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Abstract

An example in which near infrared spectroscopic data are used to classify animal feed in-
gredients is used to make the case for the value of probabilistic approaches to classification
problems. The accuracy of probabilities given by linear and quadratic discriminant anal-
ysis and by a more flexible kernel density approach are examined, and the effect on these
probabilities of the use of different tuning criteria is explored. The example involves the
classification of multiple particles in a sample, and detailed probability calculations bearing
on the inference for both the sample and its parent population are presented.
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1 Introduction

Although the statistical literature on classification includes extensive discussion of the uncer-
tainty in assignments of unknowns to classes, see [1] for example, it could be argued that this
topic is generally given less emphasis in chemometrics, perhaps because many of the algo-
rithms used do not easily provide these uncertainties. An example in which high-dimensional
near infrared (NIR) spectroscopic data are used to classify animal feed ingredients is studied
here with the aim of demonstrating some methodologies that do provide uncertainties. In
particular we will argue for the use of approaches that are based on probabilistic modelling
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of the within-class distributions of the predictors because these lead very naturally to prob-
abilities as outputs. The example involves both the measurement of multiple particles and
considerations of sampling variability, and the probability calculations that enable state-
ments of uncertainty in such a context will be illustrated. The focus is on the one example,
but the methodologies employed and the probability calculations illustrated are far more
widely applicable.

2 Data

The dataset used to demonstrate the methodology comes from a study designed to develop a
method based on NIR-microscopy for the detection, and ideally the quantification, of animal
protein by-products in compound feeds [2]. As part of this work, a database was built of
spectra from 17570 individual particles of avian (2128 spectra from 41 samples), porcine
(2382 spectra from 40 samples), bovine (4657 spectra from 8 samples), ovine (2560 spectra
from 4 samples) and fish (5843 spectra from 65 samples) meals, and it is this database that
is studied here. It was chosen for two reasons: there is substantial uncertainly in some of the
classifications, and the unusually large number of spectra means that it is possible to make
reliable assessments of how realistic are the probabilities produced by the methods studied.

The spectra were collected using an auto image microscope connected to a Fourier trans-
form NIR spectrometer (Perkin Elmer, Wathham MA, USA). This instrument measures
spectra on individual particles taken from the milled samples of animal meal and spread
carefully on a measuring stage. The average number of particles per sample was around 100.
The spectral range after truncation of noisy regions was 1500-2280nm, with a wavelength
interval of 4nm. The spectra were pretreated by transforming to second derivative using a
Savitzy-Golay filter [3] with a 15 point window, then applying a standard normal variate
(SNV) scatter correction [4], and finally removing the main water peak between 1824 and
1976nm. This treatment was one of several tried for these data in [2], where it proved the
best choice for both K-nearest-neighbours (KNN) and SIMCA. It was the only one employed
here. Figure 1 shows the mean spectra for the 5 classes both before and after the truncation
and pretreatment. As is common with NIR applications, the baseline and scale variations
in the raw spectra are not useful for the classification because the within-class variability in
these is much larger than the between-class variability seen in the left-hand plot, which is
why the use of pretreatments that minimise these variations is beneficial.

Of interest are both the five-class problem of distinguishing between all five species, and
a two-class problem in which the challenge is simply to discriminate between fish and the
other four species. The term species is used rather loosely here: the avian and, especially,
the fish samples will include multiple species. In Figure 1, the fish spectrum, which is shown
as a darker line than the others, does have distinctive features in some regions whilst the
other four are much more similar to each other. Not surprisingly the two-class problem,
which is important because of the possibility that fish but not the other proteins might at
some stage be permitted for use in compound feed for ruminants, is by far the easier one,
though if it looks too easy it should be remembered that the plotted spectra are means over
thousands of particles.

It could be argued, see for example [5] or [6], that the two-class problem as defined here
would be better tackled as a one-class problem, since ‘not-fish’ is not a well-defined class.
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Figure 1: Mean spectra for the 5 classes. Left, raw spectra, right, truncated and pretreated
spectra. In each case the darker spectrum is that of the fish

The introduction of a third ‘unknown’ class in Section 4.3 is an attempt to meet at least
one of the criticisms of the use of classification methods in applications like this. Another
issue is that the pooling of classes may make it less likely that the distributional assumptions
underlying some of the methods used will hold, though one of the methods, the kernel density
approach, does not make any such assumptions.

The aim in reanalysing these data is not to beat the classification accuracies achieved by
KNN and SIMCA in [2], but to investigate whether comparable performance can be achieved
with methods that give meaningful probabilities of group membership and to demonstrate
the value of these probabilities.

3 Methodology

Approaches to classification can themselves be classified into three types [7, Chapter 1].
The generative approach models the within-class distributions of the predictors and uses
Bayes theorem to derive the probability of class membership given predictors as described
in Section 3.1. The discriminative approach, the best-known example of which is logistic
regression [1, Chapter 8], directly models this probability of class membership given predic-
tors. Approaches of the third type, sometimes called algorithmic, do not model probabilities
at all but simply provide classification rules. KNN is an example of this type. There is a
good deal of blurring between types: linear discriminant analysis (LDA) and quadratic dis-
criminant analysis (QDA) can be presented as examples of both generative and algorithmic
approaches, and partial least squares discriminant analysis (PLSDA), which is essentially
algorithmic, sometimes has its predictions converted to a 0-1 scale and interpreted as prob-
abilities [8]. Here we adopt the generative approach. We want to work with probabilities
throughout rather than add them at the end of the process; and we choose generative rather
than discriminative partly because modelling the distribution of spectra given type of sample
seems the more natural way to proceed and partly because the explicit appearance of prior
probabilities for classes in this setup is preferable to their implicit derivation from the train-
ing samples that is a feature of regression methods. See [9] for a more detailed discussion of
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this last point in the context of quantitative calibration. Oliveri and Downey [10] also argue
for the use of the generative approach in food authenticity problems. The methodology used
here is Bayesian, see [11] for a good introduction.

3.1 Classification using Bayes rule

The approach taken here is to use the training samples to model the within-class distributions
of the spectral data and use Bayes theorem to derive probabilities of class membership given
the spectral data for an unknown. With the classes labelled from 1 to m the classification
step takes the form

P (class = c|spectrum) =
P (spectrum|class = c).P (class = c)∑m
i=1 P (spectrum|class = i).P (class = i)

, c = 1, . . . ,m. (1)

The ingredients here are the prior probabilities P (class = i) that the sample to be classi-
fied belongs to class i and the probability P (spectrum|class = i) of observing the spectrum
associated with the unknown given that it belongs to class i. The result of the calcula-
tion is a set of m probabilities quantifying the uncertainty about the class membership of
the unknown given that we know its spectrum. These probabilities can be used to assign
the unknown to a class. Here we will simply assign to the class with the highest probabil-
ity, though if the costs associated with different types of misclassification were unequal it
would be preferable, and simple, to combine the probabilities with these costs to find the
classification that minimises expected loss [1, Chapter 1].

The prior probabilities are those we would assign to the class membership of the un-
known sample before measuring its spectrum. The most obvious default options are uniform
probabilities of 1/m for each class, or probabilities derived from the proportions of each class
in the training set. This second option is the one used in the cross-validations of Sections 4.1
and 4.2 below. In a more general prediction context the distribution of samples amongst
classes in a training set does not always reflect that in the population to be predicted, and
if the latter can be estimated it would be a better basis for the prior probabilities.

The probabilities P (spectrum|class = i) are derived from multivariate probability dis-
tributions fitted to the spectral data in each class. Using continuous distributions these
quantities will actually be probability densities evaluated for the observed spectrum rather
than probabilities, but the distinction is only a technical one. To make this fitting feasi-
ble, the spectral data need to be reduced in dimension. Here principal component analysis
(PCA) of the spectra for all classes combined was used for this purpose, with the number
of retained components p chosen by a double cross-validation procedure as described below.
Other possible approaches include using the scores from PLSDA or using a small number of
selected wavelengths.

The most obvious distribution to use is the multivariate normal. If a separate multivariate
normal distribution is fitted to the spectral data for each class by plugging in estimates of
the means and covariance matrices obtained from the training samples, then the approach
described here corresponds to QDA in the sense that assigning unknowns to the class with
the highest probability gives the same classifications as QDA, though formulating it as
above also gives us probabilities. Similarly, if the means of the fitted multivariate normal
distributions are allowed to differ but the covariance matrix is constrained to be the same
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for each class and estimated by a sample covariance matrix pooled over classes the result is
LDA [1, Chapter 3]. If the training set is not large we should account for the uncertainty
in the parameter estimates rather than simply plug them in, see [1, Chapter 2] for example,
but with the data set used here this added complication is not worth the effort.

Although it is rare for real data to follow a multivariate normal distribution, it is known [1,
Chapter 5] that LDA and QDA often perform very well in terms of correct classification
rates even when the true distributions are non-normal. What may not work so well when
the normality assumption is incorrect are the probabilities generated by Equation 1. When
the tails of a distribution are used to calculate probabilities the distributional form becomes
critical, and an inappropriate normal distribution can give unrealistic probabilities. For this
reason we also explore a more flexible approach to modelling the within-class distributions
of the spectral data: kernel density estimation.

3.2 Kernel density estimation

When the sample sizes available for estimation are large, as they are in the example studied
here, it is possible to avoid restrictive assumptions about the forms of the within-class distri-
butions and instead model them in a flexible way using kernel density estimation [7, Chapter
2] [1, Chapter 9], often called class modelling using potential functions in the chemometric
literature [12, 13, 10]. The idea, which has been used with spectroscopic data in a quanti-
tative context in [9], is very simple. The probability distribution within a class is estimated
by placing a spherical multivariate normal distribution, known as a kernel, at the location of
each training sample in the class and then averaging these distributions. Thus the density
evaluated where the q × 1 vector of spectral spectral data has value x is

P (x|c) =
1

nc

nc∑
i=1

(2πσ2)−q/2 exp

{
−(x− xi)

T (x− xi)

2σ2

}
, (2)

where the sum is over all nc training samples in class c, xi is the q × 1 vector of spectral
data for the ith training sample in the class and σ is a tuning parameter controlling the
spread of the kernels. The use of spherical kernels means that the relative scaling of the q
spectral variables is important. The principal component scores used here were scaled to
have standard deviation 1.

3.3 Tuning and validation

When the kernel densities are used there are two parameters to be tuned: the number of
factors p retained in the dimension reduction and the parameter σ of the kernels. For LDA
and QDA just p needs to be tuned. There is no separate validation set, so both tuning
and assessment need to be based on the samples in the database. Although there are large
numbers of spectra for each class, some classes have only a few samples, and any splitting
of the database needs to be done at the level of samples to maintain independence between
training and prediction cases. A double cross-validation leaving out individual samples would
be too expensive in computing time, so the following scheme was adopted. The database was
split into 30 blocks of about 600 spectra each, with all the spectra in a block belonging to
the same class. In some cases, and in particular for the 12 blocks containing the bovine and
ovine spectra, the blocks comprised a single sample, in other cases they included between 3
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and 19 smaller samples. To tune and assess the various methods a double cross-validation
was carried out by leaving out each of the 30 blocks in turn, tuning the method on the other
29 blocks using leave-out-one-sample cross-validation to select the best parameter value (in
the case of LDA or QDA) or combination (in the case of the kernel density) from a grid, and
then predicting the left-out block using the selected parameter values. Both the dimension
reduction by PCA and the evaluation of prior probabilities from the training set were done
inside the innermost loop of the cross-validation.

Two criteria were used in the tuning process. In one run the parameters were chosen to
maximise the number of correctly classified particles in the inner cross-validation. In another
they were chosen to optimise a score calculated from the probabilities assigned to the correct
classes of the particles in the inner cross-validation. Of the several possible scores [14] we
chose to use the log probability score,

L =
1

n

n∑
i=1

loge(pi), (3)

where the sum is over the n particles being predicted and pi is the probability assigned by
the classification rule to the true class of the ith particle. The best possible score would be
0, achieved by assigning probability 1 to the correct class in each case. To give some idea
of the scale of this score, assigning probabilities of 1/m to each of m classes, including of
course the correct one, would give a score of loge(1/m). This is −1.61 when m = 5 and
−0.69 when m = 2. This scoring rule heavily penalises over-confidence in the probabilities,
for example assigning a probability of 0.0001 to the true class incurs a penalty of -9.2, so its
use in tuning should encourage models that produce realistic probabilities.

4 Results

As explained in Section 2 both the obvious five-class problem and a simpler two-class problem
are of interest. We examine them in turn.

4.1 Five classes

The kernel Bayes classifier for the five-class problem was tuned using the double cross-
validation scheme described in Section 3.3 and a rectangular grid with ranges of 3 to 7
for the number of factors p retained in the dimension reduction and values of the kernel
parameter σ from 0.1 to 0.5 in steps of 0.1. The procedure was run twice, once with total
number of correct classifications as the criterion to be optimised, and again using the log
probability score for this purpose. The outcomes were different.

When the tuning parameters were chosen to maximise the number of correct classifica-
tions, the values p = 6 and σ = 0.2 were chosen for 24 of the 30 outer blocks, with the
others either having p = 5 or p = 7 with σ = 0.2 or in one case p = 6 with σ = 0.1. The
number of classification errors in this double cross-validation was 4865, which is an error
rate of 28%. This drops to 4626 or 26% in the double cross-validation if the parameters are
fixed at p = 6 and σ = 0.2 for the prediction of each outer block, and falls further to 4247
or 24% in a simple cross-validation with the parameters fixed. Thus the over-optimism of a
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simple cross-validation that both tunes and assesses is around 4%. None of these error rates
is impressive, but they are similar to those obtained with KNN.

When the tuning parameters were chosen to maximise the log probability score, the values
p = 6 and σ = 0.4 were chosen for 20 of the 30 outer blocks, with the other 10 having p = 5
and σ = 0.3. The number of classification errors in the double cross-validation was 5506,
which is an error rate of 31%. This is, as might be expected, a little higher than the 28%
that can be achieved by tuning to minimise the error rate. In contrast, the log probability
score is −0.76 here compared with −1.02 above.

The result of classifying any sample using this method is a set of 5 probabilities, one for
each class. To investigate how well calibrated these probabilities are, the selected models were
run using simple leave-out-one-sample cross-validation, the 17570×5 probabilities produced
by each model were grouped into bins of width 0.01 and the proportion of ’correct’ classes
in each bin plotted against the bin centre. For example, with p = 6 and σ = 0.4, 546 classes
were assigned probabilities lying between 0.17 and 0.18. Of these 546, 116 were actually
the true class of the particle concerned. At 21.2% this is a little too high - ideally we want
17.5% to be correct - but not by much. Figure 2 shows these plots for the two models tuned
using different criteria. It is clear from these plots that tuning using the log probability score
results in a model that gives more accurate probabilities.
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Figure 2: Calibration of probabilities for the five-class case, kernel densities. Left, p = 6, σ =
0.2, right p = 6, σ = 0.4

For comparison both QDA and LDA were tuned using the double cross-validation scheme,
trying from 2 to 25 factors, p. When QDA was tuned using number of correct classifications
as the criterion p = 24 factors were selected for most (23/30) blocks and the total number
of classification errors was 4461 (25%). When the log probability score was used, p = 4
was selected for all but two blocks and the number of errors was 5934 (34%). The log
probability scores for the two cases were −1.46 and −1.08 respectively. Thus QDA, if
trained to maximise correct classifications, beats the kernel density method on this criterion.
However the probabilities it produces are much less accurate, as can be seen from Figure 3.
LDA gave both a larger number of errors and less accurate probabilities than the kernel
density method and the results will not be described in detail.
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Figure 3: Calibration of probabilities for the five-class case, QDA. Left, p = 24, right p = 4

4.2 Two classes

Tuning the kernel density method for the two-class problem using the double cross-validation
scheme with log probability score as the criterion resulted in the selection of p = 5 and
σ = 0.3 for 29 of the 30 blocks, 410 (2.3%) classification errors and an overall probability
score of −0.071. Tuning using numbers of correct classifications as the criterion also selected
p = 5 and σ = 0.3 for most blocks but, interestingly, resulted in more errors (515) as well
as a worse score (−0.093). There is no contradiction here. Using this criterion there were
three blocks for which p = 5, σ = 0.3 was not selected and for one of them the selected
combination p = 6, σ = 0.3 made quite a few more errors predicting the block than did the
p = 5, σ = 0.3 selected by the log probability score. Fixing the parameters at the optimal
choice and running a simple leave-out-one-sample cross-validation reduced the number of
errors to 366 (2.1%) and produced the probabilities plotted in Figure 4. This 2.1% error
rate is slightly worse than the 1.5% error rate achieved in [2] using KNN and the same
cross-validation scheme, but this may a price worth paying to achieve probabilities as good
as those in the left panel of Figure 4. With only two classes the assigned probabilities occur
in pairs adding to 1, so this plot has a symmetry around 0.5. Also, because the problem is
easier, there are fewer probabilities in the middle of the range, and so the bins between 0.1
and 0.9 have been widened to 0.1 to get more stable estimates of success rates.

When LDA and QDA were tuned in the same way the best outcome was for LDA tuned
with the log probability score. This selected p = 11 for 24 of the 30 blocks, made 504 (2.9%)
classification errors and obtained a log probability score of −0.099. The right hand panel of
Figure 4 shows the probabilities for LDA with p = 11.

4.3 Artificial mixtures

To illustrate how the probabilities might be used in practice in the context of the detection
of contaminating particles, we constructed two series of artificial mixtures by removing, in
each case, one fish sample and one bovine sample from the database and randomly sampling
spectra from these two samples to generate samples of 200 particles containing 0, 2, 4, 10 and
20 bovine particles, corresponding to contamination levels of 0, 1, 2, 5 and 10%. The same
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Figure 4: Calibration of probabilities for the two-class case. Left, kernel densities, p = 5, σ =
0.3, right, LDA p = 11

fish sample was used for each series; the bovine samples were different, and were chosen
on the basis of the numbers of misclassifications recorded for those samples in the cross-
validations described above. The bovine sample for the first series was easy to separate
from fish, the bovine sample for the second was more difficult. These artificial contaminated
samples were then compared with the rest of the database and the particles in them classified
using the two-group model with p = 5 and σ = 0.3 and prior probabilities of 0.5 for fish and
0.5 for non-fish. It needs to be stressed that this exercise is not intended as a demonstration
that the spectroscopic methodology is able to detect contamination at the 1% level but
simply to illustrate the value of having probabilities. Mixing the measured spectra is by no
means the same as measuring spectra on mixtures, in which particles may stick together
and both sampling variability and possible sampling bias complicate matters, and indeed
the performance on real mixtures was found to be disappointing in [2].

If the model were to be used on genuinely unknown samples, it would need to be extended
to allow a spectrum to be classified as not like anything in the database. In this setup this can
be achieved by adding an extra class whose within-class probability distribution is uniform
over the whole region. Experimenting with the database shows that in this case if the
probability associated with this class is set at 0.5× 10−6 approximately 1% of the database
is classified as “unknown”, and this was the value chosen. A similar approach could be
used to adapt the methodology to the single-group or non-targeted case, i.e. is this sample
authentic or is it something else, with the something else unspecified.

Assigning the spectra to the class with highest probability gave the results in Table 1.
In series 1 the assignments were all correct except that one fish particle, the same one in
each sample, was classified as unknown. In series 2, around one fifth of the bovine particles
present were misclassified as fish, and the outlying fish particle appears in 3 of the 5 samples.
If the outlier class is removed the offending fish particle is classified as fish, not as non-fish,
and to simplify matters we omit this class in the calculations in the rest of this section.

Rather than simply classifying individual particles, it is more informative to calculate and
examine probability distributions relating to the whole sample. To do this it is necessary to
specify a prior distribution that reflects the dependency between the particles, in the sense
that they all belong to the same sample. The obvious assumption in most contexts would
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Sample True composition Assignments, series 1 Assignments, series 2
Non-fish Fish Unknown Non-fish Fish Unknown Non-fish Fish

1 0 200 1 0 199 1 0 199
2 2 198 1 2 197 0 1 199
3 4 196 1 4 195 1 4 195
4 10 190 1 10 189 0 8 192
5 20 180 1 20 179 1 16 183

Table 1: Classification of particles in two series of artificial mixtures

be that the n = 200 particles in the sample are a random sample from a large population
of particles that has a proportion θ of contamination by non-fish particles. Of course this is
not true for the samples analysed here, which are artificially constructed, but the idea is to
examine what the inference would be if they were random samples. To allow learning about
θ from the data we need not to fix it but to give it a prior distribution. Here we use a uniform
prior p(θ) = 1 over the range 0 to 1. Then, conditional on θ, each particle in the sample
has probability θ of being non-fish, independently of the other particles. If we average over
θ using the uniform prior p(θ) to get the marginal prior probability for one particle to be
non-fish it is easily shown to be 0.5, so this setup is consistent with the probabilities used
above. Marginally, i.e. after integrating over θ, the particles are no longer independent,
reflecting the fact that what we learn about θ from one particle affects our belief about the
others. This is why it is not appropriate to simply multiply together probabilities obtained
from the classification of individual particles in a sample.

One probability distribution of interest is that for the number of non-fish particles R in
the sample. Using Bayes theorem this is given by

p(R = r|X) =
p(X|R = r)p(R = r)∑n
i=0 p(X|R = i)p(R = i)

, (4)

where X denotes the spectral data for all n particles in the sample and p(R = r) on the
right hand side is the probability before observing X that the sample will contain r non-
fish particles. With random sampling plus a uniform prior on the population proportion
this latter probability turns out to be 1/(n + 1) for each r from 0 to n and so cancels in
Equation 4. The likelihood terms P (X|R = r) are given by

p(X|R = r) =
1(
n
r

)∑
Sr

{∏
i∈Sr

p(xi|NF )
∏
i/∈Sr

p(xi|F )

}
, (5)

where
(
n
r

)
is the number of ways of choosing r of the n particles to be non-fish, and the sum is

over all
(
n
r

)
subsets Sr containing exactly r elements of the set {1, 2, . . . , n}. For each term in

the sum we multiply the probabilities of the observed spectral data for each of the particles,
evaluating the probability for particle i using either p(xi|NF ) from the kernel density model
for the non-fish particles or p(xi|F ) from the model for the fish particles depending on the
subset chosen to be non-fish.

With n = 200 the number of subsets of size r rapidly becomes very large as r increases, so
that evaluating Equation 5 by brute force is very slow for r bigger than 4, while in principle
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one needs probabilities for all r to evaluate the denominator in Equation 4. The distributions
shown for sample 3 of each series in Figure 5 were computed using two shortcuts. First, only
the probabilities for r up to 8 were computed, since they become small enough to neglect
beyond this. The second short cut was to order the p(xi|NF ) and only compute the terms
in the sum that correspond to the 30 largest of these. This is enough to give an accurate
approximation in this particular case, as judged by varying the 30.

The bars in Figure 5 show the resulting probabilities. For each of these samples 4 particles
reached the probability threshold of 0.5 to be classified as non-fish, so the results in Table 1
are the same for the two samples. However, we can see from Figure 5 that the probability
distributions tell quite different stories. For series 1, the message is that it is very likely that
there are either 3 or 4, and most probably 4, non-fish particles in the sample. For series
2 there is more uncertainty, with three possibilities receiving substantial probabilities, and
the most likely number of particles is deemed to be 1, not 4. For both samples we can be
very confident there is at least one non-fish particle present, the probability of zero non-fish
particles is approximately 10−4 in both cases.
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Figure 5: Probability distributions of numbers of non-fish animal particles for mixture 3.
Left, series 1, right, series 2. The bars are the probability distributions for numbers of non-
fish particles in the samples, the curves are probability densities for the numbers per 200 in
the population from which the sample is hypothetically drawn.

These probabilities relate to the sample, rather than the population it came from, and so
the uncertainty described by them does not include sampling variability. It is arguably more
informative, and actually computationally easier, to compute a probability distribution for
the proportion θ of non-fish particles in the population given the observed spectral data on
the sample of 200. Again using Bayes theorem, this is given by

p(θ|X) =
p(X|θ)p(θ)∫ 1

0
p(X|θ)p(θ)dθ

. (6)

Since θ is a continuous parameter Equation 6 defines a probability density and the normalis-
ing sum in the denominator of Equations 1 and 4 becomes a normalising integral here. One
could in principle evaluate the integral analytically, but it is easier to discretise θ using a grid
of values θi from 0 to 1 with steps of δθ = 0.001 and evaluate the sum

∑1000
i=1 p(X|θi)p(θi)δθ
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instead. Keeping the uniform prior p(θ) = 1, we need simply to evaluate p(X|θ) for each
value of θ in the grid and then divide these values by the sum. The likelihood p(X|θ) is
given by

p(X|θ) =
n∏

i=1

{p(xi|NF )θ + p(xi|F )(1− θ)} . (7)

Here the probability of observing the spectral data xi for the ith particle is the probability
θ that the particle is non-fish, multiplied by the probability of observing xi for a non-fish
particle, plus the probability 1 − θ that the particle is fish multiplied by the corresponding
probability for xi. Compared with the expression in Equation 5 this is much more easily
computed.

The resulting probability densities for θ for sample 3 of series 1 and 2 are plotted in
Figure 5. To enable direct comparison with the distributions for the numbers of non-fish
particles in the samples, p(θ|X) has been rescaled to be a probability density for φ = 200θ,
the number of non-fish particles per 200 in the population. In each case the left hand curve,
slightly to the left for series 1, distinctly to the left for series 2, is the relevant one. The
right hand curve is the probability distribution we would get if we regarded the results in
the sample as 4 definite non-fish particles and 196 definite fish particles, thus ignoring the
uncertainty in the classification. This is available as a standard result [11, Chapter 2] or
derivable by putting p(xi|NF ) = 1 and p(xi|F ) = 0 for 4 particles, and vice-versa for the
other 196, in Equation 7. The result is p(X|θ) = θ4(1 − θ)196, which normalises to be a
beta distribution with parameters 5 and 197. Comparing the two curves allows us to see the
effect of taking into account the uncertainty in the classification of the particles. Comparing
the left hand curve with the discrete probability distribution shows how classification plus
sampling uncertainty compares with just classification uncertainty. Once again, the picture
is quite different for series 1, in the left panel of Figure 5, and series 2 in the right panel. For
series 1 we can see that most of the uncertainty arises from the sampling variability, with
the two distributions for φ having much wider spread than that for the number of particles
in the sample. Taking account of the uncertainty in the classification of the particles shifts
the the distribution for φ slightly to the left, but not by much, and hardly broadens it. For
series 2 the effect of taking account of the uncertainty in the classification is substantial; the
distribution for φ moves well to the left, aligning with the discrete distribution though with
much greater spread than the latter.

5 Discussion and Conclusions

The aim of this work was to demonstrate the value of a probabilistic approach to classifi-
cation, as exemplified by the comparison between Table 1 and Figure 5, where the latter
is much more informative. The context of the example analysed, food and feed authentic-
ity, is an area where probabilities are particularly important, but they are always useful.
The Bayesian framework adopted here is the most natural way to work with probabilities,
and in particular it provides a straighforward way of combining sampling uncertainty with
classification uncertainty, as shown in Section 4.3.

The example chosen for this demonstration is unusually large, having over 17,000 spectra.
There is little doubt that this is one of the reasons why the kernel density method is so
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successful. With datasets comprising, say, a hundred spectra it seems very likely that it
would be hard to avoid over-fitting with the kernel density approach, and the use of LDA
or QDA would be preferred. Further investigations with a range of data sets of different
natures and sizes will be necesssary to establish at what point the kernel density approach
becomes a realistic option.

.
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