimated life expectancies. For example, given age.max =
50 and method = "step", switching from h = 0.010 to h = 0.005 is not worth the
extra computational effort (with h = 0.005 the estimation takes about twice as long
as with h = 0.010). Options "step", "MiddleRiemann", and "Simpson" represent
standard methods for numerical integration. Table 1 shows that once h and age.max

are fine-tuned, the results are consistent across the three methods. We see this as an
indication of successfull numerical integration.

In Table 1, we investigated the numerical integration using point estimates only;
that is, with specification S = 0. When S > 0, simulation is used in elect to
obtain standard errors and confidence intervals, the same numerical integration is used
repeatedly with different parameter vectors. The extra computational effort increases
linear with increasing S: if the number of simulations is doubled, the computational
time will also double.

4 Discussion

We have demonstrated that elect can be used to compute state-specific and marginal
life expectancies on the basis of continuous-time multi-state models fitted with msm.
There is extended functionality to estimate confidence intervals and functions of these
life expectancies.

The package elect only works with multi-state Gompertz models that are fitted
with msm. The underlying methodology, however, extends to any other parametric
hazard model. We are planning an extension of elect that allows for parametric
models that cannot be fitted in msm, such as the Weibull model and the log-normal
model.
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It is important to understand that the estimation of life expectancies is completely
reliant on the fit of the estimated multi-state model. As stated in Van den Hout
(2017), if there is bias in the estimated model, then this bias is propagated in the
estimation of the life expectancies. Even if there is no bias in the estimated model,
one has to take into account the age range in the data to which the model is fitted.
In most cases, the definition of the life expectancies implies an extrapolation of the
model beyond the study time. Say a longitudinal study is set up where all individuals
are 75 years old at baseline. If the follow-up time is 15 years, then estimated life
expectancies are based on extrapolation of the model beyond the age range in the
data. In addition, if the study started in 2000, and the results are used to compute
life expectancies for individuals who are 75 years of age in 2015, then there is also an
extrapolation across birth cohorts.

If the only data available are the longitudinal data for the transition model, we
can use a subset of the data to fit the multinomial regression model (5) for the
state distribution. If the baseline of the longitudinal data is representative of the
population state distribution, then it makes sense to use the baseline records as the
data for the state-distribution model. This was illustrated in the examples. It is also
possible to use the longitudinal data instead (bar the observations in the dead state).
This second option might be of interest when at the study baseline, all individuals
are in one state at the same age but inference is aimed at marginal residual life
expectancies at a later age. Yet another possibility is to use a second dataset. Any
data that contains information on the age of being in the living states can be used.
This may be of interest if one is interested in a population with the same transition
process but with another state distribution.

In addition to age, elect allows the user to include other covariates in the multi-
nomial regression model for the state distribution. In general, we advise to include the
covariates that are also used in the transition model. Note however, that a significant
effect on transition hazards does not imply a significant effect on state prevalence.
The latter can be investigated in elect by using the argument sd.model = TRUE in
the function summary.

The specification of the multinomial regression model and the option to specify
the data for that model, can be used to investigate the extrapolation that underlies
the estimation of the marginal life expectancies. If small changes in the estimated
state distribution imply big changes in estimated life expectancies, then extra care is
needed with respect to the model specification and the inference.

It is important to check whether the piecewise-constant approximation for the
Gompertz model is realistic. The function explore can be used to check the time
between observations. Some preliminary knowledge of the process of interest is needed
to assess whether the piecewise-constant approximation is realistic. Note that this
concerns the fitting of the model only. The estimation of the life expectancies also
uses the piecewise-constant approximation, but the grid for this approximation is
specified in the elect call by argument h, which can be chosen as small as required.

There are no restrictions on the number of states in elect or on the pattern
of the transitions between the living states; that is, the transition process can be
progressive or reversible, or a combination thereof; see for example, the four-state
model in Robitaille et al. (2018) and the five-state model in Van den Hout (2017,

16



Chapter 7). The methods for the estimation of life expectancies can be applied
to processes with multiple death states, but the current version of elect does not
support this.

Typically, the research questions and the available multi-state data will define
the number of states. Although it is relatively straightforward to define models
for a stochastic process with many states, estimation of model parameters may be
hampered by lack of information in the data. It is important to explore the data with
regard to the multi-state process before fitting models. For example, if the sample size
is large with respect to the number of individuals but there are just a few transitions
between states, then estimation of model parameters will be problematic. The same
holds for covariate information; for example, if there are men and women in the study
but only women transition to other states, then adding gender as a covariate will lead
to estimation problems. The package elect is developed as an add-on to msm and is
only of use when msm is able to fit a model to the data. For instance, if msm is not able
to estimate the uncertainty of the parameter estimates because if cannot evaluate an
intermediate quantity (e.g., the second-order partial derivatives of the log-likelihood
function), then elect will not compute life expectancies, and will output a warning
message instead.

The combined usage of msm and elect has potential in medical studies, epidemi-
ology, demography, health economics, ecology, and actuarial science. Increasingly,
research interest is not limited to residual total life expectancy but also includes
questions about life expectancy in specific health states. For example, what propor-
tion of total life expectancy will be spent in ill health? Or, given states that describe
disease progression or disease combinations, how many years will be spent in each of
the disease states? If longitudinal data are available, elect can contribute to this
research.
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