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Listeners form average-based representations
of individual voice identities
Nadine Lavan1,2, Sarah Knight1,2 & Carolyn McGettigan1,2

Models of voice perception propose that identities are encoded relative to an abstracted

average or prototype. While there is some evidence for norm-based coding when learning to

discriminate different voices, little is known about how the representation of an individual's

voice identity is formed through variable exposure to that voice. In two experiments, we show

evidence that participants form abstracted representations of individual voice identities based

on averages, despite having never been exposed to these averages during learning. We

created 3 perceptually distinct voice identities, fully controlling their within-person variability.

Listeners first learned to recognise these identities based on ring-shaped distributions located

around the perimeter of within-person voice spaces – crucially, these distributions were

missing their centres. At test, listeners’ accuracy for old/new judgements was higher for

stimuli located on an untrained distribution nested around the centre of each ring-shaped

distribution compared to stimuli on the trained ring-shaped distribution.
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The question of how we learn and represent person identity
has long been debated. For voices, a prominent view pro-
poses that different identities are encoded on a multi-

dimensional voice space in relation to a prototype voice. In such a
view, the prototype is thought to be a representation of either an
average voice, or a very frequently encountered voice1–5; see
refs. 6,7 for reviews. Within such voice spaces, the location of an
individual voice relative to the prototype has perceptual impli-
cations: Voices that are further away from this between-person
prototype are more perceptually distinctive (see refs. 4,5,8; for
faces see ref. 9) and an identity’s distance to the prototypical voice
affects how well it is remembered and recognised. For example,
some studies find evidence that distinctive voices are more reli-
ably remembered8,10, while others find evidence for the opposite
pattern, with recognition remaining more reliable after a delay for
prototypical voices8.

Studies exploring prototype- or norm-based coding tend to
conceptualise different voice identities as single points in the
voice space. These studies therefore focus on between-person
variability, and on how listeners discriminate between different
identities. While telling different voices apart is one important
aspect of how we process voice identity information, the fact that
individual voices are highly flexible is often neglected in these
studies. The acoustic and perceptual properties of a individual’s
voice can vary dramatically depending on the type of speech or
vocalisations produced (shouting vs. reading aloud vs. joking with
friends vs. whispering11). Listeners are therefore not only
required to encode how different people’s voices differ from each
other; they also need to represent how the different and variable
instances of a single person’s voice belong to the same identity.
This can be a challenging task: it has been shown that listeners
who are unfamiliar with a voice struggle to match, or “tell toge-
ther”, naturally-varying instances of speech produced by the
same person12. Similarly, accurately perceiving identity across
different vocalisations (laughter vs. vowels) is challenging for
familiar and unfamiliar voices alike13,14. By failing to explicitly
account for how within-person variability impacts on the learning
and perception of voices, current models of voice identity per-
ception remain incomplete and underspecified.

While norm-based coding and the extraction of summary
statistics are at the centre of many models of identity perception,
only a relatively small number of empirical studies have provided
direct evidence of such a mechanism for faces and voices. In these
studies, participants were presented with the voices or faces of
familiar (or familiarised) identities: some of the stimuli were
unmanipulated voice recordings/images of faces, while others
were averages derived from different numbers of original stimuli.
This approach assumes that the nature of a within-person
representation is approximated by averaged stimuli with the
rationale that averaging preserves the diagnostic information
about the person’s identity while reducing non-diagnostic varia-
bility introduced by external factors (competing noises, quality of
the signal transmitted, etc.) across different instances15–17. A
study of voice processing by Fontaine and colleagues17

has explored how recognition accuracy and associated reaction
times are affected by averaging familiar or newly trained-to-
familiar voices. For familiar celebrity voices, the authors indeed
found that the higher the number of recordings contributing to
an average stimulus, the higher the explicit identity recognition
accuracy for these averages, with reaction times correspondingly
decreasing. The opposite effect was, however, reported for the
trained-to-familiar voices: here, recognition accuracy decreased
with increasing averageness, while reaction times remained stable.
Why the effects did not replicate across the experiments is
uncertain. Additional evidence for averageness aiding identity
perception comes from a study using familiar (celebrity) faces as

stimuli: here, reaction times decreased when the number of
individual images used to create the average was increased16.
Thus, averages may under certain circumstances form a mean-
ingful part of how familiar voices (and faces) are represented.

Evidence for how an average may become a meaningful part of
a representation can be found in studies of ensemble coding using
sets of faces. It has been shown that viewers routinely extract
summary statistics from sets of faces, such as the average emo-
tional expression of faces18–20, and gender19. For identity pro-
cessing, there is evidence that average identity information is
represented for unfamiliar as well as familiar faces, and for sets of
images of a single identity as well as multiple identities presented
simultaneously or sequentially21–23. Studies specifically probing
within-identity processing in faces have shown that when viewers
are briefly presented with a small number of variable pictures of a
single identity, (previously unseen) average pictures derived from
all presented pictures are labelled as previously seen with the
same frequency as the individual pictures actually seen before23.
Notably, viewers also seem to retain information about the spe-
cific exemplars viewed alongside these averages22,23. In the
auditory modality, there is evidence that listeners extract sum-
mary statistics from heard stimuli, such as the mean frequency of
small sets of pure tones24,25 and sound textures26,27. To our
knowledge, however, no study has directly probed whether
summary statistics are extracted for voice identities.

The extraction of summary statistics from sets of stimuli seems
to be commonplace in perception, but what is its purpose?
Encoding abstracted statistical information compared to high-
resolution and possibly redundant exemplar-based information is
computationally efficient28. While the extraction of summary
statistics has therefore been proposed as a candidate mechanism
for how representations of individual face identities are formed23,
the studies on ensemble coding reviewed above rely on the brief
presentation of a relatively small set of stimuli and do not entail
any formal training or familiarisation procedure. It is thus unclear
whether and how the extraction of summary statistics from faces
using these paradigms extends to (1) voices and (2) paradigms
that focus on training listeners to learn to recognise different
voice identities and thus form representations of these voices.

Here, we ask whether listeners abstract summary statistics of
salient acoustic cues from a distribution of voice samples when
learning to recognise individual voice identities. We show that
listeners more accurately recognise newly learned voice identities
from previously unheard acoustically average stimuli than from
stimuli whose acoustic properties map directly onto distributions
heard during training. This finding suggests that listeners do
indeed abstract summary statistics when learning new voice
identities, highlighting averages as a potentially meaningful part
of mental representations of voice identities.

Results
Abstraction of averages for the learned identities. To investigate
whether listeners abstract summary statistics—specifically avera-
ges—when learning new voice identities, we created a two-
dimensional acoustic voice space. Within this voice space, we
were able to fully describe and control the degree and nature of
the variability in our stimuli and thus specify stimulus distribu-
tions and their summary statistics. The voice space was defined by
variation in glottal pulse rate (GPR) in one dimension, and var-
iation in apparent vocal tract length (VTL) in the other dimen-
sion (Fig. 1). By systematically manipulating the GPR and VTL of
one original speaker’s voice within our voice space, we were able
to create distinct voice identities (e.g. refs. 29,30). Each identity
included acoustic variation across exemplars that was percep-
tually acceptable for a single talker (see Methods)—these
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variations therefore created a within-person voice space for each
identity. In two experiments, listeners learned to recognise these
voice identities based on ring-shaped distributions tracing the
perimeter of the within-person voice spaces over the course of
two brief learning tasks. These ring-shaped distributions were
missing their centres, thus never exposing listeners to the acoustic
average during the learning phase. After the learning phase, lis-
teners provided old/new judgements for stimuli located on both
the previously trained ring-shaped distribution and, crucially, a
previously untrained centre distribution nested around the
acoustic average of each identity’s ring-shaped distribution
(Fig. 1). Distractor identities for the task—the “new” voices—were
created in an identical way to the learned identities but based on a
different original speaker. Their overall voice quality was there-
fore similar to the learned voices, increasing task difficulty at
test. The stimuli used for the training and test phases were based
on “delexicalised”, read sentences, where every syllable was
articulated as “na” to reduce interference from lexical information
in the stimuli, while retaining many other characteristics of the
voice, such as pitch, intonation, speech rate and general voice
quality.

If acoustic averages are abstracted when forming representa-
tions of new individual voice identities, then accuracy on an old/

new recognition task for learned voices should be the same or
better for untrained stimuli located around the geometric centre
of the distribution than for the trained stimuli located on the
ring-shaped distribution. Similarly, accuracy should increase for
stimuli that are acoustically closer to the centre or average. If
averages are not abstracted, however, then accuracy on the old/
new judgement task should be worse for the untrained stimuli in
the centre of each within-person voice space compared to
accuracy for trained stimuli located on the ring-shaped distribu-
tion. This should also be reflected in decreasing accuracy with
increasing acoustic proximity to the centre of the ring-shaped
distribution (i.e. acoustic average).

40 participants took part in Experiment 1. To assess whether
averages are abstracted during voice identity learning, we
analysed listeners’ accuracy on the post-learning old/new
recognition task, for the learned identities only (i.e. not taking
the data from the distractor identities into account). We ran a
binomial intercept-only generalised linear mixed model (GLMM)
using lme431 in the R environment32. Distribution type (ring-
shaped or centre) was included as a fixed effect. We also included
a nested random effects structure accounting for different
identities, versions stimulus sets and individual stimuli. The
model specification is detailed in the formula below. We diverged
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Fig. 1 Illustration of the 2D voice space and the voice identities we created. VTL = vocal tract length, GPR = glottal pulse rate, ST = semitones. Shaded
squares show the nominal within-person voice spaces for the 3 identities created from a sentence produced by one original talker (green). Empty dots
arranged around the perimeter of the individual voice spaces show the locations of stimuli from the ring-shaped distribution used during the learning phase;
filled dots show the locations of the stimuli forming the centre distribution introduced at test. Two sets of identities were created in this way, each based on
a different original speaker’s voice. One set of identities was used during the learning phase; the second set was introduced to listeners as distractor
identities at the old/new recognition task, which took place after the learning phase. Assignment of the two sets of identities as trained and distractor
identities was counterbalanced across the participant sample. Please see the Methods section and Supplementary Note 1 for more details on the
arrangement and assignment of training and distractor stimuli
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from the preregistered analyses across all analyses reported in this
paper in terms of the random effects structure, to avoid singular
fits.

glmerðAccuracy � distribution

þ ð1jparticipantsÞ þ ð1jidentity by speaker
=versions of stimulus sets=stimulusÞ; family

¼ ‘‘binomial’’Þ

ð1Þ

Statistical significance was established via likelihood ratio tests
contrasting the full model including the fixed effect plus the
random effects with a null model that did not include the fixed
effect. Coefficients were transformed into probabilities (prob-
ability= exp[coeff]/[1+ exp[coeff]]) for ease of interpretation.
These confirmatory analyses showed that the distribution type had
an effect on accuracy (coefficient of −0.32, SE= 0.09; probability
= 0.42) and the comparison of the full and null model was
significant (χ2[1]= 11.96, p= 0.001). Accuracy was signifi-
cantly higher for stimuli from the previously unheard centre
distribution that overlaps with the acoustic average compared to
stimuli from the trained, ring-shaped distribution (Fig. 2a on the
left). This numeric trend was apparent for 5 out of 6 trained
identities (Fig. 2a on the right).

To assess whether there is a relationship between accuracy and
acoustic distance to the centre of each identity’s voice space, we
ran a complementary binomial GLMM. Here, the 2D Euclidean
distance from each stimulus to the centre of each identity’s voice

space was included as a fixed effect. We again included a nested
random effects structure accounting for different identities,
versions of stimulus sets and individual stimuli.

glmerðAccuracy � 2DEuclidean distance to the

centreþ ð1jparticipantsÞ
þ ð1jidentity by speaker=versions of stimulus

sets=stimulusÞ; family ¼ ‘‘binomial’’Þ

ð2Þ

These models confirmed that there was a negative relationship
between the accuracy and distance to the centre (coefficient of
−0.18, SE= 0.08; probability= 0.46) and the comparison of the
full and null model was significant (χ2[1]= 5.55, p= 0.018).
Thus, accuracy increases the closer a stimulus is to the previously
unheard centre (acoustic average) of the trained distribution
(Fig. 2c). We furthermore conducted exploratory analyses
assessing whether the reported effects of acoustic distance to
the centre hold for each acoustic dimension independently.
Models were identical to the ones reported above but included the
Euclidean distance in semitones calculated for each dimension
separately. For both GPR and VTL dimensions, accuracy
increased the closer an item was to the centre of the training
distribution. This effect was, however, only significant for acoustic
distances computed for VTL (VTL: coefficient=−0.41, SE=
0.12; probability= 0.40; χ2[1]= 10.98, p= 0.001, GPR: coeffi-
cient=−0.10, SE= 0.08; probability= 0.48; χ2[1]= 1.73, p=
0.189).
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a, b Accuracy for the two distributions (centre and ring-shaped) is plotted averaged across all identities and both speakers, and broken down by identity
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The results of Experiment 1 thus suggest that averages are
indeed abstracted when learning new voice identities and may
form a meaningful part of voice identity representations:
accuracy for an old/new recognition task was higher for the
previously untrained geometric centre of the training distribution
than for the training distribution itself. This effect was also
apparent when modelling the location on the within-person voice
space in terms of the distance between a stimulus’ acoustic
properties and the acoustic centre of an identity’s voice space:
accuracy was higher for stimuli closer to the unheard centre or
acoustic average.

In Experiment 2, we replicated and extended our findings to
more naturalistic linguistic stimuli: using the same experimental
design, we trained listeners on recordings of full sentences with
their linguistic content intact, instead of using delexicalised
sentences. However, the delexicalised stimuli were still used at
test. By training listeners on sentences including linguistic content
but testing them on delexicalised sentences, we additionally
required listeners in this experiment to generalise information
about the learned identities across different types of stimuli from
training to test.

Fifty listeners took part in Experiment 2. Data were analysed in
the same way as for Experiment 1: in a confirmatory analysis, we
first contrasted accuracy for the centre distribution vs. the ring-
shaped distribution, for the learned identities only. These models
confirmed that the distribution type had an effect on accuracy
(coefficient of −0.35, SE= 0.07; probability= 0.41; χ2[1]= 25.34,
p < 0.001). We thus replicated the effect reported in Experiment
1 showing that accuracy is higher for stimuli from the previously
unheard centre distribution compared to stimuli from the trained,
ring-shaped distribution (Fig. 2b on the left). This numeric trend
was apparent for all 6 trained identities (Fig. 2b, right).

We tested whether accuracy was related to the acoustic
distance to the centre in a second confirmatory analysis. These
models again confirmed that there was a negative relationship
between the two measures (coefficient of −0.25, SE= 0.06;
probability= 0.44; χ2[1]= 19.85, p < 0.001). Thus, we replicated
our findings from Experiment 1, showing that accuracy increases
the closer a stimulus is to the centre of the trained distribution
(Fig. 2d). We then assessed in an exploratory analysis whether the
effect of acoustic distance holds for both GPR and VTL
dimensions individually. Models were identical to the ones
reported for Experiment 1. We replicated our findings showing
that accuracy increased the closer an item was to the centre of the
training distribution for each of the dimensions (VTL: coefficient
=−0.34, SE= 0.09; probability= 0.42; χ2[1]= 13.40, p < 0.001,
GPR: coefficient=−0.20, SE= 0.06; probability= 0.45; χ2[1]=
11.77, p < 0.001). This result differs from Experiment 1 where
only the model coding for the VTL dimension showed a
significant effect.

Effects of voice space location on the distractor identities. In
the old/new recognition task, half of the trials included stimuli
from the previously learned identities (which are analysed in the
previous paragraphs), while the other half included stimuli from a
matched set of distractor identities—the “new” voice identities.
The stimulus distributions for the distractor identities were cre-
ated in the same way as the distributions for learned iden-
tities (see Methods and Figure 1): Crucially, the original speaker
used to create the distractor voices was however a different
speaker to the one used to create the learned identities. We
aligned the salient acoustic properties (GPR and VTL) for learned
and distractor identities, while all other acoustic differences
between original speakers were allowed to vary freely. Conse-
quently, ring-shaped and centre distributions were largely

overlapping in their acoustic properties across learned and dis-
tractor voices (see Methods).

In exploratory analyses, we investigated whether any relation-
ship between accuracy in the old/new recognition task and the
type of distribution (ring-shaped vs. centre) existed for the
distractor identities as well as for the learned identities, given the
acoustic overlap between the two identity sets. For this purpose,
we ran a GLMM analysis on accuracy, which was identical in its
structure to the one run for the learned identities: it included
the distribution type as a fixed effect and a nested random effects
structure including random effects for the different identities,
versions of stimulus set and stimuli. For Experiment 1, these
analyses showed that the distribution type on the voice space had
an effect on accuracy (coefficient of 0.52, SE= 0.08, probability=
0.63; χ2[1]= 40.00, p < 0.001). The direction of the effect was,
however, the opposite of that for learned identities (Fig. 3a):
Accuracy was higher for stimuli on the ring-shaped distribution
and lower for the centre distribution, a trend that held for all 6
identities.

We further explored whether there was a relationship between
accuracy and acoustic distance to the centre of each distractor
identity’s voice space in Experiment 1, mirroring the GLMMs
specified for the learned identities. These exploratory analyses
also showed the opposite effect to what we observed for the
learned identities: There was a positive relationship between
accuracy and distance to the centre (coefficient of 0.45, SE= 0.07;
probability= 0.61; χ2[1]= 43.783, p < 0.001). Accuracy thus
decreased the closer a stimulus was to the centre of the trained
ring-shaped distribution (see Fig. 3b). This effect also held when
considering VTL and GPR independently (VTL: coefficient of
0.58, SE= 0.11; probability= 0.64; χ2[1]= 26.71, p < 0.001; GPR:
coefficient of 0.39, SE= 0.07; probability= 0.60; χ2[1]= 31.03, p
< 0.001).

We conducted the same analyses for the data from the
distractor identities in Experiment 2 and found again that the
type of distribution had an effect on accuracy (coefficient of 0.20,
SE= 0.06; probability= 0.55; χ2[1]= 9.75, p= 0.001, see Fig. 3c).
The trend of better performance for the ring-shaped distribution
held for all 6 identities. Similarly, we replicated the finding
showing an effect of acoustic distance to the centre on accuracy
when considering distance in two dimensions (coefficient of 0.19,
SE= 0.05; χ2[1]= 12.60, p < 0.001, see Fig. 3d) and also when
considering each dimension individually (VTL: coefficient of 0.32,
SE= 0.09; probability= 0.55; χ2[1]= 13.71, p < 0.001; GPR:
coefficient of 0.15, SE= 0.05; probability= 0.54; χ2[1]= 8.02, p
= 0.005). Across the two experiments and the two types of
analyses, we therefore consistently found the opposite pattern of
results for distractor identities to what was found in the
confirmatory analyses for the learned identities.

Discussion
We investigated whether averages are abstracted during the
learning of new individual voice identities. Across two experi-
ments, participants learned to recognise 3 new identities based on
variable voice stimuli forming ring-shaped distributions on a two-
dimensional voice space. Accuracy for a subsequent old/new
recognition task was higher for an untrained distribution of sti-
muli grouped around the centre—the acoustic average—of the
learned distribution than for stimuli located on the previously
trained ring-shaped distribution. The current studies are there-
fore direct empirical demonstrations that participants indeed
extract averages when forming abstracted representations of
individual voice identities and appear to use them during sub-
sequent recognition, despite having never been exposed to these
averages during learning. Since our participants were not given
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any specific instructions on how to learn the different iden-
tities and will have had limited insight into the properties of the
different stimulus distributions, it is likely that the extraction of
summary statistics occurred automatically during learning. This
is in line with previous research that has shown that listeners
automatically learn about the relationships of acoustic properties
of artificially created complex sounds that vary systematically
along two dimensions28. All effects held across two independent
participant samples and two types of training stimuli: in
Experiment 1, delexicalized sentences were used while in
Experiment 2 we used sentences that included full linguistic
content. In comparison to Experiment 1, overall performance was
lower in Experiment 2 (e.g. 69% for the centre distribution vs.
76% in Experiment 1): this most likely reflects the cost of addi-
tional generalisation across stimulus types from training (sen-
tences including lexical content) to test (delexicalized sentences)
in Experiment 2.

Models of voice perception have proposed that an average
voice may form a perceptually meaningful prototype, in relation
to which individual identities are encoded. In the context of the
extensive within-person variability of human voices, it is rea-
sonable to assume that a similar process is at work when forming
a representation of a new voice identity based on variable sig-
nals11. Our findings confirm this proposal and can thus be
interpreted as preliminary evidence for the existence of abstrac-
ted, norm-based within-person representations of voice identity

as a result of being exposed to a variable signal. Our results
additionally could be interpreted as evidence against exemplar-
based models of identity coding, which are frequently used as an
alternative to norm-based coding models (e.g. ref. 9 for faces).
Exemplar-based models would predict the highest accuracy for
stimuli that are acoustically closer to what was previously heard.
Although we note that we define exemplars as specific locations in
a voice space, as opposed to specific stimuli (i.e. we did not repeat
the same recordings across learning and test), an exemplar-based
account should still predict lower accuracy at test for previously
unheard locations in the centre distribution. We note that
while an exemplar model of representation would have predicted
the opposite to the observed pattern of results, listeners may still
have retained representation of the previously heard exemplars,
since overall accuracy for stimuli from both distributions was
relatively high.

As part of exploratory analyses, we found that in both
experiments, accuracy for the distractor identities exhibited the
opposite pattern of results to the learned identities: accuracy (i.e.
correctly labelling a distractor identity as “new”) was higher for
stimuli located on the ring-shaped distribution compared to sti-
muli located on the centre distribution. Similarly, accuracy
decreased the closer stimuli were to the centre (whether con-
sidering both acoustic properties together, or modelling them
individually). How these exploratory findings should be inter-
preted remains unclear: it may be that these effects arose due to
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the overlap in the salient acoustic properties (GPR and VTL)
between distractor and learned identities, although we have little
insight into how the acoustic cues shaped listeners’ responses to
the previously unheard distractor identities. For further spec-
ulative interpretations of these findings as evidence for average-
based coding or in relation to possible task-related effects, please
see Supplementary Note 2.

How can our findings be specifically integrated into existing
models of voice perception? Given the flexibility and natural
variability of our voices, we are likely to not only encode
abstracted representations of how different voices relate to a
single underlying prototype and to each other. We also need to
form representations of how different variable exemplars of the
same voice go together—that is, we must form a within-person
representation of a voice. For the current studies, we report that
listeners extract identity-specific summary statistics when learn-
ing new voice identities. We propose that this process may
underpin how representations of voice identities are formed (see
also ref. 23 for faces). If voice identity perception thus involves
both within- and across-identity representations, the question
arises of how these two representations or processes interact.
First, there appears to be a logical hierarchy to the order in which
within- and between-person representations are formed when
learning a new voice. Upon first exposure to a new voice identity,
it can be rapidly established where this identity falls on the
between-person voice space2: this voice space is already populated
with a large number of familiar voices that we have encoded
throughout our lives. These familiar voices have already mapped
out and defined the dimensions and boundaries of the between-
person voice space and have crucially created a prototypical voice
that is used as an anchor for between-person identity coding (see
ref. 6 for a review). Being exposed to a single exemplar may thus
be sufficient to quickly assess with reasonable accuracy that the
voice just heard is an unknown one. This hypothesis is supported
by the finding that listeners who are unfamiliar with a set of
voices have little trouble telling these voices apart with high
accuracy, with performance comparable to that of listeners who
are already familiar with the voices12. Note, however, that false
alarms (i.e. labelling unfamiliar voices as familiar) have also been
reported in the literature33. When first encountering a new voice,
however, by definition no within-person representation or pro-
totype for this voice exists until multiple exemplars have been
heard. Thus, after establishing that a voice is indeed unknown, a
within-person representation and voice space must then be
mapped out for it to become a truly familiar voice. Our results
suggest that this may take place through extracting summary
statistics that will eventually, through increasing exposure to this
voice, help to form a stable within-person prototype6.

We used a method that allowed us to create distinctive voice
identities featuring within-person variability, with tight control
over the acoustic and perceptual properties of the stimuli. This
control was essential to create distributions of stimuli with known
properties and quantify their statistical averages. Through this
process, ecological validity was sacrificed: we introduced varia-
bility for each identity by changing only two perceptually salient
acoustic properties of the stimuli (GPR and VTL). While GPR
changes significantly in everyday voice use, there are no good
estimates of whether and how VTL might change29,30. Natural
variability of a voice is not two-dimensional but highly multi-
dimensional, such that any number of acoustic features will be
modified by simple changes in speaking style (conversational
speech vs. read speech) or interlocutor (infant-directed speech vs.
speaking with an adult11). One promising method that can
introduce higher-dimensional manipulations of variability may,
for example, be the use of morphing techniques through which
continua between two voices can be created3. It has furthermore

been demonstrated that within-person variability may be at least
partitially idiosyncratic, that is, specific to an individual and
therefore potentially diagnostic when perceiving identity as
opposed to being noise (ref. 34,35 for faces): the identities created
in the current study each varied in terms of the absolute GPR and
VTL, but how identities varied was identical. Finally, the varia-
bility of specific acoustic properties in everyday vocal behaviour is
likely to follow a broadly normal distribution (ref. 36 for GPR),
making our training distribution highly artificial because all
exemplars were presented with equal frequency. This type of
training distribution was, however, specifically chosen to avoid
the confounding effects of frequency of exposure: for normally
distributed variability, the most average samples will also be the
ones that are heard most frequently (ref. 9 for a discussion for
faces).

Our study opens up exciting avenues for future research to
further elucidate the mechanisms underpinning the reported
effects. For example, future research will need to explore whether
listeners form pure mathematical averages, or whether they take
the precise distribution of exemplars into account to form
weighted-average, prototypical representations. This could be
tested explicitly by examining how outlier exemplars influence the
properties of learned averages. Further, it remains to be deter-
mined whether and information about the variability is abstracted
and/or encoded when forming representations. Another key
challenge will be to investigate whether the averaging mechan-
isms suggested by our current data are comparable to those at
work in richer, more naturalistic learning environments and over
longer periods of exposure and learning: how much exposure is
needed to observe these effects, and do they depend on the degree
of within-person variability encoded during training? Since we
can see significant averaging effects already after a minimal
retention span during which exemplar-based memory traces
should still be available, we might predict that the average-based
abstraction becomes yet stronger over longer retention periods
during which representation of specific exemplars might pro-
gressively fade. Finally, the extraction of summary statistics can
be observed in the visual as well as in the auditory modality, both
in the context of ensemble coding as a result of being exposed to
sets of stimuli for a very short amount of time and—as this
study has also shown—in the context of longer learning or
training paradigms. Whether these findings rely on the same
underlying mechanisms across modalities, or whether they are
unrelated, remains an open question. Despite these open ques-
tions, our study is a first promising investigation into the
mechanisms used to form within-person representation of voices,
and highlights once again the importance of accounting for
within-person variability in models of voice perception.

Methods
Participants. In Experiment 1, 44 participants were tested online using Gorilla
(gorilla.sc/about37). Participants were recruited via Prolific (prolific.ac) and were
reimbursed for their time. The study was approved by the ethics committee at
Royal Holloway, University of London and researchers complied with all relevant
regulations for work with human participants. All participants were aged between
18 and 40 years, were native speakers of English, had no reported hearing diffi-
culties and had an approval rate over 90% on Prolific. No participant had taken
part in any pilot or validation studies associated with this project. Four participants
were excluded from this data set: 1 participant failed to give the correct response
for more than 20% of vigilance trials (see Methods) and 3 participants did not
perform significantly better than chance (±95% confidence intervals) for the last 15
trials of Training 2 (see Procedure). The final participant sample thus included 40
participants (mean age: 29.37 years, SD= 6.05 years; 19 females). This sample size
was determined to be adequate through a power analysis based on a small pilot
study (N= 15) using a similar paradigm.

In Experiment 2, 56 participants were also tested online using Gorilla37.
Participants were recruited via Prolific (prolific.ac) and were reimbursed for their
time. The study was approved by the ethics committee at the Department of
Speech, Hearing and Phonetic Sciences at University College London and
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researchers complied with all relevant regulations for work with human
participants. Eligibility criteria were the same as for Experiment 1. No participant
had taken part in any pilot, validation studies associated with this project, or
Experiment 1. Six participants were excluded from the sample as they did not
perform significantly better than chance (±95% confidence intervals) for the last 15
trials of Training 2. The final participant sample thus included 50 participants
(mean age: 29.57 years, SD= 6.39 years; 32 females, 1 other). This sample size was
determine to be adeqaute based on the data from Experiment 1.

Speakers and voice recordings. We recorded two male speakers (Speaker 1 and
Speaker 2) of Standard Southern British English producing 69 sentences from the
Bamford–Kowal–Bench corpus38 (e.g. “The clown had a funny face”). In addition
to reading the sentences out with their linguistic content intact (see training stimuli
in Experiment 2), speakers were instructed to replace every original syllable with
“na”. These recordings formed the basis of the training and test voices used later in
Experiment 1. Sentences were recorded in a sound-attenuated booth using a Røde
NT1A microphone. All sentences were saved as WAV files, normed across stimuli
to match the median pitch of each speaker, and finally normed for RMS amplitude.
Stimuli were converted into MP3 format for use on the online testing platform. In
the study, one of the speakers was used as the basis for the training voice identities
while stimuli based on the second speaker were introduced at the test phase as
distractor identities. We counterbalanced the assignment of speakers to training
and test phases across participants.

Creating distinct voice identities. Based on each originally recorded speaker’s
sentences, we created 4 perceptually distinct voice identities by shifting the GPR
(related to the fundamental frequency and voice pitch perception) and VTL
(related to voice timbre perception) in Praat39 with the methods used by Darwin,
Brungart and Simpson40, thus creating a two-dimensional voice space (Fig. 1). GPR
and VTL have previously been shown to be the most salient cues for identity
perception2,29,30,40,41, allowing us to create perceptually distinct voice identities
that differed only in two known acoustic properties (GPR and VTL). We were thus
able to fully control, quantify and reproduce the properties and variability of the
stimuli on which listeners were trained and tested. Furthermore, all stimuli were
manipulated using the same procedure, thus minimising potential confounds
introduced by comparing manipulated and unmanipulated stimuli.

In our voice space, changes in GPR and VTL were perceptually equated, where
a 1 semitone change in VTL corresponded to a 1.6 semitone change in GPR29. The
centres of each the 4 identities were displaced from the original voice by
3.78 semitones for GPR and 2.36 semitones for VTL. Around these centres, we
created nominal within-person voice spaces to simulate some of the natural within-
person variability encountered in human voices (Fig. 1)11. Each within-person
voice space had a range of 2.25 semitones for VTL and 3.6 semitones for GPR; thus,
stimuli furthest away from each other within each voice space was perceived
ambiguous to unfamiliar listeners as to whether they could have been produced by
the same speaker or not, as assessed via a speaker discrimination task
(Supplementary Fig. 1 and ref. 29). After reviewing the perceptual qualities of the 4
voice identities, one voice identity (low GPR, short VTL; missing in the left-hand
bottom corner in Fig. 1) was excluded due to this identity being perceived as
sounding unnatural during perceptual piloting of the identities derived from one of
the speakers, with stimuli being prone to distortions introduced by the acoustic
manipulation. For information on the perceptual properties of the voice identities,
please see Supplementary Note 1.

Stimuli. For the main experiments, we created two distributions of locations from
each identity’s within-person voice space to allow us to test whether averages are
formed when learning voice identities. These distributions are illustrated in Fig. 1.
For the learning phase of the study, where participants learned to recognise the 3
different identities, we created a ring-shaped distribution per identity (18 loca-
tions × 3 identities). During learning, listeners were therefore never exposed to the
average of the salient acoustic features for the individual identities. At test, we
introduced a second type of distribution to participants (see “Procedure”). This
type of distribution is nested within each ring-shaped training distribution and is
located on and around the centre (and thus the acoustic average) of each nominal
within-person voice space (17 locations × 3 identities). For the stimuli used in the
main study, the different voice space locations were based on different underlying
sentences (see Supplementary Note 1); sentences used at test had not been used in
the training stimulus sets. Individual sentences were repeated 6 times each during
training and 4–5 times during test. To minimise stimulus-specific effects, we fur-
thermore created two versions of stimulus sets. For the two versions of stimuli sets,
the combinations of sentences and locations on the voice space were shuffled; for
example: if Sentence 1 was manipulated to correspond to the centre location of the
voice space of ID1 in Stimulus Set 1, this same sentence could be manipulated to
correspond to a location on the ring-shaped distribution for ID1 in Stimulus Set 2.
These versions of stimulus sets were counterbalanced across participants.

Procedure. For both experiments, participants were first provided with an infor-
mation sheet and provided consent to take part in the study. They then completed
a headphones screening42 before completing two brief learning phases (Training 1

and Training 2). For Training 1, participants were presented with stimuli covering
all 18 locations on the ring-shaped training distribution while a name (Peter, James
or Michael) was presented on the screen. These presentations were blocked by
identity and the order of identities was randomised across participants. Participants
were instructed to listen attentively while memorising the different identities and
their names. No responses were collected during this training phase. For Training
2, participants were presented with the same stimuli again in fully randomised
order and were asked to complete a 3-way forced choice recognition task (“Is this
Michael, James or Peter?”) with audio–visual feedback on whether their response
was correct or not. Both learning phases were self-timed and lasted on average
between 5 and 8 min in total. Performance for the final 15 trials of Training 2 were
used as an index to track whether listeners had learned to recognise the two
identities. These data showed listeners were able to correctly identify the 3 voice
identities with high accuracy towards the end of the learning phase (mean accuracy
= 88.6%, SD= 9.9%; chance level= 33%).

After this learning phase, participants completed an old/new judgement task for
the test phase. This task included stimuli from both the trained ring-shaped
distributions (18 locations × 3 identities × 2 speakers (learned, distractor)) and the
centre-distribution of the 3 identities (17 locations × 3 identities × 2 speakers
(learned, distractor)). Listeners were presented with 6 nominal artificially created
identities: 3 learned identities based on one original speaker and 3 distractor
identities based on the other original speaker. To increase the task difficulty, the
GPR/F0 median was matched for the distractor identities to the GPR/F0 median
for the learned identities. This was achieved by using the “change pitch” function in
the Praat Vocal Toolkit43 to match the recordings of the original speaker used for
the distractor identities to the median pitch of the original speaker used for the
trained identities. The distractor identities were created afterwards. VTL was not
explicitly aligned across speakers: VTL estimations based on 5 of the
unmanipulated recordings however showed that Speakers 1 and 2 were well-
matched in their VTLs (Speaker 1: 15.4 cm, Speaker 2: 15.6 cm; for methods see
ref. 44). We determined that this difference of 0.2 cm in VTL broadly corresponded
to around 2 manipulation steps within our voice space (each being 0.23 semitones
for VTL). We, however, note that these estimates should be treated with caution,
since small differences in vowel quality and formant measurement errors may have
influenced these VTL estimates across speakers. Thus the learned and distractor
identities overlapped fully on the GPR dimension and partially overlapped on the
VTL dimension. Participants additionally completed 20 vigilance trials: here, a
computer-generated voice instructed listeners to either respond with “old voice” or
“new voice” (see exclusion criteria). The order of presentation was fully
randomised across participants. The task was self-paced and participants were
advised to complete the task in one sitting, without taking breaks. It took
participants between 15 and 20 min to complete the full experiment.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Experiment 1: Data from the main experiment and example stimuli have been deposited
on the Open Science Framework: https://osf.io/h8ngp/. These data form the source data
underlying all visualisations in Figs. 2a, c and 3a, c. Experiment 2: Data from the main
experiment have been deposited on the Open Science Framework: https://osf.io/us87g/.
These data form the source data underlying all visualisations in Figs. 2b, d and 3b, d.
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