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Abstract

The growing importance of citation-based bibliometric indicators in shaping the
prospects of academic careers incentivizes scientists to boost the numbers of
citations they receive. Whereas the exploitation of self-citations has been extensively
documented, the impact of reciprocated citations has not yet been studied. We study
reciprocity in a citation network of authors, and compare it with the average
reciprocity computed in an ensemble of null network models. We show that
obtaining citations through reciprocity correlates negatively with an impactful career
in the long term. Nevertheless, at the aggregate level we show evidence of a steady
increase in reciprocity over the years, largely fuelled by the citations reciprocated
between coauthors. Our results characterize the structure of author networks in a
time of increasing emphasis on citation-based indicators, and we discuss their
implications towards a fairer assessment of academic impact.

Keywords: Reciprocity; Academic career; Network science; Statistical validation

1 Introduction

The majority of measures that evaluate academic impact are based on citations of publica-
tions. Ranging from crude citation counts to the well known journal impact factor [1], the
Eigenfactor metrics for journal rankings [2] and the /-index [3] for authors, such measures
are increasingly relied upon to inform all aspects of academic decision-making, including
faculty recruiting, grant attribution, and the formation of collaborations [4]. The onset of
such a trend dates back to the 1950s, when the earliest citation-based indices to assess
academic impact were put forward [5]. The following decades saw the proliferation and
ever-increasing adoption of such indicators in all fields of science [6, 7], which eventu-
ally led to the systematic analysis of academic citations, to the emergence of bibliometrics
as a research field [8], and, more recently, to the rise of a “science of science” devoted to
understanding the determinants of scientific impact [9-11].

Given the importance that citations play nowadays in shaping the prospects of an aca-
demic career, it is certainly not surprising to see an increased attention to the study of
citation patterns and of the publication strategies that can attract a larger number of cita-
tions. While an author’s productivity and the quality of her work are obvious determinants
of academic impact [12], other less tangible aspects have recently been identified as key
contributors to success. For example, the social network a scientist is embedded in has
recently been shown to play a relevant role in determining her future chances of success
[13].
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Other social and behavioural considerations also play relevant roles in modern academic
reputation systems, especially concerning the proliferation of self-citations and citations
between close collaborators [14—17]. Self-citations and their role in inflating bibliometric
indicators have been studied extensively [18]. Several scholars have proposed revised met-
rics to mitigate their distorting impact [19], and indeed some of the most popular citation
indexing services (e.g., Web of Science) and social networking sites for scientists (e.g., Re-
searchGate) provide detailed author-specific bibliometric information with and without
the contribution of self-citations.

Yet, very little attention has been paid to the scientific community’s collective response
to the increasing adoption of bibliometric indicators, and whether this ultimately resulted
in more sophisticated citation patterns involving collaborators and colleagues [17, 20—23].
Indeed, the quest for higher citation counts generates an obvious incentive for scientists to
seek citations from and give citations to their closest circle of coauthors and collaborators.
Such behaviour, known as reciprocity, has long been observed and investigated in many
social and economic systems [24—26]. It reflects the tendency to return helpful acts, and
it is crucial for forming and maintaining cooperative relationships among individuals and
groups [27].

Following the broad stream of literature that has analyzed citation patterns from a net-
work perspective (see, e.g., [28]), we investigate the inherent reciprocity dynamics in an
author citation network constructed from the citation history of 463,348 papers in the
Physical Review (PR) corpus of journals published by the American Physical Society (APS)
between 1893 and 2010 (see Methods), spanning all research fields of physical sciences,
with disambiguated author names obtained from [12].

We address two main research questions: (1) how much reciprocated citations con-
tribute to a scientist’s academic reputation, and whether these can be used to predict
impact and classify different career trajectories; (2) how prevalent is the tendency to re-
ciprocate citations in the scientific community at large, and how it has evolved over time.

We tackle such questions by representing authors as nodes in a directed weighted net-
work C, where the weight c; denotes the number of times author i has cited author j,

< _
i =
min(cy, ¢j;). We assess the statistical significance of the empirically observed patterns of

and use such a representation to measure the number of reciprocated citations as ¢

reciprocated citations with the values observed under an ensemble of null network mod-
els obtained through the controlled randomization of the original networks’ topology (see
Methods).

Following the definition in [29], we define the excess reciprocity® of an author i as

() ()
sy Po — {Opurt)
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where p) = Y jec € | 2jec cji is the fraction of citations received by author i in the em-
pirical author citation network which she reciprocated (i.e., the fraction of reciprocated
incoming weight), while ( pr(l?ﬂl) is the average of the same quantity as computed in the null
model ensemble. As we shall explain more extensively later on, the rationale of the above
definition lies in its ability to quantify an author-specific propensity to reciprocate with
respect to an expected benchmark quantified by the null model. For example, an excess

reciprocity p = 0.1 for an author with 100 received citations would correspond to 55 of
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them being reciprocated under an expected reciprocity <pr(1?111) =1/2, and to 28 recipro-
cated citations under an expected reciprocity <'0r(1il)111> =1/5.

Let us stress two points from the outset. First, positive values of excess reciprocity are
not to be interpreted as indicators of strategic behavior aimed at deliberately manipulat-
ing bibliometric indicators. The definition in Eq. (1) simply quantifies an excess with re-
spect to a benchmark. This, in turn, is identified by a null model, i.e., ultimately, by a null
hypothesis encoding patterns of citations that can be expected within the structural con-
straints imposed by the activity of nodes in the network. In this respect, positive excess
reciprocity is to be interpreted as the result of multiple factors contributing towards an
over-expression of reciprocated citations with respect to such patterns. It is therefore im-
portant to point out that the above definition cannot identify such factors or discriminate
between them. Because of this, in the following we will refrain from making judgments
about the exact nature of the excess reciprocity we will detect in empirical data.

Second, let us remark here that it is not our intention to equate academic impact, which
is a multifaceted concept, to mere citation counts. However, we shall take the (widely
shared) position that a high citation count is an unquestionable indicator of impact for

a scientist’s production.

2 Results

2.1 Reciprocity and career impact

Figure 1 shows the frequency of both the number of directed citations (i.e., the number
of times c;; an author i has cited another author ;) and the number of reciprocated cita-
tions (i.e., ¢y = min(cy, ¢;;)) across all pairs of authors active in the APS dataset from 1950
to 2010. As it can be seen, both distributions show a markedly heavy-tailed behaviour. In
particular, there are more than fifty thousand pairs of authors with 10 reciprocated cita-
tions, and more than two thousand pairs with 50 or more reciprocated citations. Overall,
more than 21% of the citations in the dataset are reciprocated (roughly 8.5 millions out of
40.4 millions).

The sheer scale of the aforementioned phenomenon suggests that reciprocated cita-
tions might play a key role in shaping an author’s scientific impact. This, in turn, poses
the question whether authors with a history of systematic reciprocity might, on average,
outperform their peers. In this section we investigate citation patterns at the level of indi-
vidual authors in order to answer such a question. We do so by proposing a null network
model ensemble (see Fig. 2 and Methods) to estimate the average baseline level of reci-
procity ( pr(fzu) one should expect in the author citation networks under partially random
interactions, which we then use to measure excess reciprocity.
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Figure 2 lllustration of the geodesic distance 1 null network model. Randomly selected pairs of links
representing citations between papers are swapped with probability 1/2 whenever they fulfil two conditions
on time and “distance” (see Methods). Panels in the Figure illustrate the main ingredients and steps of the null
model. (a) Two randomly selected pairs of citations p1 — p, and p3 — p4 between papers p; (1 <j < 4). We
highlight two authors a; and a, in orange and blue respectively, to draw attention to the aforementioned
“distance” constraint, i.e, that links are rewired only when the papers they connect either share at least one
common author, or there exists at least one citation between authors from the two papers in the author
citation network (see Methods). (b) The citation network of authors constructed from the papers in (a), where
we highlight authors a; and a, and the presence of a pair of reciprocated citations between them. (c)
Citation-based indicators and statistics of authors in the network. (d) Rewiring of the links, which leads to two
new citations p; — p4 and p; — ps. (e) The citation network of authors constructed from (d) after removing
self-citations. (f) Citation-based indicators and statistics of authors after the rewiring. As it can be seen, it
follows from our rewiring method that the number of citations received and the h-index of all authors are
preserved

The rationale of the definition in (1) is to discount density-related effects. Indeed, simply
measuring reciprocity as the fraction of reciprocated weight p(()i) typically leads to seem-
ingly high (low) values in dense (sparse) networks. The measure in Eq. (1) takes care
of such potential spurious effects by discounting the average reciprocity observed in a
null model ensemble, so that positive (negative) values of p® indicate authors whose ci-
tations have been received through an over-representation (under-representation) of re-
ciprocated relationships, whereas values p ~ 0 indicate levels of reciprocity compatible
with the null assumption encoded in the null network model being used. In conclusion,
excess reciprocity indirectly quantifies how much the academic impact of an author, as
measured by her number of citations and /4-index (which are both preserved by the null
model, see Methods), relies on the citations from authors she cited as well.

We investigated the relationship between excess reciprocity and impact by following
the career paths of authors with a traceable publication history of at least 20 years in the
APS dataset. We first employed a variety of methodologies to predict a scientist’s future
impact (in terms of citations) based on her previous history of excess reciprocity. In all
cases we found very weak to no evidence of any predictive power (see Additional file 1,
Supplementary Note 1), which strongly suggests that citation strategies based on the mere
exchange of citations do not contribute to attracting higher numbers of citations in the

future.



Li et al. EPJ Data Science (2019) 8:20 Page 5 of 15

a b
3000
Group
-1 2
2 Q
o 2000 5 Q
c o
Ke] —4 S
= |
S 1000- 2
o
x
i
o =" 0.0
T T T T T T T T T T
4 8 12 16 20 4 8 12 16 20
Career year Career year

Figure 3 lllustration of the relationship between excess reciprocity and long-term career impact. (a)
Centroids of the clusters identified by k-means based on the cumulative number of citations received by
authors who started their career between 1970 and 1990. The sample contains 5070 authors, and the fraction
of authors falling within each cluster are as follows: 1.2% in group 1, 6.9% in group 2, 24.5% in group 3, 67.4%
in group 4. (b) Excess reciprocity, defined as per Eq. (1), within each cluster. Thick solid lines denote the
average within the cluster, while ribbon bands denote 95% confidence level intervals

We then applied the k-means clustering algorithm [30] to categorize authors in terms
of career impact. Following [12], we performed this analysis considering the career tra-
jectories of all authors with 10 or more papers published over the course of at least 20
years (with at least one paper published every 5 years) who published their first paper
either in 1950-1970 or in 1970-1990. We chose to group authors whose careers started
over two decades in order to assemble two large enough samples. The downside of this is
that we pool together authors whose careers started and developed during rather differ-
ent historical periods in terms of scientific publication standards and practices. However,
we verified that the results presented in the following do not change qualitatively when
pooling authors based on shorter time spans.

We used these two samples to perform a k-means clustering analysis based on the cu-
mulative number of citations received over time. Since several authors did not receive
citations early in their career, we performed our analysis starting from the 4th career year.
In Fig. 3 we present the results for 1970-1990 (see Additional file 1, Supplementary Note 2
for the results obtained for 1950—-1970), which were obtained on a pool of 5070 scientists.
We identified 4 distinct groups with very different levels of career impact, ranging from a
small minority of authors (1.2% of the sample) who managed to attract several thousand
citations over the time period considered, to the relative majority of authors (67.4% of the
sample) who only enjoyed moderate to low impact (see Fig. 3 caption for more details).

We find the above groups to be associated with markedly different behaviours. Namely,
we find long-term career impact to be associated with progressively lower levels of excess
reciprocity. Indeed, the two most impactful groups are associated with the lowest long-
run excess reciprocity, with the small cluster of elite scientists (group 1 in Fig. 3) displaying
an average excess reciprocity around 0.1 towards year 20 of their career. Conversely, the
two least impactful groups are associated with consistently higher levels of long-term ex-
cess reciprocity, higher than 0.2 in the case of the single least impactful group. We further
corroborated the progressive development of differences between the four groups by run-
ning two-sided Kolmogorov-Smirnov tests between the distributions of excess reciprocity
in each group at career years 4 and 20. The results are reported in Additional file 1, Sup-

plementary Note 3, and show that at year 4 the null hypothesis of excess reciprocities
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being drawn from the same distributions can be rejected only when comparing the least
impactful group of authors (group 4) with the other ones. In contrast, at year 20 the null
hypothesis can be rejected for all pairs of groups.

In addition, we checked whether authors belonging to a certain group tend to publish
more frequently in some APS journals rather than others. The results of this analysis are
presented in Additional file 1, Supplementary Note 3, and show that authors in the most
impactful groups (group 1 and 2) have a higher publication rate in Physical Review Let-
ters (PRL), which is somewhat unsurprising since PRL is by far the most impactful venue
among those considered here. Yet, a more nuanced picture emerges when looking at the
remaining journals, as the most impactful clusters do not necessarily account for the rel-
ative majority of publications in the most impactful journals and vice versa. Moreover,
while the ranking and behaviours in terms of excess reciprocity are similar across the two
time periods we consider, it is interesting to notice that publication rates of the different
groups across journals are rather different (see Additional file 1, Supplementary Note 2).

2.2 Shifts in citation patterns

In the previous section we analyzed the relationship between excess reciprocity and long-
term impact from a cross-sectional point of view by “collapsing” together the career trajec-
tories of several authors whose actual careers developed asynchronously over the span of
a few decades. We now seek to further unpack this relationship by investigating temporal
snapshots of the APS citation network, testing how an author’s propensity to reciprocate
citations correlated with her impact during different historical periods.

We do so by performing analyses at the decade level. For each decade from the 1950s to
the 1990s, we consider all authors whose career started before the end of such decade and
did not end before the first year of that decade. We then pool all the papers published by
such authors before the end of the decade, and their corresponding citations, to build the
author citation network for the decade of interest.

Figure 4(a) shows, for three different decades, the average excess reciprocity of authors
as a function of their accrued citations (see Additional file 1, Supplementary Note 7 for
all six decades). As it can be seen, over time we observe the emergence of a clear negative

correlation between an author’s impact and her excess reciprocity. In the 1950s the entire
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Figure 4 Results at the level of groups of authors. (a) Excess reciprocity as a function of the number of
citations received. Error bars denote 95% confidence level intervals. (b) Rich-club coefficient of the APS author
citation network with respect to the null model (see Methods) in the 1950s, 1970s, and 2000s. Here in-degree
refers to the total weight received by the author in the author citation network
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APS scientific community was essentially compatible with the null model, with average ex-
cess reciprocity lower than 0.05 for all groups of authors. This changes considerably from
the 1970s onwards, and it becomes quite pronounced in the 2000s, with a very apparent
negative relationship between an author’s impact and her tendency to reciprocate.

One might intuitively expect high impact authors to display, as a group, the lowest ten-
dency to reciprocate. Indeed, in network terms, highly impactful academics simply do not
have enough outgoing links to reciprocate their incoming links, i.e., they cannot provide
enough citations to match the high number of citations they receive. While this is cer-
tainly true, as shown consistently for all decades in Fig. 4(a), there are subtler aspects to
this observation.

First, let us recall that the definition in Eq. (1) measures the excess of reciprocity with
respect to an expected baseline, which in our case is computed from a null model which
preserves the heterogeneity (in terms of number of publications) and level of impact (both
in terms of accrued citations and /-index) of each author. In this respect, the above result
shows that high impact authors simply do not reciprocate much more than one could
reasonably expect. Yet, a deeper analysis of the citations received by high impact authors
reveals more substantial differences with respect to our null model. Indeed, while our null
model naturally incorporates the low levels of excess reciprocity of high impact authors,
it does not prescribe who the recipients of citations from them should be.

To investigate who the recipients are, we examine the level of interconnectedness among
the leading authors with the highest citation counts in each decade by measuring the rich-
club coefficient [31, 32] in the author citation networks (see Methods). The rich-club co-
efficient quantifies the tendency to preferentially establish relationships within a group
with respect to the expected tendency based on a null hypothesis. In the present case, we
measure the rich club coefficient as ¢(c) = ¢o(c)/ {(Pnun(c)), where ¢g(c) is the fraction of the
total number of citations flowing between authors that have received at least ¢ citations in
the empirical network (i.e., authors with an incoming weight equal to or larger than c), and
{¢nui(c)) is the corresponding quantity computed over our null network model ensemble.

We observe an increasingly pronounced rich-club effect among leading academics, with
the effect being up to twice as strong with respect to the null model for authors with an
incoming weight around 10* in the 2000s (Fig. 4(b)). Conversely, in earlier decades we find
the effect to be much less strong, although still present (see also Additional file 1, Supple-
mentary Note 7). This result indicates that, although the overall tendency of high impact
authors to reciprocate is close to the one predicted by our null model, they overwhelmingly
tend to cite their peers. The presence of such an interconnected rich core of successful sci-
entists suggests that homophily with respect to career excellence has increasingly become
one of the driving forces behind the attribution of citations.

2.3 Reciprocity, coauthorship and self-citations

We now shift our attention to the evolution of reciprocity at the aggregate level of the
entire APS community. We straightforwardly generalize Eq. (1) to define a measure of
network-wide excess reciprocity as p = (0o — {(onan))/(1 — {onun)), where py denotes the
overall fraction of reciprocated weight in the empirical networks, whereas (p,) denotes
the corresponding average quantity in the null network ensemble. We track such quantity
over time by considering annual networks constructed by including all papers published by
active authors up to the year under analysis. We consider an author to be active whenever
the year under consideration is between the first and last of her career.
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Figure 5 Network-wide reciprocity in the empirical networks and in the null model. (@) Annual excess
reciprocity values from 1950 to 2009. (b) Fraction of reciprocity po contributed by past coauthors in the
empirical networks (dark blue) and in the null model (light blue). (¢) Fraction of reciprocated citations
between two authors versus the overlap in their research interests, proxied by the Jaccard index between the
list of references cited by the two authors, with 95% confidence level intervals. The grey dots represent 10%
author pairs sampled from real data. When controlling for the overlap, on average coauthors are found to
reciprocate more than non-coauthors. (d) Fraction of self-citations in the empirical networks (dark red) and in
the null model (orange). The standard error bars for the null model results are small and not graphically visible
in (b) and (d)

During the entire period of study we systematically observe positive values of network-
wide excess reciprocity, indicating a stronger propensity of the APS community to recip-
rocate citations than the one expected in our null model ensemble. Furthermore, we find
reciprocity to increase steadily (and roughly linearly) up to the early 1990s, after which it
stabilizes around 0.15 (Fig. 5(a) and Additional file 1, Supplementary Note 8).

A closer look reveals that, over the entire period of observation, a substantial propor-
tion of the overall reciprocity py is accounted for by citations between coauthors. Such
proportion grows from about 40% in the 1950s to about 50% in the 1990s. This is in con-
trast with the expected proportion computed in the null model, which instead shows a
steady decline over time (Fig. 5(b)).

In order to better understand the impact of citations from coauthors on a scientist’s ca-
reer, we pool all authors over the entire period of observation and compare the tendency
to reciprocate between coauthors and non-coauthors. Namely, we define the reciprocity
between a pair of authors i and j as the number of reciprocated citations between them,
divided by the total number of citations received by both authors. In Fig. 5(c) we show
such quantity as a function of the distance between research interests, quantified by the
Jaccard similarity index between the sets of papers cited by a pair of authors over their ca-
reer [33]. Higher Jaccard indices indicate higher proportions of common references used
by both authors, which we interpret as a proxy for a substantial overlap of research inter-

Page 8 of 15
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ests. As one would intuitively expect, we observe an overall positive correlation between
research interests and the tendency to reciprocate citations. However, on average we find
this relationship to be stronger in the case of coauthors, regardless of the specific level of
proximity between research interests.

Let us conclude this section with a short digression devoted to the investigation of self-
citations through the lens of our null model. Figure 5(d) compares the observed fraction
of self-citations with the corresponding expected proportion in our null model ensem-
ble over time. As it can be seen, the empirical rate of self-citation has remained around a
fairly stable level of around 20% (which decreases to roughly 18% when including authors
no longer active in the time frame under consideration). Yet, the null model predicts a
sharp downward trend, which, as in the case of reciprocity between coauthors, highlights
a growing gap between empirical citation patterns and those expected under our null hy-
pothesis. Interestingly, the aforementioned rate of self-citation is much larger than those
observed in citation datasets from other disciplines (e.g., Law, Political Science, Mathe-
matics), which in most cases are between 5% and 12% [34].

2.4 Robustness checks

We tested the robustness of our main findings in a number of ways, in order to rule out
spurious effects due to possible confounding factors. First, following [35] we modified our
null model in order to account for modularity-related effects in the author network, i.e.,
that authors belonging to the same scientific sub-communities can be naturally expected
to cite each other at an above average rate. To this end, we used two popular commu-
nity detection algorithms (InfoMap [36] and the modularity-based algorithm published
in [37]) in order to extract the community structure of the author network at different
granularity levels (see Additional file 1, Supplementary Note 4), and constrained our null
model to partially preserve it (see Methods).

Second, we proceeded to discount self-citation as a potential confounding factor in our
analyses. Indeed, pairs of past coauthors both citing their own work naturally give rise to
reciprocated citations. We therefore ran our analyses after removing all self-citations in
the paper network (which, as shown in the bottom right panel of Fig. 5, roughly amount
to 20% of all citations in the dataset). The main results are shown in Fig. 6, and, as it
can seen, are very much in line with those obtained from the full dataset. Indeed, we still
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Figure 6 Results on excess reciprocity after the removal of all self-citations. (a) Excess reciprocity, defined as
per Eq. (1), within the clusters of authors shown in the left panel of Fig. 3. Thick solid lines denote the average
within the cluster, while ribbon bands denote 95% confidence level intervals. (b) Excess reciprocity as a
function of the number of citations received. Error bars denote 95% confidence level intervals. (¢) Annual
excess reciprocity values from 1950 to 2009. All results were obtained with the modularity-based null model
(see Methods)
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observe a clear negative relationship between excess reciprocity and impact (left panel),
whose strength becomes clearer in more recent decades (middle panel), in analogy with
the results reported in the right panel of Fig. 3 and the left panel of Fig. 4. Also, in the
right panel we see a pattern in the evolution of network-wide excess reciprocity similar
to the one observed in the full dataset (top-left panel of Fig. 5), albeit with systematically
lower annual values. Based on these results, we can safely conclude that self-citations do
produce some extra excess reciprocity, but do not represent its main driver.

Third, we controlled for the effect of productivity in a number of ways. We did so by re-
peating our analysis after clustering the authors based on the number of citations received
per paper (rather than on absolute citation counts), and after removing authors with low
productivity and impact (i.e., those with a total of less than 10 citations over their first
20 career years, see Methods). In the same spirit, we also controlled for the presence of
large collaborations by repeating our analyses after further restricting our sample to pa-
pers published by three or less authors.

Fourth, we restricted our analyses to US-based authors only in order control for poten-
tial geographical biases, and to assess the robustness of our results with respect to the
name disambiguation procedure we used to identify authors (see Additional file 1, Sup-
plementary Note 4).

In all the above cases we still detected the same negative relationship between excess
reciprocity and impact based on the clusters of authors identified with k-means. As a fur-
ther robustness check, we tested such relationship when separating authors based on dif-
ferent clustering criteria, i.e., we also grouped authors based on quartiles and with the
Expectation-Maximization clustering algorithm [38]. In both cases, we still detected the
same negative relationship (see Additional file 1, Supplementary Note 4).

Lastly, we tested such relationship from the opposite perspective, i.e., by grouping au-
thors based on excess reciprocity and then measuring the impact of different groups. We
resorted to matched pair analysis, and divided the authors whose careers started in 1970-
1990 into “high reciprocators” (treatment) and “low reciprocators” (control) groups based
on their excess reciprocity pattern over the first 10 career years, and performed a ¢-test
on the average number of citations attracted by authors in the two groups over the fol-
lowing 10 career years after pairing them based on productivity (i.e., on the number of
papers published in the first 10 years). Consistently with our results based on clustering,
we found the treatment group to attract substantially less citations per author (272.2) than
the control group (331.6), with p < 0.001 (see Additional file 1, Supplementary Note 6).

3 Discussion
This study addressed two main research questions, i.e., whether the constantly increasing
attention to citation counts and bibliometric indicators has led to an incentive for aca-
demics to boost such metrics through the exchange of citations, and, if so, whether this
behaviour is rewarding in terms of career impact. Let us stress from the outset that our
results, being based on a comparison between empirical data and null network models,
cannot provide direct evidence of strategic behaviour explictly aimed at manipulating bib-
liometric indicators. Yet, they inform us on how the academic community has collectively
organized in response to the increased emphasis on such metrics, revealing a nuanced
picture which we discuss in the following.

Starting from the 1950s, we observe two main eras in the APS citation landscape. From
1950 to 1990 we observe a steady increase in network-wide excess reciprocity, which then
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remains roughly constant around 0.15 for the following twenty years. It is tempting to
relate the former trend with the onset and the ensuing rise of Scientometrics as a research
field. Indeed, the concept of bibliometric indicators was first proposed in 1955 by Garfield
[5], and put in practice in 1964 with the launch of the Science Citation Index, with an
ensuing proliferation of indicators [6] and the establishment of the first academic journal
entirely devoted to Scientometrics in 1978 [39].

It is somewhat surprising to observe the above trend plateauing over the last two
decades, when the average number of citations made by papers in the APS increased
[17], and the incorporation of citations and bibliometric indicators in academic decision-
making witnessed further increase [40]. Yet, this is accompanied by a widening gap be-
tween the observed reciprocity taking place between coauthors (which, after the 1990s
accounts for almost half of the whole network’s reciprocity), and the expected level of
reciprocity between coauthors in our null model. These two seemingly at odds trends
might be related to the onset of the Internet, which dramatically reduced barriers to ac-
cess to published research. We speculate that the expansion of the Internet might have, on
average, widened a scientist’s potential pool of authors to cite [17], therefore diluting the
overall reciprocity in the scientific community while at the same time resulting in a more
prominent role of the reciprocated citations between collaborators and colleagues.

The above change is accompanied by a structural evolution in the author-author citation
network. Over the years we witness the emergence of a very clear rich club of top scientists
citing each other at a rate much higher than the one predicted by our null model. When
looked at from the perspective of the whole network, however, the impact of such a rich
club gets diluted, and top scientists end up being below average “reciprocators” Starting
from the 1970s the author network organizes in such a way that most of the reciprocity
takes place at the level of low to medium impact authors.

The latter result is corroborated by our clustering analysis (see Fig. 3 and Additional
file 1, Supplementary Note 4), which shows that only low-impact career trajectories tend
to be associated with high excess reciprocity. All in all, these results suggest that even
potentially sophisticated shortcuts to artificially boost bibliometric indicators based on
the exchange of citations, rather than on mere self-citations, cannot circumvent the fact
that consistently high-quality publications are, by far, the main determinant of academic
impact.

Yet, our results show that a remarkable proportion of most scientists’ citations come, on
average, from their immediate “neighbourhood” (Fig. 5(b)), and that the gap between such
proportion and the one expected under our null hypothesis has been constantly increasing
for more than 40 years. We interpret this as an echo of the academic community’s collective
incentive to boost individual metrics of academic reputation. In this respect, it is worth
stressing once more that our results are of a statistical nature. As such, they cannot provide
insight about the countless reasons that might induce individual authors to reciprocate
citations. A proper investigation of potentially malicious practices deliberately aimed at
boosting bibliometric indicators is well beyond the scope of the present work, and most
likely would entail collecting data by interviewing authors.

We believe our results should caution against the current practice of condensing the
entirety of a scientist’s production into a single bibliometric indicator, i.e., into a single
number. We argue that, in analogy to what some academic platforms do to display infor-
mation about a scientist’s impact with and without self-citations, such a profiling should



Li et al. EPJ Data Science (2019) 8:20 Page 12 of 15

be complemented by providing a more detailed breakdown about the origin of a scientist’s

citations.

4 Materials and methods

4.1 APS citation data and network construction

The APS corpus of journals publish articles spanning all research fields in Physics since
1893. The dataset contains all papers published between 1893 and 2010, which we com-
plemented with the work done to disambiguate authors in [12], where 236,884 unique
authors were identified. Following [12], we only retained papers in the dataset with no
more than 10 authors, which left us with 415,342 papers and 4,125,843 citations.

We used the above data to construct networks of citations both between papers and
between authors. Although our analysis starts from 1950, we still employed all papers
published from the beginning of the APS dataset in order to account for the fact that reci-
procity in citations is an inherently cumulative phenomenon. Paper networks are directed
and unweighted, while author networks are directed and weighted, with a link of weight
c;j from node i to node j denoting that author i has cited c; times author j. We used this
general structure to extract annual networks, by selecting all the active authors who had
started their careers before and ended after the year of interest, and choosing all papers
published by such authors before that same year.

In analogy, in order to perform our analyses at the decade level, we selected all authors
active in at least one year of the decade of interest. We then retained all papers published
by the selected authors before the end of the decade.

4.2 Geodesic distance 1 null network model

We propose a null network model ensemble to estimate an average baseline level of reci-
procity ( Pr(1211> one should expect to observe from a certain author i in the citation networks
under partially random interactions. This quantity can be then used to compute the au-
thor’s excess reciprocity as per Eq. (1).

We build on and generalize the null network model put forward in [41] to measure reci-
procity in directed unweighted networks. Given a set of papers, we construct our null net-
work model ensemble according to the following principles. First, the ensemble should
reflect the fact that citations are attributed via papers, i.e., that papers are the fundamen-
tal units of interaction. Second, it should preserve the inherent directionality of citations
between papers due to time ordering, i.e., that more recent papers cite older ones, and not
the other way around. Third, the ensemble should account for the fact that most citations
occur within well defined scientific communities, which can be proxied in terms of a “dis-
tance” constraint between authors, consistently with the vast amount of literature which
shows that homophily and peer influence typically do not extend beyond a few degrees of
separation in a variety of social networks [42—44].

Following the above prescriptions, we define our null network model ensemble as fol-
lows. We start from the real citation network structure, and iteratively select random pairs
of citations p; — p» and p3 — pa (see Fig. 2), where p; (1 <i < 4) denotes a paper and
pi — p; denotes a citation from p; to p;. With probability 1/2 we swap the two links rep-
resenting the citations if the two following conditions are both met: (i) both new citations
p1 — pa and ps — p, preserve the time ordering of publication dates (i.e., p; was pub-
lished before p4, and p3 was published before p), and (ii) both new citations p; — p; (with
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(i,j) € {(1,4), (3,2)}) are such that either papers p; and p; share at least one common author,
or there exist authors a; from p; and a; from p; such that a; has cited a; or g; has cited a; at
least once in the empirical citation network. The latter condition encodes the aforemen-
tioned distance constraint, limiting the set of allowed link rewiring moves to papers whose
author lists feature at least one pair of authors at geodesic distance 1 in the empirical au-
thor network (see Additional file 1, Supplementary Note 8 for the results obtained with a
less constrained null model). When controlling for modularity-related effects, we retain
the same rewiring procedure, but only accept rewiring moves when the new potential ci-
tations p; — p; (with (i,/) € {(1,4), (3,2)}) are such that there exist authors a; from p; and
a; from p; who both belong to the same community (see Additional file 1, Supplementary
Note 4).

The above operations are repeated until the system has reached an equilibrium state.
This is identified by tracking the autocorrelation of the total reciprocated weight during
the rewiring procedure, which is stopped after such quantity has reached values compat-
ible with those of a random process. At that point, we collect independent samples of the
paper-paper citation network, which are then used to compute the average fraction of re-
ciprocated weight for each author ( pﬂu) in the null model ensemble and excess reciprocity
as per Eq. (1).

Let us remark that our rewiring procedure does not change the number of citations cited
and received by a paper, thus the most relevant bibliometric indicators (i.e., citation counts
and the /-index) are preserved for each author. Hence, the rewiring preserves the biblio-
metric impact of each individual author, and effectively amounts to probing alternative
citation patterns through which it might have been produced. Indeed, as shown in Fig. 2,
the null model changes the authors’ in-degree in their network, i.e., the number of differ-
ent peers that have cited their work. Overall, the changes induced by the rewiring alter
the in-degree distribution in a substantial manner. Still, we ran two-sided Kolmogorov—
Smirnov tests on the in-degree distributions before and after the rewiring, and found that
the null hypothesis of the two being the same distribution could not be rejected at a 1%

significance level.

4.3 Rich-club coefficient

The presence of the rich-club phenomenon in a weighted network can be detected by first
ranking the authors in terms of a “richness” parameter r [32]. Here r equals the weighted
in-degree of a scientist in the author citation network, i.e. the number of received citation
at a certain level of temporal aggregation. For each value of r, we select the group of all
authors whose total number of received citations is larger than r. We thus obtain a series
of increasingly selective clubs. For each of such clubs, we count the number E., of links
connecting the members, and measure the sum W, of the weights attached to such links.
We then measure the ratio ¢"(r) between W,, and the sum of the weights attached to
the top E., strongest citations within the whole network. We thus measure the fraction of
weights shared by the most successful authors compared with the total amount they could

share if they were connected through the strongest links of the network:

W
¢6V(r) === >r
w

rank ’
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where Wik > wrank with [ = 1,2,..., E are the ranked weights on the citations of the net-

work, and E is the total number of links. The weighted rich-club effect can be detected by

measuring the ratio

o) - B )
null(r)

where ¢ (r) refers to the average weighted rich-club effect assessed on the null model.
When ¢" is larger than 1, it means that leading authors are concentrating most of their
citations towards other successful authors compared with what happens in the random

null model. Conversely, if it is smaller than 1, the citations among club members are weaker
than randomly expected.

Additional material

[ Additional file 1: Supplementary information (PDF 904 kB) ]
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