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Resistive Random Access Memory (RRAM) is a promising technology for power

efficient hardware in applications of artificial intelligence (AI) and machine learning (ML)

implemented in non-von Neumann architectures. However, there is an unanswered

question if the device non-idealities preclude the use of RRAM devices in this potentially

disruptive technology. Here we investigate the question for the case of inference. Using

experimental results from silicon oxide (SiOx) RRAM devices, that we use as proxies

for physical weights, we demonstrate that acceptable accuracies in classification of

handwritten digits (MNIST data set) can be achieved using non-ideal devices. We

find that, for this test, the ratio of the high- and low-resistance device states is a

crucial determinant of classification accuracy, with ∼96.8% accuracy achievable for

ratios >3, compared to ∼97.3% accuracy achieved with ideal weights. Further, we

investigate the effects of a finite number of discrete resistance states, sub-100% device

yield, devices stuck at one of the resistance states, current/voltage non-linearities,

programming non-linearities and device-to-device variability. Detailed analysis of the

effects of the non-idealities will better inform the need for the optimization of particular

device properties.
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1. INTRODUCTION

Computation is at a crossroads thanks to the exponential growth in often complex and noisy
unstructured data (data not in easily-accessible numerical form, but unorganized and text- or
image-heavy), and the ever-increasing demand for systems to process it. As examples, the Internet
of Things (IoT), Big Data, autonomous vehicles, and Artificial Intelligence (AI) pose severe
challenges to the speed and power consumption of existing computing systems and suggest that we
should change our approach. Present day von Neumann computing architectures require constant
shuffling of data betweenmemory and processing units, providing a critical performance bottleneck
(McKee, 2004). Most clock cycles are wasted in moving data rather than computing, while physical
separation of memory and processing builds in latency. In recent years, brain-inspired computing,
as a potential solution to this pressing challenge, has gained significant attention. The main
paradigm shift is in breaking the physical separation between memory and processing using novel
non-von Neumann architectures (Wright et al., 2013). Closely related is a neuromorphic approach
(Mead, 1989, 1990; Poon and Zhou, 2011), that draws inspiration from the human brain, which
is a remarkable power-efficient system—many orders of magnitude better than the current most
power-efficient CMOS systems.
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Artificial neural networks (ANNs) are computing systems that
take some inspiration from biological neural networks. ANNs
consist of neurons and adjustable connections between them—
synapses—that store all the information about the network.
There are two phases during the operation of ANNs: training
and inference. During training, learning algorithm adjusts the
synaptic weights of an ANN by exposing it to large data sets. Such
a trained network is capable of inferring previously unseen data
and produce the desired outcome during the inference phase.

Although applicable to many problems, large ANNs can
be time- and power-consuming when implemented on general
purpose von Neumann computers that are fundamentally digital,
thus it is advantageous to consider analog alternatives. The most
crucial part of realizing ANNs in hardware (i.e., in physical neural
networks (PNNs), rather than in software) is the implementation
of synapses (physical weights) as they are responsible for most
of the computations in an ANN. Realization of synapses using
standard CMOS components is impractical; continuous synaptic
weight adjustment is preferred, which makes binary components
intrinsically unsuitable. Thus, the most important component in
most neuromorphic systems is an analog memory device that
exhibits multiple state programmability, high power-efficiency
and high density. Many such devices have been considered in
recent years, including phase-change memories (PCM) (Kuzum
et al., 2011; Nandakumar et al., 2018; Sebastian et al., 2018) and
resistive random-access memories (RRAM) (Chang et al., 2011;
Yu et al., 2013b; Serb et al., 2016; Stathopoulos et al., 2017; Pi
et al., 2019), both of which may be considered to be subclasses of
memristive systems.

Resistive RAM technology is based on simple two terminal
(metal-oxide-metal) nanodevices whose resistance can be
repeatedly varied, with low operational energy and very high
levels of integration (Torrezan et al., 2011; Mehonic et al.,
2012). One of the most important properties of RRAMs is
that they exhibit synapse-like plasticity. As a result, different
learning laws have been realized using these devices, e.g., spike-
timing-dependent plasticity for spiking neural networks (Jo et al.,
2010; Serrano-Gotarredona et al., 2013; Yu et al., 2013a; Chang
et al., 2016). Although neuronal activation is typically realized
in CMOS technology while RRAMs are used solely as models of
synapses, there have been demonstrations of memristive devices
exhibiting neuronal functionalities (Pickett et al., 2013; Mehonic
and Kenyon, 2016; Stoliar et al., 2017), resulting in further power
consumption reduction. Some impressive proof of concept work
has been conducted, achieving supervised (Prezioso et al., 2015)
or unsupervised learning (Serb et al., 2016) using RRAM-based
crossbars as PNNs (Ielmini, 2018).

Furthermore, RRAM crossbars intrinsically represent physical
matrices and have an innate capability to compute approximate
matrix-vector product, a key mathematical operation in many
machine learning (ML) algorithms, in a constant time step. These
approaches, although still at an infant stage, provide a promising
route in achieving speed and power efficiency improvements of
many orders of magnitude compared to today’s state-of-the-art
microprocessors (Gokmen and Vlasov, 2016).

Nevertheless, the imperfection both at the device (variability,
a limited number of multiple resistance states, a small operational

range of resistance modulation, non-linearity of voltage-current
characteristics, non-linearity of resistance modulation with
voltage pulses) and system levels (sneak currents and high
resistances of interconnections in crossbar arrays) cannot be
ignored and can lead to reduction in computational accuracy
(Burr et al., 2015; Chai et al., 2018).

In this paper, we simulate how the various non-idealities
of RRAM devices affect the inference accuracy of trained
neural networks when they are physically implemented by
utilizing RRAM-crossbar arrays. First, we present and discuss
experimental results obtained from SiOx-based RRAM devices
in the context of their use as proxies for weights in ANNs
implemented on crossbars. Then we analyse the effects of
device non-idealities on inference accuracy by simulating
those non-idealities on ANNs that were firstly trained on the
MNIST handwritten digits data set (LeCun et al., 2010) using
conventional software methods. It is critical to understand the
effects of the devices’ non-idealities in order to better inform the
optimization of specific device properties.

2. MATERIALS AND METHODS

2.1. RRAM Experiments
We use our SiOx RRAM devices as a case study to quantify
the non-idealities that are common to all RRAM devices. Our
devices consisted of 35 nm thick sputtered SiOx layers (x ≈

1.9) sandwiched between molybdenum bottom electrodes and
gold top electrodes, with a 3 nm thin titanium wetting layer to
ensure adhesion of the gold to the oxide. We investigated the
devices using two main approaches: I/V sweeps and application
of voltage pulses. I/V sweeps are useful for quantifying the
amount of I/V non-linearities, while applying voltage pulses
helps us understand the extent to which it is possible to change
the resistance of RRAM devices in a controlled and continuous
manner, as well as achieve high dynamic ranges, i.e., high ratios
between the highest and lowest resistances.

2.2. Simulations
In our analysis we train ANNs using conventional software
methods and then simulate the effect on inference accuracy when
the synaptic weights are mapped onto RRAM devices with non-
ideal characteristics, some of which have been extracted from
the experiments described in subsection 2.1. We do not consider
in-situ learning in this analysis.

ANNs with fully connected neuronal layers were trained to
recognize handwritten digits (using the MNIST data) by utilizing
backpropagation algorithm. For convenience, and given that
multiple networks had to be trained for averaging purposes,
only the simplest training approaches were used, therefore the
accuracy of ANNs with continuous weights is not state-of-
the-art, but rather in the range of 97–97.5% for most of the
architectures explored. Our focus is not to achieve state-of-
the-art accuracy, but to understand how inference accuracy
changes once we implement the weights using realistic RRAM
devices. Figure 1A shows a typical network topology used in the
simulations. When training, all 60,000 MNIST training images
were used; they were divided into training and verification sets
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FIGURE 1 | (A) Architecture of ANNs. (B) RRAM-based crossbar arrays used for the implementation of weights in the ANN.

in the ratio 3:1. All 10,000 test images were used to test the
accuracy of the neural networks. A feed-forward neural network
architecture was used with 784 input neurons (representing
the pixel intensities of images of 28 × 28 pixel size) and 10
output neurons (representing 10 digits). Each of the hidden layers
(typically two hidden layers, unless stated otherwise) consisted of
100 neurons. All of them used the sigmoid activation function,

while the output layer used a softmax activation function
and a cross-entropy error function was used in the learning
process accordingly. The code was implemented in Python with
functions realizing the sampling of modified PERT distribution
imported from R.

For every architecture explored, 30 different base networks,
that had been trained separately, were used in the simulations
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in order to produce average classification accuracy. In the
case of deterministic discretisation, non-linear I/V and non-
linear programming, each of the base networks with continuous
weights was discretised only once because these simulations were
not probabilistic in nature; thus, in the graphs summarizing those
results, every data point represents an average of 30 accuracies.
In the analysis of faulty devices, each discretised network was
pruned or some of its devices were set to a specific conductance
state 30 times for each of the proportions, thus, in the graphs
summarizing those results, every data point represents an average
of 900 accuracies. In the case of modified PERT disturbance, each
discretised network was disturbed 20 times, thus, in the bar chart
summarizing those results, every bar represents an average of
600 accuracies.

3. RESULTS AND DISCUSSION

3.1. RRAM Experimental Results
Figure 2 shows typical experimental results obtained from our
SiOx RRAM devices. Figure 2A demonstrates typical set and
reset switching curves and two clearly defined resistance states—
low resistance state (LRS) and high resistance state (HRS).
More details of all switching characteristics, including retention,
endurance, variability, as well as further information about the
mechanism of the switching process and the microstructure
of the SiOx layers, can be found in our previous publications
(Mehonic et al., 2015, 2017, 2018; Munde et al., 2017;
Kenyon et al., 2019). In this paper, we focus on obtaining
multiple intermediate resistance states, which are crucial for
implementing programmable weights in neural networks. As
seen in the voltage sweeps in Figure 2A, the reset process is
typically gradual; in contrast the set process is abrupt—the
current increase from the HRS to the LRS occurs at a single
data point. Therefore, we obtain multiple resistance states by
controlling the reset process. Achievability of many resistance
states by progressively increasing the stop reset voltage in voltage
sweeps is demonstrated in Figure 2B. Numerous different stable
resistance states are obtained as devices switch incrementally
from the LRS to the HRS.

However, practical and efficient programming of RRAM
crossbars requires pulsed operation rather than voltage sweeps.
In the past, many different programming schemes have been
demonstrated, some of which employ voltage pulses with varying
amplitudes and widths (Wang et al., 2016). However, these
schemes increase the complexity of external drive circuitry,
hence here we focus on identical voltage pulses. First, we set
devices into the LRS typically with a short set pulse (−1.3V,
100 ns). Then we analyse the gradual reset programming with
identical voltage pulses. After each programming pulse, the state
is probed by a reading pulse (0.5V, 1 µs). We found that the
nature of gradual resetting is highly dependent on both voltage
and pulse width. We fine-tune the voltage with a fixed width,
or the pulse width with a fixed voltage. This is demonstrated
in Figures 2C,D, respectively. We find that varying either of
these two parameters even by relatively small amounts changes
dramatically the gradual switching characteristics. Figure 2C
shows eight different characteristics. Every characteristic consists

of 4000 voltage pulses with a fixed width of 100 ns and an increase
of the voltage of 10mV between successive characteristics. No
significant change in resistance is observed until the amplitude
is increased to 1.35V, after which an abrupt resistance jump is
followed by gradual modulation. A similar effect is observed by
fixing the amplitude of the pulse to 1.3V and varying the pulse
width from 100 ns in increments of 10 ns. Again, no significant
change is observed until the pulse width reaches 130 ns, after
which a gradual resistance increase is observed. The rate of the
resistance increase is controlled by changing pulse widths.

These programming curves are typically called depression
or long-term depression (LTD) curves. For programming
simplicity, linear curves are preferred. Unfortunately, this is
typically not the case if identical voltage pulses are used: the
curves often have exponential/logarithmic shapes. However, it is
important to realize that the shape of these curves is dependent
not only on the particular RRAM devices but also on the fine-
tuning of the programming pulses. Figure 2E shows three very
different LTD curves obtained by using the same device but
different amplitudes and widths of programming pulses.

It is interesting to observe that it is possible to affect both the
ratios between the maximum and minimum resistances, as well
as the shapes of the curves, by fine-tuning the amplitudes and
widths of the pulses. The purple and blue curves are highly non-
linear, while the red curve is closer to preferred linear response.
Here, we do not focus on optimizing the programming scheme,
but we speculate that programming can be finely tuned to exhibit
a linear response.

3.2. Analysis of the Effect of RRAM
Non-idealities on Inference Accuracy
3.2.1. Weight Mapping Onto RRAM Devices
Depending on the type of RRAM devices used, as well as
programming schemes utilized, it is important to understand
the effect of weight mapping and discretisation on the ANN
performance. There are two important points to consider when
representing synaptic weights using discrete conductance states:
the choice of the discrete levels that continuous weights will
be mapped onto, and how the continuous weights between two
discrete levels would be mapped onto one or the other level.
Regarding the first point, we explore proportional mapping
scheme which makes the conductances proportional to the
synaptic weights. This is the simplest approach being considered
by others (Yu, 2018) because it minimizes the complexity
of required circuitry for mapping. When discrete levels are
determined, we map continuous weights onto those levels by
rounding, i.e., mapping them to the closest discrete level.
Randomized rounding (Muller and Indiveri, 2015) could be
employed but it is not as effective with ex-situ learning as simple
rounding is.

In proportional mapping, it is important to decide what
the maximum discrete weight, wmax (discrete), in each synaptic
layer will be. SiOx RRAM devices that do not electroform
have a resistance of >1011 ! (Mehonic et al., 2012), which
is a good approximation to an open connection. Thus, the
zero weight, w0 = 0, will be implemented by simply not
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FIGURE 2 | (A) Typical IV curves demonstrating resistance switching. (B) Reset voltage sweeps demonstrating gradual switching from LRS to HRS. (C) LTD

characteristics in dependence of increasing pulse amplitude. (D) LTD characteristics in dependence of increasing pulse width. (E) Three different LTD characteristics

obtained from the same RRAM device.
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electroforming the devices, but the minimum nonzero discrete

weight, wmin (discrete), will be equal to
wmax (discrete)

HRS/LRS
, where

HRS/LRS is the ratio between highest achievable conductance,
Gmax, and lowest achievable conductance,Gmin, of electroformed
RRAM devices. Because of this, there will exist a region between
w0 and wmin (discrete), where the continuous weights will not
be represented perfectly, no matter how many intermediate
states are added between wmin (discrete) and wmax (discrete); we call
this region an inner weight gap. To reduce the inner weight
gap in a given device we can choose a smaller wmax (discrete),
but that creates an outer weight gap above wmax (discrete) (see
Figures 3A,B). In practice, with the ANNs that we trained,
most of the continuous weights are concentrated around the
zero weight, with a small number of weights forming thin
tails at both ends (see Figure S1). Thus instead of setting
wmax (discrete) equal to the continuous weight, wmax, that has
the largest absolute value, we find that it is more appropriate
to exclude a small proportion, pL, of weights with the largest
absolute values. This technique is summarized in Algorithm 1
(Supplementary Material). With our ANNs, we find that the
most appropriate value of pL is ∼0.015, i.e., we exclude a total
of 1.5% of the weights at the tails when choosing wmax (discrete).
This value of pL was used in all of the simulations involving
discretisation in this analysis. For significantly different HRS/LRS
ratios or very few discrete states, different value of pL might be
more appropriate.

To avoid the weight gaps altogether, one could employ a
different mapping scheme that not only scales the weights non-
linearly but also shifts them by a certain amount (Tarkov, 2015).
However, if neuronal circuits were employed, this approach
would result in needlessly complex circuitry required for these
non-linear transformations which would defeat the purpose of
having a simple architecture that the crossbar arrays can provide.
The other approach is to use a difference of the conductances of
two memristors as an effective conductance and representation
of the synaptic weight. This method was used to achieve state-
of-the-art accuracy by augmenting PCM devices with CMOS
circuitry to deal with non-idealities (Ambrogio et al., 2018). This
mapping scheme contributes to the circuit complexity because
two, rather than one, memristors per every synaptic weight have
to be finely tuned. Therefore, we focus on proportional mapping
and fine-tuning of only one memristor per every synaptic weight
in this analysis.

To implement negative weights using conductances, two
crossbar arrays per synaptic layer are typically necessary (Hu
et al., 2012)—one for positive and one for negative weights,
as shown in Figure 1B. If a weight is negative, it would be
represented by a dedicated memristor in the crossbar of negative
weights (where negative input voltages would be used). The
corresponding memristor in the crossbar of positive weights
(where positive input voltages would be used), would be
unelectroformed, resulting in its negligible effect on the total
output current (which is computed by adding corresponding
currents from the two crossbars). The implementation of a
positive weight would be opposite to that of a negative weight.
Thus, taking into account the zero level, having NG conductance

states (of electroformed devices) would result in 2NG + 1
discrete levels.

With our RRAM devices, we can achieve continuous
modulation of conductance by employing voltage pulses. But if
a hypothetical device only has a finite number of intermediate
conductance states available, the performance of the hardware
implementation of an ANN might depend on how these states
are spaced. Of course, if the device exhibits discrete conductance
states, it is usually not possible to choose how those states are
spaced. However, some patterns of how the states are distributed
might be more probable than others. One possibility that we
explore is an equal spacing between conductance states. This is
demonstrated in Figure 3A. As mentioned earlier, even with an
infinite number of conductance states, the continuous weights in
weight gap regions will not be represented perfectly. The inner
weight gaps are reduced by increasing HRS/LRS ratio. This will
be an important metric in our simulations.

Another possibility that we analyse is equal spacing between
resistance states. This is illustrated in Figure 3B. The main
difference between this scheme and the scheme which used equal
spacing between conductance levels is that in this scheme, we
have a higher density of discrete levels near wmin (discrete)—a
result of reciprocal relationship between conductance and
resistance. This, in theory, can be disadvantageous, because if
we exclude the thin tails at both ends, the weights are usually
distributed relatively uniformly in the synaptic layers (apart
from the weights in the last synaptic layer, see Figure S1C) of
ANNs that we used. In practice, we find that choice of the
scheme has little effect most of the time. This suggests that it is
most important to have enough discrete states, while the exact
spacing between each is not that important, as long as they are
relatively uniformly distributed, i.e., not concentrated around a
single value.

3.2.2. HRS/LRS Ratio in Proportional Mapping
As discussed earlier, the inner weight gaps, which are partly
determined by the HRS/LRS ratio, can dramatically affect
the network performance in both scenarios. It is essential to
understand how the HRS/LRS ratio influences the accuracy
of a neural network with both low and high number of
conductance states.

The results for implementations with both equally spaced
conductance states and equally spaced resistance states are
shown in Figures 3C,D, respectively. Zero conductance
states correspond to a scenario when all the devices are
unelectroformed, and thus all the weights are set to zero; this
results in random chance that the ANN will guess the class
correctly out of the 10 available, i.e., mean accuracy of ∼10%. A
single conductance state corresponds to a scenario with some
of the devices being unelectroformed, and some electroformed
and set to LRS, i.e., 3 discrete levels in total because the positive
weights are reflected around the zero weight using the second
RRAM array, as mentioned earlier. Because at this stage none of
the devices are switched to HRS, HRS/LRS ratio does not have
an effect and all the curves have the same accuracy at that point.
Only at 2 conductance states, when some devices are switched to
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FIGURE 3 | (A) An illustration showing synaptic weights represented by equally spaced conductance states. (B) An illustration showing synaptic weights represented

by conductance states corresponding to equally spaced resistance states. (C) The accuracy of a neural network with equally spaced conductance states being used

as representations of discrete synaptic weights. Results for different HRS/LRS ratios are shown. (D) The accuracy of a neural network with conductance states

corresponding to equally spaced resistance states being used as representations of discrete synaptic weights. Results for different HRS/LRS ratios are shown. (E)

The accuracy of a neural network with equally spaced conductance states being used as representations of discrete synaptic weights. Experimental HRS/LRS ratio

was used. (F) The accuracy of a neural network with conductance states corresponding to equally spaced resistance states being used as representations of discrete

synaptic weights. Experimental HRS/LRS ratio was used.

LRS, do we start to see the differences in accuracy for different
HRS/LRS ratios. At 3 conductance states, we, in theory, should
start noticing the differences in accuracy between equally spaced
conductance and resistance states because intermediate discrete
levels are introduced. In practice, we see little difference between
the two schemes, except for the general trend that it takes longer
for the accuracy to saturate with equally spaced resistance states

if HRS/LRS ratio is high. This is usually not visible by the
naked eye, though one might notice that when HRS/LRS = 5,
accuracy with 3 equally spaced conductance states is slightly
larger than accuracy with 3 equally spaced resistance states. Both
plots show that the higher the HRS/LRS ratio is, the higher the
maximum achievable accuracy by the corresponding ANN is.
We define saturation to happen when an ANN with a certain
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number of conductance states produces the same accuracy
(correct to the tenths digit) as an ANN with an infinite number
of intermediate conductance states. We note that the accuracy
saturates at different number of conductance states depending
on the HRS/LRS ratio. For example, when HRS/LRS = 1.5,
accuracy saturates at 3 conductance states with both schemes,
while when HRS/LRS = 5, accuracy saturates at 8 equally spaced
conductance states and at 12 equally spaced resistance states.
Also, if RRAM devices have a very large HRS/LRS ratio and
enough conductance states, it might sometimes be advantageous
to decrease the outer weight gap by decreasing pL (and thus
increasing wmax (discrete)).

Experimental results from the linear region of the red
curve in Figure 2E were used to extract HRS/LRS ratio of
3.006. The effect of the number of conductance states on
accuracy (with experimental HRS/LRS ratio) either by using
equal spacing between conductance or resistance states, is shown
in Figures 3E,F, respectively. Both of them yield almost identical
results. In both plots, the accuracy of discretised networks
saturates at around 96.8% at 6 equally spaced conductance states
and at 7 equally spaced resistance states. This saturation is
the result of the weight gaps mentioned earlier—a number of
continuous weights will not be represented perfectly no matter
how many conductance states are added.

Even though Figure 2E demonstrates almost continuous
resistance changes, discretisation simulations exploring the effect
of a small number of states are nevertheless valuable to allow for
other RRAM devices that might exhibit only a finite number of
discrete states.

3.2.3. Faulty Devices
RRAM devices might sometimes not work the way they were
designed to and this couldmanifest itself in different ways. One of
the most common problems is devices that cannot electroform.
Because of the high resistance of the pristine state, this (in the
context of proportional mapping) is effectively the same as having
a zero weight. Of course, when ANNs are discretised, some of the
synaptic weights are supposed to be zero. However, one cannot
guarantee that the devices responsible for implementing nonzero
weights will electroform, thus a drop in accuracy is expected
if these devices are indeed not capable of electroforming. We
will refer to the proportion of the devices that are capable of
electroforming as yield.

Figure 4A shows the dependence of classification accuracy
of discretised ANNs with different proportions of their weights
pruned (set to zero); results for different number of hidden
layers are shown. The starting accuracy (referring to the accuracy
with all the devices working perfectly) influences the robustness
to pruning: the higher the starting accuracy, the more robust
network is to pruning (this is explained in more detail in
the Supplementary Material). Despite of ANNs containing one
hidden layer having the lowest mean starting accuracy (which is
not necessarily a universal result, but only a consequence of our
training and discretisation procedures), their accuracy eventually
becomes higher than that of any other architecture as more of the
weights are pruned. The other three architectures, which have a
very similar starting accuracy, follow the same trend: the fewer

hidden layers, the more robust ANNs are to pruning. This is
significant as it shows that the yield of devices can determine
the most appropriate network architecture that should be utilized
when using crossbar arrays. In the case of the ANNs we trained,
a discretised network with 2 hidden layers, each containing 100
neurons, might perform better than a network with one hidden
layer if all of the devices responsible for realization of nonzero
weights have electroformed, but for a non-ideal yield of RRAM
devices (e.g., 80%), it might be preferable to choose an ANN with
one hidden layer.

We speculate that this decrease in robustness to pruning in
ex-situ training, where networks cannot easily adapt to non-
idealities, is a result of decreased parallelism of an ANN. The
reason for an ANN robustness in general can be explained
by its parallel nature—each neuron (or synapse) is responsible
only for a small portion of the network’s operation; not a
single one of them is critical to the performance. However,
because layers are added in series, rather than in parallel, pruned
synapse in a deep neural network will have a cascading effect
over all the hidden layers. We did not find enough evidence
that increasing the number of neurons in each hidden layer
can increase the robustness to pruning; it is probable that the
increased parallelism of an ANN (produced by extra neurons in
each hidden layer) is canceled out by pruning—more synapses
are present, but also more of them are pruned because we are
removing the same proportion every time.

Although less relevant to ex-situ training, we investigate the
effect of electroformed devices getting stuck at either HRS or
LRS state responsible for the realization of wmin (discrete) and
wmax (discrete), respectively.

The effect of devices getting stuck at HRS is shown in
Figure 4B and is clearly less extreme that that of pruning. The
main reason for that is that even when all of the electroformed
devices are stuck at HRS, not all of the information is lost: one
is still left with 3 discrete weight levels (zero weight realized
using unelectroformed devices, as well as one positive and one
negative weight realized using stuck electroformed devices and
two crossbar arrays) and thus an accuracy in the range 78-83%,
rather than∼10% which is the case when all the weights are set to
zero (Figure 4A). From these findings alone, it is difficult to make
any meaningful conclusion about the effect of number of hidden
layers. Though if one excludes ANNs with one hidden layer (that
have a visibly lower mean starting accuracy), one could claim
that the accuracy of ANNs with fewer hidden layers eventually
becomes higher. Of course, this becomes apparent only when
∼70% of the electroformed devices become stuck at HRS which
is unlikely to happen in practice.

The effect of devices getting stuck at LRS is shown in
Figure 4C; the decrease in accuracy is more sudden initially than
in the case of devices getting stuck at HRS. In this case, it is even
more difficult to interpret the effect of the number of hidden
layers because some of the curves intersect each other more than
once. An interesting effect is observed when accuracy curves
with two, three and four hidden layers have their local minima
not at 100% of the electroformed devices being stuck at LRS,
but at a smaller proportion. We speculate that this is due to
the fact that LRS is used to implement wmax (discrete). During the
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FIGURE 4 | The accuracy of ANNs (with different number of hidden layers)

discretised using 10 equally spaced conductance states and physically

implemented using faulty devices. (A) The effect of having devices which

cannot electroform. (B) The effect of having electroformed devices which are

stuck at HRS. (C) The effect of having electroformed devices which are stuck

at LRS.

discretisation stage, synapses that are the most significant were
already set to wmax (discrete) (or −wmax (discrete)) and thus were
dominant, especially in the last synaptic layer. When some of the
synapses which had lower weights were set to wmax (discrete), they
became dominant too, thus decreasing the relative importance

of the synapses that were supposed to have a weight with the
highest absolute value. At some point so many of the synapses
will be randomly assigned high weights that any column of
RRAM devices (see Figure 1B) which will not have enough
devices at LRS will not be able to produce enough current to
have any significant effect. At that point, it would be better if all
of the electroformed devices were stuck at LRS, thus all having
equal importance.

3.2.4. I/V Non-linearity
Another important non-ideality of RRAM devices is non-
linearity of I/V characteristics. Because inputs to every synaptic
layer would be represented by voltage signals, this non-linearity
can further affect the accuracy of the ANN, unless the data
set inputs are binary and binary neurons are used (neither
of which is true in our case). Here, we analyse I/V curves
corresponding to the operational regions from the experimental
results shown in Figure 2E (red curve). Note that a significant
resistance change is not observed throughout the full range
of voltage pulses. In order to only use voltage sweeps’ results
from Figure 2B that correspond to operational region shown in
Figure 2E (red curve), which is between 382 and 1150!, only the
resistance states within this resistance range were used. Voltage
sweeps corresponding to these 15 states are separately shown
in Figure 5A.

To quantify the effect of I/V non-linearities on RRAM ANN
performance, ANNs were firstly discretised using the above-
mentioned 15 resistance states (resulting in 31 different synaptic
weights). Then the bottom branches of I/V curves in Figure 5A
(shown separately in Figure 5B) were used as a lookup table
to compute the currents flowing out of the crossbar array. Of
course, before computing the currents, one needs to decide what
inputs correspond to what voltages. In the software model, inputs
to every synaptic layer are within the range [0, 1]. In order to
convert the software inputs to voltage (in volts), we multiply
inputs by an input scaling factor, k. This factor is also used
to convert the resulting currents to software outputs. The reset
voltage of the leftmost curve in Figure 5 is 0.95V, meaning
that any voltage value above that will not have a corresponding
current output. Thus, k, in our case, can be at maximum
equal to 0.95.

Results showing the effect of varying k on inference accuracy
are presented in Figure 6A. These results suggest that the choice
of k can have a noticeable effect on inference accuracy. For
example, choosing k = 0.1 or k = 0.2 can lead to an accuracy
that is as good as that of a discretised ANN which treats RRAM
devices as Ohmic resistors. That is partly because, as can be
seen in Figure 5B, the I/V curves of all resistance states are
highly linear at low voltages. However, if k is decreased even
further, we observe decrease in accuracy. This might be due to a
current offset—nonzero current at 0V. In RRAM crossbar array
applications it is more important that the ratio between current
and voltage, rather than the slope of I/V curve, stays constant
because crossbar multiply-accumulate (MAC) operations rely on
the idea that I = GV , where I is current, G is conductance and V
is voltage. Another factor that has to be considered is how the
conductance of a certain state is measured. In our case it was
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FIGURE 5 | Voltage sweeps of resistance states lying in the linear programming pulses region of the red curve in Figure 2E. (A) Double sweep. (B) Single sweep.

measured using 0.5V reading pulses, and these values were used
to discretise the ANNs. However, non-linear I/V curves result in
a dependence of conductance on voltage, thus the valuemeasured
using a reading pulse is representative only of a small portion
of an I/V curve. The interplay between this and the overall
linearity of I/V curve determines how k influences accuracy in
Figure 6A. Furthermore, the accuracy of Ohmic discrete ANNs
using proportional mapping scheme is fundamentally limited by
the HRS/LRS ratio, which in this case is set to be relatively low at
2.644 (from the 15 I/V curves).

Figure 6B shows the dependence of conductance and
conductance linearity on voltage. As mentioned before,
conductance will be defined as the ratio between current and
voltage, rather than the slope of the I/V curve. Here we introduce
the metric of conductance linearity (CL) described in reference
(Sung et al., 2018). CL at a certain voltage VR is defined as the
conductance at that voltage divided by conductance at 0.5VR; the
closer this ratio is to 1, the more linear conductance is considered
to be. Figure 6B reiterates the point that I/V curves become
more non-linear at high voltages.

3.2.5. Non-linear Programming With Voltage Pulses
Although the weights are fixed during the inference phase, we
analyse how the deviations from linear programming during the
initial setting of weights (as part of ex-situ training) affect the
accuracy. Linear programming is preferred as it leads to reduced
circuit complexity. To understand the effects of deviations from
a model that relates the number of programming pulses to
resistance changes, the experimental results in Figure 7 were
considered. These are operational regions previously shown
in Figure 2E (we do not consider the regions where device
resistance is not significantly changed by voltage pulses). In
the most straightforward programming scheme, the ANNs
would be discretised and the crossbars would be programmed
using a linear model (fits for such models are also shown
in Figure 7) without applying reading pulses to confirm the
resistance values. Because the model is not perfect, it would result
in the actual resistances being different from the ones used in

the discretisation of the network. This affects the performance
of the ANN.

To quantify the extent of this effect, we firstly discretized
the networks using linear fits (see Figure 7) and then used
the experimental resistance values to investigate differences
in accuracy. The results for ANNs with 10 equally spaced
conductance states are shown in Figure 8. Blue columns,
which assume linearity, reiterate that having a larger HRS/LRS
ratio results in higher accuracy. When the deviations from
the model are taken into account, we can observe moderate
decreases in accuracy for highly non-linear experimental results
(Figures 7A,B), as is indicated by the red columns in Figure 8,
but even they are limited to a maximum of ∼0.4% decrease
(with respect to accuracy of linear discrete model) in the
worst-case scenario.

It is important to note that the d/Gavg ratios (denoting

average absolute deviation, d, of conductance divided by average

conductance, Gavg =
Gmin + Gmax

2
) presented in Figure 8

are not perfect metrics for quantifying these deviations. They
only capture the magnitudes of deviations but not their global
behavior. This metric does not take into account wave-like
characteristics of the curves in Figure 7, which result in some
resistance regions being disturbed more than the others; this
leads to a greater decrease in the accuracy of ANNs than if
the disturbances were independent from the value of resistance.
Therefore, two different experiments with the sameHRS/LRS and
d/Gavg ratios will generally not result in the same accuracy.

3.2.6. Device-to-Device Variability
One of the advantages of ex-situ learning is that the conductance
of memristor has to be precisely set only once, since the devices
will not be switched during the operation of the physical ANN.
Here, two points have to be considered: (1) how straightforward
it is to set those conductances precisely over all programmed
devices, and (2) whether the conductance will change over time.

The first point was partly explored in sub-subsection 3.2.5.
However, it was built on the assumption that we can easily
identify the linear range of operation of the device, and that this
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FIGURE 6 | (A) The inference accuracy when using continuous weights (yellow), when using discrete weights without taking into account I/V non-linearities (blue) and

when using discrete weights by taking into account I/V non-linearities with different values of k (red). (B) Dependence of conductance and conductance linearity on

voltage. The figure shows results for the most non-linear I/V curve from Figure 5.

range will be the same for all the devices. This is unlikely to be
the case in practice; it might be easier to set the values around
the midpoint of Gmin and Gmax, but the conductances near Gmin

or Gmax might be more difficult to achieve, as can be seen from
Figure 2E: the curves flatten out near Gmin and near Gmax (or
equivalently near Rmax and near Rmin, as seen in the plot). If
one wanted to set the conductance close to Gmin, it is likely that
the conductance achieved would be higher than desired. On the
other hand, if one wanted to set the conductance close to Gmax,
it is likely that the conductance achieved would be lower than
desired. This is typical for most RRAM devices as they exhibit a
non-linear response to voltage pulses.

The second point is related to the retention of the devices.
Ideally, the conductance of the device would be constant. In
practice, the conductance might change slightly over time; this
is the effect of weak filaments that can self-dissolute after some
time. Similarly, in the case of random telegraph noise (RTN),
device conductance can abruptly shift between two ormore states
over time.

These and other types of device-to-device variability are
difficult to model realistically, and the models might differ
in major ways depending on the type of RRAM devices
used. However, we aim to model variations between individual
devices at least qualitatively by considering the probabilities
of devices’ conductances deviating from desired values by
certain amounts in certain directions. This could represent
the effect of non-ideal programming from device to device
or time-induced drift/shift from the desired values (as in the
case of RTN). Deviations can be modeled by sampling from
a certain probability distribution, but given that a physical

characteristic (conductance) of the electroformed devices is
being modeled and that we want to reflect the qualitative
features of variability described above, it is important to have
certain constraints for the probability density function (PDF) of
such distribution:

1. Electroformed devices should always have a conductance
which is between minimum conductance, Gmin, and
maximum conductance, Gmax, i.e., the probability of
the conductance being disturbed outside this range
should be zero—PDF should be defined on a bounded
interval [Gmin,Gmax].

2. If the conductance is closer to Gmin than it is to Gmax, it
should have a higher probability of deviating toward Gmax

than toward Gmin, and vice versa.
3. It should be possible to define the mode of a PDF; in this way

we could use the desired conductance as the mode.
4. It should be possible to define the extent of deviation; in this

way we could reflect different degrees of uncertainty.

One of the PDFs satisfying all the requirements is the modified
PERT distribution. It is defined on a bounded interval [a, b],
and is characterized by its mode, m, and shape parameter, γ

(Vose, 2008). It becomes skewed if it is too close to one of the
endpoints and one can also change its variance, σ 2, by adjusting
γ . However, because variance is defined in terms of average of a
PDF—and not mode which we are interested in—it is better to
choose a different metric of uncertainty: we use average absolute

deviation, d, of conductance from the mode; this number gives
the average absolute deviation of disturbed conductance, Gnew,
of electroformed device from the original conductance,m. There
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FIGURE 7 | Experimental results from real RRAM devices used in the

simulations—resistance changes of devices when applying voltage pulses.

Linear fits are also shown in the plots. (A) Purple curve in Figure 2E. (B) Blue

curve in Figure 2E. (C) Red curve in Figure 2E.

is no analytic expression for γ in terms of d, thus one needs to
compute γ numerically.

We stress that this kind of disturbance will be continuous in
nature and only applied to electroformed devices because the
conductance (and thus its variability) of unelectroformed devices
is orders of magnitude lower. Also, the conductance is most likely
to be disturbed by a small amount (because mode, m, represents
the original conductance), but there is a small probability of
it being disturbed by a large amount. After disturbance, the
electroformed devices are no longer in discrete conductance
states, though if the disturbance is not too large, the peaks of the
conductance distribution of all the devices will be visible at the
positions of the original discrete conductance states.

Figure 9 shows example modified PERT PDFs for a device
with Gmin = 4mS and Gmax = 12mS (and thus Gavg =

FIGURE 8 | Bar chart of accuracies of ANNs with 10 equally spaced

conductance states being used as representations of discrete synaptic

weights. Figure shows results for different pulsing experiments from Figure 7.

Blue columns assume linear resistance changes, while red columns use real

experimental data.

Gmin + Gmax

2
= 8mS). Figure 9A shows the effect of changing

the mode, m, of the distribution, which represents the value
of desired conductance, while keeping the average absolute

deviation, d, constant at 0.1Gavg = 0.8mS. If m = 8mS,
then the shape of the PDF of this distribution most resembles
the PDF of normal distribution with mean 8mS. However, it
is not exactly the same shape because in this case Pr(Gnew <

4) = Pr(Gnew > 12) = 0, unlike in normal distribution
where the tails extend infinitely far in both sides. If m is close
to one of the endpoints, the PDF becomes noticeably skewed
toward the other endpoint. Because 5mS is the same distance
from the endpoint Gmin as 11mS is from the endpoint Gmax,
the PDFs with m = 5mS and m = 11mS are symmetrical.
When m lies at one of the endpoints, the PDF has only one
tail extending toward the other endpoint. Figure 9B shows

the effect of changing the average absolute deviation, d, while
keeping the mode, m, constant at 5mS. We note that the
lower the deviation, the more localized and less skewed the
PDF becomes.

Results for ANNs with HRS/LRS = 3.006 and 10
equally spaced conductance states being disturbed using
this model are presented in Figure 10. We observe that
if the average absolute deviation of conductance is equal
to 5% of the average conductance, then the decrease in
accuracy is relatively small-∼0.3%-smaller than the difference
between accuracy with continuous weights and accuracy
with undisturbed discrete weights. Disturbances of larger
magnitude result in more significant drops in accuracy:

∼1.1% with d = 0.10Gavg and∼2.3% with d = 0.15Gavg.
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FIGURE 9 | Probability density functions of modified PERT distribution with lower limit 4mS and upper limit 12mS. (A) Effect of changing mode, m. (B) Effect of

changing average absolute deviation, d.

FIGURE 10 | The accuracy of ANNs with continuous weights (yellow), with

discrete weights obtained from 10 equally spaced conductance states and

HRS/LRS = 3.006 (blue), and with the same discrete weights that were

disturbed using modified PERT distribution (red).

4. CONCLUSION

We have discussed a number of non-idealities of RRAM
devices and their effects on inference accuracy when the
weights in ANNs are implemented using realistic RRAM

devices. First, we presented experimental results obtained from
SiOx RRAM devices and discussed important experimental
considerations to achieve the best device properties. Our
inference accuracy analysis includes: (1) Weight mapping onto
RRAM devices; (2) HRS/LRS ratio; (3) Faulty devices; (4) I/V
non-linearity; (5) Non-linear programming with voltage pulses;
(6) Device-to-device variability.

Some of these factors have a more significant impact on
accuracy than do others. For the particular demonstration
application that we consider (recognition of handwritten digits
using MNIST data), we find that the HRS/LRS resistance ratio
has a significant impact on accuracy when using proportional
mapping scheme. However, even a modest ratio of 5 provides
accuracy of ∼97.1% which is close to the accuracy of ∼97.3%
with continuous weights. For our experimental HRS/LRS ratio
of 3.006, we find that mean accuracy of ∼96.8% can be
achieved. There is more than one way of how discrete states
can be separated in realistic RRAM devices, but if they
are relatively uniformly distributed, we find that accuracy
saturates at 7 or fewer conductance states with HRS/LRS =

3.006. Our experimental results show that it is possible to
achieve almost continuous modification of resistances, but we
stress that the accuracy is much more affected by HRS/LRS
resistance ratio. The effect of device yield depends on the
particular implementation of the ANN. However, for most
implementations, a drop in accuracy, with few percent of the
devices not being able to electroform, is tolerable. The effect
of electroformed devices being stuck at one of the states is
even less detrimental. We analyse our experimental results and
demonstrate that the negative effect of small non-linearities
in I/V curves can be eliminated by choosing appropriate
voltage range. Although the programming of the weights is
less relevant for the inference phase, we discuss and analyse
the effects of non-linear programming with voltage pulses.
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Finally, we model device-to-device variations in electroformed

devices and show that small deviations (d = 0.05Gavg) from
the desired conductance can have a smaller negative effect
to classification accuracy than discretisation, although larger

deviations (d = 0.10Gavg and d = 0.15Gavg) can have a
significant negative impact.

In conclusion, we demonstrate that RRAM devices with
non-optimized switching properties could still be used for the
implementation of weights in physical ANNs, particularly during
the inference phase. It is essential to consider various device
properties in the context of the particular application. This will
inform best programming procedures and optimal trade-offs
between the complexity of programming and inference accuracy.
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