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Abstract 

Psychological research and clinical practice relies heavily on psychometric testing for 

measuring psychological constructs that represent symptoms of psychopathology, individual 

difference characteristics, or cognitive profiles. Test-retest reliability assessment is crucial in 

the development of psychometric tools, helping to ensure that measurement variation is due 

to replicable differences between people regardless of time, target behaviour, or user profile. 

While psychological studies testing the reliability of measurement tools are pervasive in the 

literature, many still discuss and assess this form of reliability inappropriately with regard to 

the specified aims of the study or the intended use of the tool. The current paper outlines 

important factors to consider in test-retest reliability analyses, common errors, and some 

initial methods for conducting and reporting reliability analyses to avoid such errors. The 

paper aims to highlight a persistently problematic area in psychological assessment, to 

illustrate the real-world impact that these problems can have on measurement validity, and to 

offer relatively simple methods for improving the validity and practical use of reliability 

statistics. 

 

Key Words: Reliability Analysis, Test-Retest Reliability, Psychometric Testing, 

Measurement Reliability, Limits of Agreement 
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Assessing test-retest reliability of psychological measures: persistent methodological 

problems 

Psychometrics is defined by Rust and Golombok (2009) as the science of psychological 

assessment. Psychological measures assess latent factors such as personality, emotional state, 

or cognition, via a set of observed variables, and the science of psychometrics is concerned 

with the quality, validity, reliability, standardization, and removal of bias in such 

measurement tools (Rust & Golombok, 2009). The vast body of psychological literature 

utilizing this method of measurement is testament to its value and popularity. However, a 

great deal of work is required to design and evaluate a new measurement tool to try and 

ensure that it measures what it intends to, and does so each time it is used. Just as we want to 

be sure that physical or mechanical tools are giving us the right information every time we 

use them, we should be equally concerned that the measuring tools we rely upon in research 

and clinical practice are accurate and dependable. Therefore, consideration of validity and 

reliability are essential in the development of any new psychological measuring tool. 

Validation of psychometric tools ensures that measurements are accurate and 

meaningful for their target population. Generally, assessments of validity have been well 

conducted in published psychological research. For instance, multidisciplinary input has long 

been reported in the development of items and tools (e.g., Bennett & Robinson, 2000; Meyer, 

Miller, Metzger, & Borkovec, 1990; Steptoe, Pollard, & Wardle, 1995), iterative approaches 

are usually taken to the refinement of item inclusion, and typically, assessment of both 

content and performance validities (e.g., construct, criterion-related) are reported (e.g., 

Garner, Olmstead, & Polivy, 1983; Goodman, 1997, 2001; Pliner & Hobden, 1992).  

In contrast, appropriate methods for assessing the reliability of new psychometric 

measuring tools across time, context, and user (i.e., test-retest reliability), have been more 

scarcely reported in psychological literature, This is despite the relatively large number of 
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published studies reporting test-retest designs as part of tool development. Because of its 

predominance and importance in preceding other essential stages in tool development (e.g., 

scale validation, development of reference/cut-off scores, etc.), the present paper will focus 

on test-retest reliability, and the statistical problems still observed in this area. While other 

discussions exist in relation to test-retest methodology, such as the choice of appropriate 

retest time frames (Chmielewski & Watson, 2009), the focus of this paper will be the analysis 

of data and presentation of results, rather than study design or data collection. Furthermore, 

the paper will focus specifically on test-retest of numeric outcomes since these are common 

outcomes in psychological practice (e.g., test scores, rating scales, etc.) and hence, are often 

the focus of analysis difficulties. However, some of the key principles also apply to 

categorical and diagnostic measures.  

Many of the topics that will be discussed in the current paper were initially examined 

by Altman & Bland (1983) within medical research, and issues around types and assessments 

of reliability have been discussed by numerous authors since that time (e.g., Baumgartner, 

2000; Bedard, Martin, Krueger, & Brazil, 2000; Ludbrook, 2002; Streiner, Norman, & 

Cairney, 2014; Weir, 2005). However, practical changes have been slow to translate into 

many research domains, including psychology, and this was the rationale for the current 

paper. The aim of this paper is not to present a comprehensive review of all statistical 

methods for assessing measurement reliability, or even test-retest reliability specifically, but 

to discuss some of the fundamental aspects of test-retest reliability analysis that may not be 

well-understood by researchers undertaking this type of study. The paper will summarise 

some of the common errors that continue to be observed in published studies, and offer an 

introduction to relatively simple methods for assessing and reporting test-retest analyses that 

avoid such errors.  
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What is test-retest reliability? 

Whilst there are many different meanings ascribed to the term ‘reliability’ across 

scientific disciplines, ‘test-retest’ reliability refers to the systematic examination of 

consistency, reproducibility, and agreement among two or more measurements of the same 

individual, using the same tool, under the same conditions (i.e., when we don’t expect the 

individual being measured to have changed on the given outcome). Test-retest studies help us 

to understand how dependable our measurement tools are likely to be if they are put into 

wider use in research and/or clinical practice. When a measurement tool is used on a single 

occasion, we want to know that it will provide an accurate representation of the patient or 

participant so that the outcome may be used for practical purposes (e.g., diagnostics, 

differentiation of individuals or groups). When a measurement tool is used on multiple 

occasions (e.g., to compare baseline and follow-up) we want to know that the tool will give 

accurate results on all occasions, so that observed changes in outcome can be attributed to 

genuine change in the individual, rather than instability in the measurement tool; this is 

particularly relevant when assessing the efficacy of treatments and interventions. Finally, 

when a measurement tool is used to assess different groups (e.g., patients receiving different 

treatments, different characteristics), we want to know that the tool is accurately measuring 

all individuals so that any group differences may be considered genuine and not an artifact of 

measurement. Although demonstrating validity is the key to knowing that the right thing is 

being assessed with any given tool, assessing validity is only truly possible once it has been 

established that a tool is measuring something in the same way each time it is used. 

In the context of test reliability studies, there are two approaches to understanding the 

comparability/reliability of test scores – we’ll refer to them in this paper as ‘relative 

consistency’ and ‘agreement’ – that hold very different definitions of what it means for 

measurements to be ‘reliable’. Relative consistency, also termed ‘rank-order stability’ 
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(Chmielewski & Watson, 2009), means that the relative position or rank of an individual 

within a sample is consistent across raters/times, but systematic differences in the raw scores 

given to individuals by different raters or at different times are unimportant. For example, one 

assessor may score the first three people in a sample as 100, 105, and 107 for IQ, and the 

second may score the same three people, at the same time, as 105, 110, and 112. Even though 

the raw scores given by the two raters are not the same, the difference in rating is consistent 

across all three participants and they maintain the same rank relative to one another; 

therefore, the IQ measure would be considered to have relative reliability across raters. In 

contrast, agreement is concerned with the extent to which the raw observed scores obtained 

by the measurement tool match (or, agree) between raters or time-points, when measuring the 

same individual in the absence of any actual change in the outcome being measured.  

If the relative ordering of individuals within a given sample is of greater importance 

or use than the observed differences between individuals (e.g., finishing position in a race) 

then assessing the relative consistency between measurements may be suitable. However, this 

is not typically the case when assessing the test-retest reliability of standardized measuring 

tools such as psychometric questionnaires. In this case, the aim is to try and make objective 

measurements that are unaffected by the time or place of measurement, or by attributes of the 

individual making the measurement. Once the tool is applied in practice, we want to be 

confident that any given measurement is accurate, and that any differences in outcome 

observed within a study or clinical practice, are due to real changes in an individual, or 

genuine differences between individuals/groups. Therefore, the purpose of reliability studies 

in these contexts is to determine the extent to which repeated measurements agree (i.e., are 

the same), over time, rater, or context (i.e., test-retest), when used to assess the same 

unchanged individual. In such a case, it is necessary to assess absolute differences in scores, 

since these provide a direct measure of score stability at an individual level. Aside from the 
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mere presence/absence of stability, absolute score differences also permit the assessment of 

additional estimates relevant to test-retest reliability, such as the size and homogeneity of 

differences across sample ranges. References to test-retest reliability are prevalent across 

psychological questionnaire-based studies, thus acknowledging the perceived importance of 

accuracy and repeatability in these tools. However, the methods reported to assess ‘test-

retest’ often neglect absolute score differences, and so in many cases they are unsuitable for 

quantifying the intended form of reliability, and make limit use of the data.  

Problems with current methods 

Problems in analyses of test-retest reliability most often relate to either unsuitable 

choice of analysis methods or insufficient reporting of methods. This means, in the first 

instance, that potentially invalid results are obtained and published (and perhaps trusted in 

wider practice) and in the second instance, that appraisal and accurate replication of methods 

and results is precluded. The use of unsuitable statistical methods to assess test-retest 

reliability may arise from a lack of understanding around different types of reliability, 

inaccurate understanding of statistical tests/techniques and the results that they produce, or, 

more pessimistically, as a means for arriving as a desired result where more appropriate or 

conservative approaches may not (Streiner, 2007). Replication of methodology from 

published research and resources, some of which may be outdated by the time of use or of 

poorer quality, can further perpetuate less-than-optimal statistical choices. Inferential 

statistics are frequently misused in this context and often supersede direct examination and 

interpretation of the observed differences between measurements. It is very common to see 

test-retest reliability assessed using bivariate correlation, and non-significant inferential tests 

of difference, such as paired t-tests, used as evidence of similarity between measurements; 

neither of which are able to quantify the equality/similarity of repeated scores (Bland & 

Altman, 1986; Hole, 2014). The following sections summarize the features of these methods 
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that make them unsuitable for assessing agreement-based reliability such as test-retest. 

Correlation 

Correlation is not agreement. A common misconception is that high correlation 

between two measurements equates to agreement between them. In reality, quite incongruent 

paired measurements can produce strong and highly statistically significant correlation 

coefficients, despite the observed agreement between these measurements being very poor. 

Parametric correlation coefficients (Pearson’s product moment correlations), which are 

frequently presented in reliability studies, use a -1 to 1 coefficient to quantify how 

consistently one variable increases (or decreases) relative to another variable increasing, 

according to how close points lie to any straight line. This can be seen by plotting the 

measurements against one another and adding a line of best fit. In contrast, agreement in 

scores means that the 2+ results produced for each individual are the same. To illustrate 

agreement on a scatter plot the points must lie, not on any straight line, but on the line of 

equality specifically, where the intercept is 0 and the slope of the line is 1 (Streiner et al., 

2014). The difference between correlation and agreement is demonstrated in the data in table 

1 taken from a laboratory study of adult food preference. This data shows the ratings given by 

participants when presented with the same food on two occasions. Despite relative stability of 

food preferences in adulthood, we see that, even relative to the measurement scale, there are 

large differences (range 15.7 to 226.7) between ratings given on the two occasions.  
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Table 1 

Food ratings on two occasions by n=21 laboratory participants 

Person Rating 1 Rating 2 Difference  Person Rating 1 Rating 2 Difference 

1 1026.10 1010.40 15.70  12 304.83 337.00 -32.17 

2 671.93 509.70 162.23  13 812.33 661.00 151.33 

3 1001.10 933.20 67.90  14 731.33 681.00 50.33 

4 385.40 494.00 -108.60  15 642.73 570.20 72.53 

5 503.93 671.80 -167.87  16 519.10 631.80 -112.70 

6 848.96 741.00 107.96  17 1295.10 1371.60 -76.50 

7 423.76 335.10 88.66  18 387.80 348.00 39.80 

8 1106.66 1293.10 -186.44  19 642.96 416.30 226.66 

9 381.06 319.00 62.06  20 488.63 330.90 157.73 

10 700.36 889.00 -188.64  21 903.03 881.50 21.53 

11 156.00 65.50 90.50      

 

The scatterplot in figure 1 illustrates just how far away paired ratings are from 

agreement, since very few points lie on or close to the dashed line of equality. Despite this 

clear disparity in ratings, highlighted in both the plot and the absolute score differences, the 

Pearson’s correlation coefficient for this data is 0.93 (p<0.001), which would undoubtedly be 

reported as a very strong association. 
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Correlation conceals systematic bias. Correlation coefficients are standardized 

statistics that always fall between -1 (perfect negative association) and 1 (perfect positive 

association). The units and magnitude of the variables being compared are irrelevant in the 

calculation of the coefficient, and coefficients are not sensitive to mean differences or 

changes in scores; as such, coefficients will mask systematic biases (the amount that one 

measurement differs from another) between measurements/measurers. What this means for 

test-retest reliability is that even very large differences between test and retest values, which 

may represent significant intra-rater instability or inter-rater difference, will not be detected 

by correlation analysis if the differences are consistent in a sample. In practice, this means 

that critical factors affecting measurement reliability such as order effects (practice, boredom, 
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fatigue, etc.) and user interpretation may never be identified. The values in table 2 can be 

used as an example here; this table presents scores given by two teachers double marking a 

computer-based exam task and the differences between the scores for each of the 14 students. 

The table also presents a third set of transformed scores used to exemplify a large difference 

(bias) in marking. If the way that pairs of measurements increase and decrease relative to one 

another is constant, the correlation coefficients between measurements will be exactly the 

same whether there is no bias, a small bias (e.g., around 1.5 points on average), or a very 

large bias is present (e.g., around 46 points on average). Whilst we are unlikely to see 

repeated measures differing by such a margin as teachers A and C in real-life data, this more 

extreme example is used to illustrate an important point. In real world contexts systematic 

bias can occur if a measurement tool is open to interpretation by the specific user, or where 

learning and practice effects influence the outcomes of repeated measurements. These are 

serious flaws for psychometric/psychological assessment tools, which should be unbiased and 

standardized to permit comparison of measurements within and between samples. Given the 

substantial negative impact that systematic bias has on agreement-based reliability (values 

can be far from agreement), methods that conceal and are unaffected by such problems are 

not appropriate for test-retest reliability analyses.  

Although it is uncommon in test-retest reliability, occasionally the measurements that 

we want to compare have different outcome scales/units, but which denote exactly the same 

practical result. For example, comparing height measurements between two raters, one of 

whom uses inches and the other centimeters; or, comparing a total score to a mean or a 

percentage score. In such cases, the outcomes must be standardized prior to analysis to permit 

appropriate examination of agreement-based reliability. 
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Table 2 

Comparison of student exam scores showing a small bias (teacher B marks higher than 

teacher A by ≈1.5 points) and a large bias (teacher C marks higher than teacher A by ≈46 

points) in teachers’ scores. 

Student Teacher A Teacher B Teacher C B-A Difference C-A Difference 

1 0.0 1.0 4.00 1.00 4.00 

2 24.0 24.5 98.00 0.50 74.00 

3 19.5 20.0 80.00 0.50 60.50 

4 14.0 15.0 60.00 1.00 46.00 

5 12.0 13.0 52.00 1.00 40.00 

6 0.0 0.0 0.00 0.00 0.00 

7 10.5 11.0 44.00 0.50 33.50 

8 22.5 22.5 90.00 0.00 67.50 

9 6.0 7.5 30.00 1.50 24.00 

10 20.5 22.5 90.00 2.00 69.50 

11 19.0 22.5 90.00 3.50 71.00 

12 8.0 12.0 48.00 4.00 40.00 

13 14.5 16.0 64.00 1.50 49.50 

14 17.0 20.0 80.00 3.00 63.00 

Mean difference 1.43 45.89 

Pearson’s Correlation between teachers 0.99 0.99 

 

 

Correlation is influenced by sample variability. A final drawback of correlation 

analyses is that the strength of a correlation coefficient is influenced by the spread of the 
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measurements in a given sample. More heterogeneous samples will produce stronger 

correlation coefficients than less heterogeneous samples, in the absence of any disparity in 

the within-pair measurement differences of each. This means that the resulting correlation 

coefficient is relative to the sample on which the analysis was based. While absolute 

differences in coefficients may be relatively small when differences in spread are small, this 

factor means that it may not be appropriate to directly compare correlation coefficients 

produced from different samples and populations, and, that coefficients derived from narrow 

sample ranges may not be representative of the broader population. For example, if you were 

to compare reliability of growth measurements from a sample of children aged 3-5 years with 

a sample of children aged 3-10 years, the latter group would be far more variable than the 

former, so a larger correlation coefficient would be produced for the 3-10 year olds even if 

agreement in absolute growth measures was the same for both samples. This would also be 

relevant when comparing reliability estimates from clinical and non-clinical populations, 

where variation in psychological outcome measures maybe highly disparate between groups. 

As such the researcher may find that the tool appears more reliable in the non-clinical group 

than the clinical group (or vice versa), when in actual fact the absolute differences in scores 

in each group are comparable. It is important to note that this specific issue for test-retest 

analysis does not arise as a result of narrow or incomparable samples (though these have their 

own inherent issues if they are unrepresentative), but as a direct result of the use of a relative 

method (i.e., correlation) to estimate reliability; therefore, it can be overcome by examining 

absolute differences in scores. 

The above issues surrounding correlation analysis also apply to regression analyses 

when used to assess agreement, since simple regression of one measurement onto another is 

also based upon association. These problems are particularly hazardous when data are not 

plotted and examined visually, and reliability is endorsed based on statistical output alone. 
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An expectation of high agreement between measures may also lead to less rigorous 

consideration of raw data and statistical results.  

Statistical tests of difference 

Reliance on traditional statistical testing and p-values can be a hindrance to reliability 

analysis; “performing a test of significance for a reliability coefficient is tantamount to 

committing a type III error – getting the right answer to a question no one is asking” 

(Streiner, 2007; Streiner et al., 2014). While there are ongoing debates around the use and/or 

over-reliance on p-values in research generally, the specific issue in this context is that the 

null hypotheses against which many such statistical tests are compared are relatively 

meaningless when assessing reliability. Perhaps the greatest issue relevant to test-retest 

reliability analysis is the use of hypothesis driven tests of difference, such as the paired t-test. 

The common fallacy is that, if a test finds no significant difference between measurements 

then the measurements agree, but this is not the case (Altman & Bland, 1995). Finding a 

difference to be ‘significant’ simply means that systematic variability between the 

measurements (i.e., between raters, conditions, or time-points) outweighs the variability 

within measurements (i.e., between the individuals in the sample). Therefore, even large 

differences between repeated measurements, which indicate very poor agreement, can be 

statistically non-significant if the sample being tested is heterogeneous. The inverse is also 

true; very similar test-retest scores, which should be seen as demonstrating high reliability, 

may differ statistically significantly in a homogenous sample.  

A related error in reliability analyses is the belief that the average (mean) difference 

between two or more conditions is adequate to quantify agreement between individual pairs 

of scores. This error is demonstrated by the data in table 3, which presents another example 

of laboratory food (pizza) preference ratings (0-20 scale) from 34 participants assessed on 

two occasions. Table 3 also includes the within-pair differences for scores, the mean score for 
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each time-point, and the mean within-pair difference. 

 

Table 3 

Food preference ratings (N=34) for the same food item rated at two time-points, within-pair 

differences in preference rating (time 1 – time 2), and mean scores.  

Case Time 1 Time 2 Difference  Case Time 1 Time 2 Difference 

1 11.80 11.63 .17  18 14.60 7.91 6.69 

2 7.45 7.52 -.07  19 8.85 4.41 4.44 

3 9.11 11.80 -2.69  20 9.45 8.32 1.13 

4 7.14 9.37 -2.23  21 8.16 9.30 -1.13 

5 6.22 8.40 -2.18  22 11.23 12.42 -1.19 

6 5.63 8.06 -2.44  23 10.40 9.53 .87 

7 6.71 7.88 -1.18  24 13.34 10.09 3.25 

8 3.04 2.03 1.01  25 9.02 7.95 1.06 

9 9.81 7.62 2.20  26 17.84 8.99 8.85 

10 10.21 8.99 1.22  27 14.50 13.41 1.09 

11 9.27 9.88 -.62  28 12.18 6.85 5.33 

12 4.33 3.78 .55  29 9.60 1.57 8.04 

13 4.52 7.10 -2.58  30 13.69 13.54 .15 

14 8.90 4.87 4.03  31 7.78 9.00 -1.22 

15 4.89 8.67 -3.78  32 12.42 17.16 -4.75 

16 7.74 3.86 3.88  33 7.57 10.99 -3.42 

17 7.59 7.62 -.02  34 8.54 8.72 -.18 

Mean      9.22 8.51 0.71 

 



16 
 

Relative to the scale of measurement, the absolute differences between ratings are 

large and variable, ranging from -4.75 to 8.85; and yet, the average within-pair difference is 

only 0.71. This value suggests far greater similarity in the data than is actually the case. 

Calculating the mean difference in scores can mask notable disparity between paired 

measurements. This is particularly true when some scores increase from test to retest and 

others decrease; whatever the reason for such a pattern in the within-pair differences (e.g., 

random error of measurement, heteroscedasticity, etc.), this leads to a combination of positive 

and negative differences that cancel each other out and result in a mean close to zero. When 

this data is assessed using a paired samples t-test (t(33) =1.27, p=0.21) or a Wilcoxon signed 

rank test to take account of mild skew (Z=258.00, p=0.50), or worse still, an independent 

samples t-test (t(66)=0.91, p=0.37), the difference between measurements is found to be 

irrefutably non-significant. 

Alongside widespread use of correlations and t-tests, a relatively small number of 

studies in psychology report alternative, more direct methods of analysis for test-retest 

reliability that utilise absolute differences in scores (e.g., Viglione, Blume-Marcovici, Miller, 

Giromini, & Meyer, 2012), suggesting gradual improvement in the field. However, where 

alternative approaches are taken, it can be difficult to determine the validity of the analyses 

for the given context, or to replicate the methods, because limited methodological detail is 

reported. 

Ways to improve test-retest reliability analysis in psychology 

Meet the aims and requirements of test-retest reliability analysis 

Typically, test-retest reliability studies are undertaken to see if repeated measurements 

are ‘similar enough’ for the tool to be considered reliable, which denotes assessment of 

agreement between raw observed values (i.e., does each individual receive the same value 

each time they are measured?). The most important outcome for this type of reliability is the 
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size of the differences between related measurements for each individual, rather than whether 

a difference is seen on average, or whether a ‘significant’ result is obtained. Traditional 

hypothesis driven tests assess whether an observed average difference or association is 

statistically different from zero or no difference/association, rather than indicating how 

similar/different the observed scores obtained from a tool are. In contrast, suitable methods 

for analysing test-retest reliability examine the difference(s) between measurements for each 

case in the sample at an individual level, and assess whether or not the absolute differences 

between scores obtained by the tool fall within an acceptable range according to the tool’s 

specific clinical, scientific, or practical field of use. Unlike relative consistency, this relies on 

having an agreed or directly observable unit of measurement for the outcome score. A 

specific cut-off value (size of difference) up to which measurements may be considered to 

agree, should be identified and justified by the researcher before viewing the data, to avoid 

biasing the reliability analyses. Establishing reliability in this way facilitates more in-depth 

examination of the data (e.g., the size and consistency of differences across a sample) and 

hence more thorough evaluation of reliability. It also permits the creation and validation of 

reference values and cut-off scores, for diagnosis and classification and for understanding a 

single outcome score for an individual; something which is precluded in relative measures of 

reliability since systematic scoring differences are permissible. 

Select suitable methods 

Limits of Agreement. Bland-Altman Limits of Agreement (LOA) (Bland & Altman, 

1986) is a statistical method typically used to assess agreement between two repeated 

numeric measurements (i.e., test-retest scores, or comparison of methods). LOA are based on 

descriptive statistics for paired data and are typically accompanied by a plot of the data to aid 

data checking and interpretation. The limits themselves represent the upper and lower 

boundaries of the middle 95% range of the observed data (within-pair differences), 
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constructed around the mean within-pair difference as mean ± 1.96(SD). For improved 

interpretation and inference beyond the sample, confidence intervals are also constructed 

around the upper and lower LOA. Confidence intervals around the LOA will be wider than 

those around the mean by a factor of 1.71, when samples are not small (Bland & Altman, 

1999). Assuming normality of the data, this gives a range of values in which we are 95% 

confident the population limit should lie. The ‘population’ is a hypothetical scenario in which 

all possible measurement differences could be measured, but it provides a practical indication 

of the variability/precision of measurements that we might expect to see if the tool were 

implemented widely (e.g., a new clinical or research assessment tool).  

An associated Bland-Altman plot sees the average of the two paired measurements 

plotted on the x axis, against the difference between the two measurements on the y axis. The 

plot is used to examine the data distribution and to screen for outliers and heteroscedasticity 

(where the level of agreement between measurements depends on, or is proportionate to the 

size of the measurement). When constructing the LOA plot, a horizontal reference line is first 

added to show the mean within-pair difference; we hope to see this line sitting as close to 

zero as possible. Points spread evenly either side of zero show random error variability in 

which measurements do not differ on average. Points lying around any other positive or 

negative value would indicate systematic bias in the measurements, and if the amount that 

points vary from the mean line differs across the range of measurements, this suggests that 

the data are heteroscedastic. Heteroscedasticity may be dealt with via data transformation to 

permit statistically valid calculation of LOA ((Bland & Altman, 1999). However, it would be 

essential to try and determine the source of heterogeneity, and to discuss the implications of 

this data pattern for reliability and wider application of the measurement tool. 

If we use the food preference ratings presented in table 3 as an example, we saw 

previously that the mean within-pair difference for this data was 0.71. Using the standard 



19 
 

deviation (3.29) and sample size (n=34) we can calculate the standard error (0.56) and a 95% 

confidence interval for the mean (-0.39, 1.81). The LOA, which represent an interval 

containing 95% of the observed differences, can be calculated as -5.73 (95% CI -7.64, -3.81) 

to 7.16 (95% CI 5.24, 9.07); confidence intervals for the LOA are based on a standard error 

of 0.96 (se mean × 1.71). These key values are added to a Bland-Altman plot (figure 2) to 

illustrate the extent of agreement, and hence reliability.  

 

 

 

As we expect, the majority of data points fall within the LOA. If this is not the case, it 

is likely that the data are skewed and thus, the validity of the LOA is questionable. Figure 2 
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shows that across the range of observed measurements, data points are randomly scattered 

around a mean close to zero; this suggests that there is little systematic bias between the two 

measurements and no obvious data heterogeneity. Negative differences represent a higher 

score at measure two compared to measure one, while positive differences represent the 

inverse.  

To conclude about agreement, both the LOA plot and statistics should be examined to 

ascertain how much measurements did (in the observed data) and could (according to the 

confidence intervals) differ from one another, and if these differences are smaller than a 

predetermined cut-off for reliability. If there is no systematic bias between measurements 

(i.e., positive and negative differences are randomly distributed around zero), then either of 

the limits of agreement (positive or negative) and the confidence interval around that limit 

can be referenced to conclude about reliability in the wider population. In reality, the mean 

within-pair difference may deviate a little from zero even from random variation alone, and 

as shown in our example data, this will lead to an imbalance in the limits of agreement. To 

make a conservative estimate of reliability, the larger of the two limits should be selected and 

the confidence interval for this limit used to conclude about agreement. In our example data, 

the larger of the limits of agreement was 7.16 (95% CI 5.24, 9.07), showing that 95% of the 

paired measurements in the sample did not differ by more than 7.16 units. In addition, the 

confidence interval tells us that we can be 95% confident that measurement differences 

should not exceed 9.07 in the wider population of all measurements.  

The disparity between the sample and confidence interval indexes of difference or 

agreement presented above (7.16 vs. 9.07), illustrates how confidence intervals can alter our 

conclusions about reliability beyond what is observed in the data, and highlight why it is so 

important to quantify precision for all estimates. For example, if researchers working with the 

data had chosen 10 as the maximum difference permitted for this tool to show agreement, we 
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would be confident that our tool was reliable; the chosen cut-off exceeds both the sample and 

population limits. If instead the cut-off had been 5, we would be quite confident in 

concluding that our tool was not reliable, since differences observed in the sample and 

inferred for the population exceed this margin. The most difficult scenario is when the cut-off 

lies between the two indexes. For example, if the cut-off had been 8, we would have to 

discuss the implications of our uncertainty around reliability. The observed data do not 

exceed this value, but reliability is not confidently supported in the context of the wider 

population. The only way to minimize differences between sample and population estimates 

is to study large samples, thus reducing the width of confidence intervals around the LOA. 

Intraclass Correlation. While there remain frequent problems with reliability 

analyses in psychology, the use of the Intraclass Correlation Coefficients (ICC) (Shrout & 

Fleiss, 1979) has been seen in psychological literature for some time (e.g., Angold & 

Costello, 1995; Egger et al., 2006; Grant et al., 2003; Kernot, Olds, Lewis, & Maher, 2015; 

March, Sullivan, & Parker, 1999; Silverman, Saavedra, & Pina, 2001). Unlike Pearson’s 

(interclass) correlation, ICC is an acceptable measure of reliability between two or more 

measurements on the same individual/case. Despite the name and the presence of a 

coefficient to quantify reliability, ICC is actually based on a ratio of rater, participant, and 

error sources of measurement variability (derived from ANOVA models). This does mean 

that ICC coefficients are, like other inferential tests, influenced by sample homogeneity; 

when variability between measurements is constant, the more alike the sample is, the lower 

the ICC will be (Bland & Altman, 1990; Lee et al., 2012). Therefore, ICC coefficients 

derived from samples whose outcome variances differ, such as non-clinical and clinical 

samples, should not be compared directly. For example, if a depression measure was used in 

a non-clinical sample we would expect a modest range of scores with many cases scoring 

close to zero, but this same tool applied to a sample of depressed individuals would likely 
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produce a much greater range of scores. In this case, the clinical sample would obtain a 

higher ICC coefficient than the more homogenous non-clinical sample, in the absence of any 

difference in the tool’s reliability. This factor does not discredit ICC as a method of reliability 

analysis, but highlights the importance of evaluating reliability using a representative sample 

drawn from a relevant population (i.e., in which the tool will be used) (Bland & Altman, 

1990). It also emphasizes the need to consider sample variance when interpreting ICC 

coefficients and differences in reliability observed between samples and populations. 

ICC coefficients quantify the extent to which multiple ratings for each individual 

(within-individual) are statistically similar enough to discriminate between individuals, and 

should be accompanied by a confidence interval to indicate the precision of the reliability 

estimate. Most statistical software will also present a p-value for the ICC coefficient. This p-

value is obtained by testing sample data against the null hypothesis that measurements 

within-person are no more alike than between-people (i.e., there is no reliability). In contrast, 

reliability studies aim to answer the functional question ‘are the repeated measurements made 

using a tool similar enough to be considered reliable’. As such, the p-value provided is, in 

most cases, of little practical use or relevance. 

Though many authors report simply that ‘ICC was used’ there are in fact six different 

ICC types to suit different theoretical and methodological study designs (Atkinson & Nevill, 

1998; Shrout & Fleiss, 1979). ICC can be used when a single sample of raters is used to 

assess every individual in a test sample (type 2 ICC), or when different, randomly selected 

raters are used across the total sample (type 1 ICC; e.g., when the same individuals cannot 

feasibly make all measurements across a sample, such as national/multi-center studies). ICC 

types 1 and 2 quantify agreement. A third ICC type (type 3) is used to assess consistency 

among a fixed group of raters. Type 3 ICC permits systematic differences between raters, and 

so represents consistency rather than agreement; therefore, it is only suitable when relative 
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reliability is of primary importance; as discussed earlier in this paper, this is infrequently the 

case when assessing test-retest reliability for psychometric measures. 

For each of the three main ICC types outline above, the coefficient can be calculated 

in two ways; the first reflects the contributions of each individual rater (e.g., presented as 

Single Measures in SPSS, Single_raters in R, and Individual in STATA), while the second 

uses an average of raters (Average Measures in SPSS, Average_raters in R, or Average in 

STATA). Average options will always result in a larger coefficient, because averaging dilutes 

the differences across raters/ratings and gives a false inflation of agreement.  

Three ICC types and two methods of calculation for each, translates into six different 

ICC coefficients that could be calculated for any given set of data. However, the coefficients 

will differ in size, the meaning of ‘reliability’ that they represent, and validity for the 

particular study. Valid choice of ICC type should be determined by the selection of raters in 

the particular study, whether or not reliability needs to be generalized to a wider population 

(e.g., inter-rater reliability generalized to other clinicians using a given measure), and whether 

consistency or agreement is required. This decision should be clearly outlined in the methods 

section of research reports (Atkinson & Nevill, 1998; Krebs, 1986).  

As an applied example, we can revisit the bias data in table 2. This table presented 

data from 3 teachers (A, B, and C); teacher B scored on average 1.5 points higher than 

teacher A, while teaching C scored on average 46 points higher than A. We saw previously 

that correlation fails to recognize systematic bias and as such the correlations for A with B 

and A with C were both 0.99 and highly statistically significant. If we now assess this data 

with ICC type 2 (assuming a sample of teachers were used to assess the random sample of 14 

students) to look at agreement, we find that good reliability is demonstrated for teachers A 

and B who marked similarly (ICC (single measures) = 0.97), and appropriately, very poor 

reliability is shown for teachers A and C who marked differently (ICC (single measures) = 
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0.16). When all three teachers are added into the ICC model we see a negligible increase to 

0.18, suitably reflecting poor reliability across all three raters. As expected, when ICC type 3 

is run, which treats raters as fixed and allows for systematic variability between raters, the 

result is a considerably higher ICC coefficient of 0.49, which would be higher still if the bias 

between raters, however large, was consistent. This again highlights the deficiency of 

assessing consistency rather than agreement for test-retest types of reliability.  

An ICC coefficient can also be accompanied by an ICC plot, which sees the sample 

cases plotted in the x axis, outcome scores on the y axis, and different point characters used 

for each rater/rating. ICC plots illustrate the size and nature of observed differences between 

raters/ratings, and the clustering of scores within person relative to variability across the 

sample, which aid the practical interpretation of statistical results. For example, figure 3 

presents the exam marking data from table 2 for teachers A and B; from this plot we see that 

teacher A scores consistently lower than teacher B, indicating a small bias, but in most cases 

the marks are similar. In contrast, figure 4 presents the table 2 data for all three teachers 

together. This plot clearly shows that teacher C marks much higher than teachers A and B, 

representing a large positive bias, and hence poor reliability. 
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Improved Reporting 

In any study, the aims of the research and the methods used to meet those aims should 

be clearly outlined; it is insufficient to present vague conclusions verified only by statistical 

output (e.g., ‘good reliability was shown r(100)= 0.85, p=0.006’). The purpose of test-retest 

reliability studies is to provide evidence that a tool will measure the same thing, in the same 

way, each time it is used (validity assessment then tells us if it is measuring the right thing). If 

the methods used to evidence this reliability are not sufficiently explained to validate their 

use, or the evidence is not presented in the context of a wider population (i.e., no confidence 

intervals), then the evidence is compromised, or absent altogether. Statements such as ‘ICC 



27 
 

was used to assess reliability’ are common, despite important differences in ICC models, and 

the implications of their selection. Such reporting provides no evidence of mindful selection 

of methods, and may lead the reader to infer that software default settings were used, which 

vary between packages and may not be appropriate. For example, the default ICC type in 

IBM SPSS Statistics (version 22) is a two-way mixed effects model for consistency (type 3 

ICC). This model is liable to give the highest ICC coefficient of all three main types, but is 

only appropriate to use when a fixed group of raters is used, and consistent differences 

between those raters are unimportant. This is contrary to test-retest studies that aim to 

examine agreement between measurements. It should also be clearly specified and justified 

when an average of raters is used rather than assessing across individual raters, since this will 

always inflate the resulting reliability coefficient.  

Problems regarding the justification of analytical choices in ICC also extend to 

correlations and inferential tests of difference. Often, the application of these tests is stated, 

but neither a rationale for their selection, nor an explanation of how the results demonstrate 

reliability, are given by the author. These omissions should lead readers to distrust the results, 

but this is not always the case. Reporting of reliability studies should follow the same 

recommendations for reporting any research methodology; the information given should be 

sufficient to allow the reader, in principle, to replicate the study. Complete evidence of 

reliability, or indeed, unreliability, includes information relevant to the methods and results of 

the analysis. This should include what will be examined (e.g., agreement between test and 

retest scores), how this will be assessed (e.g., Bland Altman limits of agreement), and why 

the method was chosen (e.g., because limits of agreement assesses the extent to which paired 

measurement in a sample agree). Authors should also clearly document what the results of 

the assessment indicate about the data and about subsequent use of the tool, relative to 

practical/clinical parameters and requirements for reliability.  
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There are some good examples of analyses and reporting within the psychological 

literature (e.g., Grant et al., 2003; Kernot et al., 2015; Tighe et al., 2015) that demonstrate 

concise yet informative methodological information. The cited authors are clear about the 

statistical methods they chose; for example, Tighe and colleagues (2015) reported that they 

“calculated the intra-class correlations (ICC) using a two-way mixed effects model for the A, 

B, and total Alda Scale scores”. Similarly, Grant and colleagues (2003) reported that “For 

continuous measures, intraclass correlation coefficients (ICC) are presented as measures of 

reliability. Since our reliability design assumed that interviewers were randomly drawn from 

a larger population of interviewers, we used a one-way random effects ANOVA model to 

derive intraclass correlation coefficients (Shrout and Fleiss, 1979).” As well as providing 

important details regarding the specific ICC models applied to their data and, in the case of 

Grant et al (2003), the justification for this choice, both papers also presented 95% 

confidence intervals alongside their ICC coefficients. This permits a greater level of 

interpretation regarding the precision and wider applicability of their results. This information 

gives the reader a much better indication of what specific statistical procedures were carried 

out, from which they can better judge the suitability and strength of the resulting evidence. 

Extending the principles to other tests of reliability 

Although categorical data has not been discussed in the current paper, the key 

principles of reliability analysis that have been discussed within a test-retest design can be 

directly translated to these types of outcomes. Firstly, data should be considered at an 

individual, paired level, in both presentation and analysis. Secondly, analyses should assess 

the agreement between measurements from multiple conditions, times, or raters. And finally, 

inferential tests of difference/association, such as chi squared and McNemar’s tests for 

categorical outcomes, should be avoided in favor of specific tests of agreement such as kappa 

(Cohen, 1960) and its extensions (e.g., weighted kappa, generalized kappa).  
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The current paper has by no means offered an exhaustive list of potential methods for 

assessing measurement reliability. Instead, two example analyses have been used to illustrate 

what an appropriate assessment of agreement-based reliability should comprise. The 

fundamental messages of the current paper aim to help researchers choose a test or method 

that actually quantifies reliability, draw conclusions about reliability as directly as possible 

from the data, and recognize that in most cases a p-value, if given, will provide little practical 

information about the use or reliability of a measurement tool. 
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