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Robot–Robot Gesturing for
Anchoring Representations
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Abstract—In a multirobot system, using shared symbols for ob-
jects in the environment is a prerequisite for collaboration. Sharing
symbols requires that each agent has anchored a symbol with an
internal, sensor level representation, as well as that these sym-
bols match between the agents. The problem can be solved easily
when the internal representations can be communicated between
the agents. However, with heterogeneous embodiments the avail-
able sensors are likely to differ, making it impossible to share the
internal representations directly. We propose the use of pointing
gestures to align symbols between a heterogeneous group of robots.
We describe a planning framework that minimizes the required ef-
fort for anchoring representations across robots. The framework
allows planning for both the gesturing and observing agents in a
decentralized fashion. It considers both implicit sources of failure,
such as ambiguous pointing, as well as costs required by actions.
Simulation experiments demonstrate that the resulting planning
problem has a complex solution structure with multiple local min-
ima. Demonstration with a heterogeneous two-robot system shows
the practical viability of this approach.

Index Terms—Cognitive robotics, multi-robot systems, symbol
grounding.

I. INTRODUCTION

AGESTURE is a form of nonverbal or nonvocal communi-
cation in which visible bodily actions communicate partic-

ular messages, either in place of, or in conjunction with speech.
Humans are a species that gesture [1]. In human communica-
tion, gesturing is closely associated to verbal communication
and complements spoken language by providing additional in-
formation or emphasizing specific meanings and descriptions.
Deictic gestures (pointing gestures) help recipients identify the
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target of a conversation by guiding the recipients’ gaze in the
target’s region.

Anchoring is the problem of connecting a symbol referring
to a particular object with corresponding sensor data [2]. Co-
ordination and task-planning with multiple robots requires that
their internal symbols representing objects in the environment
are aligned. To achieve this, we propose that robotic agents can
utilize deictic gestures to anchor symbols to objects. There are
distinctive advantages in implementing a gesturing system for
robots. By using deictic gestures, robots can operate in their
own local coordinate frames in a decentralized fashion, with-
out the need for an overall global frame of reference or shared
representations. Another reason for adopting body language for
robot to robot communication is that when robots exhibit fa-
miliar human-like communication behaviors, they and their ac-
tions and tasks can be more easily perceived and interpreted by
humans.

To anchor a symbol to a physical object, a robot can use
its body to perform a pointing gesture to an object of interest
and at the same time explicitly transmit the symbol related to
that particular object. The observing agent (OA) on the other
hand, needs to be able to detect the gesture and localize the
correct pointed object. The detection of a gesture does not nec-
essarily require having an accurate model of the pointing agent,
making the approach scalable under heterogeneity of agents’
embodiments. In order to perform the anchoring using gestures,
the observing robot needs to have capabilities for detecting the
pointing appendage, detecting possible target objects and infer-
ring the correct target object.

This paper proposes a framework for gesture-based anchoring
to enable sharing of symbols between a gesturing agent (GA)
(the robot that performs gestures) and an OA (the robot that
detects and recognizes gestures). We present an implementation
of the framework that demonstrates decentralized planning of
behavior for pointing and OAs. In particular, we consider both
efficiency and effectiveness such that:

1) we propose how to minimize ambiguities in pointing by
choosing the gesturing location, while taking efficiency
into account by minimizing required time;

2) we propose how to minimize observation time by choosing
the observation location that maximizes detection proba-
bility (e.g., by considering self-occlusions) while requir-
ing minimum time for moving into; and

3) we demonstrate how anchoring can be triggered automat-
ically when needed.

1552-3098 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4630-8302
https://orcid.org/0000-0003-4412-2723
https://orcid.org/0000-0002-5230-5549
mailto:pk@blue-ocean-robotics.com
mailto:khurram.gulzar@aalto.fi
mailto:khurram.gulzar@aalto.fi
mailto:ville.kyrki@aalto.fi
mailto:stefan.kinauer@centralesupelec.fr
mailto:stefan.kinauer@centralesupelec.fr
mailto:i.kokkinos@cs.ucl.ac.uk


KONDAXAKIS et al.: ROBOT–ROBOT GESTURING FOR ANCHORING REPRESENTATIONS 217

The proposed approach allows sharing of symbol identities
across a heterogeneous set of agents, which may not share
perceptual capabilities, for example, one agent measuring plain
three-dimensional (3-D) point clouds and another RGB images.
Experiments with a heterogeneous pair of robots (NAO and
KUKA YouBot) show how the anchoring can be used to share
anchored symbols without sharing internal representations.

II. RELATED WORK

In a distributed system with heterogeneous agents, determin-
ing that a symbol refers to a particular object can be solved using
cooperative anchoring [3]–[5]. However, for the anchors to re-
fer to the same physical object, it is important that the observed
object must be the same than the one referred by the other agent.
Gestures offer an approach for anchoring. In robotics, gestures
are primarily studied in the context of human–robot interaction.
In particular, there is a long line of work in building robot in-
terfaces that recognize human gestures, e.g., [6]–[8]. Also the
gesture execution by robots has been studied within human–
robot interaction, for example, to investigate how gestures can
generate more natural interaction between a robot and a human
[9]–[11] and [12]. Admoni et al. [12] used the speech, gaze
as well as pointing gestures selectively, to resolve ambiguities
for the targeted object. Moreover, A learning-based approach is
presented in [13], enabling robots to perform learned behaviors
effectively. A significant amount progress had also been made
in the area of natural language processing where, the work as-
sumed that the symbols are already grounded, such as [10], [14],
and [15].

The literature related to robot–robot interaction (RRI) using
pointing gestures and body language is very limited. Therefore,
despite the differences between human–robot and robot–robot
gesturing, we next provide an overview of both the works in
robot and human gesture detection. There are numerous ap-
proaches on gesture detection systems. These systems usually
deploy a number of different visual sensors and algorithms to
recognize and track hand movements and body language. In
[16], a Kinect sensor is utilized to recognize pointing gestures.
The developed algorithm uses skeletal points to track human
arms. In that approach, a minimum bounding box and a Kalman
filter estimator is used to extract the direction of the pointing
gesture by tracking the pointing fingertip. In a similar man-
ner, Patsadu et al. [17] exploited the skeletal tracker provided
by the Kinect SDK and a data mining classifier to recognize
human gestures. This is a relatively close work to our track-
ing approach, where the developers use a very large training
dataset of body-part point-cloud models to train the classifier.
Other implementations deploy simple 2-D cameras to detect ges-
turing based on skin colour regional modeling as described in
[18]–[20]. There, probabilistic and other classifier methods learn
to detect and categorize a number of gestures.

Regarding the 3-D detection and the pointing system, there
is some previous literature on robots performing pointing ges-
tures. In [21], for example, the authors base their approach in the
analysis of how humans perform arm gestures. They report that
most of people use the line of sight between head and hand when

pointing at an object. They also suggest that only the direction
of the forearm cannot provide conclusive results. To point at
objects they utilize a robotic platform with only three degrees of
freedom (two in the shoulder and one in the elbow) and combine
both arm extension and line of sight. This approach although
reliable when directed toward human–robot interaction, fails in
scenarios when robots with no distinct human appearance per-
form pointing gestures. Such scenarios are included in robot
to robot interaction, and therefore, the execution of pointing
gestures is generalized. Spranger et al. [22] presented robot to
robot interaction scenarios through the formation of language
games in robots. Their research is basically formulated around
the artificial linguistic evolution problem, rather than the di-
rect communication between robots through gesturing. In their
research they utilize a number of Sonys QRIO robots to per-
form pointing gestures by using robots kinematics to align its
hand pointing vector and line of sight with a detected object
of interest. However, in their research there is no explicit ob-
servation of pointing gestures between participating robots, but
the coordinates of the pointed objects are broadcasted by the
pointing robot. Hafner and Kaplan [23] presented some explicit
communication capabilities between two Sony AIBO robots.
Therein, one robot executes a hard-wired pointing gesture and
the other one has to detect whether the gesture was pointing to
the left or to the right. A pointing-agent-centric approach is pre-
sented in [24], where optimization of pointing gesture detection
is considered for human–robot interaction. A pointing gesture is
modeled as a cone of rays emerging from the tip of the pointing
agents finger. The model is conceptually similar to some of the
author’s previous work [25] such that the closer the pointing
hand is to the targeted object, the more resolution the ray has
and vice versa. However, the model presented in [25] considers
the ambiguity as source of multiple object occlusions and finds
the observer’s detection accuracy.

Selecting objects of interest from a pointing gesture is another
issue that research has been done only in human–robot interac-
tion (HRI) and some interesting approaches are presented the
following. The authors of this publications started working on
the presented problem in [26] where they developed a Robotic
Operating System (ROS) oriented system for pointing gesture
detection and pointed object localization. Hofemann et al. [27]
presented an object selection mechanism where a context area
is defined as the area where an object can be expected. This area
is defined as a circle segment with some search radius and a
direction range. As long as a pointing gesture is detected, the
context area is progressively defined with a shrinking search dis-
tance as the hand slows down. If there are more than one objects
lying inside the context area, a random selection is performed.
In a different approach, Pateraki et al. [28] predefined positions
of interest (POI) for each available object at hand. Furthermore,
they estimate the pointing probabilities of the available POIs us-
ing the Dempster–Shafer theory to fuse information from head
pose and pointing gesture orientation. In [29], a robot learns to
recognize pointing gestures and the objects that are pointed by
the gesture. The target selection mechanism is prioritized based
on the distance between the target and the deictic gazing posi-
tion. In order to have a successful target selection, the robot has
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to first recognize and learn deictic gestures by pointing to ob-
jects in close proximity by its human training counterpart. Perez
Quintero et al. [30] computed the hit location of the obtained
pointing vector. This hit location is defined as the intersection
between a virtual ray, heading toward the same direction as the
pointing vector, and the point cloud. The algorithm then com-
pares the distances between the hit point and the centroid points
of the objects and takes the closest object as the pointed item.
Finally, in [31], a method of object selection is presented based
on a three-layer attention-drawing model. This model combines
verbal object selection cues with pointing gestures to indicate to
a listener–observer, which objects is currently under considera-
tion. In their experiments, they verify the effectiveness of their
proposed method using a robotic pointing agent and a number
of human listeners–observers.

Anchoring is the process of creating and maintaining the cor-
respondence between symbols and sensor data that refer to the
same physical objects. It can be seen as a subproblem of sym-
bol grounding, creating new semantically meaningful symbols
using sensor data or existing symbols. The symbol ground-
ing problem [32] has mainly received attention in robotics in
the context of symbolic inference, language understanding and
human–robot communication, where its significance is consid-
ered a fact. More recently, the related problem of anchoring [2]
has been found as the necessary link for combining high-level
reasoning with low-level sensing. Most studies have concen-
trated on the philosophical issue and only in 2008 Steels [33]
argued for the first time that the problem is understood well
enough that solutions can be proposed. One of the important
points is that to solve symbol grounding, a machine must be
a robot rather than a computer, because both senses and sen-
sorimotor interaction with the world are necessary [34]. Olier
et al. [35] presented how the internal representations can be dy-
namically constructed based on the capabilities to interact with
the environment. However, these representations are internal
to the agent. There are following three practical approaches
that have been proposed for the problem of grounding in
robotics.

1) Use clustering on low (signal) level to reveal similar in-
stances (objects, motions, places) w.r.t. some metric [36].

2) Try to detect spatiotemporal correlations to learn the in-
teractions of the agent [37].

3) Learn the correspondence between a human defined set
of linguistic symbols and sensory inputs and outputs, for
example, using a neural network [38].

However, all these are usually considered in the context of a
single robot.

III. ANCHORING SYSTEM

This paper addresses the issue of using gestures to anchor
object identities between heterogeneous agents with different
perception capabilities. This requires, first, a GA to point unam-
biguously and accurately toward the object of interest. Second,
an OA needs to extract the pointed object by tracking the point-
ing gesture.

Fig. 1. NAO arm pointing toward objects 1 and 2 from positions A to D.
Pointing Ambiguity: Positions A and B are ambiguous (both objects 1 and 2 lie
alongside the line corresponding to a pointing gesture), whereas C and D are
unambiguous (objects 1 and 2 do not lie along the imaginary line related to the
pointing gesture).

To address the issue on the GA’s side, we propose a rigorous
approach to overcome ambiguities in pointing. In that trail of
thought, a model of optimal pointing with respect to the GA’s
pose is established and best pointing poses are identified, taking
into account the position distribution of objects in the environ-
ment. Furthermore, a planner for choosing the pointing pose
is developed that minimizes the expected time required for a
successful gesture based anchoring.

From the OA’s point of view, we present a pointing gesture
perception and the pointed object recognition system. The per-
ception performance is modeled quantitatively to determine best
gesture observation poses. The model includes both the success
rate of gesture recognition as well as the overlap between the
fields of view (FOV) of the two agents. The model is used to op-
timize the gesture observation pose by taking additionally into
account the travel time required by OA to reach each pose.

Through the anchoring process, the two agents end up ob-
taining the same identities (symbolic names) for the objects of
interest even though GA and OA utilize different object rep-
resentations, which are previously trained models for GA and
online built models for OA. In the following, we first discuss
the individual development of GA and OA. Then, we moving
on toward the developed anchoring system.

IV. GESTURE EXECUTION

Pointing gestures are especially valuable in crowded scenes
where multiple hypothetical objects matches are present. How-
ever, in such scenes the pointing gestures can easily become in-
trinsically ambiguous. For example, ambiguity is present when
multiple objects lie along the imaginary line corresponding to a
pointing gesture as depicted in Fig. 1.

The pointing gesture itself can also be inaccurate. Imperfect
calibration of the GA, uncertainty in estimation of object loca-
tion, and mechanical accuracy of the GA among other factors
limit the accuracy of the gestures. Even if a pointing direc-
tion is not ambiguous, small errors in the pointing direction
detected by the observer can cause the gesture to fail. Such er-
rors may results from inaccuracies in actuator’s positioning, as
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Fig. 2. NAO arm pointing toward objects 1 to 3 from left and right. Inaccura-
cies in actuator’s positioning may cause uncertainty to point toward object 1 or
3 from left side. It can be avoided if pointing is executed from the right side.

demonstrated in Fig. 2, where pointing at object 3 from right
would be significantly less ambiguous than pointing from the
left side.

Moreover, the observation of the gesture can be inaccurate.
The latter inaccuracies expand the regions were pointing is am-
biguous. The detection of the correct target depends not only on
the accuracy of the OA but also on the intrinsic ambiguity of
the used pointing gesture. If the inaccuracy of detection is as-
sumed to be isotropic, the pointing actions can, thus, be planned
without accurate knowledge of the OA.

The pointing process can be outlined as follows: After receiv-
ing a request to point at an object of interest from the OA, the
GA performs the following tasks:

1) detects all known objects and computes their 3-D positions
using a geometric approach;

2) determines a path to optimal pointing location taking into
account required time for motion and success probability
of each location; and

3) executes the pointing gesture.

A. View-Invariant 2-D Object Detection

For completeness, we review here the 2-D object detection
method used by the GA. The detection is based on deformable
part models (DPMs) that are among the most successful and
popular approaches for object detection and pose estimation
[39]–[41]. A DPM consists of several object parts and pairwise
constraints between them. Thereby, they combine the visual
appearance of object parts and their spatial configuration. Such
a model can be described as a score function

S(x) =
∑

i∈N

U (xi) +
∑

i,j∈E

P(xi, xj ). (1)

The unary term U (xi) assesses how well part i fits in position
xi in the image. The pairwise term P(xi, xj ) takes into account
the position of parts i and j relative to each other.

As the unary term, we use a scalar product of histogram-of-
Gaussian (HOG) features [42], [43]. The pairwise term is

Pi,j (xi, xj ) = −(xi − xj − μi,j )T Ii,j (xi − xj − μi,j )

∀(i, j) ∈ E (2)

where the model parameters μi,j and Ii,j describe the ideal
distance xi − xj and precision of the distance, respectively.

We use the generalized distance transform algorithm [44] to
find maxima of the score function. To account for different view-
points we train a small number of DPM models from distinct
viewpoints. We optimize every viewpoint specific model sepa-
rately, yielding a number of 2-D coordinates, accompanied by
their scores. Then, the object proposal with the highest score is
the object we sought.

The learning process requires a few hours per object model.
Once the model is trained, detection takes about 0.1 s. To extract
3-D coordinates of the detected objects for pointing, intersec-
tion of the object view vector and a known supporting plane is
determined [25].

The execution of pointing gesture requires the 3-D coordi-
nates of the object’s centroid are known. However, the algo-
rithm described above outputs the objects centroids along with
enclosed bounding box in image coordinates. Therefore, to ex-
tract 3-D coordinates of the detected objects, a vector (line) is
drawn from the robot camera origin to the centroid of the de-
tected object. Assuming that the objects are placed on a known
supporting surface, we then extract the 3-D position of the object
as the intersection of the vector and the surface [25].

B. Pointing Accuracy Model

Successful pointing requires the gesturing location to be un-
ambiguous. Any agents acting as a GA requires to measure
the success of pointing gesture execution from a particular loca-
tion. Therefore, we utilized the pointing probabilistic model pre-
sented in our previous work [25], that gives the success measure
within the robot’s workspace. This model utilizes Von Mises–
Fisher (VMF) distribution and is given by

GAPi(s|xk ) = Pi(κ) =
Pi,i(κ)∑n

j=1 Pi,j (κ)

=
exp(κ)∑n

j=1 exp(κ cos θi,j )
(3)

where θi,j is the angle between the vectors toward the ith (tar-
geted) and jth objects. The scalar concentration parameter κ
defines how concentrated the distribution is around the mean.
For details of this model please see [25].

In our earlier work [25], we used (3) directly and chose the
pointing position as the one maximizing (3), determined by
exhaustive search. However, there are often many approximately
equally good positions but some of those are easier to reach than
others. In the following, we extend the optimization to minimize
the time to perform a successful pointing gesture.

C. Dynamic Gesture Planning

The first part of the proposed planning framework had to
minimize the expected time to perform successful pointing from
position xk . this is achieved by modeling the total time as

ttotal(xk ) = (tmotion(xk ) + tpoint(xk )) + GAPi(¬s|xk )trest (4)
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where tmotion(xk ) is the time required to relocate to a position
and tpoint(xk ) is the time it takes to execute the pointing gesture,
including the time to first, orient toward target, second, detect
the object, and third, perform any relative arm movements. The
last term describes the time required for all subsequent pointing
attempts trest in case the first attempt is unsuccessful with prob-
ability GAPi(¬s|xk ) ≡ 1 − GAPi(s|xk ). The time required for
motion is furthermore expanded as

tmotion(xk ) = ttrans(xk ) + trot(xk ) (5)

where the first term describes the time required to move to the
position and the second one to orient the GA toward the target
once the position is reached. For the sake of clarity here, we need
to emphasize that time costs do not represent actual absolute
timing quantities but reflect times required with a particular
velocity.

To evaluate the expected time for subsequent pointing at-
tempts, we make the simplifying assumption that the likelihood
of a pointing position is determined solely by its success rate
determined by (3). The expected movement cost can then be
approximated using

tavg-mot =
∑N

k=1
GAPi(s|xk )tmotion(xk )

∑N
k=1

GAPi(s|xk )
. (6)

We can also calculate the average probability of failure over
all positions as GAPavg(¬s) = 1/N

∑
k

GAP (¬s|xk ). Using this
average probability, the number of required attempts until the
first success can be computed as the limit of the geometric
series as

navg =
∞∑

i=1

(GAPavg(¬s))i =
1

1 − GAPavg(¬s)

=
1

1 −
∑

k
GAP (¬s|xk )

N

. (7)

The expected time for subsequent pointing attempts trest is then

trest =
tavg-mot

1 −
∑N

k=1
GAPi(¬s|xk )

N

. (8)

To implement planning using the above, we first calculate a
static success probability map for all pointing positions in a grid
using (3). Then, optimal trajectories from the starting position
to all grid locations are determined using the A-star algorithm,
producing the motion costs. The expected motion cost after
a failure is then determined (it is important to note that this
does not depend on the chosen pointing position). Finally, the
expected total costs (time) are determined according to (4) for
each grid location and the one with the smallest is chosen.

V. GESTURE OBSERVATION

Gesture observation success depends on the pose of the OA
with respect to the GA. Moreover, the movement of the OA to
a particular position requires time. In this section, we present
how to minimize the expected time required for a successful

Fig. 3. Optimization of gesture observation. The OA (YouBot) has to move
to a pose and orient its perceptual sensor (e.g., Kinect) to achieve maximum
visibility of GAs (NAO) pointing arm and of any pointed objects.

observation, following an approach similar to the gesturing in
the previous section. This paper is based on our previously
developed pointing gesture detection [26] and the probabilistic
target object detection method [45].

As an overview, consider the scenario presented in Fig. 3,
where the OA initially located in the bottom right corner needs
to anchor a representation for an object only known to the GA.
After GA is ready to point, it broadcasts a signal signifying this.
At this moment, the OA needs to move in a location that mini-
mizes the expected time required until a successful observation
of the gesture. The observation can fail in two ways: If the rela-
tive pose between GA and OA is unsuitable, the OA may fail to
observe the gesture altogether. This happens, for example, when
the pointing arm is occluded by the body of the GA. Second,
the target object may be outside the field of the view of the OA,
also causing a failure. The minimization needs to consider then
three factors: the probability of successful observation of the
gesture from a particular pose, the degree of overlap of FOV
of the agents, and the time required to move to a pose. The
optimal observation pose can then be chosen, as illustrated by
the OA motion in Fig. 3. To consider the above-mentioned fac-
tors, we assume that the relative pose between the agents can be
estimated by the OA.

The probability of successful observation can be defined as

P (D ∧ O|Θ̄) = P (D|Θ̄)P (O|Θ̄) (9)

where D and O are binary variables representing successful
gesture detection and object presence in the overlapping FOV,
respectively. Θ̄ denotes the pose of the OA. D and O are assumed
to be independent.

Next, we continue by reviewing the observation method. We
then present how to model the gesture detection performance
and the FOV overlap. This section concludes by describing how
the components can be used to minimize the expected total time.
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A. Pointing Gesture and Target Object Detection Using
RGB-D

Gesture and target objection detection are based on a previ-
ously developed system as reported in [26] and [45]. The system
uses a Kinect RGB-D sensor and the detection algorithms are
implemented underROS utilizing Point Cloud Library. The ap-
proach is divided into following three components, which are
responsible for

1) detecting and tracking pointing gestures;
2) segmenting the observed environment into potential ob-

jects; and
3) detecting the pointed object by combining results from

the two first components.
GA and OA are synchronized when a deictic gesture starts

to avoid misdetections caused by other moving objects in the
scene.

B. Modeling of Gesture Detection Performance

The success probability of gesture detection with respect to
relative pose between OA and GA P (D|Θ̄) needs to be modeled
in order to use it in the optimization. Because the relationship
between the relative pose and success is complex, we propose
to use a nonparametric model, namely a Gaussian process (GP)
[46]. The GP is parameterized according to distance d between
the agents and view direction α around the GA. The kernel func-
tion of the GP is squared exponential with automatic relevance
determination

K(Θ̄i , Θ̄j ) = e−
Θ̄ T

i
L 2 Θ̄ j
2 (10)

where Θ̄ ≡ (d, α)T and L ≡ diag(ld , lα ) are a matrix of the
length scale parameters. To predict the binary variable (success),
the cumulative Gaussian

∫ z

−∞
1/
√

2πe−x2 /2dx (11)

is used as the likelihood function, to map the GP output z to the
[0, 1] range.

The GP was built using experimental data. Gesturing by GA
was observed from different distances in range 10–140 cm ev-
ery 10 cm and viewing directions every 22.5◦ (see Fig. 4). For
each distance-direction combination, ten trials were made. The
success of gesture detection was determined manually as a bi-
nary value. The experiment was repeated separately for both
arms. Altogether 4480 experimental trials were collected. The
resulting data are illustrated in Fig. 5. The failures in a sector
are due to self-occlusion by the GA.

Fig. 6 shows plots of the GP output constructed based on
the experimental trials for different viewing directions and dis-
tances. The two plots correspond to the right and left arm be-
ing used for the pointing and the approximate mirror symme-
try of the plots illustrates the different direction of occlusion.
The length scale was estimated using maximum likelihood. The
model fits the data well while also allowing interpolation.

Fig. 4. Experimental setup for obtaining the probabilistic model for
P (D|d, α).

Fig. 5. Data for the GP model on pointing success for left and right arms.
(a) and (c) as well as (b) and (d) are different representations of the same
experimental data. (a) Focuses on the observation distances between OA and
GA’s right-arm gesturing action. (c) Demonstrates GA orientations with respect
to OA. (b) and (d) data collected for GA’s left-arm gesturing action and are
antisymmetric to (a) and (c), respectively. (a) Right Arm Detection Values. (b)
Left Arm Detection Values. (c) Right Hand Pointing Observations. (d) Left
Hand Pointing Observations.

Fig. 6. Modeled Gesture detection probability for different distances and
orientations. These tables are obtained using the GPs for machine learning
(GPML) package in MATLAB. The results are directly related to the data from
Fig. 5. (a) GPML Output for Right Arm Pointing. (b) GPML Output for Left
Arm Pointing.
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Fig. 7. Four FOV overlap scenarios between NAO camera and Kinect sensor
on YouBot. (a) A Bad Overlap. (b) An overlap with Occlusion. (c) A Good
Overlap. (d) A Very Good Overlap.

C. Modeling of FOV Overlap

The overlap between the agents’ FOVs depends nontrivially
on their relative poses. This is illustrated in Fig. 7. In Fig. 7(c)
and (d), the overlap is good. In contrast, in Fig. 7(a), there is only
minimal overlap. In Fig. 7(b), the overlap is large but the OA is
behind the GA, making this position good in sense of overlap
but bad in the view of the gesture detection performance.

We model the probability of having the pointed object in
OA’s FOV P (O|Θ̄) by calculating the proportion of GA’s FOV
that is covered by OA’s FOV. For this scenario the GA’s FOV
area is defined by 61◦ angle with 1.5 m range and the OA’s
FOV area by 57◦ angle with 1.5 m range. The results were
calculated offline and stored in a 40 by 40 grid-table with
squared cells of 0.15 m resolution. During the modeling pro-
cedure, GA remains stationary in the center of the grid (with
0◦ orientation toward the positive x-axis) and the OA sequen-
tially assumes all cell positions (cell(i, j) with 0 ≥ i, j ≥ 40).
In each of these cells, OA performs a full revolution on its
z-axis with resolution of 1◦ and the OA–GA FOV overlaps are
calculated. Finally, for each cell we obtain the maximum over-
lap with respect to OA’s orientations as shown in the equation
below

P (O|Θ̄cell) = max(P (O|i, j, 0◦), . . . , P (O|i, j, 360◦)) (12)

where the pose is Θ̄cell ≡ (i, j, β)T and β is the angle that max-
imizes P (O|Θ̄) with β = α.

The calculated maximum overlaps are shown in Fig. 8 (left).
The figure illustrates the multimodal nature of the overlap as
local maxima appear in front right, front left, and exactly behind
the GA. It is important to note that also orientation of the OA
is optimized in the process. Optimal orientations (β) for each
position are shown Fig. 8 (right). Noticing the detail in the figure,
the complex nature of the FOV overlap is apparent.

Fig. 8. These two pictures assume that the GA is located in the middle of the
grid facing toward the positive x-axis. (left) probability of overlap, with lighter
cells representing higher propability P (O|Θ̄); (right) optimal orientations (β)
of the OA, with its initial orientation (0◦) directed toward the positive x-axis.
The lighter the color inside that grid the more the robot has turned CCW.
(a) Quantitative Distribution of overlapping FOVs. (b) Optimal Orientation
Detecting the Right Arm.

Fig. 9. (left) A-Star algorithm for optimally planning a path to any valid
observation position; (right) Distribution of traversed distances (in meters) by
the OA to reach any available observation positions.

D. Optimization of Observation

Similar to gesturing, we aim to minimize the expected time,
and thus, the energy, required for an OA to reach an optimal
observation pose relative to GA pose and to the position of the
pointed objects. The implementation, follow the general idea
presented in Section IV-C. Repeating the model from (4) for
convenience

ttotal(xk ) = (tmotion(xk ) + tpoint(xk )) + OAPi(¬s|xk )trest

(13)

where now the success is determined by the FOV and ges-
ture detection, OAP (¬s|x) = P (¬D ∨ ¬O|Θ̄), Θ̄ being the po-
lar representation of the relative pose x. Rest of the formulas
(5)–(8) remain the same. The motion costs described by (5) are
computed with A-star taking into account obstacles, such as
other agents and objects in the environment.

Fig. 9 explains the distribution of the motion costs, when the
OA traverses from a starting pose to each and every potential ob-
serving pose. These potential poses satisfy the condition P (D ∧
O|Θ̄) > 0. Each traveled distance is directly proportional to the
time required for the OA to reach an optimal pose, multiplied
by its velocity (dmotion(xk ) = v(xk )tmotion(xk )). Here, the OA
starts at a predefined location and the GA, which is surrounded
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Fig. 10. Anchoring process: When internal representation not found. (Here,
blue and orange boxes indicates the internal processing of GA and OA; explicit
communications are shown in green boxes and implicit communications are
shown with red arrow).

by a buffer no-go area (green stars), is placed at the center of the
grid facing toward the positive X-axis. Inside GA’s vicinity (red
and blue lines) we have placed three target objects, which are
again surrounded by a yellow buffer no-go area. Running the
A-star algorithm we extract all optimal translations to reach the
potential observing locations (blue circles) and the associated
traveled distances (meters) are recorded in Fig. 9.

VI. ANCHORING PROCESS

Fig. 10 shows the anchoring process exemplified using two
robots, GA (a NAO, on the left) and OA (a YouBot, on the right).
OA starts with a task requiring the object “car.” It first checks its
internal object representation database for a perceptual object
model associated with the symbol “car.” Lacking a perceptual
(anchored) model, it transmits a request for the other robot to
show the “car” object, transmitting the symbolic name of the
required object.

GA (NAO in the example) receives the request and begins
a perceptual process for locating the object. After locating the
object referred by the received symbol (car), GA plans a path to

Fig. 11. Use of anchored representations when internal representation exist
in OA’s memory.

a location that is good for pointing. For details of these, please
see Section IV. After arriving in a good pointing location, GA
transmits a confirmation message that it is ready to point.

OA (YouBot) receives the confirmation and plans a path to
relocate to suitable location for observing the pointing gesture
as described in Section V. Arriving to the observation location,
it transmits a request to GA to execute the pointing gesture.
Simultaneously, it begins the observation process for the gesture.

GA (NAO) receives the request and executes the pointing ges-
ture, as presented in Section IV. Simultaneously, OA observes
the gesture and detects the object being pointed at, as described
in Section V, resulting in a point cloud segment corresponding
to the correct object. If OA is not successful, it transmits a re-
quest to repeat the pointing gesture. After success, OA builds an
internal model/representation of the object associated with the
symbol “car,” as presented in Section VI-B.

After a symbol has been anchored, the built internal model
can be used in subsequent tasks where the object is required.
Fig. 11 shows the same scenario of a robot needing the object
“car,” with the difference that the robot already has the internal
perceptual model. The internal memory query is successful and
the robot subsequently executes an object detection method with
the corresponding model. If the object detection fails, the robot
can fall back on requesting help from other agents. In that case,
the anchoring process described in Fig. 10 would be executed
and the robot would update/generate another perceptual model
for the same symbol, generalizing the meaning of the symbol.

A. Anchoring Logic

The anchoring process can be triggered automatically when
needed, that is, when the anchoring of a particular symbol is
required by a particular agent. For example, OA needs object
X. The pick up action requires detecting Object X, which in
turn requires the object to be anchored. The anchoring in turn
requires another agent (GA) that has the object already anchored
and both agents located in suitable places.
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We assume that the agents share the symbolic domain and task
knowledge. The sharing can be performed using low-bandwidth
explicit communication, such as wireless link.

The domain knowledge mentioned above can be described in
a planning language, such as PDDL, as follows:

(:types obj robot)
(:predicates

(has-x ?x - obj ?y - robot)
(object-anchored ?x - obj ?y - robot)
(object-detected ?x - obj ?y - robot)
(ready-to-point ?x - obj ?y - robot)
(ready-to-observe ?x - obj ?y -
robot))

(:action pick-up :parameters (?x - obj
?y - robot)
:precondition (object-anchored ?x ?y)
:effect (has-x ?x ?y))

(:action point :parameters (?x - obj ?y -
robot ?z - robot)
:precondition (and (ready-to-point ?x
?y) (ready-to-observe ?x ?z))
:effect (object-anchored ?x ?z))

(:action move-to-pointing :parameters
(?x - obj ?y - robot)
:precondition (object-x-detected-for-
y ?x ?y)

:effect (ready-to-point-at-x ?x ?y))

(:action move-to-observation :parameters
(?x - obj ?y - robot ?z - robot)
:precondition (ready-to-point ?x ?z)
:effect (ready-to-observe ?x ?y))

(:action detect-object :parameters (?x -
obj ?y - robot)
:precondition (object-anchored ?x ?y)
:effect (object-detected ?x ?y))

The task of OA getting a “car” can then be described as

(:objects car - object GA OA - robot)
(:init (object-anchored car GA))
(:goal (robot-has car OA))

Solving the planning problem results in the following plan:

(detect-object car GA)
(move-to-pointing car GA)
(move-to-observation car OA GA)
(point car GA OA)
(pick-up car OA)

which will then be executed synchronously on both agents. To
solve the planning problem, we used a standard search based
planner.

B. Implementation

Most of the processes shown in Figs. 10 and 11 have already
been explained in the earlier chapters. The exceptions are the
communication link, and object modeling and detection per-
formed after anchoring. They will be described here briefly for
completeness.

1) Communication Link: The communication link handles
the explicit communication between the agents using prede-
fined messages. The messages can be divided into requests and
responses indicating a success or failure of a particular process.
Requests can also include a parameter, which in the above-
mentioned example indicates the symbol corresponding to the
target object. The explicit communication link was implemented
using ROS as communications middleware. All agents connect
to a shared ROS core in order to communicate with each other.

2) Object Modeling and Detection: Object modeling com-
ponent builds a perceptual model of a detected and segmented
object. The implementation can use any available modeling
method that is compatible with the robot’s sensors. For our
demonstration set up, YouBot has an RGB-D sensor that cap-
tures the point cloud corresponding to the object. For perception
purposes, the object is modeled using a color histogram. To ob-
tain some invariance against varying lighting conditions, a nor-
malized RGB chromaticity space is used. That is, the (R,G,B)
triplet is converted to (r, g) chromaticity space using

r =
R

R + G + B
g =

G

R + G + B
. (14)

Then, a 2-D (r, g) histogram h(r, g) is built. The histogram is
then normalized to unit volume, so that

∑
r

∑
g h(r, g) = 1.

Object detection on YouBot is performed in two steps. First,
all objects in the working area are segmented using the known
ground plane. Second, chromaticity histograms of point cloud
segments are matched using L2-norm against the available mod-
els. If the distance is greater than a threshold θ, the matching
fails and a detection failure is reported.

VII. EXPERIMENTS AND RESULTS

This section presents a number of simulated and real exper-
iments on anchoring scenarios. The validity of the proposed
approach is first verified in simulation by individually examin-
ing the proposed optimization techniques for both the GA and
OA. Next, a real robot scenario demonstrates the actual imple-
mentation of the described subsystems (acting and observing)
in a unified object anchoring framework, where a NAO robot
acts as a GA and a YouBot platform as the OA.

A. Simulation of Gesture Planning Model

In this section, we present the simulation of gesture plan-
ning, optimization and execution, demonstrating the behavior
of pointing probability model for different locations of the
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Fig. 12. Pointing success probability from different positions. Crosses denote
objects and red circle the target object.

Fig. 13. (left) A-star paths. (right) time cost map.

targeted object, using (3). Moreover, it also demonstrate the
behavior of dynamic planner module discussed in section. For
the purpose of simulation, it is assumed that all objects are
within the field of view of GA. The object detection algorithm
does not take occlusions into account, therefore, it is further
assumed that none of the objects is occluded, i.e., all objects in
the scene were detected by the GA.

For simulation set up, we consider a work-space of 4 × 4 m2

dimensions with the grid resolution of 0.1 m. Five objects were
placed in the workspace at locations marked with crosses in
Fig. 12.

The Fig. 12 shows the success probability maps for the execu-
tion of pointing gesture for different locations of target objects
(marked with red circles). It can be seen from the figure that
with different location of the targeted object the shape of the
success map is different. Due to the embodiment of the GA, it
is possible to point over the top of other distracting objects as
predicted by the success probability model.

The success probability model of (3) predicts several loca-
tions to be approximately equally good as seen in Fig. 12. This
emphasizes the importance of taking into account the cost of
motion as well as possible new tries, in determining an optimal
pointing position.

Next, tmotion(xk ) was calculated using A-Star, assuming
agent’s linear and angular velocities to be 0.4 m/s and 0.1 rad/s,
respectively. The planned paths and motion cost maps to reach
each grid location are shown in Fig. 13. In this figure, the agent’s
starting pose is marked with the green arrow. It may be noted that
objects are inflated to a safe distance to avoid collision. More-
over, the location of target object is not required for calculation
of tmotion(xk ).

After reaching a particular location, the target orientation
computed by the A-Star algorithm is not necessarily oriented
toward the object of interest. This orientation cost tpoint depends

Fig. 14. Time (tpoint) required to orient toward target, object detection, and
pointing gesture execution from positions (xk ).

Fig. 15. Optimum positions for pointing gesture execution along with planned
path for selected objects of interest.

on the location of the target object. The time costs tpoint for
adjusting orientation are shown in Fig. 14. This figure shows
the final orientation cost for the targeted object marked in red.
It can be seen from this figure that the final orientation of GA
depends on the location of the object of interest relative to the
grid location.

Finally, the time costs according to the full model defined
by (4) are presented in Fig. 15. The starting and optimal poses
of GA are shown with green and red arrows, respectively. It
should be noted that the optimum pose depends not only on the
relative location of target object but also on the relative location
of distracting objects as well as GA’s starting pose. In center
and right cases the optimum is not unique, that is, there exists
an equally good optimum on the south side of the objects due to
the symmetric setup. Moreover, it is interesting to note how the
choice of the target object significantly changes the cost map
so that in some configurations, such as the center one, good
pointing locations are rather limited while in others, such as the
right one, there are more reasonably good options.

B. Simulation of Gesture Observation

In this section, we present a number of simulation experiments
to study the behavior of the optimization of gesture observation.
The GA is a NAO humanoid while the OA is a YouBot. To study
the behavior, the NAO will use either the left or the right arm
for pointing.

Fig. 16 presents the probability distribution for gesture ob-
servation success P (D ∧ O|Θ̄), for pointing with right and left
arms. The graphs are obtained by combining the probability
distributions of detection success P (D|Θ̄) and FOV overlap
P (O|Θ̄). Thus, when the GA (NAO) points with its right or left
arm, the joint probability distribution P (D ∧ O|Θ̄) designates
the front right or front left of the GA position, respectively, as the
best possible solution. This is a reasonable choice since from
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Fig. 16. 2-D grid of optimal position probability of detection distribution
(P (D ∧ O|Θ̄)) when OA observes GA pointing with: (a) right arm and
(b) left arm.

Fig. 17. Four experimental cases where OA starts from different poses.

this areas, the observer has the best visibility of the pointing
action plus a wide area of FOV overlap. However, the com-
plex and multimodal nature of the distributions demonstrates
that the consideration of the movement cost in optimization has
potential to decrease the required effort.

Fig. 17 describes the four different scenarios where the GA
(purple star) was always placed at the center of the grid, facing
toward the positive X-axis, and was surrounded by a no-go buffer
zone (green stars). The grid was composed by rectangular cells
with 0.15 m resolution and had a size of 6 × 6 m2 . Three objects
were placed inside the visual field of the GA, which is defined by
the red-blue lines intersecting the origin of GA’s FOV and at an
angle of 61◦. The objects (red circles) occupy a single grid cell
each. The area around the objects was marked as a no-go area
(yellow circles) to avoid possible collisions with the moving
observer. The YouBot OA started its run from four different
locations, shown in Fig. 17: a) top-left for Case 1, (b) bottom-
left for Case 2, (c) bottom-right for Case 3, and (d) top-right
for Case 4. For each case, the OA utilized the optimal paths, to
reach all active cells with P (D ∧ O|Θ̄) > 0 in Fig. 17.

Figs. 18 and 19 show the total costs ttotal when GA points
with left/right arm, for each of the four starting positions. The

Fig. 18. OA time cost (second) distributions for the four different initial
positions, when GA robot is pointing with the right arm.

Fig. 19. OA time cost (second) distributions for the four different initial
positions, when GA robot is pointing with the left arm.

best observation positions for OA lie in the front-right or front-
left of the GA. However, when considering the total expected
time, the optimal positions vary significantly and all cases have
multiple local minima. This is because of the complexity of the
observation success model P (D ∧ O|Θ̄), combined with the
movement costs. Therefore, in many cases the optimal pointing
location is not the one which maximizes the observation success
probability.

C. Anchoring Process

The real robot anchoring scenario is divided into two stages.
The first stage is related to the actions taken by the GA (NAO),
in order to optimize its position relative to the available ob-
jects of interest. The second stage is related to the OA (YouBot)
actions for optimizing its observation pose relative to the GA,
and anchor the detected pointed object. To localize in space
and, thus, extract the required relative position and orientation
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Fig. 20. GA’s behaviors to anchor an object of interest. (a) Detecting objects.
(b) Ambigous location. (c) Planning. (d) Relocating. (e) Unambigous detection.
(f) Explicit communication.

between the two participating robotic agents, an indoor posi-
tioning system (IPS) was established. It may be noted that this
IPS is only used for navigation and localization. It relied on
AR-markers mounted on the top of the two agents, which were
tracked by a number of ceiling cameras. Two high frame rate
cameras (PlayStation Eye with 640 × 480 resolution at 60 Hz)
were utilized covering an area of 2 × 2 m2 .

1) Gesturing: Prior to the experiment, the GA was trained
to detect several different classes of objects from a 2-D camera
image using the algorithm described in Section IV-A. The IPS
described earlier was used for localization because the GA does
not have reliable means of obstacle detection. In path planning,
object positions were inflated to avoid collisions. A prior map
of the workspace constructed by the OA was utilized for path
planning. The parameter κ of the pointing accuracy model was
estimated experimentally as 65.

The GA’s behaviors are depicted in Fig. 20. Initially GA waits
for a request from OA. After the request (with an object tag)
is received [see Fig. 20(a)], the GA searches for the known
objects within the field of view using the algorithm described
in Section IV-A. Fig. 20(b) shows camera image (top right)
and the result of detection algorithm (top left) of all known
objects. It then calculates their relative locations needed to create
a probability map for the requested object. From the current
pose, it would be difficult for the GA to anchor the pointing
gesture to a single targeted object. Therefore, it is important to
relocate to a better position to execute a pointing gesture.

From the list of detected objects, the GA selects an object
with matching object tag as the target object (here the selected
target object is a red toy car). Once the requested object is
located, GA first creates a static success probability map using
the model presented in (3). Then, calculates the shortest path

Fig. 21. OA’s behaviors to anchor the object of interest. (a) Planning.
(b) Observing pose. (c) Explicit communication. (d) Implicit communication.

and their path costs to every grid location using A-Star. This
in turn creates a motion cost map (tmotion) to reach to every
grid location along with the end path orientation. Using the grid
locations and precalculated location of the targeted object, the
desired orientation is extracted for all grid locations. Then, the
tpoint cost map of time required to reorient from end orientation
of path toward the targeted orientation is constructed.

Using the probability map Pi(κ), cost map (tmotion), and tpoint,
the GA then creates a map of ttotal(xk ) using (4). The location
for which ttotal(xk ) is minimum is the desired optimum location.
GA then uses the planned path to reach the desired optimum
pose.

After reaching the desired optimum pose, the GA once again
detects the objects. Fig. 20(e) shows camera image (top right)
and the result of detection algorithm (top left) of all known
objects after reaching the optimum pose. In the figure, it can
also be seen that it is unambiguous to point to the targeted
object from this location. However, before anchoring to the ob-
ject using the pointing gesture, GA needs to make sure that
the OA is observing. Therefore, it sends a “I am ready to
point” signal to OA and waits for a synchronization signal from
the OA.

2) Gesture Observation: OA behavior is shown in Fig. 21.
OA action begins when the GA broadcasts the “ready to point”
signal specifying also the pointing arm [ see Fig. 20(f)]. At that
time, the OA is stationed idle at a starting location. After receiv-
ing the signal, OA determines the total cost taking into account
GA’s position and the observation models. The minimum cost
location is then chosen.

To move to the optimal pose [ see Fig. 21(b)], a map pre-
viously constructed with the on-board Hokyo lidar was used.
Fig. 21(c) and (d) illustrates the implicit–explicit negotiation
process between the GA and the OA, in order to anchor the
object of interest. At that time, the OA first transmits an explicit
“please point” message to GA and immediately activates the
gesture detection and object recognition algorithm as presented
in Section V. Next, the implicit communication using gestures
takes place, where GA points to an object of its selection and
the OA recognizes this action and localizes the detected object
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Fig. 22. Pointing success probability to anchor targeted object from different
positions.

in its own frame of reference [see Fig. 21(d)]. If it fails to suc-
ceed, it explicitly instructs the GA to repeat the gesture. The
number of retries was set for this experiment to three. Failing
to successfully localize the pointed object of interest after three
trials, will initiate a replanning process where GA and OA will
recalculate their best optimal position matrices and relocate to
their newly selected poses to repeat the implicit communication
stage.

3) Object Anchoring: The final stage of this experiment is
to anchor the object of interest between the two robotic agents.
As is the case in the presented work, two heterogeneous robotic
agents with different embodiments and different sensor char-
acteristics, perceive the environment differently and, thus, they
store different models for any detected objects. The goal of an-
choring objects between two agents using gestures is to provide
the two agents with common knowledge of their space minimiz-
ing, at the same time, the explicit communication requirements.
Fig. 22 illustrates the final stage of the presented experiment
where, after pointing to an object, the GA explicitly broadcasts
a “a car” message. Having detected the pointing gesture and the
pointed object, the OA extracts using a Kinect sensor the cluster
of points representing the object and builds a model for future
recognition purposes as described in Section VI-B2.

VIII. DISCUSSIONS

The proposed framework is based on the following
assumptions.

1) The GA must have at least an arm/appendage capable to
perform gesturing actions.

2) Agents are mobile.
3) Agents must have some means to perceive objects in their

environment.
4) Agents are capable of observing the relative pose between

them.
5) The object identities (symbols) can be transmitted using

some communications channel.
The requirements are easily met in almost all RRI scenarios,

with the possible exception of the requirement for an arm. Nev-
ertheless, the primary use scenario for the approach is mobile
manipulation in which all of the assumptions are true.

Assuming the above-mentioned requirements are satisfied,
the approach can be configured for any robot. The required pa-
rameters for planning of pointing actions are relatively easy to
calibrate, as they relate to the pointing agent’s speed of mo-
tion and the accuracy of pointing actions described by a single
parameter. The ease stems from the fact that the planning ad-
dresses primarily the ambiguity of pointing that does not depend
on the pointing agent. The parameters required for optimizing
observation relate to speed of motion and the performance of
the pointing detection method that depends, e.g., on occlusions.
The latter can not be easily modeled, and thus, a data-driven
approach was proposed for the modeling. The calibration re-
quires, thus, more effort if optimality of the planning is desired,
with sparser data likely resulting in nonoptimal results. Nev-
ertheless, the iterative nature of the approach with replanning
triggered upon failure will allow successful anchoring even in
this case.

Regarding the runtime performance of the proposed algo-
rithm, the system is composed by: first, the detection com-
ponents, which includes the deployed object detection (DMP,
GTD, HOG) and gesture tracking algorithms ([26] and [45])
and, second, the pose optimization component using the A-Star
algorithm. In the first category, the gesture tracking algorithm,
as reported in [26], performs at an overall ≈3.3 Hz update rate.
For pose optimization, both the OA and GA use the A-Star al-
gorithm to obtain the tmotion(xk ) distribution (6) in real time.
The time complexity of A-Star depends on the heuristic. In the
worst case of an unbounded search space, the number of nodes
expanded is exponential in the depth of the solution (the short-
est path) d : O(bd), where b is the branching factor (the average
number of successors per state). This assumes that a goal state
exists at all, and is reachable from the start state; if it is not, and
the state space is infinite, the algorithm will not terminate. In the
experiment, the algorithm took less than a second to calculate
the optimal path.

During the offline modeling process, the designers exe-
cute a number of experiments or offline simulations to fine
tune models, such as the probability of FOV overlap P (O|Θ̄)
(see Fig. 8) and the probability of gesture detection P (D|Θ̄)
(see Figs. 5 and 6). During that offline procedure the mentioned
pointing accuracy model VMF distribution and the GP [46] were
utilized. Computationally the training of the 2-D object detec-
tion algorithm (see Section IV-A) requires a few hours, while
fitting the GP models requires less than one minute.

Although the framework has been designed for RRIs, its com-
ponents would be applicable to HRI scenarios. In particular,
planning of ambiguity free pointing actions could be used when
a human requests a robot to point at a particular object (please
show me the 5/8 in wrench). Similarly, the planning of obser-
vation could be used when a human wants to name a particular
object by pointing to it (see, that is the 5/8 in wrench).

IX. CONCLUSION

This paper proposed the use of gestures for object anchor-
ing between mobile robotic agents. The proposed methodol-
ogy solves the problem of the perceptual mismatch between
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heterogeneous agents. That is, it does not require shared sensors
or shared internal representations of the objects between the
robots. It also minimizes explicit communication (e.g., radio)
requirements between the two interacting agents by implicitly
using gestures and body language. In the presented scenario,
two robotic agents interact with each other trying to anchor an
object of interest. An agent with the knowledge about a partic-
ular object gestures toward it to transmit the object’s identity to
an OA. The proposed approaches minimize the time required
for the anchoring, taking into account possibility of failure.

Results from simulations indicate the complex nature of the
planning problem in that the spatial cost functions are multi-
modal for both gesturing and OAs. Experiments with a physi-
cal two-robot system demontrated the validity of the proposed
methodology.

The work in this paper was limited to RRI. However, the tack-
led problems, for example the ambiguity of pointing gestures,
are also present in HRI. The proposed approaches and models
are then also applicable when humans and robots communicate
by pointing. Experimental study of this aspect is a promising
avenue for future work.
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