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Abstract 

Background: Dehydration appears prevalent, costly and associated with adverse outcomes. 

We sought to generate consensus on such key issues and elucidate need for further scientific 

enquiry. 

Materials and Methods: A modified Delphi process combined expert opinion and evidence 

appraisal. 12 relevant experts addressed dehydration’s definition, objective markers and impact 

on physiology and outcome. 

Results: Fifteen consensus statements and seven research recommendations were generated. 

Key findings, evidenced in detail, were that there is no universally-accepted definition for 

dehydration; hydration assessment is complex and requires combining physiological and 

laboratory variables; ‘dehydration’ and ‘hypovolaemia’ are incorrectly used interchangeably; 

abnormal hydration status includes relative and/or absolute abnormalities in body water and 

serum/plasma osmolality (pOsm); raised pOsm usually indicates dehydration; direct 

measurement of pOsm is the gold standard for determining dehydration; pOsm >300 and ≤280 

mOsm/kg classifies a person as hyper or hypo-osmolar; outside extremes, signs of adult 

dehydration are subtle and unreliable; dehydration is common in hospitals and care homes and 

associated with poorer outcomes. 

Discussion: Dehydration poses risk to public health.  Dehydration is under-recognised and 

poorly managed in hospital and community-based care. Further research is required to improve 

assessment and management of dehydration and the authors have made recommendations to 

focus academic endeavours. 

 

Keywords: dehydration, osmolar concentration, body fluid compartments, consensus, body 

water, water-electrolyte balance 

 

Key Messages 

1. Dehydration assessment is a major clinical challenge due to a complex, varying 

pathophysiology, non-specific clinical presentations, and the lack of international 

consensus on definition and diagnosis. 

2. Plasma osmolality represents a valuable, objective surrogate marker of hypertonic 

dehydration which is underutilised in clinical practice. 

3. Dehydration is prevalent within the healthcare setting and in the community, and appears 

associated with increased morbidity and mortality. 

 



 

Introduction 

Water is critical for human survival. It is the largest single constituent of the human body, 

accounting for approximately 60% of adult body mass. It is the solvent in which many chemical 

reactions occur; distributes diverse molecules to cells (amongst them oxygen and metabolic 

substrates); is involved in the removal of waste products of metabolism (including carbon 

dioxide from cells, and as a major constituent of urine); and is essential for thermoregulation 

through redistribution of heat and via sweating. Through complex homeostatic mechanisms, 

total body water (TBW) is precisely regulated and distributed across the intracellular fluid 

(ICF) and extracellular fluid (ECF) compartments. ECF is further divided across the interstitial 

and intravascular spaces (figure 1).  

‘Dehydration’ is a term which, in clinical use, refers to a deficiency in total body water. 

Whilst no standard means of defining its presence or severity exists (see below), it appears to 

be both prevalent and costly within the healthcare setting. In 2015, 37% of patients aged over 

65 years old admitted to a large UK hospital were dehydrated [1].  Of 370,758 patients in the 

2004 US National Hospital Discharge Survey, there were 518,000 hospitalisations primarily 

due to dehydration, incurring healthcare costs in excess of 5 billion dollars [2]. The problem is 

not restricted to hospitalised patients,  a recent UK study found one in every five older people 

living in long-term care to be dehydrated (serum osmolality >300mOsm/Kg) and half to be 

either dehydrated or at risk of becoming so (>295-300mOsm/kg) [3]. Furthermore, it has been 

repeatedly shown that dehydration is associated with increased mortality and morbidity [3–8]. 

Although a seemingly simple problem of ‘too little water’, dehydration is often 

inadequately identified and managed [1]. This is, in part, due to the clinical challenge of 

managing a condition with little international consensus as to how it (or its severity) is defined 

or diagnosed [9–12]. We organised an initiative bringing together a multidisciplinary group of 

experts to review and discuss current evidence on the subject, in order to generate consensus 

on key issues related to the diagnosis and management of dehydration as well as to highlight 

any needs for further scientific enquiry. 

 

Materials and Methods 

We employed a modified Delphi process, combining expert opinion and evidence appraisal, to 

develop consensus statements and research recommendations. A similar method has been used 

and described previously by both the Acute Dialysis Quality Initiative (ADQI) [13] and the 

Perioperative Quality Initiative (POQI) [14]. The process is divided into three key phases: pre-



conference, conference and post-conference activity. An expert group was compiled from 

various relevant specialist fields including critical care medicine, cardiology, anaesthesia, 

sports science and nutrition. Those invited were identified as international experts in 

dehydration and fluid management through broad discussion and literature review. A final 

faculty of 12 was then sub-divided into three groups, each assigned to cover one of the 

following subject areas: 

1. Dehydration: description and definition 

2. Objective markers of dehydration 

3. Physiological impact of dehydration and patient outcome 

The subject areas were originally proposed by those with extensive expertise and experience 

in human physiology and clinical practice; recruited faculty were then invited to suggest 

amendment, removal or additions.  The final subject areas were agreed upon by the entire 

faculty, as both a pragmatic approach to the subject matter but also as topics deemed most in 

need of scientific enquiry. During the pre-conference phase, each group was assigned a 

chairman to coordinate activities and output. Using email exchanges and teleconferences, 

groups refined discussion topics before undertaking extensive literature searches to generate 

bibliographies of key studies.  

The framework for the intensive, face-to-face meeting was for small group discussions 

to alternate with plenary sessions. At the first plenary session, groups presented their assigned 

topic’s key areas of consensus and controversy, the supporting evidence and the planned focus 

for subsequent group discussions. Over the course of two days, consensus statements 

developed within small groups were then presented and discussed, before being refined in the 

plenary sessions. Through this iterative process, the statements evolved such that by the end of 

the final plenary, all members were able to agree consensus. In addition to this, each group 

compiled research recommendations to focus future academic endeavours within this subject.  

After the conference, each group produced the supporting evidence for their statements. 

These were compiled and edited together to form a single manuscript. All attendees were given 

the opportunity to review and revise the entire manuscript before submission for publication. 

All those engaged in this consensus process were thus involved in all stages of development 

from proposing subject areas to refining discussion points and literature searches. All attendees 

have been included as authors of the manuscript. 

 

 

 



Results 

Fifteen consensus statements and seven research recommendations were generated across the 

three working groups. The consensus statements are numerically listed below and are 

immediately followed by brief supporting evidence. In some cases, two statements have been 

defended by a single section of supporting text. For ease of reference, table 1 presents the 

number of consensus statements produced per subject area. The research recommendations are 

presented in table 2.  

 

Dehydration: description and definition 

1. There is no universally-accepted definition for dehydration in humans 

Amongst the principal medical dictionaries, dehydration is defined simply as an excessive loss 

of body water [15–17]. More expansive definitions are offered on the basis of differing 

physiological effects on the extracellular compartment: hypotonic, isotonic or hypertonic 

dehydration [12]. The Dehydration Council prefers a more clinically-focussed terminology of 

water-loss and salt-loss dehydration to highlight the two principal aetiologies of water deficit 

[18]. However, European guidelines now refer to low-intake dehydration rather than water-

loss, to reflect that its primary cause is insufficient drinking [19]. In other sources, the 

compartment-specific terms of extracellular (salt-loss) or intracellular (low-intake) 

dehydration are used [20,21]. Some argue, however, that the term dehydration should refer 

only to the (osmotic-dependent) intracellular dehydration; extracellular fluid losses that lead to 

intravascular volume contraction should be described distinctly as volume depletion or 

hypovolaemia [22,23]. The American College of Sports Medicine published a Position Stand 

in which they describe dehydration as a process of water loss, that if continued without 

compensation will lead to the physiological state of hypohydration [24].  

In addition to the confusion that may be created by these varying definitions and 

categorisations, there is also a lack of specific detail that affords everyday clinical utility. 

Multiple recent reviews conclude with similar concern that there is a lack of consistency and 

clarity in defining dehydration, and its subtypes [9,11,12,18].  

For clarity, in this article we will use the following terms:  

• Osmolarity as a measure of the concentration of all solutes per unit of solution volume; 

tonicity referring to the concentration (per unit of solution volume) only of those solutes 

which can’t cross a semipermeable membrane; and osmolality as a measure of the 

concentration of all solutes per unit of solvent mass. 



• Hypertonic dehydration to describe an uncompensated, predominantly pure water 

deficit (e.g. most commonly due to insufficient drinking or excessive sweating). This 

results in an increase in osmolality of the extracellular compartment (i.e plasma and 

interstitial fluid) such that it becomes hypertonic with respect to the intracellular space 

[9,18,23,25,26]. Other terms used to describe hypertonic dehydration include 

hyperosmotic, intracellular, water-loss and low intake dehydration.  

• Isotonic dehydration to describe a water deficit that is accompanied by a proportionate 

salt loss, as can be seen with diuretic use or secretory diarrhoea. There is therefore not 

an associated rise in the osmolality of the extracellular fluid and, as such, it remains 

isotonic with respect to the intracellular space. It is worth noting that there can also be 

an excessive salt loss causing a hypotonic dehydrated state [9,18,23,25,26]. Other terms 

used to describe isotonic dehydration include iso-osmotic, extracellular and salt-loss 

dehydration. 

2. The assessment of hydration status is complex, combining physiological and laboratory 

variables  

Maintaining adequate total body water involves a complex network of homeostatic 

mechanisms that regulate water conservation, excretion and oral intake (through thirst) [27]. 

Body water is dispersed across the extracellular and intracellular compartments; these volumes 

exhibit a constant state of flux, with inter-compartmental movement of water governed by 

osmotic gradients. Intracellular and extracellular ionic compositions differ substantially but are 

balanced across the cell membrane by electrochemical equilibrium [28]. Water then moves 

freely across membranes to equalise osmotic forces. Further, there is intra-compartmental 

movement of water from the intravascular fluid to the interstitial fluid, determined by Starling 

forces and the lymphatic pump mechanisms, returning to the blood stream via lymph nodes 

and the thoracic duct [29,30]. This dynamic interplay of multiple variables highlights the 

challenges of body water assessment and management. 

Dehydration represents a heterogeneous group of conditions with varying clinical and 

biochemical presentations. Hypertonic dehydration results in an osmotic pull of water from the 

intracellular compartment causing cellular dehydration and shrinkage. At an increase in plasma 

osmolality of around 2% (approximating to an absolute threshold above 285 mOsm/Kg, with 

some variation between individuals [31]), the loss of intracellular fluid stimulates the 

hypothalamic osmoreceptor response, initiating thirst and pituitary secretion of the antidiuretic 

hormone arginine vasopressin (AVP). Ultimately, increased oral fluid intake and augmented 



renal retention of water normalises extracellular osmolality and intracellular hydration 

[20,32,33]. The rapid osmotic redistribution of intracellular fluid to the extracellular 

compartment also means that, unless severe water deficits exist, intravascular volume will be 

relatively protected (i.e. fluid loss is primarily from within cell).  However, in isotonic 

dehydration the osmotic gradient between fluid compartments is absent. This results in a 

blunted AVP response to water loss and negligible redistribution of fluid into the extracellular 

space. As such, intravascular losses are substantially greater in isotonic dehydration than that 

seen in comparable levels of hypertonic dehydration [26,34].  Intravascular volume depletion 

(in excess of a 10% threshold) will be sensed by baroreceptors in the arterial tree stimulating 

the renin-angiotensin-aldosterone system, AVP release, thirst sensation and sympathetic 

outflow in order to restore fluid status and haemodynamic stability [18,26,35].  Accordingly, 

although the osmotic response is more sensitive, blood volume plays an additional pivotal role 

in the regulation of water balance (figure 2). It is noted that aetiological processes driving both 

hypertonic and isotonic dehydration can occur concurrently, complicating clinical assessment 

and treatment as well as definition [21,25,26]. 

In summary, haemorrhage, pathological polyuria, vomiting, diarrhoea, drug-induced 

diuresis, or poor oral fluid intake can all lead to a deficiency in body water – to ‘dehydration’. 

However, for the reasons explained above, the same volume of water deficit can produce 

different biochemical and haemodynamic effects [26]. Therefore, although much of the 

physiology of dehydration can be well described, the clinical presentation may be indistinct 

and as such demands broad, comprehensive assessment. Different approaches to diagnosis, 

prevention and treatment are needed for the different types of dehydration.   

 

3. ‘Dehydration’ and ‘hypovolaemia’ are terms that are commonly used interchangeably. 

This is incorrect. 

In 1941, Nadal et al elegantly described and demonstrated the importance of distinguishing 

two types of dehydration, depending on whether the water deficit involved a corresponding 

loss of salt or not [25]. As discussed in previous sections, hypertonic dehydration protects 

intravascular volume due to osmotic forces drawing fluid into the extracellular compartment, 

which is rarely associated with intravascular hypovolaemia and requires hypotonic fluid 

therapy for correction. Isotonic dehydration is characterised by extracellular and, therefore, 

intravascular volume loss, which requires volume resuscitation with salt-containing fluid. 

Although the conditions can co-exist (for example, in a person suffering secretory diarrhoea 

who also has a poor oral intake of fluids) they are separate pathophysiological processes 



requiring different treatments. Despite the passage of nearly eighty years since the paper of 

Nadal et al, the medical community continues to use the terms dehydration and hypovolaemia 

interchangeably. This group agrees with the sentiment expressed by Mange et al, that “proper 

use of the terms dehydration and volume depletion informs communication and should improve 

patient care” [23]. The term ‘hypovolaemia’ should be reserved to refer specifically to 

intravascular volume depletion, which may be a sequelae to dehydration (most commonly in 

isotonic dehydration) but is not synonymous with it. 

 

4. Dehydration is a term commonly used to suggest an absolute deficit in body water. This is 

over-simplistic and could lead to inappropriate intervention, and; 

5. Abnormalities in hydration status include relative and/or absolute abnormalities in total 

body water and serum/plasma osmolality. Raised osmolality usually, but not exclusively, 

indicates dehydration. 

Dehydration is commonly associated with hyperosmolality. However, as already discussed, 

there is a range of osmolar states that may occur with dehydration, dependant on the extent of 

associated salt loss [18,21,26]. Similarly, clinicians should be aware of the concept of a relative 

water deficit: for example, excess solute administration from intravenous saline infusions will 

increase the extracellular compartment osmolality and volume with subsequent contraction of 

intracellular water, thereby establishing a hypervolaemic hyperosmolar state with a relative 

intracellular dehydration [22].  The reader may find it helpful for interpretation of the wide-

ranging presentations of abnormal hydration to consider a matrix-like relationship between 

osmotic status and the volume of total body water. Figure 3 provides a graphical display of this 

relationship and incorporates treatment options for the varying abnormal physiological states.  

 

Objective markers of dehydration  

6. Direct measurement of serum/plasma osmolality is the gold standard for determining 

dehydration  

Plasma osmolality (pOsm) is the main homeostatic parameter against which humans regulate 

intracellular hydration [36]. When people drink too little fluid relative to their losses, their 

extracellular fluid volume drops while their electrolyte content remains constant. As a result, 

osmolality (the number of solute particles per kg of solvent) and osmolarity (number of solute 

particles per litre of solution) rise [18,26,37,38]. As osmolality must equalize through body 

fluids and because most osmotically active solutes cannot easily cross cell membranes, water 

moves from inside cells to join extracellular fluid until equilibration. Inadequate fluid intake 



thus raises the osmolality of all intracellular and extracellular body fluids. The main reduction 

is in the volume of intracellular fluid, but there will be a concomitant though much smaller 

reduction in extracellular fluid [39,40].  

In the absence of excessive electrolyte loss or gain, plasma osmolality (pOsm) can thus 

generally be used as an index of abnormal fluid status (dehydration or fluid overload). Direct 

laboratory measurement of plasma osmolality is performed using freezing point depression or 

vapour pressure depression osmometers (which rely on the thermodynamics of phase changes 

to determine percentage water content), with variance coefficients of 0.9% and 1.1% 

respectively [41]. These techniques require competent technicians and prompt testing of 

samples with minimal thermal disruption [42]. 

Among other proposed markers of hydration status, pOsm is unique in that it can be 

used to diagnose fluid deficit from a single value in an individual, with respect to a reference 

interval in the general population. In experiments on healthy volunteers, pOsm demonstrates a 

90% sensitivity and 100% specificity for detecting dehydration associated with a 2% fall in 

body mass [39]. Isotonic dehydration will not be reliably detected by changes in plasma 

osmolality. Instead, for people with a clinical history which may predispose to isotonic 

dehydration (e.g. prolonged diarrhoea, vomiting or acute blood loss), their intravascular 

volume status should be assessed as per statement 11, below. 

Although urine measures of osmolality (including specific gravity and colour) are non-

invasive and intuitive markers of hydration, inter-individual and intra-individual diurnal 

variation limit their use as instantaneous markers [39,43,44]. Further, urine and plasma 

osmolality correlate poorly, in part due to their differing urea concentrations. Urea contributes 

~1% to blood osmolality but as much as 40% to the osmolality of urine [26].  Assessment of 

urine specific gravity, colour and osmolality as markers of serum osmolality in 313 older 

British adults has shown all these urinary markers to have extremely poor diagnostic accuracy, 

possibly due to declining renal function with age – in older people they provide little better 

than a guess at hydration status [45]. 

Creatinine (derived from the metabolism of muscle creatine) is freely filtered and 

subject to proximal renal tubular secretion.  The ratio of the concentration of urea (or blood 

urea nitrogen, BUN) to that of creatinine (U:Cr or BUN:Cr) will rise when creatinine 

concentration is low in the context of a low skeletal muscle mass (e.g. in the elderly, cachectic 

and chronically malnourished and critically ill) [46–48]. Urea (the end-product of nitrogen-

containing amino-acid metabolism), meanwhile, is freely filtered at the glomerulus then both 

resorbed and secreted by renal tubules. U:Cr ratio will rise when urea concentration rises 



disproportionately to the rise in creatinine. This is the case in dehydration, when urea 

concentrations in the renal medulla (and thus plasma) rises in the face of continued free 

creatinine filtration [49]. A U:Cr > 80 (when both components are measured in mmol/L) – 

equivalent to blood urea nitrogen BUN:Cr >20 (when both are measured in mg/dL) – has thus 

been traditionally considered a marker of dehydration (or intravascular volume depletion) 

[50,51]. However, U:Cr is not specific to dehydration and may rise for other reasons:  urea, for 

instance, also rises in hypercatabolic states (sepsis, major surgery, starvation) [48], with the 

large ‘blood protein meal’ of an upper gastrointestinal bleed [52] and with high-dose 

glucocorticoid administration [53].  

The diagnostic utility of saliva osmolality is affected by oral artefacts such as recent 

fluid consumption and factors influencing saliva flow rate which include neural control and 

inherent inter-individual variability [54].  It is therefore of limited value in the assessment of 

hydration status. 

Physician assessment is often used as a standard for diagnosis of dehydration, but there 

is good evidence that it does not correlate with serum osmolality data. Of 102 medical 

admissions for “dehydration” in the US, only 17% had serum osmolality >295mOsm/kg, 

probably because clinicians are relying on unhelpful signs [55]. The authors are well aware of 

the received wisdom that a diagnosis of dehydration relies on clinical assessment of hydration 

status, but could not find good evidence for this within our comprehensive literature review.    

 

7. In the absence of readily available directly measured serum/plasma osmolality, we 

recommend, as a surrogate, that plasma osmolarity be calculated (pOsmc) as follows: 

pOsmc = 1.86 × ([Na+] + [K+]) + 1.15 × [glucose] + [urea] + 14      (all measured in mmol/L) 

The osmolarity of a liquid is a function of its water content and of the dissolved ions and gasses 

in the liquid. Thus, measuring molar concentrations of dissolved molecules will theoretically 

yield osmolarity. In reality, although many plasma osmolytes are routinely measured, some 

components, such as alcohols, mannitol, triglycerides or gamma-globulins are not. Despite this, 

several empirical formulae use the primary osmolytes (sodium, potassium, glucose and urea) 

to calculate plasma osmolarity. The correlation between such values and directly measured 

serum or plasma osmolality has been assessed in five cohorts of older European adults (595 

people) across a wide range of ages, health status (healthy, frail and hospitalised) and 

residential status (living either in the community or in residential care). Across these, the 

Khajuria and Krahn equation [56] best predicted measured pOsm of 39 different equations 

tested: 



pOsmc  = 1.86 × ([Na+] + [K+]) + 1.15 × [glucose] + [urea] + 14     (all in mmol/L) 

The equation is not perfect at predicting directly measured osmolality, however, because of the 

components of osmolality that are not included in the equation. If we aim to maximise 

sensitivity so that the fewest older adults with dehydration are missed, then a cut off of ≥295 

mmol/L (in calculated osmolality) provides a sensitivity of 85% and specificity of 59% for 

directly measured serum osmolality of >300mOsm/kg [57,58]. Other equations had lower 

diagnostic accuracy, so should not be used. This equation also appears to be useful in younger 

adults: a study involving 60 healthy volunteers (aged 19-46 years) assessed the validity of 36 

osmolarity equations in their ability to predict directly measured plasma osmolality. The 

Kajuria and Khan equation was deemed one of only five that performed consistently well, with 

a mean difference of only -1.4 mOsm between the calculated osmolarity and the directly 

measured osmolality [59].       

We therefore recommend that, when direct measurement is not readily available, 

plasma osmolality be calculated using the Khajuria-Krahn equation as a screening test for 

hypertonic dehydration. An elevated calculated osmolarity can be verified by direct 

measurement of osmolality. This measured osmolality, when interpreted in the clinical context 

of the patient and in conjunction with assessment of volume status can then be used to establish 

the diagnosis of dehydration and inform management. 

 

8. Measured Plasma osmolality >300 mOsm/kg classifies a person as hyperosmolar  

Using data from 16 controlled fluid balance studies in men and women (ages ranging from ~18 

to 88 years), mean pOsm in healthy euhydrated individuals was found to be 284 mOsm/kg 

(range 279 to 291 mOsm/kg), but higher in older adults [36]. Typical day-to-day (intra-

individual) biological variation (coefficient of variation) appears to be 1.3% [39]. Thus, pOsm 

values of 290 mOsm/kg have been considered indicative of an upper cut-off for euhydration in 

healthy adults (with other proposed cut-offs discussed below) [24,60]. However, it has been 

argued that such mean pOsm values in healthy young adults (~285 mOsm/kg) may have been 

a consequence of (trial-related) prescribed fluid consumption prior to blood sampling inducing 

a mildly diluted state [39].  Slightly higher group mean pOsm values (290-293 mOsm/kg) have 

been reported in some studies of healthy, apparently euhydrated, individuals [39,61,62]. The 

group mean pOsm is often ~5 mOsm/kg higher in euhydrated elderly individuals [63,64] and 

approximately 50% of free-living individuals between 20 and 90 years of age may have a 

plasma tonicity of >295 mmol/L[65] (tonicity is allied to calculated osmolarity but does not 

include assessment of urea). An associated coefficient for intra-individual variation of 0.8% 



suggests that pOsm remains tightly regulated in healthy individuals aged > 70 years, even if 

around a slightly higher set point [66]. 

  For every ~2% loss of body mass by sweating, pOsm increases by ~5 mOsm/kg [67]. 

However, there was a ~30% shared variance in the pOsm distribution across 61 individuals 

assessed when assumed to be euhydrated and again when intentionally dehydrated by 2-6% 

body mass. POsm values ≥295 mOsm/kg were observed in 13% of the euhydrated individuals, 

while pOsm values ≤295 mOsm/kg occurred in 16% of the dehydrated subjects [61]. This 

suggests that pOsm values of ~295 mOsm/kg should not be considered to indicate an atypical 

hyperosmolar state per se, but should prompt further clinical assessment to determine hydration 

status.  

  Using analytic and biological variation data from a young cohort (mean age 24 ± 4 

years), a pOsm value of 301 ± 5 mOsm/kg was diagnostic of dehydration at the 95% probability 

level [39]. This value was calculated by adding the reference change value to the euhydrated 

grand mean. Importantly, the reference change value is not affected by ageing[66] and may 

also have diagnostic relevance for older populations [39] although some caution is warranted 

given that the euhydrated grand mean may be slightly higher in this population. These 

empirical data showed good consistency with extant definitions for elevated pOsm, at least in 

the context of dehydration [18,57,65] and, taken together, suggest that a pOsm of >300 

mOsm/kg represents an appropriate threshold for diagnosing hypertonic dehydration.  

  

9. Plasma Osmolality ≤280 mOsm/kg classifies a person as hypo-osmolar 

There is, perhaps, less consensus regarding an appropriate pOsm for classifying an individual 

as hypo-osmolar.  Indeed, euhydration is sometimes only defined with reference to an upper 

pOsm limit [24,60]. Stated normative lower-limit reference values for pOsm typically range 

between 275 and 280 mOsm/kg [26,57,65] but the empirical evidence base for these values is 

often not clear. If it is assumed that any values more than 2 standard deviations from the group 

mean represent a pOsm approximating the lowest 2.5 percent of the population, then typical 

representative literature estimates for a healthy young population range between 273 and 283 

mOsm/kg [63,64,67,68]. These estimates are slightly higher (285 to 286 mOsm/Kg) when data 

from older populations are analysed in the same way [63,64,67]. Similarly, applying the 

approach of Cheuvront et al. [39] for defining their 95% percent probability upper-limit for 

pOsm yields an estimated 95% probability lower-limit for their data of 283±5 mOsm/kg. Taken 

together, these data suggest that a pOsm of ≤280 mOsm/kg represents an appropriate threshold 

for characterising a hypoosmolar state. 



 

10. Tracer dilution techniques represent the gold standard for total body water measurement. 

These do not have utility in everyday clinical practice 

Assessing hydration status through total body water (TBW) measurement in humans outside 

well controlled experimental settings is difficult. Currently, dilution techniques represent the 

gold standard methods to assess TBW: an inert substance (tracer) is administered orally or 

intravenously, and its concentration measured after an appropriate equilibration period. The 

tracer concentration may be determined in plasma or serum although some techniques employ 

expired gas analysis. Accuracy and reproducibility depend upon full equilibration having 

occurred across all body compartments [11].   Equilibration periods in humans are generally at 

least 3-4 hours, which explains in part the fact that there are no readily available, reliable 

methods that can be applied at the bedside to aid clinical assessment of true total body water 

status [69]. Commonly employed tracers include the naturally occurring stable isotopes 

deuterium oxide (D2O) and oxygen-18 (H2
18O) with radioisotopes such as tritiated water used 

less frequently. Although viewed as the gold standard, the smallest detectable change using 

these techniques is about 800ml which approximates to about 2% of TBW [69]. These 

tracer techniques do not allow for estimation of the volume of various body compartments and 

are unable to distinguish between intracellular and extracellular fluid.   

Such measures in isolation do not indicate the hydration status of an individual per se 

but provide a baseline measure for longitudinal measurements. Although newer technologies 

including bioimpedence and bioreactance are becoming more readily available, limitations to 

these techniques mean that their use may also better be used to track changes in TBW rather 

than for measurement of absolute hydration status [11,70]. 

 

11. We recommend the use of NICE 174 clinical signs to assess abnormalities in volume 

status 

The volume status of all patients should be assessed irrespective of their plasma osmolality. 

No one diagnostic test exists to accurately determine a patient’s intravascular volume status 

with respect to normovolaemia. We therefore recommend that the National Institute for Health 

and Care Excellence (NICE) guidelines on intravenous fluid therapy in adults in hospital be 

used in the initial assessment and resuscitation of any patients in the acute setting [71]. Thus, 

the following are indicators that a patient may need urgent fluid resuscitation: 

• systolic blood pressure is less than 100 mmHg 

• heart rate is more than 90 beats per minute 



• capillary refill time is more than 2 seconds or peripheries are cold to touch 

• respiratory rate is more than 20 breaths per minute 

• National Early Warning Score (NEWS) of 5 or more 

A passive leg raise test is effective in assessing if a patient is preload responsive. Having rested 

semi-recumbent, the patient’s upper body is lowered to horizontal, and their legs passively 

raised to 45°. If at 30-90 seconds there are signs of haemodynamic improvement, such as an 

increase in stroke volume or cardiac output, this indicates that volume replacement may be 

beneficial. Likewise, the patient may be intravascularly fluid overloaded if in response to the 

test they demonstrate increased breathlessness or other deterioration. The degree and 

invasiveness of haemodynamic assessment required will be guided by the clinical severity of 

the case. One systematic review has assessed the signs of acute blood loss in adults, and 

suggests that severe postural dizziness (preventing assessment of standing vital signs) or a 

postural pulse increment, as a patient moves from sitting to standing, of ≥30 beats/minute are 

the most useful signs of hypovolaemia due to significant blood loss [72]. Additionally, the 

patient’s history, full clinical examination, current medication, clinical monitoring and 

laboratory investigations should be used to determine the likely fluid and electrolyte balance. 

 

12. Outside of extremes, clinical signs and symptoms of dehydration in adults are subtle and 

may be unreliable. Clinical signs and symptoms should not be used in isolation for detecting 

abnormalities in hydration (volume or osmolality)        

A systematic review of potential signs and markers of hypertonic dehydration in older adults 

found none with adequate sensitivity and specificity [9]. Twenty-two of the included studies 

assessed 67 index tests (including skin turgor, capillary refill, mouth dryness, body 

temperature, thirst, urine concentration, confusion, and bioelectrical impedance) in adults aged 

at least 65 years old. Of all metrics assessed, only bioelectrical impedance, expressions of 

fatigue and observed reduced oral fluid intake correlated with dehydration to some degree in 

some studies – but often with low diagnostic accuracy.  Dehydration was defined as serum 

osmolality ≥295mOsm/kg, but sensitivity analyses using the cut-off of >300mOsm/kg did not 

appear to improve accuracy of any markers. No clinical signs were consistently diagnostically 

accurate in more than one study. The review concluded that individual tests should not be used 

in older adults as they lack diagnostic accuracy [9]. 

A further systematic review suggested that capillary refill time, neurological signs and 

skin, eye and mucous membrane signs have limited utility in diagnosing or assessing the 

severity of dehydration [72]. In keeping, tachycardia, low systolic blood pressure, dry mucous 



membrane, dry axilla, poor skin turgor, sunken eyes, saliva flow rate and long capillary refill 

time have been shown to be of poor diagnostic accuracy for the detection of dehydration [73]. 

Later individual studies in young adults also suggest lack of utility of urine specific gravity, 

body mass and bioelectrical impedance to diagnose hypertonic dehydration in one-time 

assessments [39,74]. 

 

Physiological impact of dehydration and patient outcome  

13. There is a high prevalence of dehydration amongst outpatients and inpatients which is 

not reliably detected 

We undertook a comprehensive, non-systematic literature review in keeping with methodology 

from recent similar consensus initiatives [75,76]. Searches were conducted using PubMed or 

the Healthcare Databases Advanced Search (HDAS) to seek out data relating to prevalence of 

dehydration (i) in care homes, (ii) amongst hospital patients on admission and (iii) during 

subsequent hospital stay. Searches were limited to studies involving adult humans and, where 

relevant, to those that specifically referred to admission data or investigations. Outside of those 

that involved clinical coding databases, the literature is dominated by small studies. Further, 

interpretation is complicated by the aforementioned issue that there is no consensus for 

defining dehydration and, as such, a wide range of diagnostic criteria have been used to report 

its prevalence. Many of the diagnostic methods have limitations (discussed in statements 6, 7, 

10 and 12). Population studies rely on accurate recognition of a dehydrated state, recognition 

of importance in causing hospital admission or impacting on outcome during such admission, 

and also on its subsequent coding on the administrative patient record. As a result, the 

prevalence of dehydration may have been substantially underreported. Serum U:Cr or BUN:Cr, 

osmolality or osmolarity represent empirical and widely accepted surrogate markers that are 

strongly associated with depletion of body water. When these biochemical markers are used to 

define dehydration, the prevalence dramatically rises.  However, such studies (examples are 

cited below) are few in number and sample sizes are small (n = 39 to 2591). Overall there is 

sufficient evidence to support expert consensus within the authorship group that the prevalence 

of dehydration within healthcare systems is sufficient to be of major concern. This opinion 

aligns with that of NHS England who recently published a guidance report on nutrition and 

hydration in which they identified that, although difficult to quantify, dehydration is a 

significant healthcare burden within both the community and acute care settings [77]. 

Similarly, a Commonwealth Fund report in 2000 described the prevalence of dehydration (and 

malnutrition) in US nursing homes as a ‘silent epidemic’ [78]. 



i.) Prevalence of Dehydration in Care Homes 

The elderly are particularly susceptible to dehydration due to age-related physiological and 

functional decline, including diminished thirst response and a decline in renal concentrating 

capacity; reduction in social drinking due to loss of friends and isolation; decisions to drink 

less due to concerns over access to toilets and issues around continence; multi-morbidity; and 

the side effects of polypharmacy [79,80]. Even amongst the community-dwelling elderly, the 

prevalence of dehydration (assessed using hypertonicity) has been shown to be as high 20-30% 

[37,65,81]. The majority of care home residents appear not to achieve the requisite minimum 

daily fluid intake to maintain adequate hydration, although assessment of fluid intake outside 

of specialist units is notoriously poor [82–87]. The problem of dehydration in long-term care 

facilities is thus well-recognised [87]. Studies that have used biochemical markers of 

dehydration report a wide range of dehydration prevalence in care homes which reflects not 

only the choice of surrogate marker but also the threshold level deemed indicative of 

dehydration. The recent Dehydration Recognition In our Elders (DRIE) cohort study reported 

that 20% of 188 residents from multiple UK institutions had a serum osmolality >300 

mOsm/Kg (and 48% a value ≥295mOsm/kg) [3]. Three further US care home studies reported 

0, 19 and 38% of residents had a serum osmolality >300mOsm/kg, with a further 8, 44 and 

30% respectively having a serum osmolality between 295 and 300mOsm/kg (this grey area is 

sometimes referred to as ‘impending dehydration’) [85,88,89].  

Other thresholds and measures provide even more varied assessments of dehydration 

prevalence.  A behavioural intervention study from the US, aimed at improving oral fluid intake 

in nursing home residents, found 88% of the intervention and 67% of the control group to be 

dehydrated (defined as BUN:Cr>20 and/or Osm >305mOsm/kg) based on baseline (pre-

intervention) serum biochemistry [90]. Mentes used a more demanding threshold to determine 

prevalence: over a 6 month observational period, 31% of 35 care home residents suffered a 

dehydration ‘event’ defined as either hospitalisation for dehydration, the administration of 

intravenous fluid in the nursing home or a serum BUN:Cr >25 [91]. Laboratory data from a 

Taiwanese cross-sectional study showed that amongst 111 care home residents 17.1% had a 

BUN:Cr>20, 5.4% had pOsm>300 and 2.7% had Na>145 [92].  

Other methods for assessing the prevalence of dehydration have been applied, including 

clinical symptoms/signs (46% of 121 residents [83]) bioelectrical impedence (47% of 51 

residents [93]) 24hr urine output (33% of 88 residents [94]) and unrinometer measurements of 

urine specific gravity (25% of 16 residents [95]). It is worth reiterating, however, that many 



clinical signs and assessments (including urine specific gravity and volume) are non-specific 

and with limited diagnostic, particularly in the elderly [9,55].  

Fries et al look at the data produced from over 2000 care home residents’ Minimum 

Data Set (MDS) assessments and reported a dehydration prevalence of 1-2% [96]. Similarly, 

analysis of the MDS of nearly 800,000 care home residents from three countries (Iceland, USA 

and Canada) suggested that 1%  were dehydrated (Iceland 1.2%, USA 1.4%, Canada 0.8%) 

[97]. The MDS is a standardized, multi-domain, clinical coding tool that is obligatory for all 

Medicare/Medicaid long-term care facilities, and is designed to ensure that the needs of 

individual residents are addressed and met. The lower rates of recorded dehydration, when 

compared to other studies, may be related to its use of clinical signs, inherent limitations of 

coding systems and the possibility of detection bias, particularly for quality indicators such as 

dehydration [98–100]. Despite the disparate reports of prevalence, there is a strong signal from 

studies that have used serum osmolality at sensible thresholds that dehydration remains a 

problem in care homes and this is a concern voiced by many [37,77,104,78–80,86,87,101–

103]. 

ii.) Prevalence of Dehydration on Admission to Hospital 

Several studies reported in this section (and the next) used ICD coding classification for 

diagnosis of dehydration. The studies, however, used a variety of codes to define a diagnosis 

of dehydration, the three principle ones being hyper-osmolality/natraemia (code 276.0), hypo-

osmolality/natraemia (276.1), and volume depletion (276.5) [105–111]. Although these clinical 

codes are not specific for dehydration and, as mentioned, coding systems have inherent 

limitations, the studies provide valuable indicators of dehydration prevalence. In the US, the 

admission rate (as per ICD coded primary admission diagnosis) has remained stable at ~130 

per 100,000 of the general population [110]. In 1991, dehydration was recorded as a primary 

or concomitant diagnosis in 6.7% (731,695) of Medicare hospital admissions [105]. 

Furthermore, 1.4% (146,960) of admissions had dehydration as the principal diagnosis, 

ranking it within the top ten most frequently diagnosed primary conditions and necessitating 

$446 million of Medicare reimbursement costs [105]. Of 27,000 admission records at a single 

hospital over a 6 year period, 0.55% had a primary diagnostic ICD code associated with 

dehydration [107].  

Admission data for elderly patients reflect their known increased risk of dehydration. 

Two observational studies of patients aged >65 years who presented to large urban hospitals 

reported that  37% (UK study, 200 patients) [1] and 46% (Slovenian study, 410 patients) [112] 

had an admission pOsm > 300 mOsm/Kg.  Studies that have used methodology less reliable 



than pOsm have reported variable results: two studies using BUN:Cr reported 62% [112] and 

48% [113] dehydration on admission; a UK study found that only 1.3% of 21,000 admissions 

aged >65 years had hypernatraemia (defined as Na>145mmol/L [101]; and reviews of 

admission records have reported that 29% [114] and 12% [115] of elderly patient cohorts had 

documentation of dehydration diagnosis. Stroke patients also appear to have a particularly high 

prevalence of dehydration on admission: Rowat et al reviewed blood results on the day of 

admission for over 2500 stroke patients and found that 36% were dehydrated (determined by a 

U:C>80) [116] and a similar prevalence (43%) was found amongst 324 ischaemic stroke 

patients admitted to a US institution [117]. 

Dehydration has been repeatedly demonstrated to be a major culprit for avoidable 

hospital admissions both in the US[2,109–111] and in Europe [118]. Xiao et al estimated that 

avoidable hospitalizations with dehydration inflicted an economic burden on the US that 

amounted to over $1.14 billion for the year of 1999 [109]. In 2004, Kim analysed the National 

Hospital Discharge Survey and found that approximately 518,000 admissions in the US for 

that year were primarily due to dehydration [2]. Furthermore, the total healthcare costs 

attributed to those admissions was $5.5 billion.  

iii.) Prevalence of Dehydration During Hospital Admission 

We specifically sought evidence for prevalence on dehydration that developed during 

hospitalisation. Data were sparse, as we only reviewed those studies in which patients were 

determined to have been normally hydrated on admission, but who later developed dehydration 

whilst an inpatient. We do note, however, that the absence of a code for dehydration on 

admission does not mean that such dehydration was not present. The previously mentioned 

HOOP study identified elderly patients admitted to hospital with hyperosmolar states 

consistent with dehydration. They reported that two-thirds of those patients that were 

dehydrated on admission, remained so 48 hours later [1]. In 1991, a retrospective study 

reviewed 160 adult cases of in-hospital hypernatraemia (>150 mmol/L) that occurred within a 

Welsh health district in a single year and found that 60% were of new onset, occurring whilst 

an inpatient. Whilst the administration of saline solutions may have contributed to this, 

dehydration was assigned as the aetiology to most of these cases [119]. Likewise, a study in 

the US reported that within a cohort of hypernatraemic hospitalised patients, 83% developed 

the condition post-admission. Furthermore, it was found that the majority of these hospital-

acquired hypernatraemic cases were iatrogenic, arising from inadequate prescription of water 

[120]. Rowat et al reviewed sequential blood results (U:Cr ratios) for 2591 stroke patients and 

found that 26% were not dehydrated on admission but developed dehydration at some stage 



during their hospital stay [116]. Pash et al reviewed all adult discharges, for a single year, on a 

clinical coding database used by over 600 US hospitals. Having excluded those patients known 

to be dehydrated on admission, they found that 2.1% of the remaining 4.2 million patients were 

diagnosed with dehydration post-admission [106]. Wakefield et al examined medical records 

for a US hospital over a 4 year period. From over 15,000 admissions, 3.5% had a post-

admission diagnosis of one of the conditions with ICD codes associated with dehydration 

[108]. These data highlight the clinical challenges of effectively meeting water requirements 

in hospital. 

 

14. Dehydration in hospitalised patients and care home residents is associated with poorer 

outcomes; and 

15. Limited evidence suggests that the relationship between dehydration and poor outcome 

is causal 

We performed a comprehensive search, again using PubMed or HDAS, to identify literature 

relevant to the relationship between hydration status and an array of clinical outcomes as 

specified below. Searches were limited to adult human studies.    

i.) Mortality 

There are no high quality randomised controlled trials in older adults that have increased fluid 

intake in one arm and not in the other, and assessed effects on mortality [104,121]. In the 

absence of trial data we must rely on the highest quality observational data available. In the US 

Medicare clinical coding database relating to more than 10 million hospitalizations of elderly 

patients (aged 65-99 years) during 1991, almost half of those hospitalized with a principal 

diagnosis of dehydration died within a year of admission, and 17.4% died within 30 days [105]. 

For every principal diagnosis (respiratory illness, urinary system infections, cardiac conditions, 

frailty, diabetes, other metabolic disorders, gastroenteritis, other gastrointestinal conditions, 

cancer & sepsis) hospital admissions with a concomitant diagnosis of dehydration were 

associated with a significantly higher mortality within 30 days and up to one year, apart from 

deaths within 30 days of hospitalization for gastroenteritis [105]. In the Hydration and Outcome 

in Older Patients (HOOP) prospective cohort study of 200 adults aged ≥65 years admitted as 

emergencies to a large UK teaching hospital, 7% of participants died in hospital. Hyperosmolar 

dehydration, defined as serum osmolality >300 mOsmol/kg at admission, was associated with 

a fourfold increase in 30 day mortality (16% vs 4%) [1].  Might a diagnosis of dehydration 

simply be a proxy for frailty in the elderly? The relationship between dehydration and mortality 

remained in the HOOP data after adjustment for important confounders.  Other studies with a 



similarly robust methodology (though still observational in nature) all suggest increased 

mortality in those who are dehydrated at baseline. These include a general elderly US 

population, UK stroke patients and US older people with diabetes [122–124].  

ii.) Process measures   

There is limited evidence that dehydration on admission is associated with increased length of 

stay, readmission and economic burden in hospitalised elderly patients [106,125]. Patients who 

experienced post admission water deficit (defined by ICD coding, as described above) incurred 

total costs greater than 50% higher and an increased length of hospital stay (12.9  v 8.2 days) 

when compared to propensity-matched hydrated patients [106].  

iii.) Acute kidney injury  

Acute kidney injury (AKI) has a mortality rate of 10-12% and dehydration is a significant risk 

factor in its development [126]. In a 4000 patient, multi-national, cross-sectional study, 

dehydration was the most common cause of community acquired AKI (46% of cases) in low 

and low-middle income countries and the second most common cause in high income countries 

(accounting for 38% of cases, second to hypotension at 40%) [126]. Causes of dehydration in 

the community include: advanced age; comorbidities; polypharmacy; limited access to 

drinking water; and excessively hot weather [81,126,127].  In the UK, hypertension and 

diabetes mellitus are the comorbidities most commonly associated with renal impairment 

[128]. In both conditions, dehydration can be superimposed, either as a result of the disease 

process itself or pharmacological treatment (diuretics). In hospitalised patients, markers of 

body water depletion such as raised plasma osmolality, BUN:Cr or U:Cr are associated with 

increased risk and severity of acute kidney injury [129,130]. Dehydration is an independent 

risk factor for secondary renal insults such as drug induced kidney injury [131].  AKI is 

common in the perioperative setting, seen following orthopaedic, coronary artery bypass 

grafting, vascular, colorectal and hepatic surgery [8,132–134]. Whilst pathophysiology is 

multifactorial, relating for example to intraoperative blood loss, fluid shifts, patient 

comorbidities and post-operative infection, perioperative dehydration is a significant 

contributory factor [135]. Maintenance of adequate hydration has a positive impact on 

outcomes in surgical patients vulnerable to AKI [126]. The RELIEF trial, the largest clinical 

effectiveness trial of perioperative fluid therapy to date (n = 3000), demonstrated a significantly 

higher incidence of AKI (8.6 vs 5.0 %) at 30 days in patients randomised to receive relative 

fluid restriction in the perioperative period, compared to those receiving a modestly liberal 

regimen [136]. It is also worth noting that a higher U:Cr ratio is associated with reduced 

survival in chronic dialysis patients [137,138]. 



iv.) Thrombosis and thromboembolic disease 

Dehydration increases blood viscosity and haematocrit and is thus a risk factor for intravenous 

and arterial thrombosis. The presence of dehydration at the time of admission following 

ischaemic stroke is associated with increased incidence of severe disability or death 

[122,139,140]. The development or progression of dehydration during hospitalisation for 

ischaemic stroke is associated with increased risk of stroke evolution [141,142], risk of 

secondary infection [143], increased length of stay [143], more severe hemi-spatial neglect 

[144] and increased cost [145]. Evidence from a few small interventional trials in this setting 

suggest that post-admission rehydration regimens aimed at the reduction of BUN:Cr ratios may 

reduce stroke evolution [141], improve collateral cerebral perfusion [146] and reduce length of 

stay [143]. Such rehydration regimes do not have a similar impact in haemorrhagic stroke, 

which suggests that benefits might relate to improved reperfusion following ischaemic insult 

due to restoration of plasma volume and reduced plasma viscosity. There is some observational 

evidence to suggest an association between dehydration and the development of 

venous thromboembolism in a minority of patients after acute ischaemic stroke, but this has 

not been extensively studied [147,148]. There is a seasonal (monthly) variation in the incidence 

of venous thromboembolism (VTE): a retrospective single-centre analysis including almost 

1500 consecutive patients noted that average blood urea nitrogen (BUN)-creatinine ratio was 

significantly higher in peak incidence months compared to the lowest incidence months, 

suggesting a potential mechanistic link between dehydration and VTE [6].  

Following established acute coronary syndrome (ACS), patients with hyperosmolarity 

experience longer length of stay, increased risk of secondary renal injury and cerebral 

ischaemic events and increased cardiovascular mortality [149,150]. Even mild dehydration 

may contribute to sudden cardiac death following ACS [151]. ACS demonstrates a circadian 

oscillation, most typically occurring between the hours of 06:00 and midday [4,152].  A 

biologically plausible mechanism is that individuals are relatively dehydrated in the mornings 

following an overnight fast, creating prothrombotic conditions that contribute to infarct 

development [153]. However no interventional studies have been published which address 

whether rehydration following ACS has an effect on outcome. 

v.) Delirium  

A number of studies have associated dehydration with the development, duration and severity 

of delirium. Dehydration is known to impair mental performance in otherwise healthy 

individuals [154] so it is perhaps unsurprising that a BUN:Cr ratio of >18 has been shown to 

be an independent predictor for development of delirium [155] and that dehydration is found 



in 66% of patients with delirium [156]. Dehydration is an independent predictor of inpatient 

mortality following a diagnosis of delirium [157]. The mechanism by which dehydration 

effects cognitive function is not entirely understood, but cerebral hypoperfusion and hormonal 

changes may be contributing factors [154,158]. Dehydration and delirium are synergistic, with 

many factors, such as advanced age and reduced mobility common to both; it is difficult to 

differentiate how much hydration status contributes to confusion (and vice versa).  Limited 

observational and interventional data suggest a benefit for timely correction of dehydration in 

this setting [157]. Failure to correct dehydration prolongs the duration of delirium [159], 

although elderly hospital inpatients at risk of falls were no more likely to have serum markers 

of dehydration than matched ‘non-faller’ controls [160]. Conversely, rehydration therapy in 

delirious individuals reduces the need for physicochemical restraint and reduces length of stay 

[156]. 

vi.) Heart Failure  

Elevation of blood urea nitrogen, potentially indicative of dehydration, is predictive of 

mortality in decompensated and chronic heart failure [161,162]. A study involving 263 

hospitals across the US, and including over 65,000 patients, found that the single best predictor 

for mortality in patients admitted with decompensated heart failure was admission BUN 

(superior to low systolic blood pressure) [161]. That said, heart failure can drive U:Cr ratio up 

in the absence of dehydration, and renal failure can also complicate heart failure and thus raise 

circulating urea concentrations. 

vii.) Critical illness 

In a retrospective study of 4176 critically ill adult patients with a heterogeneous range of 

medical conditions admitted to a German ICU, high BUN concentration at ICU admission 

(defined as BUN >28 mg/dL, equivalent to urea >10mmol/L) was robustly predictive of 

adverse outcome, even after adjustment for confounders including renal failure [163]. This 

association is corroborated in an observational study of over 26,000 patients  across 20 Boston 

intensive care units [48]. 

viii.) Association between markers of dehydration and clinical endpoints in selected 

conditions   

There is limited evidence that dehydration is a contributory factor for nephrolithiasis and 

constipation [164,165]. Elevated BUN is independently associated with mortality in 

community acquired pneumonia and in acute pancreatitis [166–168]. Prophylactic liberal 

intravenous hydration also appears to limit pancreatitis following endoscopic retrograde 



cholangiopancreatography [169]. It is unclear whether systemic hydration status has an effect 

on wound healing or on the incidence or severity of urinary tract infection [170,171]. 

Almost all of the literature on the impact of dehydration in the above-mentioned 

settings is retrospective and causality cannot be inferred. Limited interventional work suggests 

that rehydration improves outcomes (e.g. in stroke [141] and delirium [156]). There are no 

published randomised controlled trials of restrictive or liberal hydration regimes following 

events such as stroke or myocardial infarction.  No firm conclusions can currently be drawn 

regarding the impact dehydration has in these conditions. On a cautionary note, there is 

evidence that excess intravenous administration of water and/or salt is harmful in sepsis [172–

174], critical care [175–177], paediatric surgical admissions [178] and perioperatively [179–

182]. Interpretation of study results is difficult since fluid therapy is a complex intervention, 

involving consideration of fluid & electrolyte balance, fluid volume and composition, applied 

in an array of different clinical settings [183,184].  

 

Discussion 

Dehydration is prevalent within the healthcare setting and in the community, and appears to be 

associated with increased morbidity and mortality. As such, dehydration represents a major 

challenge to clinicians and poses a significant risk to public health.  It has a complex, varying 

pathophysiology that can lead to non-specific clinical presentations making assessment 

difficult. The lack of international consensus on definition and diagnosis further complicates 

the issue. Plasma osmolality, however, represents a valuable, objective surrogate marker of 

hypertonic dehydration which is underutilised in clinical practice. Furthermore, calculated 

osmolarity (using the Khajuria-Krahn formula) can be used as an effective screening tool for 

those at risk and we recommend its incorporation into routine care. Isotonic dehydration is 

particularly prone to intravascular hypovolaemia, which requires management that is distinct 

from hypertonic dehydration. The NICE clinical guideline 174 includes recommendations for 

assessment and management of intravascular hypovolaemia and its use is supported by the 

authors.  

This manuscript highlights a number of other issues which are relevant to clinical 

practice. First, there is likely to be a high prevalence of unidentified dehydration in community 

based populations which only becomes apparent once a crisis point is reached and hospital 

admission is required. We should stress, however, that it is the elderly and comorbid who are 

at risk and that most healthy people drink adequately socially and in response to thirst; the push 

of drinking in excess of this has no credible scientific basis. Second, even in hospital, 



dehydration is under-recognised, under-treated, and poorly prevented. Third, whilst evidence 

is limited, dehydration appears to have a detrimental association with clinical endpoints across 

a range of medical conditions. Further research is required to improve assessment, diagnosis 

and management of dehydration and the authors have made recommendations to focus these 

academic endeavours. Interventional trials are required to assess the impact on clinical 

outcomes of regimens which aim to limit or treat dehydration.  
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Table 1 
 

Subject area Consensus statements 

produced within subject area 

 

Dehydration: description and definition 

 

statements 1 to 5 

Objective markers of dehydration 

 

statements 6 to 12 

Physiological impact of dehydration and patient outcome 

 

statements 13 to 15 

 

 

 

 

 

Table 2 
 

Research Recommendations 

1.  A largescale ‘landscaping’ study that looks at the prevalence of abnormal hydration, as 

measured by biochemical measures. Further, the relationship between these surrogate measures 

of dehydration, their changes during admission and the relationship with coded clinical 

outcomes (e.g. mortality, ICU admission, hospital length of stay, specific conditions) should 

be sought. 

2. A study looking at the relationship between markers of abnormal hydration (e.g. pOsm) with 

markers of tissue perfusion (e.g. subcutaneous oxygen tension, microvascular flow) and 

circulating volume (e.g. direct co-extensive plethysmography). 

3. A prospective, interventional study that targets parameters of normal hydration (e.g. plasma 

osmolarities 280-300mOsm/kg) and determines whether this translates to health and health 

economics co-benefits. 

4. The causality of the association between pOsm thresholds and adverse outcomes needs to be 

tested through interventional studies.  

5. Further work looking at the correlation of TBW (and/or pOsm) with bioresistance readings and 

its use in various patient populations. 

6. The development of a suitable device for the routine, bedside measurement of plasma 

osmolality. 

7. The development of quantitative measures of volume status, including the validation of 

peripheral venous waveform analysis and biomarkers in hypovolaemic humans. 

 

 

 

 

 

Table 2. Dehydration research recommendations generated from all the working groups  

 

 

Table 1. Distribution of the fifteen consensus statements across the three subject areas  

 

 



 

 

Figures 

 

 
 

 

Figure 1. Schematic representation of the body fluid compartments in humans and their 

relative sizes. The approximate absolute volumes of the compartments (in litres) are based on 

a 70kg adult. TBW = total body water; ICF = intracellular fluid; ECF = extracellular fluid; ISF 

= interstitial fluid; IVF = intravascular fluid  

 

 

 

 

 

 

 

 



 
 

 

 

Figure 2. The homeostatic responses of the two major forms of dehydration: hypertonic 

(primarily osmotic-dependent response) and isotonic (primarily volume-dependent response). 

The osmotic response is more sensitive and acts as the principal determinant of water balance. 

Note that both responses can co-exist. TBW = total body water; pOsm = plasma osmolality; 

SNS = sympathetic nervous system; RAAS = renin-angiotensin-aldosterone system; AVP = 

arginine vasopressin 

 

 

 

 



 

 

 

 
 

 

 

 

Figure 3. The relationship between osmotic state and total body water (TBW). It is possible 

for patients to exist in any one of the nine panels. The graded colouration reflects severity of 

condition. Possible treatment options for different parts of each panel are written in italics, with 

the arrows representing intended effects of intervention to normalise physiology. IV = 

intravenous. (Image reproduced with permission from the Perioperative Quality Initiative, 

POQI) 
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