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Abstract—Standard positron emission tomography (PET)
reconstruction techniques are based on maximum-likelihood
(ML) optimization methods, such as the maximum-likelihood
expectation-maximization (MLEM) algorithm and its variations.
Most of these methodologies rely on a positivity constraint
on the activity distribution image. Although this constraint is
meaningful from a physical point of view, it can be a source of
bias for low-count/high-background PET, which can compromise
accurate quantification. Existing methods that allow for negative
values in the estimated image usually utilize a modified log-
likelihood, and therefore break the data statistics. In this work we
propose to incorporate the positivity constraint on the projections
only, by approximating the (penalized) log-likelihood function
by an adequate sequence of objective functions that are easily
maximized without constraint. This sequence is constructed such
that there is hypo-convergence (a type of convergence that allows
the convergence of the maximizers under some conditions) to the
original log-likelihood, hence allowing us to achieve maximization
with positivity constraint on the projections using simple settings.
A complete proof of convergence under weak assumptions is
given. We provide results of experiments on simulated data
where we compare our methodology with the alternative direc-
tion method of multipliers (ADMM) method, showing that our
algorithm converges to a maximizer which stays in the desired
feasibility set, with faster convergence than ADMM. We also
show that this approach reduces the bias, as compared with
MLEM images, in necrotic tumors—which are characterized by
cold regions surrounded by hot structures—while reconstructing
similar activity values in hot regions.

Index Terms—PET Imaging, Penalized Maximum-Likelihood
Image Reconstruction, Constrained Optimization, Hypo-
Convergence.
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I. INTRODUCTION

UNTIL the 1980’s, tomographic image reconstruction,
which includes positron emission tomography (PET), re-

lied on filtered-backprojections (FBP), consisting in computing
the generalized inverse of the Radon transform [1]. As an
inverse of an operator between two functional spaces, FBP
does not include a non-negativity assumption on the image, but
only computes an image that matches the observed projection
data. As a result of the direct inversion, high frequencies in
the data are amplified by the ramp filter present in the FBP
operator.

With the publication of the iterative maximum-likelihood
expectation-maximization (MLEM) algorithm for emission
tomography [2], [3] and its accelerated version [4], PET image
reconstruction by maximum-likelihood (ML) techniques grew
in popularity and replaced FBP in most clinical settings. By
accounting for the statistical model of the emission data, MLEM
delivers images with better noise and resolution properties,
which can also be further controlled with the addition of a
penalty term on the log-likelihood [5].

The MLEM algorithm consists in maximizing the expected
log-likelihood, where the “expectation” is obtained from the
activity estimate at the previous iteration. The underlying
model assumes that the emissions at each voxel follow a
Poisson distribution centered on the activity image. Hence,
each MLEM iteration produces positive images. More generally,
most iterative reconstruction algorithms impose positivity on
the reconstructed image [5]–[7].

The drawback of the positivity constraint is the induced bias
in low-activity (cold) regions. This bias is further amplified
when the regions are surrounded by high-activity (hot) regions,
which artificially increase the activity in cold regions due to
spillover (partial volume effects). This compromises quantita-
tive studies such as kinetic modeling or tumor texture analysis
in the presence of hypoxia or necrosis [8], [9]. Moreover,
iterative reconstruction algorithms suffer from noise-induced
bias, which affects quantification in low-statistic scans with
high-background (random and scatter) fraction [10].

Several approaches allowing for negative activity values have
been proposed in order to reduce bias, including modifications
of the original MLEM algorithm to impose an upper-bound and
a (negative) lower-bound [11], [12], as well as Poisson/Gaussian
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mixture models [13], [14]. However, these methods depend
on some parameters (lower-bound for [11], [12], likelihood
mixture parameter for [13], [14]) which affect the reconstructed
image characteristics. Therefore, these parameters need to be
optimally chosen. In addition, these methods break the statistical
model and therefore are vulnerable to noise amplification.
More recently, Lim et al. [15] have developed a penalized
maximum-likelihood (PML) algorithm for PET that performs
maximization of the penalized log-likelihood (PLL) with
positivity constraint on the projections, by maximizing the
PLL over its entire domain of definition. The optimization
problem was reformulated as an augmented Lagrangian saddle
point problem, which was solved with the help of an alternative
direction method of multipliers (ADMM) [16]. Consequently,
its implementation depends on the choice of the augmented
Lagrangian weight.

In this paper we propose an alternative to [15] to solve
the PML problem with positivity constraint on the projections.
We approximate the PLL function by an adequate sequence
of objective functions without constraint on feasibility. This
sequence is designed such that it hypo-converges to the original
PLL (see Definition 1). The overall algorithm consists of ap-
proximately maximizing each objective function of the sequence
successively and without constraint; the hypo-convergence of
the sequence of objective functions allows the sequence of
maximizers to converge to the PML with positivity constraint
on the projections.

A preliminary version of this work was presented at the
2018 Nuclear Science Symposium and Medical Imaging Confer-
ence [17]. We substantially extended this work by incorporating
a mathematical analysis of our algorithm and a complete proof
of convergence (Section II). We also added a comparison
with the ADMM method proposed by Lim et al. [15] on
simulated data (Section III-C), as well as a quantitative
analysis on simulated oncology images with a necrotic tumor
(Section III-D).

II. THEORY

A. PET Measurement

The radiotracer activity distribution to be reconstructed takes
the form of a digital image vector f = [f1, . . . , fnv

]> ∈
Rnv , where nv is the number of voxels in the volume and
‘>’ is the matrix transpose symbol. The activity at voxel j
(in kBq per unit of volume) is [f ]j = fj , the symbol [·]j
representing the j-th element of a vector (or a matrix if double
indexation). The activity image is indirectly observed through
the PET imaging system comprising nb detector bins modeled
by a system matrix H ∈ Rnb×nv

+ , where each entry [H]i,j
represents the probability (up to a scale) that a photon pair
resulting from an annihilation in the j-th voxel is detected
by the i-th detector bin. The system matrix accounts for the
scanner geometry, sensitivity, acquisition time and resolution as
well as the attenuation factors. The number of detected photon
pairs at each bin is a random vector g = [g1, . . . , gnb

]> ∈ Nnb

that follows a Poisson distribution with independent entries,

∀i = 1, . . . , nb, gi ∼ Poisson(ḡi(f)) . (1)

The parameter ḡi(f) represents the expected counts at bin i
and is defined as

∀i = 1, . . . , nb, ḡi(f) , [Hf ]i + ri , (2)

where the ri’s represent the expected background events
(randoms and scatter). The expected values ḡi(f) and ri ≥ 0,
i = 1, . . . , nb, are stored in vectors respectively denoted ḡ(f)
and r, so that (2) can be rewritten with the matrix formulation
ḡ(f) = Hf + r.

Remark 1. For the rest of the article we consider the following
assumptions (see [7]). For H ∈ Rnb×nv

+ we assume that
mini(maxj([H]i,j)) > 0, i.e., no row of H is identically
zero (there is no inane bin). For g ∈ Nnb we assume that
g>H1 > 0, where 1 denotes a vector of ones, which is a
sufficient condition for the strict concavity of the objective
function in most settings, as demonstrated in [7]. Additionally,
we will consider functions with values in R = R ∪ {−∞},
in particular we extend the definition of log(x) to all x ∈ R
considering log(x) = −∞ for x ≤ 0. Finally, ‖ · ‖ denotes the
`2-norm.

B. Penalized Maximum-Likelihood Reconstruction

1) Poisson Distribution: Given a measurement g, the like-
lihood of an image f is L(g | f) =

∏
i p(gi | ḡi(f)), with

p(n | λ) = e−λλn/n!. Omitting the terms independent of f ,
the log-likelihood L is

L(f) , logL(g | f)

=

nb∑
i=1

hi(ḡi(f)) (3)

where for all i = 1, . . . , nb, hi : R→ R is defined as

hi(x) ,


gi log(x)− x if gi > 0 and x > 0 ,

−x if gi = 0 and x ≥ 0 ,

−∞ otherwise .
(4)

The likelihood function L is thereby finite on the subset D ⊂
Rnv defined as

D , {f ∈ Rnv : ∀i ∈ {1, . . . , nb}, ḡi(f) ≥ 0

and gi > 0⇒ ḡi(f) > 0} .

which explicitly means each image f (even with negative
entries) is in D provided that ḡi(f) ≥ 0 and ḡi(f) = 0 implies
gi = 0, i.e., no annihilation is detected at bin i.

2) Standard Penalized Maximum-Likelihood with Positivity
Constraint on the Image: Standard statistical image reconstruc-
tion in PET is formulated as the following constrained PML
problem:

maximize L(f)+U(f) subject to f ∈ D and f ≥ 0 .
(5)

where U : Rnv → R is a penalty term often defined as

U(f) = −γ
nv∑
j=1

∑
m∈Nj

ωj,mψ(fj − fm), (6)
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ψ : R → R+ is assumed strictly convex, even, continuously
differentiable (hence lim|x|→+∞ ψ(x) = +∞)1, j 7→ Nj ⊂
{1, . . . , nv} is a connected neighboring system (i.e., for all
pair (j, j′) there is a path j = j0, j1, . . . , jK = j′ such that
jk ∼ jk+1, ∀k = 0, . . . ,K − 1, where here the ‘∼’ symbol
denotes the neighboring binary relation), ωj,m = 1/dist(j,m)
and γ is a penalty strength parameter.

The constraint in (5) is suitable to the definition of f ,
which represents a non-negative value that corresponds to
the radioactivity at each voxel. It is also a convenient “box
constraint” that can be enforced on each voxel independently.
As a result, any optimization algorithm that ensures the k-th
estimate fk at iteration k satisfies fk ≥ 0 will provide, if it
converges, a solution f ≥ 0 which satisfies the constraint D.

A typical approach for ML and PML reconstruction in
emission tomography is to utilize a sequence of suitable
separable surrogate functions Q(· | fk) such that the new
estimate fk+1 is obtained by maximization of f 7→ Q(f | fk).
When Q is a sum over the voxels j of sub-functions depending
on a single [f ]j , the new estimate [fk+1]j is computed for
each voxel j independently. This class of method is particularly
suitable for box constraints such as in (5). The surrogate
functions Q(· | fk) can be for example the expected log-
likelihood, as used for MLEM [2], [3], and the modified
maximum-likelihood expectation-maximization (M-MLEM) [5]
that includes a penalty term. It can also be a sum of paraboloid
functions for each voxel [7], [18], [19]. Other methods, for
instance using ordered subsets [4], one-step-late [6] and quasi-
Newton line-search [20], also rely on the non-negativity of
f .

3) Penalized Maximum-Likelihood with Positivity Constraint
on Projections: In a Poisson parameter estimation task, the
positivity constraint is a source of bias which worsens with the
presence of an additive constant term (background). Consider
the following one-dimensional example: let Y be a Poisson
random variable of parameter ax+ b, with x, a, b > 0, and the
task is to estimate x from Y . The unconstrained maximum-
likelihood estimator x̃ = (Y − b)/a is unbiased. On the other
hand, the estimator with positivity constraint, x̂ = max(0, (Y −
b)/a), has a strictly positive bias

E[x̂]− x = E
[

1

a
(b− Y )1[0,b[(Y )

]
(7)

≥ b

a
P({Y = 0}) =

b

a
e−(ax+b) > 0

where 1A denotes the indicator function of a set A. In addition,
by noticing that b− Y ≤ b in (7), we observe that the bias is
upper-bounded:

E[x̂]− x ≤ b

a
.

Therefore the bias is small whenever b � a. Otherwise, the
estimator is more likely to suffer from a relatively larger bias
as x approaches 0.

The above rationale translates to PET reconstruction, with x
corresponding to the activity image f , a representing the true
coincidence detection rate (multiplied by the acquisition time),

1For our experiments we used ψ(x) = 1
2
x2

and b corresponding to the expected background-event vector
r (random and scatter). When the true coincidence fraction in
the data vector g is high (relatively to the background), the
constraint {f ≥ 0} in (5) is not strongly enforced, since this
condition fits reasonably well with the data. On the contrary,
in a low-count/high-background situation (therefore low true
coincidence fraction), a solution of (5) actively tries to cross
the boundaries of {f ≥ 0} in order to fit with the data, and the
problem of noise-induced bias from such positivity constraint
becomes more apparent in low-activity regions.

A solution is to replace the optimization problem (5) with

maximize L(f) + U(f) subject to f ∈ D . (8)

Solving (8) is less constraining than solving (5) as it allows
for solutions with negative values, provided that they belong
to D. On the other hand, it is a challenging problem since
the constraints are expressed through the system matrix H , as
opposed to coordinate-wise constraints.

Several methods [11]–[14] were proposed to allow for
negative values in f , but they do not solve (8). In addition,
they depend on manually set parameters which impact on
the reconstructed image properties (bias and noise). Recently,
Lim et al. [15] developed a methodology to solve (8). They
demonstrated that in a low-count/high-background situation
their methodology provides better quantification than using the
modified likelihood approach [13], [14] with a sub-optimal
parameter. Their methodology was derived from an augmented
Lagrangian formulation to separate the image f from the
projection g and to transfer the constraint to an auxiliary
variable which does not involve the system matrix H . The
augmented Lagrangian obtained was then optimized with the
help of an ADMM framework [16]. However, the speed of
convergence of ADMM depends on the augmented Lagrangian
parameter and therefore should be chosen appropriately (see
[21], [22]).

C. Proposed Approach

1) Strategy: We propose an alternative to [15] to solve (8).
Instead of directly maximizing L, we maximize a sequence
of approximate log-likelihood Lk : Rnv → R such that it
converges to L in an appropriate sense. We define Lk as

Lk(f) =

nb∑
i=1

hki (ḡi(f)), f ∈ Rnv , (9)

with hki : R→ R defined as

hki (x) =

{
hi(ϕk(x)) = gi logϕk(x)− ϕk(x) if gi > 0 ,

βk logϕk(x)− ϕk(x) if gi = 0 ,
(10)

and ϕk : R→]0,+∞[ is an approximation of x 7→ max(0, x)
defined as

ϕk(x) , log(1 + exp(αkx))/αk ,

with αk → +∞ and βk ↘ 0+.
The concept of hypo-convergence is a key element in this

article, and is defined in the following way.
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Definition 1. Consider the functions F, Fk : Rn → R, k ∈ N.
We say that (Fk)k hypo-converges to F , and we denote it as
Fk

h
⇁ F , if for all x ∈ Rn

(i) lim sup
k

Fk(xk) ≤ F (x) for all xk → x, and

(ii) lim inf
k

Fk(xk) ≥ F (x) for some xk → x .

Remark 2. Fk
h
⇁ F and Gk

h
⇁ G does not necessarily imply

Fk+Gk
h
⇁ F +G. Moreover, Fk = F for all k does not imply

Fk
h
⇁ F . It is however true if F is upper semi-continuous

(see Definition A.1). If Fk
h
⇁ F and U is continuous then

Fk + U
h
⇁ F + U .

When αkβk → +∞, the sequence (Lk)k hypo-converges to
L. This property is one of the main ingredients to demonstrate
that maximizing L+U can be achieved by maximizing Lk+U
sequentially (the equivalent notion for minimization problems
is epi-convergence), as stated in the following theorem.

Theorem 1. Let fk = arg maxf∈Rnv L
k(f) +U(f). Assume

that αkβk → +∞. Then

fk → f? = arg max
f∈D

L(f) + U(f) .

A complete proof is provided in Section II-D, with additional
elements in Appendix A and B. In particular, we observe that
under the mild conditions in Remark 1, Lk + U and L + U
have unique maximizers on Rnv and D respectively.

Remark 3. The choice (10) to approximate hi is non-unique
and other approximations are possible. Another solution is the
Poisson/Gaussian approximation introduced by Nuyts et al. [13]
then re-utilized by Van Slambrouck et al. [14]. The approximate
hi is defined as hδi (x) = gi log(x) − x for x ≥ δ and
hδi (x) = − (x−gi)2

2δ + gi log(δ) − δ + (δ−gi)2
2δ for x < δ. A

similar framework can then be achieved by maximizing each
Lδ + U as δ → 0, with Lδ(f) ,

∑
i h

δ
i (ḡi(f)).

2) Solving the Sub-Problem: Solving (8) reduces to maxi-
mizing the unconstrained problems

maximize Lk(f) + U(f), f ∈ Rnv , (11)

for a sequence of k’s. This can be achieved with any uncon-
strained optimization algorithm.

In this work, we utilized a limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm [23] to solve (11), for
which we give a brief description. Assume we are estimating
fk from fk−1. Let Φk , Lk +U be the approximated PLL at
iteration k we wish to maximize. We define the first estimate
as fk,(0) = fk−1. At inner-iteration q, given a current estimate
fk,(q), the new estimate fk,(q+1) is obtained as

fk,(q+1) = fk,(q) − s?Bk,(q)∇Φk(fk,(q)) (12)
with s? = arg max

s∈[0,1]

η(s) (13)

and η(s) , Φk(fk,(q) − sBk,(q)∇Φk(fk,(q))) ,

where Bk,(q) is an approximate inverse Hessian of Φk evaluated
at fk,(q). The matrix/vector product Bk,(q)∇Φk(fk,(q)) in

(12) is directly computed (without storing Bk,(q)) from the m
previous iterates fk,(q−p), p = 0, . . . ,m− 1.

For this paper we utilized the implementation from [24],
which we also used in previous work [20]. Full details on the
derivation of Bk,(q)∇Φk(fk,(q)) can be found in [23], Chap-
ter 6. The L-BFGS algorithm seeks for an approximate solution
of (13). Our implementation used an iterative “backtracking”
algorithm, consisting in gradually decreasing s from sinit = 1
until it satisfies the Wolfe Conditions [23], i.e.,

η(s?) ≥ η(0) + c1s
?η′(0) (14)

η′(s?) ≤ c2η′(0) (15)

with 0 < c1 < c2 < 1 (we used c1 = 10−4 and c2 = 0.9).
These conditions ensure a sufficient increase of η(s) (condition
(14)) as well as a sufficient decrease of the slope η′(s)
(condition (15)). Furthermore, it can be demonstrated that if
s? satisfies both (14) and (15) then the next L-BFGS inverse
Hessian approximate Bk,(q+1) is negative-definite (see [23],
page 138), thus guaranteeing an ascent direction. The iterative
scheme (w.r.t. q) is repeated until either the convergence crite-
rion ‖fk,(q+1)−fk,(q)‖/max{‖fk,(q+1)‖, ‖fk,(q)‖, 1} ≤ τ is
met or q reaches a preset maximum number Ninner of iterations.

The L-BFGS algorithm needs to be able to evaluate Φk and
to compute ∇Φk, which is obtained by applying the chain rule
on L and ϕk. Each inner iteration q requires a minimum of 2
projections/backprojections. As a surrogate of CPU time, we
counted the number of projections/backprojections (including
during the backtracking algorithm to find s? in (13)), to
compare the algorithms performance in Section III.

3) Algorithm Summary: Our methodology, namely hypo-
convergence for penalized maximum-likelihood (HypoC-PML),
is summarized in Algorithm 1. Any sequence (αk)k and
(βk)k such that αkβk → +∞ can be used. We primarily
used αk = k2 and βk = k−1 but other sequences were
considered (see Section III-C). Operation Define on lines 6,
9, 11 and 13 designates the creation of a mapping whereas
Solve(problem;x, N) designates the output of an optimiza-
tion algorithm applied to some optimization problem, initialized
with a vector x and using a given solver (here L-BFGS) with
N iterations.

Algorithm 1: HypoC-PML algorithm
Input: PET data g, penalty strength γ, #outer iterations Nouter,

#inner iterations Ninner

Output: Reconstructed image f
1 initialization ;
2 f ← 1 ;
3 for k = 1, . . . , Nouter do
4 α← k2 ;
5 β ← k−1 ;
6 Define ϕ : x 7→ log(1 + exp(αx))/α ;
7 for i = 1, . . . , nb do
8 if gi > 0 then
9 Define hi : x 7→ gi logϕ(x)− ϕ(x) ;

10 else
11 Define hi : x 7→ β logϕ(x)− ϕ(x) ;
12 end
13 Define Φ: x 7→

∑
i hi(ḡi(x)) + U(x) ;

14 f ← Solve(maxx∈D Φ(x);f , Ninner) ;
15 end
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D. Proof of Theorem 1

We proceed to prove Theorem 1 by verifying below all the
conditions required in Lemma A.1: Theorem 2 will check the
conditions for Lk + U and L+ U to have unique maximizers;
Theorem 3 verifies the condition for the boundedness of the
sequence (fk)k; Theorem 3 and Remark 2 will imply the
hypo-convergence of Lk+U to L+U (see Definition 1). Once
all the conditions are satisfied, Theorem A.1 and Lemma A.1
readily imply that fk → f∗.

Theorem 2. The functions L+U and Lk+U (see (3), (6) and
(9)), are proper and strictly concave, upper semi-continuous
and coercive (see Definition A.1).

Proof: It is clear that L and Lk are proper and upper
semi-continuous, while U is continuous. It is also clear that
L and Lk are concave functions (see lemma B.1) and, using
the condition g>H1 > 0 as in [7], it follows that L+ U and
Lk + U are strictly concave.

In the following the iteration number (superscript) k is fixed,
and to prove coercivity we introduce the sequence subscript n
and an arbitrary sequence (fn)n with ‖fn‖ → +∞. We want
to prove that Lk(fn) +U(fn)→ −∞ and L(fn) +U(fn)→
−∞. This is straightforward if U(fn) → −∞, hence we
assume U(fn) 9 −∞. In such case there exists a sub-sequence
(np)p and a voxel j such that [fnp

]j → ±∞, let us say +∞, as
p→ +∞ (the case −∞ is similar), and (U(fnp

))p is bounded.
The neighboring system j 7→ Nj being connected (c.f. the
definition of U ), we have [fnp ]j → +∞ for all j ((U(fnp))p
is bounded, so if [fnp

]j → +∞, then [fnp
]j′ → +∞ for all

j′ ∈ Nj , and so on), so that [Hfnp
]i → +∞ for at least one

i, and Lk(fnp
)→ −∞ and L(fnp

)→ −∞ as p→ +∞. The
same rationale applies for [fnp

]j → −∞. Since the sequence
(fn)n is arbitrary, we have demonstrated that Lk(f)+U(f)→
−∞ and L(f) + U(f)→ −∞ as ‖f‖ → +∞.

Theorem 3. The sequence (Lk)k satisfies that Lk h
⇁ L and

there exists G : Rnv → R such that G + U is coercive and
Lk(f) ≤ G(f) for all f ∈ Rnv .

Proof: To prove that Lk h
⇁ L we need to demonstrate

that L and Lk satisfy (i) and (ii) of Definition 1.
Property (i) is clear since lim supk L

k(fk) =
lim supk

∑
i h

k
i (ḡi(f

k)) ≤
∑
i lim supk h

k
i (ḡi(f

k)) and
Lemma B.1, parts b) and c), establishes that hki

h
⇁ hi. Hence,

if fk → f , then lim supk L
k(fk) ≤ L(f).

For property (ii), we observe that lim infk L
k(fk) =

lim infk
∑
i h

k
i (ḡi(f

k)) ≥
∑
i lim infk h

k
i (ḡi(f

k)). By the
assumptions on H we have η , mini(maxj([H]i,j)) > 0,
and if f ∈ Rnv then fk , f + βk

η 1 satisfies ḡi(f
k) ≥

ḡi(f) + βk,∀i. Then Lemma B.1, parts b) and c), implies
for this (fk)k that lim infk h

k
i (fk) ≥ hi(ḡi(f)),∀i, hence

lim infk L
k(fk) ≥ L(f).

We now prove the second part by letting G(f) ,∑nb

i=1 h
0
i (ḡi(f)). Using Lemma B.1, part a), we have that

G(f) ≥ Lk(f),∀k. And using an argument similar to that of
the proof of Theorem 2, it follows that G+ U is coercive.

III. RESULTS ON SIMULATED DATA

The benefit of utilizing negative values in PET for bias
reduction in low-activity regions has already been demonstrated
in previous work [11]–[15]. Our methodology solves the
same optimization problem as the ADMM method from
Lim et al. [15] (i.e., solving (8)), and thus converges to the
same unique PML solution with the same properties (such as
bias and noise). Therefore the objective of our simulations is
to demonstrate that HypoC-PML achieves the desired results,
which is the maximization of the PLL over the domain D,
using a simple and easy to implement approach, and compare
its convergence speed with ADMM. It is expected that HypoC-
PML behaves similarly to standard PML algorithms over high-
activity regions, but it should return a different reconstruction,
possibly including negative values, over low-activity regions.
In addition, HypoC-PML images are expected to be noisier
over low-activity regions (such as the lungs) due to the absence
of a lower-bound.

A. General Settings
All experiments were performed with 133×133×42 volumes,

with 3.125-mm voxel-size. The projector H models a 5-mm
full-width at half-maximum (FWHM) PET system with 210
angles of view (parallel projections) and includes attenuation
factors (phantom-dependent) as well as the acquisition time.
The measurements were generated from a ground truth activity
f truth , [f truth

1 , . . . , f truth
nv

]> ∈ Rnv
+ following the Poisson

model (1). The projected data comprised 33% and 66% of
background events (corresponding to realistic randoms+scatter
proportions in 18F-fludeoxyglucose (18F-FDG) PET, see for
example [25]), in the form of a uniform vector r.

Activity images were reconstructed with M-MLEM, i.e.,
by solving the optimization problem (5) with positivity con-
straint on the image, using the optimization-transfer algorithm
proposed in [5] and 400 iterations, and by solving the op-
timization problem (8) with both HypoC-PML and ADMM.
For each method we used the same quadratic penalty term
U (see equation (6)) with ψ(x) = 1

2x
2 and the standard 26

neighbors structure. Each methods used the same penalty weight
γ. HypoC-PML was executed with (αk, βk) = (k2, 1/k),
(k2, 1/ log(k + 1)) and (k3, k−1/2), with Ninner = 70 (maxi-
mum number of L-BFGS iterations on q) and Nouter = 25. The
corresponding reconstruction methods were denoted HypoC-
PML-1, HypoC-PML-2 and HypoC-PML-3. ADMM was
implemented as described in Section III-B.

We proceeded with 2 experiments: with a cylindrical phantom
(Section III-C) and with the extended cardiac-torso (XCAT)
phantom [26] (Section III-D). The aim of the first experiment
was to analyze the behavior of each method. The second
experiment focused on a specific clinical application and only
M-MLEM and HypoC-PML were considered.

B. ADMM Implementation
We implemented the ADMM methodology proposed by

Lim et al. [15] to solve (8). At iteration k, the activity image
estimate fk is computed as

fk = arg min
f∈Rnv

ρ

2
‖Hf − vk−1 + uk−1‖2 − U(f) (16)
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whilst the auxiliary variable v and dual variable u are updated
as

vk = arg max
v≥−r

nb∑
i=1

hi(vi + ri)−
ρ

2
‖Hfk − v + uk−1‖2

(17)

uk = uk−1 + Hfk − vk . (18)

While (17) can be updated analytically by zeroing the deriva-
tives w.r.t. each vi, the update (16) was computed iteratively.
We utilized the L-BFGS algorithm—initialized with fk−1—on
Ψk(f) , ρ

2‖Hf−vk−1 +uk−1‖2−U(f) (c.f. Section II-C2).
The parameter ρ is a penalty weight that tunes the proximity

between v and Hf . Its value does not affect the final result but
it should be appropriately updated at each iteration k for faster
convergence. We proceeded as in [15] by using the parameter
selection approach proposed by Boyd et al. [16]:

ρk+1 =


τ incrρk if ‖ak‖ > µ‖bk‖ ,
ρk/τdecr if ‖bk‖ > µ‖ak‖ ,
ρk otherwise ,

(19)

with ak = Hfk − vk, bk = −ρH>[vk − vk−1], τ incr =
τdecr = 2 and µ = 10.

The utilization of H and H> in (17), (18) and (19) were
taken into account in the CPU time (see Section II-C2). More
specifically, the same projection Hfk was used to compute
uk, vk and ak while a separate backprojection was used for
bk.

We implemented 4 ADMM algorithms: (i) with a fixed value
ρ = 1, Ninner = 60 and Nouter = 600 (in order to be close to
the optimum), denoted ADMM-ρfixed, and (ii) with an adaptive
ρ, with Ninner = 5 (Nouter = 360), Ninner = 30 (Nouter =
60) and Ninner = 90 (Nouter = 20), respectively denoted
ADMM-ρadapt-5, ADMM-ρadapt-30 and ADMM-ρadapt-90.
These algorithms, as well as HypoC-PML, converge to the
same unique solution of (8).

C. Experiment 1: Cylindrical Phantom

(a) Activity phantom (b) Attenuation phantom

Fig. 1. Experiment 1—Activity and attenuation phantoms.

1) Simulation: We utilized a digital phantom (see Fig. 1)
consisting of a 26-cm diameter cylinder Ω containing two
smaller cylinders Ω1 and Ω2. While Ω1 has a low-activity
level (equals to 0.5), Ω2 has a high-activity level (equals to 10),
and the activity level of the remaining region Ω \ (Ω1 ∪ Ω2)
is low (equals to 4). The total number of counts was 11× 106

(including background events) and we used γ = 5 × 10−4

first then γ = 5× 10−3, which correspond to low- and high-
smoothing. The attenuation in all of Ω was approximately the
attenuation of water.

2) Results:
a) Reconstructed Images: Reconstructed images obtained

from M-MLEM, ADMM-ρfixed and HypoC-PML-1 are shown
in Fig. 2. Reconstructions are comparable to the naked eye
over hot regions, but differ on cold regions (cold spot and
background) where the ADMM-ρfixed and HypoC-PML-1
image values can be negative, also resulting in more noise
in cold areas as expected. The same observation can be
made when analyzing the reconstructed profiles in Fig. 3.
We observe that HypoC-PML (1, 2 and 3) and ADMM-ρfixed

reconstructions are identical, and coincide with M-MLEM over
hot regions. With γ = 5 × 10−4, HypoC-PML and ADMM-
ρfixed reconstruct lower values (even negative) in the cold spot
values to compensate for the spill-over from the surrounding
activity. This phenomenon recedes with γ = 5× 10−3.

HypoC-PML-1 ADMM-ρfixed M-MLEM
γ

=
5
×

10
−

4

33
%

ba
ck

gr
ou

nd
66

%
ba

ck
gr

ou
nd

γ
=

5
×

10
−

3

33
%

ba
ck

gr
ou

nd
66

%
ba

ck
gr

ou
nd

Fig. 2. Experiment 1—Phantom activity images reconstructed from simulated
data comprising 33% and 66% of background events, using M-MLEM, ADMM-
ρfixed and HypoC-PML-1, with γ = 5× 10−4 and γ = 5× 10−3.

The mean values are reported in Table I. The mean activity
in the cold spot is over-estimated by each method (with a more
severe bias with 66% background events). For γ = 5×10−4 we
observe that the bias reduced with ADMM-ρfixed and HypoC-
PML, as compared with M-MLEM. However, the mean values
are similar in the cold spot when using γ = 5×10−3, suggesting
that a strong penalty brings the solutions closer. The mean
activity values in the hot spot are similar, with perhaps slightly
higher values with M-MLEM.
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TABLE I
EXPERIMENT 1—CYLINDRICAL PHANTOM MEAN ACTIVITY VALUES IN THE COLD AND HOT SPOTS.

Cold spot Hot spot
background 33% 66% 33% 66%

γ 5× 10−4 5× 10−3 5× 10−4 5× 10−3 5× 10−4 5× 10−3 5× 10−4 5× 10−3

HypoC-PML-1 0.76198 0.92664 0.89122 1.1128 9.5015 9.1763 9.3541 8.838
HypoC-PML-2 0.75992 0.92652 0.88364 1.1198 9.5045 9.1762 9.3526 8.8411
HypoC-PML-3 0.75935 0.9213 0.88405 1.1126 9.5055 9.1868 9.3526 8.8472
ADMM-ρfixed 0.75973 0.92246 0.879 1.1191 9.5048 9.1831 9.3603 8.8402

M-MLEM 0.86579 0.92013 1.0108 1.1162 9.5167 9.1951 9.3724 8.8544
true value 0.5 0.5 0.5 0.5 10 10 10 10
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(d) γ = 5× 10−3, 66% background

Fig. 3. Experiment 1—Reconstruction profiles of the cylindrical phantom.

Finally, Fig. 4 shows the simulated projection data (66%
background events) g at each bin i, as well the expected
projection data ḡ(f) = Hf + r from M-MLEM, ADMM-
ρfixed and HypoC-PML-1 (γ = 5×10−4), respectively denoted
ḡem, ḡadmm and ḡhc, as well as the difference ḡadmm− ḡhc. A
similar figure was shown in [15]. It shows that ḡadmm and ḡhc

appear identical and satisfy the new constraint Hf + r ≥ 0,
while ḡem is above r due to the positivity constraint on f .

b) Convergence Speed: In order to investigate the con-
vergence speed of each method, we calculated the normalized
squared-error (NSE) between the current image estimate fk

and the PML image f? = arg maxD(L+ U):

NSE =
‖f? − fk‖2

‖f?‖2
(20)

The PML image f? is unique and can be obtained either
from HypoC-PML or ADMM. We defined f? as the image
resulting from ADMM-ρfixed in order to exclude convergence
issues related to the parameter ρk changing at each outer
iteration k. We compared HypoC-PML-1, HypoC-PML-2 and
HypoC-PML-3 with ADMM-ρadapt-5, ADMM-ρadapt-30 and
ADMM-ρadapt-90 as well as with ADMM-ρfixed and M-
MLEM, for 33% and 66% of background events and for
γ = 5× 10−4 and 5× 10−3. Fig. 5 shows the NSE evaluated
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2 4 6 8 10

bin i 10
5

0

20

40

e
x
p
. 

c
o

u
n

ts

(d) Expected counts ḡhc
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Fig. 4. Experiment 1—(a) Simulated data g (66% background); (b)–(d)
Expected sinograms Hf + r resulting from M-MLEM, ADMM-ρfixed and
HypoC-PML-1 (ḡem, ḡadmm and ḡhc) with γ = 5 × 10−4 (the red line
represents the expected background r, while the blue curve represents the
sinogram at each bin i) (e) Difference ḡadmm− ḡhc. This figure was inspired
from [15].

at each inner iteration q and plotted against the total number of
projections/backprojections, which represents the CPU time. For
display purpose M-MLEM was ran with over 2,000 iterations.

Results show that the HypoC-PML methods behave similarly
and achieve faster convergence than ADMM methods, regard-
less of the background and γ. When γ = 5× 10−3, ADMM-
ρadapt-5 at early iterations is comparable to HypoC-PML, but it
is outperformed by ADMM-ρadapt-30 and HypoC-PML at later
iterations. ADMM-ρfixed has the slowest convergence rate while
M-MLEM has the fastest (but converges to a different solution).
While ADMM-ρadapt methods achieve faster convergence than
ADMM-ρfixed, their convergence is non-monotonic as ρ is
changed at each iteration.

D. Experiment 2: XCAT Phantom

1) Simulation: We utilized the XCAT activity and atten-
uation phantoms (Fig. 6). The phantom contains 2 tumors
(hot lesions): a 3 cm-diameter tumor in the liver and a 5 cm-
diameter tumor in the lungs, the latter containing a necrosis
(no activity). We generated data with Ncount = 20 × 106
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(c) γ = 5× 10−4, 66% background
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Fig. 5. Experiment 1—NSE (as defined in (20)) plotted against the total number of projections/backprojections at each inner iteration q, for each of the
considered methods, with 33% and 66% background events, and γ = 5× 10−3 and γ = 5× 10−4.

to 60 × 106 and Ncount = 60 × 106 counts, with 33%
and 66% background events. HypoC-PML was implemented
with (αk, βk) = (k2, 1/k) (HypoC-PML-1). Nnoise = 40
independent noise realizations were simulated. The activity
distribution was reconstructed using M-MLEM and HypoC-
PML, but this time we imposed the activity to be 0 in the
background (outside of the patient). We considered 2 error
functions: the mean (relative) bias

Bias =
1

#R
1

Nnoise

∑
j∈R

Nnoise∑
`=1

f̂
[`]
j − f

truth
j , (21)

and the mean absolute bias

AbsBias =
1

#R
1

Nnoise

∑
j∈R

Nnoise∑
`=1

|f̂ [`]
j − f

truth
j | , (22)

where f̂ [`]
j denotes the reconstructed activity at voxel j from

the `-th noise replicate, R is a region of interest (e.g., a tumor)
and #R denotes the number of voxels in R. We also used the
mean standard deviation (STD),

STD =
1

#R
∑
j∈R

√√√√ 1

Nnoise

Nnoise∑
`=1

(
f̂

[`]
j −

¯̂
fj

)2

, (23)

where ¯̂
f

[`]
j = N−1

noise

∑Nnoise

`=1 f̂
[`]
j .

(a) Activity phantom (b) Attenuation phantom

Fig. 6. Experiment 2—(a) Activity and (b) attenuation XCAT phantoms.

2) Results: M-MLEM and HypoC-PML reconstructed activ-
ity images are shown in Fig. 7. For each count level, we
used γ = (Ncount/N

ref
count) × γref , γref = 4 × 10−3 and

N ref
count = 60 × 106, in order to maintain the degree of

smoothness. We used γref = 4×10−3 and γref = 3×10−3 for
the 33% and 66% background events simulations respectively.

The images appear identical in hot regions (heart, liver and
tumors) but the HypoC-PML images contain negative values in
cold areas (the lungs and the tumor necrosis). The activity being
lower in the lungs, HypoC-PML-reconstructed lung activity
values are noisier than that of M-MLEM. This phenomenon
is observed with any reconstruction method that allows for
negative values in the activity image [11]–[15].

Fig. 8 shows the reconstruction profiles across the 2 lesions
(foot to head) for M-MLEM and HypoC-PML with 60× 106

counts. As observed in the images, the profiles appear similar
in hot regions. However the HypoC-PML activity profiles
show signs of variability in cold regions. In particular, the
HypoC-PML activity in the necrosis appears significantly lower
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Fig. 7. Experiment 2—Reconstructed activity with Ncount = 20× 106 and
60×106, 33% and 66% background events, using M-MLEM and HypoC-PML.

compared with M-MLEM, which confirms the observations
made in Section III-C.
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(c) Lesion 1 (liver), 66% background
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Fig. 8. Experiment 2—Reconstruction profiles across lesion 1 (liver) and
lesion 2 (containing a necrosis), with Ncount = 60 × 106, 33% and 66%
background events, using M-MLEM and HypoC-PML.

In order to assess the effect of γ on quantification, we plotted
the mean absolute bias (22) in lesion 1 and the mean bias (21)
in the necrosis of lesion 2 against the STD (23) in a sub-region
of the liver, for Ncount = 20 × 106 then Ncount = 60 × 106,
with 7 values of γ ranging from γ = 10−3 to γ = 5× 10−2

(for Ncount = 20×106) then γ = 3×10−3 to γ = 1.5×10−1

for (Ncount = 60× 106). The results are displayed in Fig. 9
and Fig. 10. While the bias/STD curves are comparable on
lesion 1, we observe that the bias on the necrosis (lesion 2)
using HypoC-PML is smaller than that of M-MLEM (for a
similar noise level) for small γ-values. The curves coincide
for large γ-values as the penalty is predominant in the cost
function. This result indicates that allowing for negativity in the

reconstructed image allows to reduce the bias in the necrosis
while keeping the noise under control.
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Fig. 9. Experiment 2—Mean bias (lesion 1) and mean absolute bias (necrosis
in lesion 2) versus STD (sub-region of the liver) of the M-MLEM- and HypoC-
PML-reconstructed activity images from the Ncount = 20× 106 simulations,
with γ ∈ [10−3, 5× 10−2]. Each point correspond to a single γ-value. The
values were calculated following (21), (22) and (23), with Nnoise = 40 noise
replicates. High STD points (right end of each curve) correspond to the low
γ-values.
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Fig. 10. Experiment 2—Same as Fig. 9 with Ncount = 60 × 106 and
γ ∈ [3× 10−3, 1.5× 10−1].

IV. DISCUSSION

Our hypo-convergence based algorithm converges to a
solution of the PML problem (8), i.e., with positivity con-
straints in the projection space. M-MLEM and HypoC-PML



10

reconstructions coincide on high-activity regions, where the
positivity constraint is not active, and differ on low-activity
regions, where HypoC-PML can reduce the bias by allowing
for negative values.

In terms of reconstructed images, HypoC-PML provides the
same results as ADMM as both approaches aim at solving
the same problem (8), but HypoC-PML converges faster. The
main difference resides in the methodology used to solve the
problem. While ADMM elegantly transfers the constraints to
the projections space only, its convergence speed is heavily
affected by fine tuning of ρ, which might be challenging. On
the other hand, HypoC-PML appears more practical, provided
that a solver to maximize Lk is available, and convergence is
guaranteed. Besides, in the experiments presented here, HypoC-
PML appears to be robust with respect to the choice of the
sequences (αk)k and (βk)k.

In principle, ADMM can be applied to impose the positivity
constraint for any figure of merit other than the Poisson log-
likelihood. Although HypoC-PML, as presented here, is tailored
for the Poisson log-likelihood, the same methodology can
be easily extended to other figures of merit with positivity
constraints. For example, if hi in (3) is replaced by a con-
tinuous function ui : R → R (e.g., for a weighted least-
squares cost), then the sequence (uki )k defined for all k as
uki : x 7→ ui(x) + βk logϕk(x) hypo-converges to ũi : R→ R
with ũi(x) = ui(x) for x ≥ 0 and ũi(x) = −∞ for x < 0
(under the same conditions prescribed for αk, βk). Therefore,∑

i ui(ḡi(x)) can be maximized with positivity constraint
ḡi(x) ≥ 0 by sequentially maximizing

∑
i u

k
i (ḡi(x)) without

constraints, using the same methodology.
Having negative values in PET images has no real quantita-

tive meaning at the voxel level, nevertheless the bias reduction
in low activity regions is useful for specific tasks, such as
region-based dynamic imaging and tumor texture analysis.

V. CONCLUSION

We proposed a new methodology, namely, HypoC-PML,
for PML PET reconstruction, with positivity constraints on
the projections as opposed to positivity constraints on the
image values, which allows for some degree of negativity in
the reconstructed image. Our method consists of maximizing
each term of a sequence of intermediary objective functions
that hypo-converges to the PLL. Each intermediary objective
function can be maximized without constraints. We gave
a mathematical proof that the resulting images sequence
converges to the solution of the main problem. Results on
simulated data (geometrical and XCAT phantoms) showed that
HypoC-PML and ADMM deliver activity images with lower
bias than M-MLEM in cold area, but HypoC-PML converges
faster than ADMM. Further work includes applications to
quantitative analysis such as dynamic imaging and tumor
homogeneity analysis.

APPENDIX A
HYPO-CONVERGENCE AND MAXIMIZERS

The hypo-convergence is related to maximization problems
through the following result:

Theorem A.1. Let F, Fk : Rn → R, k ∈ N be a collection
of functions bounded from above. Assume that Fk

h
⇁ F , and

assume (x?k)k is a sequence in Rn such that x?k ∈ arg max(Fk)
and x?k → x?. Then x? ∈ arg max(F ).

Proof: In a more general setting this can be found in [27],
we present a direct proof in this simplified setting. We first
observe that, since F k h

⇁ F , we have

F (x?) ≥ lim sup
k

Fk(x?k) ≥ lim inf
k

(sup
Rn

(Fk)) .

Next, if supRn(F ) < +∞, then for ε > 0,∃z ∈ Rn such that
F (z) ≥ supRn(F ) − ε. Since Fk

h
⇁ F , there exists zk → z

such that lim infk Fk(zk) ≥ F (z) and

sup
Rn

(F )− ε ≤ F (z) ≤ lim inf
k

Fk(zk) ≤ lim inf
k

(sup
Rn

(Fk)).

Together, the above inequalities imply F (x?) ≥ supRn(F )− ε
for ε > 0 arbitrary, hence we conclude that F (x?) ≥ supRn(F )
and x? ∈ arg max(F ).

There are different settings under which hypo-convergence
will furthermore imply that arg max(Fk) → arg max(F ) in
some sense. We detail one such setting that is not the most
general, but that is simple and it will be useful enough for us.

Definition A.1. Let F : Rn → R.
a) We say that F is proper and strictly concave if F is not

identically −∞ and

∀x,y ∈ F−1(R), ∀λ ∈ [0, 1]

F (λx + (1− λ)y) > λF (x) + (1− λ)F (y) .

b) We say that F is coercive if F (x)→ −∞ as ‖x‖ → +∞.
c) We say that F is upper semi-continuous if

lim supk F (xk) ≤ F (x) for all x and for all xk → x.

Lemma A.1. Assume F, Fk : Rn → R are proper and strictly
concave, coercive and upper semi-continuous functions. Then,
a) Uniqueness of the maximizers: there exists x?,x?k ∈

Rn such that {x?} = arg max(F ) and {x?k} =
arg max(Fk),∀k ∈ N.

b) Convergence of bounded approximates: if Fk
h
⇁ F and

(x?k)k is a bounded sequence in Rn, then x?k → x?.
c) Boundedness of the approximates: if Fk

h
⇁ F and there

exists G coercive function such that G(x) ≥ Fk(x) for all
x ∈ Rn then (x?k)k is a bounded sequence in Rn.

Proof: Part a) is a standard result (see [27]).
For part b), since arg max(F ) = {x?}, Theorem A.1 implies

that any cluster point of the sequence (x?k)k has to be equal to
x?. But (x?k)k ⊂ Rn is bounded and x? is the only possible
cluster point of the sequence, hence x?k → x?.

For part c), fix z ∈ F−1(R) and zk → z such that
lim infk Fk(zk) ≥ F (z) (such a sequence exists due to
hypo-convergence), hence ∃K ∈ N such that Fk(zk) ≥
F (z) − 1,∀k ≥ K. Since G is coercive, the set B = {x ∈
Rn : G(x) ≥ F (z) − 1} is bounded. Then, for k ≥ K,
F (z) − 1 ≤ Fk(zk) ≤ Fk(x?k) ≤ G(x?k) and we conclude
that (x?k)k≥K ⊂ B and (x?k)k is bounded.
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APPENDIX B
HYPO-CONVERGENCE AND EQUI-COERCIVITY OF THE

ELEMENTARY FUNCTIONS

In this section we demonstrate the hypo-convergence to hi
(see (4)) of the sequence (hki )k (see (10)) and its equi-coercivity.
For this purpose, we define α0 , mink(αk), β0 , maxk(βk),
and κ0 = mink(αkβk) and we will assume that αkβk → +∞.
Moreover, by moving forward in the sequences, we can assume
without loss of generality that κ0 > 0, α0 ≥ 1 and β0 ≤ e. We
also define the functions h0

i : R→ R which will play the role
of G in Lemma A.1 for the collection (hki )k as:

h0
i (x) ,


gi logϕ0(x)−max(0, x) if gi > 0 &x ∈ R ,
β0 logϕ0(x)− x if gi = 0 &ϕ0(x) > 1 ,

κ0x if gi = 0 &ϕ0(x) ≤ 1 ,

where ϕ0 follows the same definition as ϕk below equation
(10).

Lemma B.1. We have the following properties on hki :
a) For x ∈ R we have max(0, x) < ϕk(x) ≤ max(0, x) +

log(2)/αk. Also, for each k ∈ N,ϕk(x) is strictly increasing
in x, and if αk < α` then ϕk(x) > ϕ`(x),∀x ∈ R (i.e.,
strictly decreasing in α).

b) If gi > 0, then hki : R → R, k ∈ N, are strictly concave
and continuous, and for all x ∈ R and all xk → x we have
hki (xk)→ hi(x).

c) If gi = 0, then hki (x) , βk logϕk(x)−ϕk(x) are such that
hki : R→ R are strictly concave and continuous. And for
all x ∈ R \ {0} and all xk → x we have hki (xk)→ hi(x),
while for x = 0 we have

(i) lim sup
k

hki (xk) ≤ hi(0) for all xk → 0, and

(ii) lim inf
k

hki (xk) ≥ hi(0) for all xk → 0, xk ≥ βk .

Moreover, hki ≤ h0
i ,∀k ∈ N, and h0

i is coercive.

Proof:
a) For x > 0 we have

ϕk(x)− x =
log(1 + eαkx)

αk
− log(eαkx)

αk

=
1

αk
log
(
e−αkx + 1

)
∈]0, log(2)/αk[

For x ≤ 0 we have 0 < eαkx ≤ 1 and ϕk(x) = log(1 +
eαkx)/αk ∈]0, log(2)/αk]. In summary, for all x ∈ R,

0 < ϕk(x)−max(0, x) ≤ log(2)

αk
.

Additionally, for α > 0 and x ∈ R,

∂

∂α

(
log(1 + eαx)

α

)
=

1

α2

(
log(eαx)

1 + e−αx
− log(1 + eαx)

)
< 0 .

Since ϕk(x) = log(1 + eαkx)/αk, we conclude that if
0 < αk < α` then ϕk(x) > ϕ`(x).

b) For gi > 0. It is clear that the hki : R→ R are continuous.
To check they are also strictly concave we compute

(hki )′′(x) = h′′i (ϕk(x)) · (ϕ′k(x))2(x) + h′i(ϕk(x)) · ϕ′′k(x)
where

h′i(x) =
gi
x
− 1, ϕ′k(x) =

eαkx

1 + eαkx
=

1

1 + e−αkx
,

h′′i (x) = − gi
x2
, ϕ′′k(x) =

αke−αkx

(1 + e−αkx)
2 ,

then

(hi ◦ ϕk)′′(x) = − gi
(ϕk(x))2

1

(1 + e−αkx)
2

+

(
gi

ϕk(x)
− 1

)
αke−αkx

(1 + e−αkx)
2

= − gi (1− e−αkx log(1 + eαkx))

(ϕk(x)(1 + e−αkx))2

− αke−αkx

(1 + e−αkx)
2 < 0 ∀x ∈ R ,

where we used that log(1 + y)/y < 1 for y > 0, i.e., hki
are strictly concave.
Secondly, if xk → x ∈ R then part a) implies ϕk(xk) ∈
]0,+∞[ and ϕk(xk)→ max(0, x). From the definition of
hi (with gi > 0) it follows that hki (xk) = hi(ϕk(xk)) →
hi(x) for x > 0 and hki (xk) → −∞ for x ≤ 0, i.e.
hki (xk) → hi(x). Finally, since max(0, x) < ϕk(x) ≤
ϕ0(x) and log(x) is increasing, it is clear that hki (x) =
gi logϕk(x)−ϕk(x) ≤ gi logϕ0(x)−max(0, x) = h0

i (x),
while

lim
x→−∞

h0
i (x) = lim

x→−∞
[gi logϕ0(x)−max(0, x)]

= lim
x→−∞

gi log

(
log(1 + eα0x)

α0

)
= −∞ ,

and

lim
x→+∞

h0
i (x) = lim

x→+∞
[gi logϕ0(x)−max(0, x)]

≤ lim
x→+∞

[
gi log

(
x+

log(2)

α0

)
− x
]

= −∞ .

c) For gi = 0. The same computations as in part b) imply that
hki : R→ R are strictly concave and continuous. To study
the limits is a bit different, and we need to consider three
cases.
For x > 0, if xk → x then ϕk(xk)→ x and logϕk(xk)→
log(x) ∈ R, hence

lim
k
hki (xk) = lim

k
[βk logϕk(xk)− ϕk(xk)]

= 0 · log(x)− x = −x = hi(x) .

For x < 0, if xk → x, then ϕk(xk) > 0 and

ϕk(xk) =
log(1 + eαkxk)

αk
≤ eαkxk

αk
,
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hence

hki (xk) = βk logϕk(xk)− ϕk(xk)

≤ βk log

(
eαkxk

αk

)
− ϕk(xk)

≤ − βk log(αk) + xkβkαk − ϕk(xk)

≤ xkβkαk −→ −∞ ,

i.e., limhki (xk) = hi(x).
For x = 0, if xk → 0 then 0 < ϕk(xk) < 1 for k large
enough, hence

hki (xk) = βk logϕk(xk)− ϕk(xk) < 0

and lim supk h
k
i (xk) ≤ 0 = hi(0). On the other hand, for

xk → 0 with xk ≥ βk we have

hki (xk) ≥ βk logϕk(βk)− ϕk(xk)

= βk log

(
log(1 + eαkβk)

αk

)
− ϕk(xk)

≥ βk log

(
log(eαkβk)

αk

)
− ϕk(xk)

= βk log(βk)− ϕk(xk)→ 0 ,

hence lim infk h
k
i (xk) ≥ 0 = hi(0).

To prove that the hki ’s are bounded by h0
i we study three

cases. If x < 0 then hki (x) ≤ xβkαk as above, and

hki (x) ≤ xβkαk ≤ κ0x = h0
i (x) .

If 0 ≤ x ≤ ϕ−1
0 (1), we use that hki (x) ≤ βk log(βk)− βk

(for all x ∈ R) and βk ≤ e, hence hki (x) ≤ 0 ≤ κox =
h0
i (x) for x ∈ [0, ϕ−1

0 (1)].
For ϕ0(x) > 1, we have 0 < x < ϕk(x) ≤ ϕ0(x) and
logϕ0(x) > 0, hence

hki (x) = βk logϕk(x)− ϕk(x)

≤ βk logϕ0(x)− x
≤ β0 logϕ0(x)− x = h0

i (x) .

And h0
i is coercive since (using some calculations from

above)

lim
x→−∞

h0
i (x) = lim

x→−∞
κ0x = −∞, while

lim
x→+∞

h0
i (x) ≤ lim

x→+∞
β0 log

(
x+

log(2)

α0

)
− x = −∞ .
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