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Abstract 

Introduction:  

The pathophysiology of cardiomyopathy (CMP) is not fully understood in 

children. In this project, I analysed blood and imaging biomarkers to ascertain 

the importance of various processes in this condition. Remodelling, fibrosis, 

inflammation and vaso-reactivity were examined using circulating biomarkers. 

Diffuse fibrosis was quantified using T1 mapping and the calculation of 

extracellular volume (ECV) on magnetic resonance imaging (MRI).  

Methods: 

76 children with CMP and a history of impaired left ventricular (LV) function 

underwent clinical assessment, 34 had blood biomarkers and 30 had cardiac 

MRI scans. 88 control subjects (7 adults) had an MRI performed and 25 had 

novel blood biomarkers measured.  

The biomarker panel consisted of: N-terminal pro-brain-natriuretic peptide 

(NT-proBNP), mid-regional atrial natriuretic peptide (MR-proANP), mid-

regional adrenomedullin (MR-proADM), c-terminal endothelin-1 (CT-proET1), 

soluble suppression of tumorgenicity-2 ligand (sST2), growth differentiation 

factor-15 (GDF-15), high-sensitivity troponin I (hsTnI) and high-sensitivity C-

reactive protein (hsCRP).  

29 patients with CMP had T1native (T1 time pre-contrast, ms) and 26 had ECV 

(%) measured. 14 control subjects had T1native and ECV measured (7 adults 
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and 7 children). Circulating levels of blood biomarkers were measured in the 

7 children.  

Results: 

NT-proBNP, MR-proANP, GDF-15, hsCRP and sST2 were significantly higher 

in patients with CMP versus control subjects (paediatric).  

Both T1native and ECV were significantly higher in patients with CMP and those 

with DCM versus control subjects (adult controls). Septal regions of the 

myocardium had significantly higher levels of T1native in patients compared to 

control subjects.  

Discussion: 

Blood biomarkers implicating fibrosis, inflammation, endothelial activation and 

apoptosis are elevated in paediatric heart failure, particularly idiopathic dilated 

cardiomyopathy (DCM) compared to control subjects. 

T1native and ECV values are higher in patients with CMP and DCM than control 

subjects. Septal values are especially high.    
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We addressed and overcame many difficulties in the recruitment and scanning 

of children with and without CMP. During the course of the project, cardiac 

magnetic resonance (CMR) scanning, became faster and more widely used. 
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Introduction 

Currently, prognosis in paediatric CMP is problematic. The possible outcomes 

for a newly diagnosed patient include death, transplantation, full/partial 

recovery or chronic functional impairment. In those with a dilated phenotype, 

some features of the patient and their presentation are known to be prognostic, 

for example, prognosis is worse if presentation is after 1 year of age, with a 

lower fractional shortening (FS) Z-score, or if the aetiology is unknown1. 

However, although these features are helpful markers on a population level, 

the long-term outcome for a particular patient is still difficult to predict.  

The current blood biomarker most commonly used in paediatric CMP is brain 

natriuretic peptide (BNP), but despite its widespread use, it has its limitations. 

Additionally, the process of heart failure (HF) is known to encompass many 

different pathological processes including inflammatory and neurohormonal 

pathways, which BNP is unaffected by2. BNP is released in response to 

ventricular stretch and does not increase in response to other stimuli known to 

be involved in the pathophysiology of heart failure, such as inflammation. We 

have identified a panel of biomarkers involved in novel pathophysiological 

pathways in heart failure to better understand the process, as well as to 

attempt to identify better prognostic tools in this disease. 

Remodelling is central to this project. Although remodelling is an attempt to 

heal the damaged myocardium, the inability of the heart to regenerate 

myocytes results in replacement fibrosis and an energetically inefficient 

structure of the cellular architecture. Additionally, pressure and volume loading 
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following the initial insult lead to a diffuse, interstitial fibrosis, which is difficult 

to quantify due to the risks and inaccuracy of endomyocardial biopsies. This 

pattern of fibrosis has been well described in post-mortem studies3. A novel 

imaging technique (T1 mapping) seeks to measure the extracellular 

component of the myocardium and therefore quantify interstitial fibrosis. This 

study is the first to apply this technique to a paediatric population including 

control subjects. The process of reverse remodelling (functional improvement) 

as well as deterioration (adverse remodelling) will be investigated in terms of 

prognostic factors and markers.  

The overall aim of this Thesis is to investigate novel circulating and imaging 

biomarkers in paediatric CMP. These can then be considered in terms of 

diagnostic or prognostic benefit. Understanding the role of these biomarkers 

in the disease process could uncover therapeutic targets and allow us to 

understand the reasons for deterioration more fully in our patients.  
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Hypotheses 

 

This study aimed to investigate circulating and imaging biomarkers in children 

with heart muscle disease. 

The hypothesis of the study was that there were different levels of circulating 

and imaging biomarkers between children with CMP and control subjects. The 

hope is that as more information is gathered, these biomarkers may be used 

to help determine disease processes, functional status and even prognosis. 

We hypothesised that novel circulating biomarkers are not only significantly 

higher in children patients with CMP than control subjects, but they also 

correlate with LV function (ejection fraction), vary with aetiology and reflect 

remodelling processes. 

A further hypothesis was that patients with CMP of all aetiologies have 

significantly higher levels of T1native and ECV than control subjects, MRI 

assessment of fibrosis will correlate with both severity of disease (ejection 

fraction), functional class and will vary with aetiology. 

We also hypothesised that those blood biomarkers that reflect fibrosis and 

remodelling will correlate with the MRI assessments of fibrosis/remodelling. 
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Aims and Objectives 

 To characterise paediatric cardiomyopathy in terms of cellular 

processes and pathophysiology using circulating and imaging 

biomarkers; 

 To test the diagnostic utility of circulating and imaging biomarkers; and  

 To discover the normal values for circulating and imaging biomarkers 

(in children) 
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Thesis Outline 

This thesis consists of an overview of CMP in children alongside various 

experiments to develop an understanding of the disease. Specifically: 

Chapter 1 is an introduction to CMP including incidence, aetiology and 

prognosis.  

Chapter 2 details the methods used in the project, including biomarker 

measurement and T1 mapping techniques 

Chapter 3 describes the results of the study measuring biomarkers in children 

with CMP and healthy controls subjects  

Chapter 4 T1 mapping is used to quantify diffuse fibrosis in paediatric patients 

with CMP and adult controls.  

Chapter 5 Discussion of both studies including limitations and future directions
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1.1 Dilated Cardiomyopathy 

This section will detail the current state of knowledge on paediatric dilated 

cardiomyopathy (DCM). This is because although patients included in this 

study had various aetiologies, their common feature was a dilated phenotype. 

DCM is a rare disorder of the heart muscle with a number of known causes 

including genetic, metabolic, infective, inflammatory, toxic and endocrine. The 

common end-point of these insults is a dilated and poorly functioning left 

ventricle. DCM remains the commonest cause of CMP and heart 

transplantation in children with a peak incidence in the first year of life. Only 

around 30-40% of children have a known aetiology, with the remainder termed 

‘idiopathic’. 

1.1.1 Incidence  

DCM is the commonest cause of heart muscle disease and transplantation in 

children. The incidence is between 0.34-0.73 per 100 000 per year1, 4; with 

differences, attributable to inclusion/exclusion criteria of studies and regional 

variations. It is more common in boys and in non-white populations1. The sex 

difference is probably due to X-linked conditions such as DMD and Becker 

muscular dystrophy (BMD), which are known causes of this condition. The 

median age of onset in a multi-centre UK study of children was 1 year4. 

Prognosis was worse if onset occurs after the age of 1, in boys and if the cause 

1 Introduction 
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is unknown. The aetiology is known in only 30-40% of cases and, where an 

infective cause has been identified, the prognosis is better.  

At the macroscopic level, DCM results in a heart with dilated ventricles, but 

the overall myocardial mass may be increased5. As myocytes are terminally 

differentiated, the myocardium can only respond by replacing dead cells with 

fibrosis. This leads to a decrease in the ability of the myocardium to generate 

sufficient contractile force, thus increasing ventricular volume. The globular 

ventricle has unfavourable haemodynamics due to increased end-diastolic 

volume as described by the Frank-Starling law6. This leads to a decreased 

ejection fraction (EF) and causes a cycle of progressive dilatation. Mitral and 

tricuspid regurgitation may then ensue, further compounding the problem.  

1.1.2 Aetiology 

1.1.2.1 Infective 

The commonest cause of DCM in developed countries is a viral infection, 

specifically enteroviruses of the Coxsackie B serotypes7. Worldwide, 

aetiologies differ from region to region, with Chagas disease the most 

prevalent8.  

Most children with mild left ventricular (LV) dysfunction recover fully. Of those 

with more severe dysfunction (left ventricular ejection fraction, LVEF <35%), 

25% progress to death or transplantation, 50% develop chronic DCM and the 

rest recover fully9. Presentation varies from asymptomatic ECG changes to 
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cardiogenic shock and fulminant myocarditis. A prodrome of fever, coryza or 

gastroenteritis is not always present.  

The cardiac damage occurs via three pathways: initially there is direct invasion 

by cardiotropic viruses via specific receptor-mediated endocytosis. This leads 

to immunological activation followed by CD4+ activation and clonal 

proliferation of B-cells. Eventually, circulating anti-heart antibodies are 

produced, resulting in infection-triggered autoimmune cardiac damage. The 

coxsackie protease cleaves dystrophin and disrupts the cytoskeletal integrity 

of the cardiac myocyte10. These processes interact and cause cell damage 

throughout the myocardium. 

Immunotherapy would seem a sensible treatment given the secondary 

damage done by the immune response itself. However, prednisolone11 and 

intravenous immunoglobulin12 have not been found to improve outcome 

compared to placebo in randomised, double-blind clinical trials.  

1.1.2.2 Toxicity 

It has long been known that anthracycline antibiotics can cause CMP. The 

effects can be acute or chronic in onset. Subclinical cardiac dysfunction occurs 

in all patients, with 2-5% progressing to acute heart failure13. Pathogenesis 

involves increased fibrosis and cell death.  

The risk of developing heart failure is dependent on cumulative dose of the 

drug- 350mg/m2 in infants, 450mg/m2 in children and 550mg/m2 in adults. 
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There is some evidence that dexrazoxane, an intracellular iron chelator and 

free iron scavenger reduces anthracycline-related CMP14.  

1.1.2.3 Hereditary 

DCM is usually transmitted as an autosomal dominant trait (25%) with lower 

frequencies of autosomal recessive, X-linked and mitochondrial transmission. 

The mutations that cause DCM, although resulting in a similar phenotype, 

affect a wide range of genes with diverse functions.  

Two major forms of autosomal dominant DCM have been identified: isolated, 

and that associated with disease of the conduction system. The underlying 

gene mutations can include disruption of the myocyte architecture, including 

mutations in cardiac Lim protein (CLP)15, cypher/ZASP (LBD3)16, -

sarcoglycan (SGCD)17, desmoplakin (DSP)18, desmin (DES)19, dystrophin 

(DMD)20, telethonin (TCAP) and vinculin (VCL)21.  

Mutations of the many proteins in the dystrophin-associated complex that 

cause skeletal muscular dystrophies frequently also cause DCM. Some 

patients present with a cardiac-only phenotype. Mutations in the desmin gene 

may cause DCM in more complex ways, resulting in the formation of electron-

dense bodies. Mutations in Lamin A/C also cause disruption of the myocyte 

cytoskeleton22. This protein, present in all somatic cells, is integral to the 

process of mitosis (the relevance in terminally differentiated myocytes is 

unclear).  



 21 

Sarcomeric mutations can cause DCM or hypertrophic cardiomyopathy 

(HCM)23. The affected genes include cardiac actin (ACTC), titin (TTN), 

tropomyosin (TPM1) and myosin heavy chain (MYH7). Some mutations in 

Troponin T (TNNT2) appear to affect the sarcomeric response to calcium24. 

Mitochondrial syndromes may affect the myocyte’s ability to regulate calcium 

uptake, with KATP channel mutations predicted to cause cellular calcium 

overload.  

1.1.2.4 Myopathy 

A noteworthy subset of hereditary CMP includes the X-linked muscular 

dystrophies including DMD and BMD, which together account for 5% of familial 

DCM. These result from mutations in the dystrophin gene and cause skeletal 

muscle weakness and progressive CMP. Symptoms of skeletal muscle 

weakness start in childhood, with most affected patients becoming non-

ambulatory by the second decade of life. The CMP occurs as a result of fibro-

fatty replacement of the myocardium by the third decade in almost all boys. 

With increased survival, due to supported ventilation and steroid use, cardiac 

disease is becoming the main cause of death25.  

The cardiac disease develops as DCM with a thinning LV wall, cardiac fibrosis 

and decreased systolic function. The onset of cardiac disease may be masked 

by decreased physical activity, so regular echocardiograms for asymptomatic 

children are important. Steroid treatment decreases the risk of developing HF 

by 4% per year of treatment25. Also, steroids delay the onset of CMP from 15.2 

years in the untreated population to 13.2 years in the treated population25.  
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ACE inhibitors (ACEi) have been used in this group and have been found to 

be useful in slowing the decline in EF over time26. Studies have been done to 

compare angiotensin receptor inhibitors to ACEi27 and combination therapy 

with beta-blockers28 to monotherapy. Neither has shown any difference. BMD 

has a more benign course, with less skeletal muscle weakness and a better 

long-term prognosis. Cardiac transplantation can be considered to prolong life 

in this subset of patients. 

X-linked CMP involves the cardiac muscle only and can be cured by heart 

transplantation. Female carriers of the DMD gene mutation may develop DCM 

later in life (fifth decade). Lamin A/C gene mutations, result in atrial arrhythmia 

and progressive AV disease, which often precede DCM. Some mutations 

result in juvenile-onset muscular dystrophies including Emery-Dreifuss 

muscular dystrophy (EDMD) and familial partial lipodystrophy with insulin-

resistant diabetes29.  

1.1.2.4.1 Magnetic Resonance Imaging findings in Dilated Cardiomyopathy 

Associated with Myopathy 

Late Gadolinium enhancement (LGE) is a technique using MRI to distinguish 

areas of normal myocardium from focal fibrosis (see section 1.6). Given the 

mechanism of disease in DMD, this is unsurprising. Silva et al. found LGE in 

7/10 boys with DMD aged 7-18 years. There was also a correlation between 

reduced LVEF and the presence of LGE30. It has also been shown that those 

with LGE positive segments have a greater decline in EF over time31. The 

location of fibrosis and hypokinesia in patients with DMD appears to follow a 
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similar pattern in most patients, starting in the postero-basal region and 

spreading to the inferior and lateral free wall of the LV32.  

T1 mapping is a new technique which allows quantification of diffuse fibrosis 

(see section 1.7). This may help to identify patients earlier in the disease 

process, allowing for earlier and more aggressive treatment of disease. 

Indeed, Soslow et al. showed patients with DMD had higher T1native (pre-

contrast) and ECV than control subjects, even with preserved LVEF and 

negative LGE33. ECV was also found to be greater in patients with DMD than 

published normal values in a series of 47 adults with DMD34. 

1.1.2.5 Inborn Errors of Metabolism 

Inborn errors of metabolism account for less than 5% of cases; mitochondrial 

disease is the most common (around 50%), then Barth syndrome (25%). 

Primary or systemic carnitine deficiency accounts for 10%1. 

Barth syndrome is an X-linked disorder also known as 3-Methylglutaconic 

aciduria type II. Most patients are male and present with hypotonia, poor 

growth, neutropenia and CMP in infancy. While the cardiac manifestation can 

be life-threatening, it is mostly resolved by puberty35.  

Other causes include mucopolysaccharidosis type I (Hurler Syndrome) and 

type VI (Maroteaux–Lamy syndrome), glycogen storage disorder type IV 

(Anderson disease), long-chain 3-hydroxacyl-CoA dehydrogenase deficiency, 

and mitochondrial disorders such as MERFF (myoclonic epilepsy with ragged-

red fibres).  



 24 

1.1.2.6 Other 

Hypocalcaemic rickets can present as isolated CMP an important and 

treatable differential, with therapy often resulting in complete remission36. 

Thyroid hormone dysregulation has also been shown to affect cardiac 

function37.  

1.1.3 Prognosis 

Older age at presentation and reduced systolic function have been found to 

negatively affect prognosis in a UK-based, multicentre trial4. In another trial 

involving long-term follow up of 175 patients, age at presentation <4m or >5y, 

familial CMP and lower baseline LV FS Z-score at presentation negatively 

affected survival38. A similar follow up study confirmed a poor prognosis for 

patients with familial DCM, showing that they are more likely to be on 

medication at follow-up with a higher mortality39. Similar results have been 

noted in other studies40, 41. Those with left ventricular hypertrophy (LVH) on 

ECG, depressed systolic function persisting after 3 months and greater LV 

dilatation, were more likely to develop chronic cardiac dysfunction42. In a study 

of ambulant outpatients with DCM, only peak VO2 was associated with the 

study end-points of urgent heart transplantation or death43.  

Recent advances in the field of genetics and prophylactic studies have 

resulted in a ‘grey area’ with patients with a strong family history or other risk 

for developing the condition treated earlier in the disease process before 

systolic dysfunction occurs. The effectiveness of early treatment in 

asymptomatic patients remains unknown.  
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52 genes were measured as part of this study (see section 2.3.1). Various 

circulating and imaging biomarkers have also been found to have prognostic 

utility in adults with DCM. These will be discussed in section 1.3.  

1.1.4 Difference between Adults and Children with DCM 

The question of whether paediatric and adult DCM are similar entities is partly 

driven by therapeutic considerations. The fact remains that children show a 

disappointing effect of neurohormonal therapies which have been shown to be 

successful in treating adults. The Pediatric Carvedilol Trial failed to show a 

benefit of treatment with beta-blockers (commonly used in adults) in children 

with DCM44. Registry data failed to show an improvement in outcomes since 

the commencement of ACEi and beta-blockers in children compared to the era 

of digoxin and diuretics45. 

This has led to theories about the differences between the two groups. Patel 

et al. hypothesised that adult and paediatric DCM differ due to the fact that 

only adults undergo adverse remodelling in the form of cardiomyocyte 

hypertrophy, myocardial fibrosis, inflammation and capillary loss46. This study 

involved analysing explanted hearts and core-samples from VAD-implantation 

in both adults and children, with HF and healthy controls. Children with DCM 

showed minimal fibrosis and hypertrophy compared to both adults and age-

matched controls.  

A potential explanation to link the two findings- that children do not respond to 

neurohormonal manipulation and medications supposed to cause 

remodelling, and the failure to demonstrate adverse remodelling in paediatric 
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specimens, is that children do not undergo adverse remodelling. Rather, they 

may undergo reverse remodelling (or recovery), which is a rare outcome in 

adults47.  

1.2 Diastolic Dysfunction 

The following is taken from my own published paper ‘Assessment of diastolic 

function in congenital heart disease’48: “Diastole denotes the filling phase of 

the cardiac cycle. Filling is determined by myocardial relaxation as well as 

atrial contraction and atrial and ventricular compliance. Myocardial relaxation 

begins when the myofibrils return to an unstressed state and this precedes 

mitral valve (MV) opening (isovolumic relaxation). Adenosine triphosphate is 

used to actively uncouple calcium from the contractile apparatus and return it 

to the sarcoplasmic reticulum. Active relaxation is only responsible for early 

diastolic filling, whereas compliance is important throughout filling and 

especially during atrial contraction. 

The early part of diastole is active relaxation, which is an energy-consuming 

process. The latter part is due to compliance or stiffness of the ventricle. 

Isovolumic relaxation time (IVRT) can be measured by invasive catheterization 

measurements. The index used in its measurement is the time constant of 

isovolumic pressure decline (τ). In non-invasive measurement, IVRT is the 

closest measurement to assess this value. However, as with all indices of 

diastolic function, the loading conditions must be considered. 
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The stiffness of the myocardium also plays an important role in diastolic 

function. The mass of the LV affects the stiffness as do the viscoelastic 

properties of the myocardium (cellular and extracellular components). 

Attempts are made to measure this increase in myocardial stiffness. However, 

the difficulty arises in the mechanism of measurement as well as the timing 

and nature of diastole. Flow-based measurements rely on a change in volume 

to occur, and so they are unable to quantify isovolumic relaxation as they 

assess only the last stage of diastole. There is also no universal measurement 

of diastole (equivalent to EF in systole) and torsion and dyssynchrony are 

difficult to quantify. 

E-wave deceleration time is the rate at which the atrial and ventricular 

pressures equilibrate after onset of the E-wave and is shorter in compliant 

ventricles (160–240ms in adults). The IVRT is the period between closure of 

the aortic valve and opening of the mitral valve. This is normally 70–90ms long 

in adults and is prolonged in the case of decreased LV compliance. It is also 

affected by heart rate and ventricular function. It is best recorded from the 

apical five-chamber view with the cursor placed to record LV outflow tract 

velocities and LV inflow simultaneously. 

Tissue Doppler imaging directly measures myocardial wall velocities by 

focusing on the high-amplitude, low-frequency signals reflected by the 

myocardium rather than the blood pool. The areas sampled include the lateral 

aspect of the mitral annulus in the apical four-chamber view, the basal septal 

region in the same view, and the lateral tricuspid valve annulus. This serves 

to minimise translational artefact and to align the probe with the direction of 
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movement. Three waves are usually seen—the systolic (s′) wave, the early 

diastolic (e′) wave, and the late diastolic wave caused by atrial contraction (a′). 

Normal values and Z-scores are available for each age group in paediatrics49. 

Nagueh et al. were the first to show that E/e′ ratio (ratio of transmitral E velocity 

and TDI mitral annular e′ velocity) corresponded to pulmonary capillary wedge 

pressure (PCWP)50. In 125 patients classified by systolic and diastolic function 

and symptoms, PCWP correlated strongly with E/e′ ratio r = 0.87. PCWP 

correlated only weakly with E velocity but not e′ velocity. Patients with 

abnormal relaxation and pseudonormalisation of the mitral inflow E/A ratio had 

a decreased e′ velocity (P < 0.001). In patients with diastolic dysfunction, a 

saline bolus affects the E/A wave as measured by transmitral Doppler 

measurement but did not affect the e′ or e′/a′ ratios51. These studies show that 

e′ acts as a preload-independent marker of LV relaxation. E wave velocity on 

mitral inflow Doppler, corrected for e′, correlates strongly with PCWP, and can 

be used to estimate left atrial pressure non-invasively”. 

1.2.1 Heart Failure with Preserved Ejection Fraction 

The following is quoted from the same published paper48 “One theory of the 

mechanism of heart failure with preserved EF (HFpEF) is that it is caused by 

diastolic dysfunction. Increased LV filling pressures cause back pressure on 

the pulmonary circulation, leading to symptoms of HF, including 

breathlessness. This is assumed to be the case as EF remains in the normal 

range, which is thought to denote normal systolic function52. However, there 

have been studies which show that symptoms of HF in these patients correlate 
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with left ventricular end-diastolic volume (LVEDV) and that the stroke volume 

(SV) is only maintained due to LV dilatation. The mechanism postulated is that 

of excessive LV diastolic dilatation by fibre slippage and creep53. 

The process of LV remodelling to compensate for decreased systolic function 

in these patients occurs due to feedback from the periphery, causing the heart 

to adapt with an increase in volume to maintain SV54. Therefore, an EF of 20% 

in a dilated ventricle may produce the same SV of a normally sized ventricle 

with a normal EF55. Patients with LVH manage to avoid this excessive 

distension and may be more prone to HF with reduced EF56. Symptoms of HF, 

such as breathlessness on exertion, are not related to PCWP57 or systolic 

function58. Instead, the determinants appear to be musculoskeletal status, 

body composition, motivation, and tolerance of discomfort57. Therefore, using 

symptoms alone to determine whether a patient has HF may not be valid. 

A number of problems with the definition of HFpEF have been highlighted 

above; HF may not be reliably diagnosed using symptoms alone, and a 

preserved EF does not always correlate with normal systolic function. The 

notion of this type of disease being the definitive model for diastolic dysfunction 

is flawed”. 

1.3 Circulating Biomarkers 

The only commonly used blood biomarker in paediatric practice is brain 

natriuretic peptide (BNP). Detailed below is the current state of knowledge of 

BNP and a panel of novel biomarkers, chosen to describe the pathophysiology 
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of paediatric CMP and for their promising role in the diagnosis and prognosis 

in adult CMP. Some of these have been investigated previously by our group 

in a more diverse patient population including children with congenital heart 

disease59. The small numbers and diverse diagnoses may have masked the 

utility of these markers in systolic CMP. 

1.3.1 Brain Natriuretic Peptide 

BNP is a 32-amino acid peptide synthesised in ventricular myocytes in 

response to cardiac stretch and shear stress. It is stored in and released by 

atrial and ventricular myocytes when chronically stimulated60. BNP is widely 

used as a diagnostic and prognostic marker in HF. Its use in paediatric patients 

is age-dependent and it has been evaluated in congenital heart disease61 and 

HF62. Levels are known to rise in the first few days of life before declining in 

patients without cardiac disease61. BNP also correlates with clinical 

parameters and echocardiographic FS in children with DCM and serial 

measurement predicts a change in these parameters63.  

In adults, BNP is used for the diagnosis of HF in patients with dyspnoea64 and 

prognosis of patients with acute65 and chronic HF66. However, there is some 

evidence that the majority of circulating BNP is the inactive NT-proBNP rather 

than the active cleavage product, BNP67. There are many potential causes of 

raised BNP apart from systolic heart failure, including diastolic dysfunction68, 

acute69 or chronic ischaemic heart disease70, LVH71, inflammatory cardiac 

diseases, arterial hypertension with LVH, pulmonary hypertension72, acute or 
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chronic renal failure73, sepsis74, ascitic liver cirrhosis75, endocrine disorders 

and cardiac toxicity76.  

There are also some conditions in which HF is present where BNP levels are 

not raised including well-compensated HF, obesity77, acute mitral 

regurgitation, pulmonary oedema of less than 1 hour duration, constrictive 

pericarditis and upstream causes including mitral stenosis. BNP varies with 

age78, gender79 (women have twice the level at any compared to men) and 

ethnic origin (although the latter has a smaller effect than cardiac function 

when corrected for this)80.  

1.3.2 Diagnosis 

In the ‘Breathing Not Properly’ study, BNP proved diagnostic of patients with 

HF of those attending the emergency department with dyspnoea64. In the 

PRIDE study, which included 600 patients, it seemed there were age-specific 

cut-offs for the diagnosis of HF, but a BNP of <300pg/ml ruled out HF at any 

age with a negative predictive value of 99%81. BNP does not appear to be 

useful for screening of an asymptomatic population for heart failure, according 

to the Framingham study, but this study was relatively small82.  

In the paediatric population, BNP has been used to diagnose patients with 

congenital heart disease (CHD). The levels were found to rise in neonates in 

the first days of life, with a subsequent decline in those without heart disease 

and a plateau in those with CHD. Optimal diagnostic cut-off values vary with 

age61.  
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1.3.3 Prognosis 

In the hospital setting, BNP can help to predict long-term outcome in chronic 

HF. Patients whose BNP was lower than 350pg/ml by the time of discharge 

had a much lower risk of death or rehospitalisation over 6 months than those 

whose levels remained above 700pg/ml83. The ValHeft study showed that the 

magnitude of the change in BNP levels may be a more important factor than 

simply the direction, with larger increases (>360%) or decreases (>55%) 

associated with a higher mortality84.  

1.3.4 Guiding Treatment 

The TIME-CHF study randomised 500 patients to conventional treatment vs. 

BNP-guided therapy and showed a non-significant reduction in all-cause 

mortality of 24% in those on BNP-guided therapy85. An individual patient data 

meta-analysis of 9 trials on this topic showed this approach is more beneficial 

to those aged <75 years. This may be due to comorbidities in older patients 

confounding the effect of treatment, or to aggressive treatment causing toxicity 

in frail older patients86.  

1.4 Novel Biomarkers 

There are many novel biomarkers which have been investigated in adult 

practise. These have been discovered as markers associated with processes 

involved in the development of CMP and HF in adult patients including 

inflammation, ischaemia, apoptosis and neurohormonal activation. The main 
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aim of this project was to understand the pathophysiology of paediatric CMP 

and to compare this with the data in existing (mainly adult) studies.  

The model of paediatric heart failure which was used for this project is detailed 

in Figure 1. The initial step in the development of CMP is injury to the 

myocardium, leading to cell death. This releases troponin and other 

intracellular proteins and ions. This leads to activation of inflammatory 

cascades in response to the cell death/necrosis. Events can then be either 

protective and anti-inflammatory or involve further activation and cell damage.  

Figure 1: Simplified model of paediatric heart failure2. 

 

Common causes for CMP in adults differ from paediatrics, with diabetes, 

ischaemic heart disease and hypertension commonly to blame87. However, 

                                            

2 TnI: troponin I, sST2: soluble suppression of tumourgenicity, GDF-1: growth differentiation 

factor 15, CRP: C-reactive protein, ET-1: endothelin 1, ANP: atrial natriuretic peptide, BNP: 
brain natriuretic peptide, ADM: adrenomedullin. 
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whether the response to injury to the myocardium is similar in both age groups 

is not known. Measuring levels of circulating biomarkers is one way of 

investigating similarities and differences between these age groups. This is 

one step in allowing us better understand pathophysiology and compensatory 

mechanisms with a view to developing/using better therapies for paediatric 

CMP.  

In normal cardiac physiology, SV (the amount of blood pumped per heart beat) 

is affected by three main factors: preload, afterload and contractility. The main 

cause of cardiac failure in children is loss of functional myocardium due to cell 

death. This can be due to infection, genetic causes, toxins and rarely, 

ischaemia. This leads to a decrease in organ perfusion and activates the renin-

angiotensin-aldosterone system (RAAS) and the sympathetic nervous system 

(SNS).  

The RAAS is activated in order to maintain cardiac output (SV x heart rate) by 

increasing total peripheral resistance and increasing water retention. The SNS 

mediates catecholamine release in order to increase heart rate, contractility 

and peripheral vasoconstriction88. The result of these mechanisms is to 

temporarily improve organ perfusion and decrease the damaging effects of 

HF. However, eventually, the compensatory mechanisms themselves lead to 

further problems.  

Somewhat counterintuitively, LV mass in DCM is increased in paediatric 

patients with worse function and the persistence of symptoms89. It may be that 

hypertrophy is a response to increased wall stress but leads to adverse 
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remodelling and increased systolic and diastolic dysfunction. Hypertrophy 

itself may lead to decreased compliance and increased diastolic dysfunction.  

The next section will look at each pathophysiological process in turn and 

summarise the novel biomarkers measured in this study involved in each 

process, although there remains much to learn. 

1.4.1 Myocardial Injury 

1.4.1.1 Troponin 

In order to be a marker for cardiac cell death, the protein must be tissue-

specific, something which has been proven in the case of troponin in heart 

disease. Troponin is a complex of three globular contractile regulatory proteins 

(T, I and C). They occur at regular intervals along the thin filament of striated 

muscle and inhibit contraction by blocking the interaction of actin and myosin. 

The forms of troponin T (TnT) and I (TnI) differ from skeletal muscle, allowing 

for their use as cardiac-specific biomarkers90. In the 1990s, troponin started to 

be used for diagnosis of myocardial infarction (MI)91. More recently, interest in 

high sensitivity assays has grown, with the idea that subclinical myocardial 

damage may predict adverse outcome in subjects with and without known 

cardiovascular risk factors and disease.  

The mechanism of release of cardiac troponin in CMP is unclear. One 

postulated mechanism of release involves subclinical ischaemia, but results of 

stress tests have had differing results92, 93. Other possibilities include cell death 

(apoptosis), microvascular dysfunction94 or other structural abnormalities95.  
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Patients with pre-existing HF or coronary artery disease (CAD) with detectable 

levels of troponin on high-sensitivity assays, have an increased rate of adverse 

cardiovascular events96, 97. In a representative sample of the population, 3557 

asymptomatic subjects (age 30-65 years), only 1.1% had an elevation of high 

sensitivity TnT (hsTnT). Heart failure, diabetes, LVH and chronic renal disease 

were all independently associated with raised hsTnT levels98.  

In a review of the use of high sensitivity hsTnT to risk stratify in chronic stable 

HF, elevated baseline hsTnT was associated with higher risk of mortality with 

a hazard ratio (HR) of 2.85 and combined adverse cardiovascular outcome 

with a HR of 2.38. Interestingly, this review showed no difference between 

high- and low-sensitivity assays99. In a study of 285 patients with chronic HF, 

hsTnI and BNP were independent significant predictors of poor outcome, but 

hsTnT was not. The HR of high BNP and hsTnI was 5.74100. Serial levels have 

been shown to be of importance with a rise in hsTnI levels in a cohort of 

patients with stable chronic HF having a HR of 3.59 in patients with increased 

levels which then increased further vs those who showed a subsequent 

decline.  

In a small (n=83) group of neonates, including 54 with CHD and 29 healthy 

controls, TnT was significantly higher in patients than control subjects. There 

was no correlation between TnT and Ross classification or echocardiographic 

markers of LV dysfunction101.  
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1.4.2 Inflammation 

The role of the inflammatory markers in HF is well recognised102. Due to the 

high frequency of myocarditis as a cause of paediatric DCM, inflammation was 

an important process to investigate. It is known that a proportion of those with 

myocarditis will progress to chronic DCM, with others recovering 

completely103. It is not clear how many patients with DCM have had 

myocarditis in the past, estimates range from 0.5-67%104. Cardiac injury 

occurs as a result of direct damage by pathogenic infiltration of cells, the 

inflammatory response and autoimmune cell damage. Cytokines have also 

been known to influence fibrogensis (as is the case with GDF-15). The 

markers we used in this study which pertain to inflammation included hsCRP, 

sST2 and GDF-15.  

1.4.2.1 Growth Differentiation Factor-15 

Growth differentiation factor-15 (GDF-15) is a stress-responsive cytokine 

produced in situations of tissue injury or inflammation. Interestingly, despite 

being found in rat myocardium, it is not found in human myocardium in 

physiological conditions but is produced by a variety of cell types in response 

to stress and ischaemic injury (Figure 2)105. There is some evidence (although 

contradictory reports exist) that GDF-15 is protective in the case of 

ischaemia/reperfusion injury106. The exact mechanism of action of GDF-15 is 

unknown. 
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Figure 2: Cellular sources of GDF-15 in the cardiovascular system3.  

 

Circulating levels of GDF-15 are elevated in patients with heart failure. Kempf 

et al. showed 75% of patients presented with levels >1200ng/L. GDF-15 levels 

were correlated with NYHA class, NT-proBNP levels and risk of death during 

follow-up increased with increasing quartiles of GDF-15107. Increased 

circulating levels of GDF-15 are associated with a higher risk of developing 

heart failure in otherwise healthy individuals108. The first paper on GDF-15 

found higher levels at baseline in women who experienced a cardiovascular 

event compared to those who did not over a 4 year period109. 

1.4.3 Soluble Suppression of Tumourgenicity 2 

SST2 is a decoy receptor for interleukin-33 (IL-33), which functions as an 

alarmin, signalling the presence of tissue damage to local immune cells. 

Although ST2 ligand is activated by IL-33 and effects intracellular signalling 

pathways, sST2 works to effectively remove IL-33 from the circulation, 

decreasing its ability to induce the immune response (Figure 3110). “Damage 

                                            
3 Data obtained from rat cardiomyocytes, otherwise in human cell types. LDL: low-
density lipoproteins, TG: triglycerides, VSMCs: vascular smooth muscle cells. 
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to stromal cells can induce necrosis and release full length IL-33 (active IL-33) 

which can activate the heterodimeric ST-2/IL-1RAcP complex on a variety of 

immune cells or can be neutralised by sST2, which acts as a decoy receptor 

for IL-33. Upon activation of the ST2L/IL-1RAcP complex signalling through 

the Toll-IL-1 receptor (TIR) domain is induced. By activation of diverse 

intracellular kinases and factor this leads to an inflammatory gene transcription 

and ultimately to the production of inflammatory cytokines/chemokines and an 

immune response110.”  

SST2 is increased in a number of different pathologies such as pulmonary 

disease111 and autoimmune disease112. IL-33 and ST2 and sST2 are 

upregulated in fibroblasts and cardiomyocytes after MI in mice113. ST2 is most 

probably produced in endothelial cells with evidence against cardiac 

production in humans (no transmyocardial gradient)114. sST2 is increased in 

response to LVED pressure and may be produced by the systemic vasculature 

in response to diastolic load on the ventricle, thus helping to counteract the 

maladaptive neurohumoral activation seen in HF115. It appears to act to 

regulate the inflammatory response to tissue damage as a result of various 

disease processes. 

ST2 is not a useful diagnostic biomarker for heart failure due to the lack of 

disease specificity116, however, it is a strong predictor of all-cause mortality in 

patients with acute dyspnoea117. This includes mortality due to cardiac and 

pulmonary disease118. The normal adult reference ranges for sST2 are 4-

31ng/ml in males and 2-21ng/ml in females119. 
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Figure 3: Interleukin-33/ST2 signalling110.  

 

sST2 is strongly correlated with measures of cardiac damage in MI such as 

creatinine kinase (CK)113 and troponin I (TnI)120. It has also been shown to 

have prognostic utility in patients with MI, predicting risk of death or HF; it 

increases across quartiles of sST2120.   

Increase in levels of sST2 over 2 weeks have been shown to be predictive of 

death or transplantation in patients with severe chronic HF121. A large, 

multicentre study on ambulatory chronic heart failure patients showed that 

those with increased sST2 had a markedly increased risk of death or 

transplantation at 2.8-year median follow up122.  

In patients with acute dyspnoea, sST2 was the most powerful predictor of 

mortality at one year from a panel of 11 biomarkers including NT-proBNP and 

C-reactive protein123. In a study of 346 patients with acutely decompensated 
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HF, sST2 was correlated with worse NYHA score, BNP and CRP. sST2 was 

an independent predictor of mortality124.  

1.4.4 High-Sensitivity C-reactive Protein 

The role of the inflammatory markers in HF is well recognised102. Pro-

inflammatory biomarkers have been shown to be elevated in cardiac disease 

no matter what the aetiology. Part of this immune response is C-reactive 

protein (CRP), which is a ring-shaped pentameric protein released by the liver 

in response to IL-6 secretion by macrophages and T-cells. Its role is to bind 

lysophosphatidylcholine on the surface of dead and dying cells and the surface 

of some bacteria in order to activate the complement system via the C1Q 

complex125. High sensitivity assays are being tested in CMP as biomarkers of 

disease severity. 

In a study of 545 patients with stable congestive HF, mortality was increased 

in patients with CRP >3mg/L. When adjustment was made for known risk 

factors and biomarkers, the association remained only for those with 

ischaemic CMP126. In patients with DCM, high sensitivity CRP (hsCRP) was 

found to be significantly higher in patients than healthy controls. Furthermore, 

it increased significantly with increasing NYHA and decreasing EF127.  

In a study in the hospital setting, CRP levels on discharge increased in relation 

to NYHA class p<0.05. Those with a CRP level >0.9mg/dL were identified as 

candidates for earlier readmission128. In a Korean study, of 1608 patients with 

acute HF, elevated CRP and NT-proBNP predicted a worse prognosis over 1 
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year follow up. Patients with increased CRP and NT-proBNP had a HR of 2.4 

compared to patients who did not have raised markers129.  

1.5 Neurohormonal Activation 

As detailed above, neurohormonal activation of the RAAS and SNS pathways 

is part of the response to decreased cardiac output. The initial phase of 

activation of these pathways leads to the maintenance of end-organ perfusion, 

however, in the case of chronic CMP, these systems can be over-stimulated 

and cease to be useful. The markers which reflect the activation of these 

systems in our study show secondary effects of neurohormonal activation.  

ANP is released in response to atrial stretch which occurs due to increased 

fluid retention and LV end-diastolic pressure (leading to increased left atrial 

pressure). ADM appears to work against these changes, having natriuretic, 

hypotensive and vasodilatory effects. Conversely, ET-1 acts with the 

neurohormonal response, causing vasoconstriction and positive ionotropy. 

Each of these markers and the evidence base for each is discussed below.  

1.5.1 Atrial Natriuretic Peptide 

Atrial natriuretic peptide (ANP) is so-named because it is produced in atrial 

tissue in response to atrial stretch and produces a profound natriuresis when 

injected into experimental animals130. The peptide itself has a short half-life 

and the more stable pro-hormone, MR-proANP is often measured instead131. 
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In 68 hypertensive patients with systolic dysfunction, ANP levels were 

significantly higher in patients with DCM than in controls and decreased with 

angiotensin receptor blocker (ARB) treatment132. In 48 paediatric patients with 

LV overload, ANP levels were measured before and 3 months after ACEi 

therapy. Levels were higher in patients with DCM as compared to controls and 

varied with NYHA class. ANP decreased significantly with treatment133.  

ANP predicts poor outcome in chronic HF. In 525 patients, elevated MR-

proANP levels predicted poor survival even when adjusted for BNP, age, 

LVEF, NYHA class, creatinine and body mass index (BMI)134.  

1.5.2 Adrenomedullin 

Adrenomedullin (ADM) is a peptide hormone with natriuretic, vasodilatory and 

hypotensive effects mediated by cyclic adenosine monophosphate (cAMP), 

nitric oxide and renal prostaglandin systems. It is expressed in many tissues 

including cardiovascular, renal, pulmonary, cerebrovascular, gastrointestinal 

and endocrine tissues. It was first isolated from human phaeochromocytoma 

tissue in 1993135. It acts as a circulating hormone and local autocrine and 

paracrine hormone. It is increased in chronic renal disease, hypertension and 

HF. MR-proADM correlates with levels as ADM itself is unstable136.  

Immunostaining of atrial and ventricular tissues showed presence of ADM in 

both structures in patients with heart failure and control subjects. However, 

expression of ADM appeared increased in the ventricles of patients with HF137.  
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ADM decreases arterial tone when administered to sheep with pacing-induced 

CMP138. Infusion into humans results in reduction of LV end-systolic volume 

(LVESV) and decreased arterial blood pressure (BP)139. Cardiac output is 

maintained by a compensatory increase in heart rate. Infusion at higher doses 

results in increased cardiac index and reduced pulmonary capillary wedge 

pressure while augmenting urine volume and sodium excretion and inhibiting 

plasma aldosterone levels140.  

Levels of ADM are higher in humans with congestive HF than normal 

controls137. Levels have been shown to be consistently higher in patients with 

HF, with a study of 44 patients showing levels of from 14.4  2.7pg/ml in control 

subjects and 39.8  3.6pg/ml in patients with HF (P<0.001)141. This showed 

an increase with worsening HF. There was also evidence of cardiac and 

particularly ventricular release of the peptide on direct catheter measurement.  

Of 1641 patients presenting with dyspnoea, 34.6% were found to have HF. 

Those who subsequently died had a significantly higher median MR-proADM 

1.57nmol/L (1.02-3.21) vs. 0.84nmol/L (0.55-1.35) P<0.0001. Higher quartiles 

were associated with higher mortality. MR-proADM showed excellent short–

term mortality prediction (outperforming BNP over 14 days)142.  

In adult ischaemic heart disease, raised ADM levels are associated with an 

increased risk of mortality and admission to hospital with HF over 18 months 

(P<0.001)143.  
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1.5.3 Endothelin-1 

ET-1 was characterised in 1988 and is a peptide converted from big-

endothelin by the endothelin-converting enzyme family144. There are 3 

isoforms and ET-1 is generated by the heart (myocytes), kidney, central 

nervous system and human aortic smooth muscle cells and acts mainly via 

two receptor subtypes ET-A and ET-B145. ET-1 has vasoconstrictive and 

ionotropic actions146; maintaining blood pressure in normal individuals147. It 

appears to have an autocrine/paracrine role rather than an endocrine action 

due to the concentrations found circulating.  

Plasma ET-1 levels are increased in HF of all causes148, 149. Levels of ET-1 

increase with increased level of clinical impairment and decreased exercise 

capacity150, 151. Plasma levels of ET-1 correlate inversely with LVEF, cardiac 

index, LV end-diastolic volume (LVEDV) and pulmonary hypertension149. 

Increase in ET-1 is due to elevation of big ET-1, which occurs 

disproportionately in patients with heart failure152. Higher levels of big-ET-1 are 

predictive of worse clinical condition, transplantation or death. Levels of big-

ET-1 predict 1 year mortality better than ANP, norepinephrine, New York Heart 

Association (NYHA) class, age and echo parameters153.  

Because of its apparent role in the pathogenesis of HF, endothelin-receptor 

antagonists were trialled as a treatment for congestive HF.  A randomised, 

placebo-controlled, double blind trial of Bosentan in chronic HF found an 

increased number of adverse events in the treatment arm in the first 3 
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months154. Although, outcomes seemed to improve in the treated patients by 

6 months, Bosentan is not currently in use as a treatment for HF in children.  

1.6 Fibrosis – Circulating Biomarkers 

Myocardial fibrosis is defined as an increase in the collagen volume fraction of 

the interstitial space and is a common feature in CMP of any aetiology, 

including DCM3, 155. Myocardial fibrosis can be focal (replacement) or diffuse 

(interstitial). In paediatric patients, the prevalence of focal fibrosis is lower (as 

measured by late gadolinium enhancement) at 16%156 than in adults at around 

48%157. It is a marker of remodelling, which is often maladaptive, and is 

associated with increased ventricular stiffness, resulting in first diastolic and 

then systolic dysfunction158. There is some evidence of reversibility with 

therapy159, 160.  

The major imaging biomarkers for diffuse fibrosis in this study were T1 

mapping and ECV and the main circulating marker was GDF-15. GDF-15 is 

increased in patients with end-stage HF prior to ventricular assist device (VAD) 

insertion and decreases after VAD insertion161. GDF-15 is moderately 

correlated with the amount of fibrosis in biopsy specimens from these patients 

and is considered a marker of remodelling. GDF-15 seems to enhance 

myocyte growth and collagen deposition by cardiac fibroblasts162.  

Increased levels of ET-1 are associated with increased fibrosis in mouse 

hearts173. The physiological and pathological functions of ET-1 in adult 

HF/CMP are as yet unknown. BNP is higher in patients with HCM and LGE on 
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MRI scanning174. It is raised in patients with severe HF and may be increased 

in those with fibrosis as both are markers of disease severity.  

1.6.1 Multiple Biomarkers 

The utility of multiple biomarkers may be to add incremental prognostic power 

to BNP alone. Another important role for these panels would be to provide 

information about the pathophysiological processes not covered by BNP, e.g. 

inflammatory, extracellular volume remodelling, myocyte injury and 

angiogenesis. The Appsala longitudinal study of adult men followed a 

community-based cohort of 1135 elderly men. Of a range of biomarkers 

tested, those with the best performance in predicting CV death were NT-

proBNP, hsTnT, tissue inhibitor of metalloproteinase -1 (TIMP-1), GDF15 and 

IBP-4. Their predictive power was superior to BNP alone and increased 

significantly and progressively with the number of biomarkers163.  

1.7 T1 mapping and Extracellular Volume 

1.7.1 Fibrosis- MRI 

Fibrosis is a major independent predictor of clinical outcome164. Currently, 

fibrosis is measured using endomyocardial biopsy and LGE on MRI imaging. 

Endomyocardial biopsy is invasive and not routinely performed in children in 

our centre. The patchy distribution and the fact that the right ventricle is more 

commonly sampled also make this a problematic technique for quantifying 

fibrosis. However, fibrosis has been shown to be a common feature in the 

biopsies of patients with DCM and to correlate with LV systolic dysfunction165.  
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Techniques have evolved more recently to non-invasively quantify fibrosis 

using MRI and gadolinium contrast agents. LGE exploits the extracellular 

nature and prolonged washout of the agent from the extracellular space166. 

Gadolinium shortens T1 time and is seen as a bright area once the normal 

myocardium is ‘nulled’ on conventional inversion-recovery echo sequences. 

This technique allows visualisation of focal (replacement) fibrosis as well as 

any cause of increased extracellular volume (ECV). However, the nature of 

fibrosis in adult DCM appears more diffuse and novel, non-invasive techniques 

to quantify diffuse fibrosis have been developed, including T1 mapping and 

calculation of ECV. 

1.7.1.1 Diagnosis  

In the adult population, CAD can lead to a similar degree of systolic 

dysfunction as DCM. These entities can be difficult to differentiate. In a study 

of 93 adults with HF, investigators were able to differentiate between CAD and 

DCM due to the pattern of LGE. Indeed, some patients with a putative 

diagnosis of DCM were reassigned to the CAD group due to the pattern LGE 

indicative of an ischaemic event, despite patent coronary arteries. This is 

thought to be due to a process of recanalisation after the event167.  

1.7.1.2 Prognosis  

The pattern and frequency of fibrosis differs in adults and children with DCM, 

with up to 35% of adults reported to have mid-wall fibrosis. This is associated 

with a higher rate of the combined end-points of all cause death and 

hospitalisation for a cardiovascular event with HR 3.4 (P=0.01). Mid-wall 
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fibrosis remains the sole predictor of death or hospitalisation in multivariate 

analysis in this study of 101 patients168. In another study of 184 patients with 

DCM, LGE was found in 39% and was associated with a higher LV mass, 

lower LVEF and higher LVEDV (all significant). Those with LGE were more 

likely to suffer an adverse outcome169.  

1.7.2 T1 Mapping 

The T1 time is the longitudinal relaxation time constant that is unique for each 

tissue type and increases with increased interstitial space. The measurement 

of the T1 time requires measuring the longitudinal relaxation time after it has 

been disturbed from its equilibrium state by a radiofrequency pulse (other 

methods can also be used, such as saturation pulses). The equilibrium 

magnetisation is inverted using radiofrequency pulses at certain intervals and 

T1 is allowed to return to normal in between these experiments. In general, 

several images are acquired with different T1 weightings and the signal 

intensities are then fit to the equation for T1 relaxation.   

The sequence used in this study was the Modified Look-Locker Inversion 

Recovery (MOLLI) introduced by Messroghli et al. in 2004170. Images were 

acquired in diastole for 3 or 5 R-R intervals after the inversion pulse. Multiple 

inversions with slightly different T1s were used to more thoroughly sample the 

T1 relaxation curve. The specific timing of the sequence is denoted as 

3(3)3(3)5, meaning 3 images were acquired after the first inversion, 3 after the 

second and 5 after the final inversion. This resulted in a map of the 

myocardium where the value of each pixel represented the T1 of each voxel. 
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There have since been many modifications to this sequence including 

techniques to introduce motion correction171, and shorten breath-hold times172. 

The timing of radiofrequency pulses is important, especially in paediatric 

patients with higher heart rates, as T1 times can be inaccurate if complete 

relaxation is not allowed before the next inversion pulse173. Therefore, different 

sequence timings have been tried including 5(3)3 for higher heart rates, which 

would more fully allow relaxation between sampling. Unfortunately, we did not 

have access to these protocols during the study. T1 mapping is also limited by 

changes in gadolinium-clearance time, time of sampling, injected gadolinium 

dose, body composition, haematocrit and other disease processes174.  

As the extracellular space of the myocardium increases, so the T1native and 

calculated ECV increase. gadolinium contrast enhances this distinction by 

remaining in the extracellular space and further shortening T1. It should be 

understood that T1 times increase with any cause of increased ECV including 

fibrosis, oedema and inflammation. However, in the case of DCM, where 

fibrosis is an integral part of the remodelling process, this is the most likely 

cause of increased ECV. Importantly, ECV has been shown to correlate with 

fibrosis in studies using endomyocardial biopsy (the current gold-standard for 

ECV quantification)175.  

Both T1native and calculated ECV have been measured in various disease 

states. In DCM and HCM, T1native times are higher in diseased patients than 

controls, suggesting an increase in fibrosis in these populations176. However, 
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there remains overlap with normal values, decreasing the utility of this as a 

diagnostic test. 

ECV is derived from the T1native and post-contrast blood and myocardial T1 

times and haematocrit using the following formula: 

ECV = (1 − Hct)x 
(

1
postcontrast T1 myocardium

−
1

T1native myocardium
)

(
1

postcontrast T1 blood
−

1
 T1native blood

)
 

The gadolinium must have reached equilibrium in the blood pool and 

myocardium for the ECV to be accurately measured and the post-contrast T1 

is therefore measured 15 minutes after injection, a technique which has been 

shown to have good histological correlation with ECV177. ECV is a ratio and 

may be less prone to sources of systematic bias such as renal function, 

percentage body fat, gadolinium characteristics (i.e. dose, concentration and 

water exchange rate)178 as these tend to cancel each other out in the 

calculation.   

We decided to measure T1 in one mid-ventricular short-axis slice, mainly due 

to the time taken for acquisition and the difficulties our patients had with 

multiple breath-holds. Motion artefacts can also pose a problem especially in 

the infero-postero-lateral region179. 

1.7.3 ECV and Heart Failure 

793 patients referred for MRI with various pathologies (not HCM or 

amyloidosis), had ECV measured and compared to volunteers. ECV in 
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patients was significantly higher than in controls (controls: 21.7-26.2% vs. 

patients: 21-45.8%). There were 39 deaths over 0.8 years, and 43 patients 

reached the composite end-point of death/cardiac transplant/ventricular assist 

device (VAD) insertion. On Cox-regression, ECV was related to all-cause 

mortality and the composite end-point with HR 1.55 and 1.27 for every 3% 

increase in ECV adjusted for age, LVEF and MI size180.  

ECV was higher in patients with diabetes compared to controls in another 

large, population-based study (n=1176). ECV was 30.2% in diabetes patients 

and 28.1% in controls P<0.001. This association remained when adjusted for 

demographics, comorbidities and medications (P<0.001). Over 1.3 years, 

ECV independently predicted hospital admission with HF and death with HR 

1.52 per 3% increase181.  

In DCM, a large study of 637 adults showed a significant correlation between 

T1native, ECV and presence and extent of LGE were predictive of all-cause 

mortality and a combined HF end-point (cardiovascular mortality and 

hospitalisation)182.  
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2.1 Overview 

The patients included in this study were recruited as part of the MD-Paedigree 

project from Great Ormond Street Hospital (GOSH), London, UK from 

February 2015-December 2017. All were diagnosed with CMP and those 

included in the study had a dilated phenotype.  

Control subjects were adults recruited as healthy controls for a project on 

coarctation (n=7), who had MRI with T1 mapping, see Figure 4. 7 paediatric 

neuro-oncology patients had MRI and biomarker levels measured, however, 

they were excluded from the analysis of the T1 mapping results below.   

2 Methods 



 54 

Figure 4: Flowchart of patients recruited to the study4. 

 

 

There were varying amounts of data available for each group. Some patients 

with DCM had either claustrophobia or needle phobia which excluded the 

possibility of MRI scanning or blood biomarker analysis and contrast 

administration respectively. Children with claustrophobia were able to give 

partial consent for blood biomarkers only.  

Children having MRI had blood biomarkers done only if they needed routine 

blood tests in clinic (to monitor renal function, for example). Those who did not 

require a blood test were not administered gadolinium and did not have blood 

                                            
4 Biomarker (BM) numbers are based on the maximum number of patients with 
biomarker levels measured as these varied by marker. 14 control subjects include 7 
adults (included in analysis) and 7 children (excluded from analysis).  
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biomarkers tested. Similar considerations resulted in varying completion of 

datasets in the SOCRATES study.  

Some patients (who attended clinic on the same day) had insufficient blood 

taken for the study and samples were instead used for clinical blood tests. NT-

proBNP is used clinically in our centre, so there were higher levels of this 

marker tested during the study.  

Neuro-oncology patients all had MRI scans and blood biomarkers measured. 

Healthy subjects for the coarctation study had not been consented specifically 

for biomarker measurement and had only T1 mapping and ECV calculation 

done. The MD-Paedigree study incorporated only paediatric patients and 

funding was otherwise unavailable.   
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2.1.1 Study design 

This was a cross-sectional, observational study. We recruited two groups of 

people, one with the disease (CMP) and a group of control patients without 

cardiac disease.  The control group included both children and young adults.  

Control subjects included neuro-oncology paediatric patients and healthy 

adults for the T1 mapping study, obese and non-obese patients from the 

SOCRATES study.  

2.1.2 Primary Endpoint 

The combined primary end-point for the study was listing for transplant, 

insertion of VAD device, admission to hospital for ionotropic support, 

transplantation or death. Secondary end-points included worsening systolic 

function, clinical condition or cardiac surgery of any kind (including mitral valve 

repair).  

2.1.3 Study Population 

Patients were recruited from the heart function clinic at Great Ormond Street 

Hospital. Children who required an MRI scan with gadolinium contrast for non-

cardiac imaging were recruited from the neurology and neurosurgery 

outpatient clinics. A group of adult control subjects had only T1 mapping 

performed as part of a study into coarctation. Some patients were recruited as 

healthy controls and had biomarkers measured alongside an MRI or alone 

(see Figure 4).  
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2.1.4 Inclusion Criteria for CMP Patients  

The study cohort included children and adolescents (age 0-18 years old) of 

both genders with an established diagnosis of acute or chronic CMP with a 

dilated phenotype and the following: 

 Presence of biventricular anatomy  

 LV EF <50% and/or FS <25%, diagnosed by echocardiogram at some 

point and/or 

 Increased LVEDD >2 standard deviations from the expected normal limit 

either currently or previously  

 Written, informed consent provided 

2.1.5 Inclusion Criteria for Control Subjects  

 Normal hearts5 

 Children booked for non-cardiac MRI (neurological) with gadolinium 

contrast or healthy adult volunteers 

 Able to cooperate with MRI scan instructions 

 Written, informed consent provided 

2.1.6 Exclusion Criteria 

 Systemic hypertension (>95th percentile for age and height)  

 Persistent high rate supraventricular arrhythmias  

                                            
5 No previous cardiac disease in past medical history, normal medical examination and normal 

structure and function on MRI.  



 58 

 Pericardial disease (including restrictive and constrictive pericarditis),  

 Univentricular heart  

 Cor pulmonale 

 Heart transplantation (at onset of study) 

 Contraindication to MRI scanning 

 Severe renal dysfunction 

 Congenital heart disease 

2.1.7 Study Protocol 

Patients were recruited from the heart function clinic. The date of the study 

MRI and blood test was on the same day as the routine clinic visit for patient 

convenience. Patients were identified from the clinic list and recruited if they 

were over the minimum age limit and willing to participate in the study. Parents 

were called a week prior to the study and then again, the day before to be 

given information about the study. They were consented in person during the 

day. Consent materials were emailed to families if requested or posted.  

Patients had clinical evaluation, measurement of blood biomarkers and 

genetic analysis on their first visit. They also had echocardiographic 

assessment and MRI scanning performed. Laboratory testing of blood took 

place at Great Ormond Street Hospital, with blood samples sent on to 

Ospedale Pediatrico Bambino Gesù, Rome for Genetic testing and to the 

Medical University of Vienna, Austria, for biomarker analysis.  
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2.1.8 Ethics 

The study was approved by the West London & GTAC Ethics Committee (see 

Appendix-1 section 6).  All patients had normal renal function, and the use of 

gadolinium contrast agent was considered to be of low risk.  Those with 

oncological diagnoses did have higher creatinine levels than control subjects, 

but there was a clinical necessity for the contrast and the risk was not above 

that accepted in our department. Written, informed consent was obtained from 

parents of all individual participants included in the study and from patients 

themselves in the case of adults. 

2.1.9 Biomarkers  

The following methods are quoted from a published paper59: “Blood was 

collected using standard collection techniques on the day of assessment. 

Plasma and serum samples were spun and frozen on the day of collection and 

stored at −80°C for batch-analysis. Soluble ST2 (sST2; Presage® ST2 Assay, 

Critical Diagnostics, San Diego, CA, USA) and Growth Differentiating Factor 

15 (GDF-15; Human GDF-15 Quantikine ELISA Kit, R&D Systems, 

Minneapolis, MN, USA) were measured in patient sera using a specific 

enzyme-linked immunosorbent assays (ELISA). The measurement range was 

3.125 to 200 ng/mL for the Presage® ST2 Assay (based on a 50-fold dilution 

of patient samples) and 23.40 to 1,500 pg/mL for the Human GDF-15 

Quantikine ELISA Kit (based on a 4-fold dilution).  

An automated immunofluorescent assay (KRYPTOR® System, BRAHMS AG, 

Hennigsdorf/Berlin, Germany) was used to determine levels of mid-regional 
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pro-Adrenomedullin (MR-proADM) and C-terminal pro-Endothelin-1 (CT-

proET-1), both processed from EDTA-plasma, as well as mid-regional pro-

Atrial Natriuretic Peptide (MR-proANP), processed from serum. Measurement 

ranges were: 2.1 to 10,000.0 pmol/L for MR-proANP; 0.05 to 100 nmol/L for 

MR-proADM and 3 to 5,000 pmol/L for CT-proET-1 (based on automated 

dilution).  

NT-proBNP was assessed using an Elecsys® immunoassay on a Cobas 8000 

system (Roche Diagnostics, Mannheim, Germany).” HsTnI was measured on 

an Abbott Architect analyser using plasma (EDTA) by immunoassay. The 

hsCRP was measured on an Ortho Clinical Diagnostics Vitros 5600 analyser 

using an immunoturbidimetric method on patient serum. Laboratory 

measurements were performed by investigators who were blinded to patient 

history. 

Patients included in the biomarker part of the study were those with CMP and 

healthy paediatric control subjects. All adult controls were excluded for the 

whole analysis. For the majority of the analysis, those with DMD were 

excluded. Patients and control subjects who were obese were also excluded. 

There was a separate sub-analysis in this chapter on those with LVEF on MRI 

of less than or equal to 40% (see flowchart, Figure 5). 
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Figure 5: Flowchart of patients and control subjects included in biomarker section6. 

 

2.1.10 Echocardiography 

Transthoracic echocardiography was performed using a Philips IE33 

echocardiography system (Philips Healthcare, Best, Netherlands). 

Conventional systolic functional parameters were measured. These included: 

EF and FS measured in the parasternal long axis view. 

Trans-mitral inflow velocities were acquired using pulsed-wave Doppler with 

the sample volume placed at the tip of the mitral valve leaflets in the apical 4-

                                            
6 Biomarker (BM) numbers are based on the maximum number of patients with 
biomarker levels measured as these varied by marker.   
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chamber view. The peak E-wave velocity (cm/s), peak A-wave velocity (cm/s), 

and ratio of E-wave to A-wave (E/A) velocities were recorded. 

Tissue Doppler Imaging myocardial velocities were measured using a 

standard pulsed-wave Doppler technique. Images were acquired over two 

consecutive cardiac cycles using low-velocity, high-intensity myocardial 

signals at a high frame rate (>120 MHz). The sample volume was placed at 

the junction of the LV wall with the mitral annulus at the septal and lateral 

myocardial segments in the apical 4-chamber view. Peak E’ velocities (cm/s) 

were measured on-line and corresponding E/e’ ratios were calculated. 

Diastolic dysfunction was measured using E/e’ ratio and defined as E/e’ ratio 

>15.  

2.1.11 MRI Image Acquisition 

All subjects in the study were awake and cooperative during the MRI. No 

sedation or anaesthetic was administered. MRI imaging was performed on a 

1.5-T MR Scanner (Avanto, Siemens, Erlangen, Germany).  A 12-element 

phased-array coil was used for signal reception and a vectorcardiogram 

system was used for cardiac gating. 

Ventricular volumes were assessed using a real-time radial k-t SENSE 

sequence (field of view [FOV]: 380 mm, matrix: 128x128, voxel size: 

3.0x3.0x10 mm, TE/TR: 1.14/2.3 msec, flip angle: 38, pixel bandwidth [BW]: 

1500 Hz/pixel, radial spokes: 128, k-t SENSE acceleration factor: 8, scan time: 

1.5 seconds per slice, temporal resolution: 35.5 msec). 11 to 13 contiguous 
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slices were acquired in the short axis to ensure coverage of the ventricle. This 

sequence was used to allow image acquisition during free-breathing.  

2.1.12 Aortic and Pulmonary Flow 

Through-plane pulmonary artery and aortic valve flow data were acquired 

using a spiral triggered flow sequence during breath-hold183.  

2.1.13 T1 Mapping 

Myocardial T1 mapping was performed using a modified Look-Locker 

Inversion Recovery (MOLLI) sequence170.   Three successive experiments 

were performed with 3, 3 and 5 readouts respectively; pauses of 3 R-R 

intervals were allowed between experiments to allow for T1 recovery (standard 

notation 3(3)3(3)5). Images were captured in the standard mid-cavity short 

axis views in diastole, both pre-contrast (T1native) and 15 minutes post- contrast 

injection. Scan parameters for the MOLLI protocol were: FOV, 8mm slice 

thickness, flip angle 30, T1 100ms. This sequence was repeated exactly 15 

minutes after gadolinium administration to create a post-contrast T1 map.  

Gadopentetate dimeglumine (gadolinium or Gd-DTPA; Magnevist; Schering, 

Berlin, Germany) was administered at a dose of 0.15 mmol per 1 kg body 

weight at an injection rate of 2ml/s followed by a 10ml saline flush. Late 

gadolinium-enhanced images were acquired 5 minutes after intravenous 

injection of contrast. TI was calculated to null the myocardium. 
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Haematocrit (Hct.) was measured at the time of MRI, by taking a blood sample 

at the time of peripheral intravenous access. Where measured Hct. was 

unavailable, synthetic Hct. was calculated using the following formula as per 

the method described by Trielbel et al.184: 

Hct. = 0.88 – (T1blood/3240) 

2.1.14 Cardiac Magnetic Resonance Image Analysis 

All images were processed using in-house plug-ins for the open-source 

DICOM software OsiriX (OsiriX Foundation, Geneva, Switzerland)185. Off-line 

analysis was performed on departmental desktop computers or laptops. For 

quality control, MRI data were reviewed by a consultant in cardiovascular MRI 

(AT) who co-reported all clinical scans.  

2.1.15 Cardiac Volumes and Function 

Cardiac MRI scans were analysed and reported in the same way as any 

clinical scan. These data were scanned into the clinical record of the patients 

involved in the study. MRI data were stored anonymised in the system to allow 

blinded clinical analysis.  

The biventricular EDV and end-systolic volume ESV were measured by 

manual segmentation of the short axis cine images.  The endocardial borders 

were traced at end-diastole and end-systole, excluding trabeculations and 

papillary muscles from the blood pool (see Figure 6).   
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EDV and ESV were calculated for each ventricle using Simpson’s rule. 

Ventricular SV was calculated as the difference between the EDV and ESV, 

and ventricular EF (%) as (SV/EDV) ×100. All volume measurements were 

indexed for the body surface area and expressed in mL/m2. Internal validation 

of the ventricular SV data was attained by quantifying aortic and pulmonary 

valve forward flow volume, using a semi-automatic vessel edge-detection 

algorithm with operator correction. The late-enhancement images were 

independently reviewed by 2 cardiologists (DP, AT) in a blinded fashion. 

Figure 6: Region of interest created by tracing endocardial and epicardial LV border, 
excluding trabeculations 

 

2.1.16 Aortic Flow 

Aortic flow was measured by using phase contrast and cine images of aortic 

flow. Images were viewed side-by-side on the image viewer. The inner edge 

of the aorta was traced using the ‘closed polygon’ tool on OsiriX to create a 

region of interest (ROI) encompassing the lumen of the aorta (see Figure 7). 

This was propagated throughout the images including the entire cardiac cycle. 



 66 

Manual correction of the automatic propagation was performed for accuracy. 

The OsiriX plug-in was then used to measure aortic flow using the phase 

contrast images.  

Figure 7: 2D view of aortic cine and phase contrast images, with aortic lumen 
outlined.  

  

2.2 T1 mapping and Extracellular Volume 

Pre-and post- contrast T1 maps were generated using a mono-exponential 

three-parameter fit.  All maps were analysed with OsiriX (V 6.5.2 64 bit Pixmeo 

SARL, OsiriX Foundation, Geneva, Switzerland). Myocardial T1 values were 

determined by drawing regions of interest in every segment of the mid-

ventricular slice according to the AHA 17 segment model (see Figure 8). The 

global T1 was calculated as an average of these, minus any areas including 

late gadolinium enhancement. T1 values for blood were obtained by drawing 

a region of interest in the blood pool. ECV values were calculated using the 

standard formula186. 

 



 67 

 

Figure 8: Measurement of T1 and ECV using the 17 segment AHA model7. 

 

2.2.1 Study Population - T1 mapping  

Of the study population as a whole, those included in the T1 mapping study 

included 55 patients with CMP, excluding those with obesity and DMD. Of 

these, 29 patients had T1 mapping and 26 had ECV calculated. Control 

subjects excluded children with oncology disease and therefore included only 

7 healthy controls who were adults. The reason for excluding the paediatric 

controls was that their ECVs appeared much higher than expected for healthy 

individuals and their disease process may have affected these results.  

                                            
7 LV mid-ventricular short axis slice – segments 7-12 starting at 12 o’clock and moving anti-

clockwise. 

7 
12 

8 

9 10 

11 
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2.2.2 Statistical Analysis 

Data are presented as mean ± standard deviation (SD) or median (interquartile 

range) as appropriate. Categorical variables are reported as number and 

percentage. Baseline demographic, MRI and echo parameters were 

compared between DCM patients and controls.  A 2-sided t-test was used for 

normally distributed variables.  Kolmogorov-Smirnov or Mann-Whitney-U tests 

were used for skewed data. Fisher’s exact test is used for categorical 

variables. A P value of less than 0.05 was considered significant, except in the 

case of multiple comparisons, where a Bonferroni correction was applied, in 

this case the P value (0.05) was divided by the number of comparisons being 

made. 

Receiver operating characteristic (ROC) curves were constructed for binary 

outcome variables. Results were reported as area under the curve (AUC) 

along with P values, cut offs with sensitivity and specificity where appropriate. 

Linear regressions were performed in a forward stepwise fashion and 

compared by adjusted R2 to previous models. Kaplan Meier and Cox-

proportional Hazard models were created. 

All statistical analysis is performed using IBM© SPSS© Statistics Version 24. 

2.2.3 Sample Size Calculation 

Sample sizes were calculated for the MRI section of the study but this proved 

impossible for the biomarker study as no previous data existed.  
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Based on a study performed at our institution on T1 measurements on patients 

following the Senning procedure187, the sample size was calculated as follows: 

Group A (patients): ECV 25%  3.6, Group B (controls): ECV 23%  3.2 

Mean standard deviation: 3.4, Sampling ratio: 1 

Power: 0.8, Type 1 error: 5% 

Sample size: 46 

Sample sizes were not calculated for biomarkers as no paediatric data were 

available on which to base assumptions.  
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2.3 Phantom Experiments 

In order to assess the accuracy of the T1 mapping protocol at different heart 

rates, scans were done on the same MRI scanner as the study at 1.5T using 

the T1MES (T1 Mapping and ECV Standardisation) phantom manufactured 

by Resonance Health, Australia. Myocardial T1 mapping was performed using 

a modified Look-Locker Inversion Recovery (MOLLI) sequence with the same 

scan parameters as those used for patients and control subjects. Changes in 

heart rate only affected the value of T1 (ms) above 85bpm. Mean heart rate 

was 85.2 ± 17bpm for our cohort and 28.6% of patients had a mean heart rate 

above 85bpm. This should be borne in mind when interpreting data from our 

study and paediatric data (as children have higher heart rates than adults) in 

general. 

2.3.1 Genetics 

As part of the MD-Paedigree project, some patients were tested for a panel of 

genes8. I collected the blood samples for this analysis and helped to place the 

results in clinical context. All genetics testing was performed in Bambino Gesú 

Hospital, Rome. Coding exons and untranslated regions of 56 genesi 

associated with inherited CMP were analysed using Next Generation 

Sequencing (NGS).  

                                            
8 PLN, DES, LMNA, MYBPC3, MYH7, TNNT2, TNNI3, TPM1, TNNC1, MYH6, VCL, TAZ, 

LDB3/ZASP, SCN5A, PSEN1, PSEN2, SGCD, ACTC1, ABCC9, DMD, ANKRD1, NEXN, 
CSRP3, TCAP, ACTN2, PRKAG2, MYOZ2, MYL2, MYL3, CACNA2D1, LAMP2, CASQ2, 
PKP2, DSP, DSG2, DSC2, JUP, TGFB3, CTNNA3, TMEM43, TTN, RYR2, KCNQ1, KCNH2, 
CAV3, ANKB/ANK2, KCNE1, KCNE2, KCNJ2, CACNA1C, GPD1L, CACNB2, SCN1B, 
KCNE3, SCN3B, KCND3. 
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The genetics results in this study are very difficult to interpret. For ethical 

reasons, we were unable to test anyone other than probands recruited to the 

study. Therefore, due in part to the complicated nature of genetic 

abnormalities in DCM and the unknown pathogenicity of genes in this disease, 

very few conclusions can be drawn from the study. Many of the patients had 

multiple variations in the same gene, increasing the likelihood of benign 

polymorphisms, TTN being the most common gene for this.  

There were some interesting findings including TNNT2 gene mutation in 

patient 5, one of the few to have a transplant during the study and TMEM43 in 

siblings with a family history of sudden death. As with many long QT 

syndromes, the QT interval was normal in the patients with associated genetic 

defects associated with this problem. However, this does not rule out a risk of 

long QT syndrome and further investigation and monitoring is required. It is 

safe to say the genetic analysis created more questions than answers.  
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2.3.2 Ethics and Consent 

The ethics protocol and funding application was initially done by myself with 

support from Professor Burch and the project was authorised in 2013. The 

original project involved T1 mapping and measuring novel blood biomarkers 

in paediatric patients with DCM. During this time, I applied for a research 

fellowship which allowed for the project to continue with EU funding as part of 

the MD-Paedigree project. I designed the protocol and consent forms which 

were used in the final project. While I was on maternity leave, the protocol was 

changed and ethics were re-applied for to include follow up and a wider range 

of patients (see Appendix 1, section 6).  

The main ethical issues faced by the project were administration of contrast in 

children without heart disease, taking blood samples in control patients and 

those with cardiovascular disease and making the consent process child-

friendly. Gadolinium is routinely used in clinical practice and we have not had 

any adverse events recorded in study subjects or patients with cardiovascular 

disease to date. Therefore, it was the decision of the ethics committee that 

administration of contrast to patients with no contraindications was allowed for 

the study. The use of contrast was necessary for the calculation of ECV.  

The calculation of ECV in control patients posed another problem. We needed 

to identify patients without cardiovascular disease but with a need for 

gadolinium contrast. The children also needed to be old enough to follow 

instructions during a scan and to have a slightly longer scan than normal. On 

discussion with the radiographers, it transpired that many children having post-
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resection surveillance for brain tumours required contrast. I contacted the 

neurology and neurosurgical teams who were very happy for their patients to 

take part. Hence, some of these patients were recruited as controls for ECV 

measurement. Some healthy adult volunteers who were being scanned as part 

of a study into coarctation of the aorta were also used as normal controls for 

our study. The use of adults was due to the ability to administer gadolinium 

contrast to healthy individuals, which was considered unethical in children. 

Using contrast is the only way to measure ECV (as opposed to T1native, which 

is a pre-contrast measure).  

Blood samples were taken during insertion of the peripheral cannula for 

gadolinium administration. This minimised discomfort for the patients; routine 

blood tests for clinic were also taken at this time. Most MRI scans were done 

in the morning of the clinic appointment to avoid disruption of the children’s 

routines and/or inconvenience to the parents.  

Parents were contacted prior to the clinic, usually one week prior, to allow 

them to discuss the process with their child. They were contacted once more 

to confirm their participation and consent was taken formally on the day of the 

MRI. Children with claustrophobia were excluded from the study.  

The decision to make MRI results available to clinical staff was due to ethical 

considerations. As T1 mapping is not routinely measured, this information was 

not disclosed during the study and did not confound the results.  



 74 

Written consent was taken by myself DP or JH (during my absence). Consent 

was obtained from parents of children too young to consent themselves. 

Those with competence were invited to consent for themselves. There was 

also the opportunity for young children to sign an assent form to allow them to 

take part in the consent process and make their views known. All studies had 

ethical approval granted prior to the commencement of recruitment (see 

Appendices). 
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3.1 Demographics 

Patient demographics for the 51 patients with CMP and 57 control subjects 

recruited for the study are presented in Table 1.  

Controls were significantly older with a greater BSA than CMP patients (see 

Table 1). Differences in gender, systolic blood pressure (SBP), haematocrit 

and creatinine were not significantly different between groups.  

Most patients with CMP had stable disease, with the majority in NYHA class I 

(76%) and Ross class I (94%). Patients with DMD were excluded from this 

analysis (n=21).  

Most patients, (43%), had idiopathic DCM. Patients with familial CMP had a 

family history of CMP in a parent or sibling. The ‘other’ group consisted of the 

following aetiologies: Holt Oram Syndrome, thyroid hormone resistance, 

vitamin D deficiency, ischaemic CMP secondary to Takayasu vasculitis, 

ischaemic CMP of unknown aetiology, unknown neuromuscular condition, 

phaeochromocytoma (post-operative), mixed type hypertrophic and dilated 

CMP of unknown aetiology. The majority of patients were on an ACE-inhibitor 

(77%).  

3 Results - Biomarkers 



 76 

3.1.1 Biomarker Levels Between Groups 

Of the patients detailed in the whole study (CMP=76, control=88), there were 

significant differences in biomarker levels between patients with CMP (of all 

aetiologies) and control subject, see Table 1). NT-proBNP, MR-proANP, GDF-

15, sST2 and hsCRP were significantly higher in patients with CMP than 

control subjects. Patients with DMD and obesity were included in this analysis.  

Table 1: Differences in levels of biomarkers between CMP patients and control 
subjects. P<0.05. 

 CMP Control  

Biomarker (n) Median (IQR) (n) Median (IQR) P 
value 

NT-proBNP (pg/ml) 47 135.0 (61-537) 7 40.0 (36-46) 0.007 

MR-proANP (nmol/l) 38 48.8 (27-93) 25 37.3 (26-47) 0.05 

GDF15 (ng/ml) 38 290.7 (221-487) 25 221.4 (193-315) 0.006 

sST2 (pg/ml) 38 19.4 (15-30) 25 16.4 (11-23) 0.04 

MR-proADM (pmol/l) 38 0.34 (0.29-0.42) 25 0.36 (0.33-0.40) 0.41 

CT-proET1 (pmol/l) 36 41.3 (30-50) 25 38.0 (34-44) 0.07 

HsCRP (mg/l) 24 0.28 (0.02-1.1) 56 0.7 (0.2-1.8) 0.04 

Of those described in  

Table 2, i.e. with patients with DMD and those with obesity excluded (CMP=51, 

Control=54), only GDF-15 differed significantly between groups (CMP 281.4 

(220-558ng/ml) vs. control 211.0 (187-315ng/ml), P=0.01).  
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3.2 MRI 

CMP patients had significantly lower LVEF and a higher LVEDVi compared to 

controls (see  

Table 2). LV function and diagnosis were linked in that those patients with 

familial DCM (61 ± 9%) had a significantly higher LVEF than those of other 

diagnoses. Mean (+SD) of each aetiology is as follows; iDCM 42 ± 12%, 

familial 61 ± 9%, myocarditis 43 ± 13%, Anthracycline 48 ± 9%, Other 48 ± 

15%, controls 63 ± 5%. 

For this reason, patients with LVEF =/<40% on MRI (n=14) were included in a 

separate sub-analysis. On multiple linear regression, only control and familial 

patients remained significantly associated with MRI LVEF on stepwise 

analysis using changes in adjusted R2 to assess significance.  

Table 2: Demographics of study participants9.  

 

Characteristic CMP patients 

(n=51) 

Controls 

(n=54) 

Significance  

(P value) 

Age (years) 9.5 ± 4 16.1 ± 2 <0.0001 

Female  17 (33%) 24 (44%) 0.17 

Overweight 3 (6%) 12 (22%) 0.02 

BSA (m2) 1.1 ± 0.4 1.7 ± 0.2 <0.0001 

Systolic BP (mmHg) 104.0 ± 13 109 ± 10 0.48 

                                            
9 Figures are given as mean ± standard deviation. Or median and IQR for non-normally 

distributed variables. P-Values are calculated using T-test for normal data and Mann-Whitney 
U test for non-normal data. Patients with obesity and those with DMD have been excluded. 
Ethnic origin was not recorded in all control subjects. P<0.05. 
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Modified Ross Class 
(I:0-5/II:6-10/III:16-20) 

(48/3/0) (54/0/0) 
0.11 

NYHA class (I/II/III/IV) (39/8/3/1) (54/0/0/0) 0.84 

Duration of illness 
(months) 

61.4 ± 68 0 
 

Haematocrit  0.37 ± 0.04 0.39 ± 0.02 0.28 

Creatinine (/mol/L) 57.4 ± 84 53.0 ± 12 0.93 

NT-proBNP (pg/mL) 131.0 (56-569) 43.0 (35-74) 0.08 

Aetiology    

Idiopathic 22 (43%) 0  

Familial 13 (26%) 0  

Post-myocarditis 4 (8%) 0  

Anthracycline 4 (8%) 0  

Other 8 (16%) 0  

Control 0 54 (100%)  

Medications    

Diuretics 12 (24%) 0  

Angiotensin II converting 
enzyme inhibitor  

39 (77%) 0  

Mineralocorticoid 
receptor antagonist 

17 (33%) 0  

Beta-blocker 26 (51%) 0  

Aspirin 13 (26%) 0  

Digoxin 11 (22%) 0  

Ethnic Origin    

White  28 (55%) 2  

Asian 9 (18%) 1  

Black 5 (10%)   

Mixed 3 (4%)   
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Other 6 (12%) 1  

MRI    

LVEF (%) 48.9 ± 14 63.3 ± 6 0.006 

LVEDVi (ml/m2) 91.5 (79-100) 71.5 (67-73) 0.001 

LVESVi (ml/m2) 38.5 (32-60) 25.5 (22-31) 0.006 

3.3 Biomarker levels:  

On ROC analysis, markers that distinguished between children with normal 

vs. low LVEF (=/<40%), were GDF-15 (cut off 184.5ng/ml, sensitivity 87.5%, 

specificity 96.4%, P=0.03), MR-proANP (cut off 18.9nmol/l, sensitivity 87.5%, 

specificity 96.4%, P=0.004), sST2 (cut off 13.3pg/ml, sensitivity 87.5%, 

specificity 78.9%, P=0.01), see Figure 9.  

Figure 9: ROC curve of biomarkers distinguishing between normal and low LVEF 
(=/<40%) 
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3.4 Aetiology 

76 patients included are included in the following section, with aetiologies as 

follows; 23 iDCM, 14 familial DCM, 4 myocarditis, 5 anthracycline, 21 DMD, 9 

other and 54 controls (all obese controls were removed). Obese patients and 

those with DMD were included in this section.  

Most biomarker levels were significantly different between patients of different 

aetiologies of CMP (Kruskall-Wallis test NT-proBNP P=0.012; GDF-15 

P=0.002; MR-proANP P=0.006; CT-proET1, P=0.014; hsTnI, P=0.007).  

Patients with iDCM had the highest levels of NT-proBNP, GDF-15, ET-1 and 

sST2. Patients with anthracycline toxicity had especially high levels of MR-

proADM, CT-proET1 and hsCRP.  

NT-proBNP had the highest Z-scores in general and those for iDCM were 

highest (147.2, S.D. 2.1-56). The difference was statistically significant 

between aetiologies by the Kruskall Wallis test (P=0.004). Other biomarkers 

with significant differences between aetiologies included sST2 (P=0.009), for 

which Z scores were highest in iDCM (0.6, S.D -0.01-1.1), MR-proANP 

(P=0.009), also highest in iDCM (2.3, S.D. 0.6-6) and GDF-15 (P=0.02), 

highest in iDCM (1, S.D 0.02-2.65).  

HsTnI was markedly elevated in patients with DMD. Z-scores for TnI were 

calculated using published values in adults188 as no controls had TnI 

measured in our study (see Figure 10). 
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Figure 10: Levels of biomarkers by aetiologies10.  

 

3.4.1 MRI Parameters and Biomarker Levels: 

The patients included in the following analysis numbered 51 altogether, 23 

with iDCM, 14 familial, 4 myocarditis, 5 anthracycline and 9 other. Patients 

with DMD were excluded. Numbers of patients who had both MRI and BM 

levels were different for each marker and are detailed below. NT-proBNP, 

hsTnI, hsCRP and MR-proANP all correlated negatively and significantly with 

                                            
10 Plotted levels are Z scores calculated from control samples from this study and 
published data in the case of TnI244. NT-proBNP is excluded from this graph for clarity 
of results. 
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MRI LVEF (see Figures 11-14). NT-proBNP remained significantly correlated 

with MRI LVEF when corrected for multiple comparisons. 

 Figure 11: NT-proBNP correlated with MRI LVEF. ρ=-0.79, P<0.0001. (n=39) 

 

Figure 12: MR-proANP correlated with MRI LVEF. ρ=-0.57, P=0.001. (n= 32) 
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Figure 13: HsCRP correlated with MRI LVEF. ρ=-0.67, P=0.005. (n=16) 

 

Figure 14: HsTnI correlated with MRI LVEF. ρ=-0.63, P=0.006. (n=17) 

 

3.4.2 Creatinine Levels 

The level of creatinine was measured in a subgroup of patients and controls. 

The highest levels were found in patients with Anthracycline toxicity 

Lo
g 

h
sC

R
P

 

MRI LVEF 

Lo
g 

h
sT

n
I 

MRI LVEF 



 84 

(anthracycline- n=5 median 68 (47-341mol/L) vs. all other aetiologies 42 (36-

49mol/L) P=0.006); this difference was mainly caused by one extreme outlier 

(subject 24).  

3.5 Low Left Ventricular Ejection Fraction 

Of all patients, those included in the following analysis were those without 

DMD and with LVEF on MRI of less than or equal to 40%. This left 15 patients, 

of whom 5-11 had biomarkers measured on one visit (see Table 3).  Control 

subjects initially numbered 81, however, after obese control subjects were 

removed from the analysis, 57 remained. Between 7 and 37 had biomarkers 

measured in this group. 8 patients (53%) had iDCM, 1 had familial CMP, 1 had 

myocarditis and 1 had anthracycline toxicity.  

3.5.1 Difference in Biomarker Levels Between Groups   

Table 3: Difference between biomarker levels in CMP patients with low LVEF and 
control subjects. P<0.05 

 CMP Control  

Biomarker (n) Median (IQR) (n) Median (IQR) P value 

NT-proBNP (pg/ml) 11 1268 (426-2659) 7 40.0 (36-46) <0.0001 

MR-proANP (nmol/l) 8 97.2 (70-150) 20 37.0 (25-51) 0.001 

GDF15 (ng/ml) 8 436.0 (335-644) 20 219.4 (191-319) 0.007 

sST2 (pg/ml) 8 30.9 (19-37) 20 14.3 (11-22) 0.01 

MR-proADM (pmol/l) 8 0.37 (0.3-0.5) 20 0.36 (0.3-0.4) 0.67 

CT-proET1 (pmol/l) 8 39.9 (29-57) 20 36.2 (31-44) 0.56 

HsCRP (mg/l) 5 1.5 (0.3-19.3) 37 0.39 (0.2-1.0) 0.09 
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Within the group of patients with poor systolic function, those biomarkers 

which were significantly higher in patients with CMP versus controls were NT-

proBNP, MR-proANP, GDF-15 and sST2 (see Table 3).  

3.5.2 Correlation with Imaging Variables 

Of 15 patients with low LVEF and 57 control subjects, those that correlated 

significantly negatively with MRI LVEF included NT-proBNP (ρ=-0.823, 

P<0.0001), MR-proANP (ρ=-0.615, P=0.02) and sST2 (ρ =-0.533, P=0.04).  

3.5.3 Clinical Parameters 

Of those with low LVEF, (n=15), most patients were in NYHA class I (n=10/15 

67%) and Ross class 1 (n=13/15, 87%).  

On multiple regression analysis, the best predictors of modified Ross score 

(adjusted R2=0.857, P<0.0001) was NT proBNP when corrected for age, BSA, 

mean heart rate and duration of illness.  

3.5.4 Age 

The relationship between age, LVEF and biomarker levels is interesting. There 

appears to be no effect of age on NT-proBNP when MRI LVEF is taken into 

account (see Figure 15). This was true for all biomarkers (data not shown).  
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Figure 15: Relationship between NT-proBNP and age for patients with normal 
(>40%) and low (<40%) LVEF 

 

3.6 Survival 

5 patients experienced one of the combined endpoints (1 was listed for 

transplant, 2 had VAD bridge to transplant and 2 had direct transplantation 

without bridging).  

On Cox regression analysis, NT-proBNP remained the only independent 

predictor of outcome (HR=15.4, P=0.002), although caution needs to be 

exercised due to the low number of events. None of the novel biomarkers or 

any other clinical/imaging markers were predictive of outcome. 
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4.1 All Aetiologies  

4.1.1 Patient Characteristics 

Altogether, 51 patients with CMP were included in this part of the analysis and 

7 adult controls. The ages of the two groups were significantly different 

(P<0.0001, Table 4) and there was a corresponding and statistically significant 

difference in the BSA (m2) between the two groups.  There was no statistically 

significant difference in the modified Ross score or NYHA class between 

groups, signifying the stability of the patients included in the study. The 

majority of patients were white in both groups and there was no statistically 

significant difference between groups by ethnicity.  

The second part of this chapter describes differences between patients with 

idiopathic DCM and adult controls. Patients with DMD were excluded from all 

of the analyses and where they are included, this is made clear in the section. 

Children with oncological disease were also recruited as control subjects, but 

their ECV and T1native measurements were found to be higher than expected 

for healthy subjects. Due to this, they were excluded from further analysis.  

Table 4: Patient Demographics. 

Characteristic CMP patients 
(n=51) 

Controls 
(n=7) 

Significance 

Age (years) 9.6 ± 4 25.7 ± 4 <0.0001 

Female 19 (37%) 4 (57%) 0.12 

BSA (M2) 1.1 ± 0.4 1.8 ± 0.2 <0.0001 

4 Results – T1 Mapping 
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Modified Ross score (I:0-
5/II:6-10/III:16-20) 

(47/4/0) (7/0/0) 0.30 

NYHA class (I/II/III/IV) (38/9/3/1) (7/0/0/0) 0.12 

Duration of illness (months) 62 ± 69 0  

Aetiology    

Idiopathic 23 (45%) 0  

Familial 14 (27%) 0  

Myocarditis 4 (8%) 0  

Anthracycline 5 (10%) 0  

Other 9 (18%) 0  

Control 0 7 (100%)  

Medications    

Diuretics 13 (25%) 0  

Angiotensin II converting 
enzyme inhibitor 

43 (84%) 0  

Aldosterone antagonist 18 (35%) 0  

Beta-blocker 29 (57%) 0  

Aspirin 14 (27%) 0  

Digoxin 12 (24%) 0  

Ethnic Origin    

White 32 (63%) 7 (100%) 0.26 

Asian 9 (18%) 0  

Black 6 (12%) 0  

Mixed 2 (4%) 0  

Other 6 (12%) 0  

MRI    

MRI LVEF (%) 48.7 ± 14 63.3 ± 6 0.005 

MRI LVEDVi (ml/m2) 90.0 (80-99) 65.8 (63-77) <0.0001 
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MRI LVESVi (ml/m2) 39.0 (33-58) 27.2 (22-28) <0.0001 

LGE (n) 11 (20%) 0 0.06 

Average T1native (ms) 1032.0 ± 41 993.0 ± 41 0.16 

Average T1native LGE 
negative (ms) 

1029.4 ± 47 993.0 ± 41 0.22 

T1native septum (ms) 1095.4 ± 68 984.3 ± 46 0.001 

T1native septum LGE negative 
(ms) 

1085.5 ± 66 984.3 ± 46 0.003 

ECV average (%) 35.4 ± 4 30.3 ± 4 0.05 

ECV average LGE negative 
(%) 

34.7 ± 4 30.3 ± 4 0.05 

ECV septum (%) 38.5 ± 5 30.1 ± 4 0.002 

ECV septum LGE negative 
(%) 

37.8 ± 4 30.1 ± 4 0.002 

4.1.2 Cardiac Magnetic Resonance Imaging 

The MRI data of the controls and CMP patients are provided in Table 4. 

Control patients had a significantly higher LVEF than patients with CMP 

(P=0.005). Control patients also had a significantly lower LVEDVi and LVESVi 

than patients with CMP (P<0.0001 for both).  

4.1.3 Comparison of CMP Patients and Control Subjects 

Patients with CMP had higher average ECV, septal T1native and septal ECV 

values than controls (see Table 4). This difference remained once segments 

with LGE were excluded. Averaged T1native of the whole myocardium was not 

significantly different between groups. 
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On ROC analysis, septal T1native and ECV were predictive of the diagnosis of 

CMP with an area under the curve (AUC) of 0.762 (0.573-0.950, P=0.01) and 

0.845 (0.693-0.997, P=0.001, see Figure 16).  

Figure 16: ROC curve of CMP predicted by septal T1native and ECV (LGE negative) 

 

4.2 LGE Analysis 

11 patients out of 55 (20%) with CMP had LGE in at least 1 segment. There 

were a maximum of 6 segments affected in 1 patient with a mean of 1 segment 

per patient. There was a significant difference between patients with LGE 

positive segments and those without in levels of septal T1native (LGE positive 

1136.0 ± 39ms, LGE negative 1049.1 ± 71ms, P=0.05), average ECV (LGE 

positive 36.1 ± 5%, LGE negative 33.8 ± 4%, P=0.04) and septal ECV (LGE 

positive 42.0 ± 5%, LGE negative 34.4 ± 4%, P=0.02). All segments had LGE 
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segments removed before analysis. Patients were considered ‘LGE positive’ 

if they had one or more segments of LGE on analysis.  

The pattern of LGE varied. Some patients, e.g. those with DMD, had very 

specific patterns of LGE in the inferolateral segment (segments 10-11) of the 

ventricle at the mid-ventricular level on short axis imaging. This was frequently 

associated with thinning of the ventricle and hypokinesia (qualitative relative 

to the remaining myocardium). Other patients had a range of LGE locations. 

Figure 17 shows the higher levels of LGE in patients with DMD and ‘other’ 

aetiology (including ischaemic) in comparison to the rest of the group. 

Figure 17: Average number of segments with LGE per diagnosis 
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4.3 Correlation with Other Imaging Variables 

Septal T1native was significantly negatively correlated with MRI LVEF (ρ=-0.333 

P=0.05). However, this association disappeared when LGE segments were 

removed from the analysis (see Figure 18).  

Figure 18: Relationship between MRI LVEF and septal T1native (LGE included) 

 

4.3.1 Correlation with Clinical Variables 

Septal T1native (LGE negative) was significantly correlated with modified Ross 

score (ρ=0.615 P<0.0001). This result was significant even when corrected for 

multiple comparisons.  

4.3.2 Correlation with Circulating Biomarkers 

Average T1native (LGE negative) correlated with GDF-15 (ρ=0.573, P=0.001, 

n=30).  Septal T1native (LGE negative) correlated significantly with NT-proBNP 
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(ρ=0.507, P=0.006, n=28) and CT-proET1 (ρ=0.679, P<0.0001, n=26; see 

Figure 19). Septal ECV (LGE negative) correlated with CT-proET1 (ρ=0.683, 

P<0.0001, n=23). All correlations remained significant when corrected for 

multiple comparisons.  

Figure 19: Correlation of septal T1native with log10 CT-proET-1. 

 

4.3.3 Prognosis and Survival 

5 patients experienced the primary outcome of urgent listing for transplant, 

there were insufficient events to evaluate whether T1native, ECV or LGE 

predicted outcome.  

4.3.4 Gender Differences 

Splitting the groups by gender did not significantly alter the differences 

between CMP and controls seen above, except in septal ECV (LGE positive) 
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which became non-significant in males. There were no significant differences 

in T1native or ECV between groups by gender. 

4.4 Z-scores of ECV and T1native 

Patients with DMD were included but patients with myocarditis did not have 

sufficient numbers to be included in this analysis. Z-scores of septal and 

average T1native and ECV based on the adult control values were calculated 

for all aetiologies (see Figure 20).  Patients with anthracycline toxicity had the 

highest levels of septal and average ECV and T1native. Patients with iDCM and 

familial DCM also had positive Z-scores for all parameters. Patients with DMD 

had lower levels of mean T1native than control subjects. Patients with other 

causes of DCM had lower levels of mean ECV with and without LGE segments 

than control values.  
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Figure 20: Z-scores for septal and average T1native and ECV for all aetiologies11.  

 

 

4.5 Septal T1native and ECV 

T1native was significantly different between septal and other regions on paired 

T-test (septal 1059.1 ± 74ms, other 1020.2 ± 45ms, P=0.001, see Figure 21). 

This difference was further enhanced when only patients with CMP were 

included in the analysis (septal 1085.5 ± 66ms, other 1022.0 ± 50ms, 

P<0.0001); patients with DMD were not included in this analysis.  

                                            
11 Z-scores based on healthy adult controls from this study.  
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There was no significant difference between non-septal segments (mean 

value) in CMP and controls. There was no significant difference between 

septal ECV and other segments. All segments had LGE removed prior to 

analysis.  

Figure 21: Differences in T1native values (ms) between septal and other segments and 
CMP and control patients.  

 

4.6 Results with iDCM Patients Only 

In this section, results from patients with iDCM (n=23) as an aetiology are 

considered separately, with healthy adult controls (n=7). The control subjects 

are those used in the study above.   
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4.6.1 Cardiac Magnetic Resonance Imaging 

The MRI data of the healthy population and patient population are provided in 

(Table 5). Control patients had a significantly higher LVEF than patients with 

CMP. Control patients also had a significantly lower LVEDVi and LVESVi. 

Table 5: MRI results by patient group for iDCM only12.  

 DCM (n=23) Control (n=7) P value 

Age (years) 8.0 ± 5 25.7 ± 4 <0.0001 

SBP (mmHg) 99.9 ± 11 125.4 ± 24 0.001 

BSA (m2) 1.0 ± 0.5 1.8 ± 0.2 <0.0001 

Female  10 (44%) 4 (57%) 0.42 

LVEF (%) 42.3 ± 12 63.3 ± 6 <0.0001 

LVEDVi (ml/m2) 93.6 (81-144)  65.9 (63-77) 0.003 

LVESVi (ml/m2) 53.7 (36-93) 27.2 (22-28) <0.0001 

LGE 6/23 (26%) 0/7 0.17 

Average T1native (ms) 1041.1 ± 20 993.0 ± 41 0.003 

Average T1native LGE neg 
(ms) 

1035.4 ± 38 993.0 ± 41 0.03 

T1native septum (ms) 1115.8 ± 66 984.3 ± 46 <0.0001 

T1native septum LGE neg 
(ms) 

1118.9 ± 65 984.3 ± 46 <0.0001 

ECV average (%) 36.6 ± 4 30.3 ± 4 0.003 

ECV LGE negative (%) 35.4 ± 4 30.3 ± 4 0.02 

ECV septum (%) 39.9 ± 6 30.1 ± 4 0.002 

ECV sep LGE neg 39.7 ± 5 30.1 ± 4 0.002 

                                            
12 Idiopathic dilated cardiomyopathy (iDCM), left ventricular ejection fraction (LVEF), left 

ventricular end diastolic volume indexed for body surface area (LVEDVi), left systolic volume 
indexed for body surface area (LVESVi), late Gadolinium enhancement (LGE), T1 time pre-
contrast (T1native), extracellular volume (ECV). P<0.05. 
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4.6.2 T1 Mapping Data 

With only iDCM patients included and compared to adult controls all T1native 

and ECV parameters were significantly different between groups. The 

difference between septal T1native (LGE negative) was especially significant 

(see Table 5 and Figure 22). 

Figure 22: Difference in septal T1native between iDCM patients and control subjects.  

  

As was shown in the group as a whole, septal T1native was higher than that of 

other segments (septal T1native 1060.0 ± 89ms, other segments 1011.1 ± 38ms, 

P<0.0001) and higher in patients with iDCM when compared to a control group 

(see Table 5 and Figure 23).  
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Figure 23: Septal T1native compared to T1native of all other segments split by iDCM and 
controls 

 

4.6.3 Correlation with Other Imaging Variables 

No T1native or ECV parameters correlated with MRI LVEF, LVEDVi or LVESVi.  

4.6.4 Correlation with Clinical Variables 

There was no correlation between any T1native or ECV parameters and age, 

BSA, SBP or modified Ross score. Mean heart rate was correlated with septal 

T1native, but this did not remain significant when corrected for multiple 

comparisons.  

4.6.5 Correlation with Circulating Biomarkers 

There was no significant correlation between circulating biomarkers and 

T1native or ECV, septal or all segments.  
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4.6.6 Prognosis and Survival 

3 patients in this group reached the combined end point. 2 were bridged to 

transplant with a VAD and 1 was listed for transplant. There were insufficient 

events to comment on the prognostic value of T1native or ECV.  

4.6.7 Gender Differences 

In males, septal T1native (LGE negative) was significantly different between 

patients with iDCM and controls (iDCM 1083.3 ± 48ms, controls 956.7 ± 64ms, 

P=0.03). In females, LGE negative septal T1native (iDCM 1147.4 ± 68ms, 

control 1005.0 ± 15ms, P=0.005) and LGE negative septal ECV (iDCM 42.2 ± 

5%, control 30.5 ± 3, P=0.02) were significantly different between those with 

iDCM and controls.   
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The aim of this Thesis is to better understand the pathophysiology of heart 

muscle disease in children by using blood and MRI biomarkers. The 

hypotheses are that the biomarkers measured are different in paediatric heart 

muscle disease compared to controls and that they correlate with disease 

severity and differ with aetiology. We also hypothesise that there may be some 

correlation between the blood and MRI biomarkers themselves, linking, for 

example, inflammation in blood and fibrosis on MRI. This work has not been 

undertaken in paediatric heart muscle disease before and the findings of this 

thesis are, therefore, largely novel.  

5.1 Biomarkers 

5.1.1 Hypothesis 

Novel circulating biomarkers are significantly higher in children patients with 

CMP than control subjects, they correlate with LV function (ejection fraction), 

vary with aetiology and reflect remodelling processes  

Of the whole study population, comprising 81 control subjects (all except 7 

adults) and 76 patients with all aetiologies of CMP including those with DMD 

and obesity, NT-proBNP, MR-proANP, GDF-15, sST2 and hsCRP were 

significantly different between groups. However, when patients with DMD and 

anyone with obesity were removed from the analysis, only GDF-15 remained 

5 Discussion  
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significantly different between groups. A subanalysis of those with low systolic 

function (MRI LVEF </=40%), showed that NT-proBNP, MR-proANP, GDF-15 

and sST2 were higher in patients with CMP than control subjects.  

5.1.2 Patient demographics 

The diversity and case mix of heart failure clinics in the UK have been taken 

into account in the study, allowing different aetiologies to be studied. We have 

considered this heterogeneity and different sections of results correspond to 

different groups of patients. Those with CMP were further spilt into aetiologies 

for some sections, obese and patients with DMD were removed for the majority 

of the analysis (CMP=51). Control subjects with obesity and adults were 

removed in the whole section (control=54).  

The patients included in the study were very stable with nearly normal systolic 

function and minimal symptoms. Of interest, even of those patients with low 

LVEF, there were minimal symptoms and most patients were in NYHA class 

I.  This reflects the population of patients we commonly see in the heart 

function clinic and also reflects the bias inherent in the study design, with 

patients who were older and clinical well consenting more for the study than 

those who were unwell or younger. 

Control subjects tended to be older than patients with CMP. This was due to 

the fact that younger children were reluctant to have the tests associated with 

the study including blood tests and MRI scanning. The control population had 

similar systolic blood pressure, haematocrit, creatinine and gender to the CMP 

group. This suggests these were not confounding factors in this study.  
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Patients with DMD were assumed to have a different pathophysiology to other 

patients and were excluded from the bulk of the study. As could be seen when 

levels of biomarkers were compared between aetiologies, those with DMD had 

a unique biomarker profile.  

5.1.3 Growth Differentiation Factor-15 

GDF-15 is thought to be protective and anti-fibrotic in animal models involving 

injury to the heart189. GDF-15 has also been shown to be associated with 

mortality in heart failure107. GDF-15 is higher in patients with HF in adult 

studies 107. GDF-15 may be released in conjunction with other biomarkers in 

a protective cascade in acute HF. The trigger for release is unclear, but there 

may be some subclinical ischaemia/inflammation in patients with chronic CMP 

causing it’s continued release.  

GDF-15 was the only biomarker which was significantly higher in patients with 

DCM than controls, once those with DMD and obesity were excluded. This 

may be due to the aetiologies of CMP we included in the study. Cell death and 

subclinical ischaemia are triggers for the release of GDF-15105. GDF-15 can 

also be released by other cell types (see Figure 2) and this is often due to 

oxidative stress and the release of inflammatory cytokines105.  

There may be a combination of necrosis, apoptosis, fibrotic remodelling and 

inflammation in our patient group accounting for the differences seen. The 

patients in which GDF-15 was highest were those with low LVEF (less than 

40%). This suggests that those with chronic, poor function are experiencing 

continued cell death and/or inflammation, causing a cytokine response in the 
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myocardium. This suggests a disease model in which chronic CMP is an active 

process of remodelling and cell damage and not a burnt-out disease.  

5.1.4 MR-proANP 

As previously discussed, ANP causes a profound natriuresis when injected 

into experimental animals130.  In adult studies on DCM, ANP has been shown 

to be higher in patients than control subjects132, 133. It has also been shown to 

decrease with treatment in adults with DCM133. The role of ANP was explored 

in an elegant experiment into knockout (DCMANP-/-) and partial knockout 

(DCMANP-/+) mice190. Mice with DCM and normal ANP levels survived longer 

than those who had a partial or total deficiency of ANP. Mice with normal ANP 

levels had decreased pulmonary congestion and effusions, increased EF and 

decreased LV volumes. They also showed decreased remodelling with less 

interstitial and perivascular fibrosis in the myocardium. This fits with the 

described role of ANP (and BNP) as opposing the renin-angiotensin-

aldosterone system.   

5.1.5 sST2 

Soluble suppression of tumourgenicity 2 (sST2) is a decoy receptor for 

interleukin-33 (IL-33), which functions as an alarmin, signalling the presence 

of tissue damage to local immune cells. The function of this protein is to act as 

an anti-inflammatory. IT is not useful in the diagnosis of HF in adults as there 

are many causes for the signs and symptoms of this condition. ST2 is 

increased in many disease processes including pulmonary and cardiac 

disease, making it non-specific as a diagnostic marker116.  
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ST2 does, however, indicate a worse prognosis in chronic HF122; our 

population did not have sufficient events to test its utility in this regard. The 

increased levels of inflammatory proteins including GDF-15 and sST2 do 

indicate an ongoing inflammatory process in chronic paediatric CMP. This may 

be a response to subclinical and chronic cell death, or chronic/repeated 

myocardial infection. Given the trajectory of decline in function in our patients 

is linear and slowly progressive rather than in sudden, large steps, the idea of 

repeated further insults does not seem to fit the clinical picture. More likely, 

chronic inflammation occurs as a response to slow, constant cell death and 

remodelling with no new external stimuli. Interestingly, all of the markers 

described so far have the ability to be cardioprotective.    

5.1.6 NT-proBNP 

BNP is well established in both paediatric and adult HF as a marker or disease 

severity. Analysis of early data at our centre showed a cut off of >290pg/ml 

predicted worse outcome in acute heart failure over a three year follow up 

period63. In patients with chronic LV systolic dysfunction, Price et al. showed 

a similar adverse outcome in patients with BNP levels >300pg/ml191.  The latter 

study also showed raised levels in patients with LV dysfunction compared to 

controls.  

BNP is released from the ventricles in response to myocardial stretch. It is 

increased with increasing severity and symptoms in paediatric HF63. The low 

levels in our patient population go some way to explaining the low event rate. 

Patients had a very low median NT-proBNP: 135 (61-537pg/ml). This suggests 
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a stability of the patient group which explains the lack of deterioration within 

the follow-up period of the study.  

5.2 Correlation of Biomarkers with LVEF 

Biomarkers which differentiated between normal and low MRI LVEF (</=40%) 

in patients with CMP were GDF-15, MR-proANP and sST2. NT-proBNP, 

hsTnI, hsCRP and MR-proANP negatively correlated with MRI LVEF in the 

whole group. Of those with low LVEF, NT-proBNP, MR-proANP and sST2 

correlated significantly and negatively with MRI LVEF.  

5.2.1 NT-proBNP 

The correlation of NT-proBNP with LVEF is unsurprising and has been shown 

on many previous occasions in both paediatric and adult HF. BNP is released 

from ventricular myocytes when stimulated by ventricular stretch. Serial 

changes in NT-proBNP measurements have been shown to be predictive of 

change in FS (echo measurement analogous to EF) in children63. Studies in 

adults with HF with reduced and preserved EF show that BNP is increased in 

both but more in those with reduced EF. There is a negative correlation 

between BNP and LVEF192.  

5.2.2 MR-proANP 

The studies on ANP’s role in cardiovascular physiology occurred around its 

discovery in 1981. ANP was found to be negatively correlated with LVEF 

calculated by radionuclide ventriculography in patients with congestive HF193. 
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Further studies showed ANP to be associated with BNP and diastolic 

function194. ANP is released from the atria as a result of atrial stretch and 

therefore its release in situations of increased end-diastolic volume is 

unsurprising. The inability of the ventricle to fully eject during systole increases 

LVEDV and subsequently LA volume. The correlation of ANP with LVEF 

seems to have a clear explanation.  

5.2.3 sST2 

sST2 is effectively a decoy receptor for IL-33 and removes it from the 

circulation, acting to decrease the inflammatory response. HF is increasingly 

thought to involve inflammation as a key process in its progression. The finding 

that sST2 correlated with LVEF in our population is not in keeping with 

previous adult studies in this area and may reflect a difference in paediatric 

responses. In 247 adults with ischaemic heart disease, sST2 did not predict 

lower LVEF or infarct size195, however, it is known to be prognostic in MI120. It 

has been shown to correlate with LV mass index in patients with metabolic 

syndrome196.   

There is some evidence that sST2 is increased in situations of inflammation 

including cardiac damage and infarction. It has been shown to correlate with 

troponin I120. It is of interest that hsTnI was also raised in our study and 

correlated with LVEF in all patients. There may be some cell death and 

associated inflammation involved in CMP in children, which appears to be 

specific to those with DMD and/or obesity. However, sST2 is not disease-

specific and our cohort was heterogenous in terms of aetiology. It is also the 
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case that paediatric CMP is not an isolated disease in terms of body systems, 

and there is often involvement of other organs/systems including the 

neurohormonal system and respiratory system. This may confound these 

findings due to the lack of specificity of sST2.  

5.2.4 Biomarkers by Aetiology 

5.2.4.1 Troponin in DMD 

The marker that was strikingly different in one aetiology was hsTnI, which was 

significantly elevated in patients with DMD. This has not been noted in DMD 

patients before (results differ in previous papers-197-199). None of the patients 

had acute HF, myocarditis or severe HF (EF was not less than 35% in all). It 

is likely that this reflects the mechanism of heart failure/apoptosis in patients 

with DMD. 

A case report of two patients with DMD showed an acute troponin rise 

associated with ECG abnormalities suggesting acute myocardial damage200. 

These episodes were associated with cardiac chest pain, which had not been 

reported by any patients under cardiac follow up at our centre; most cardiac 

dysfunction was noted on routine screening. ECG changes and pain would be 

consistent with ischaemic cell death and there have been reports of abnormal 

coronary vasculature in myotonic dystrophy201 and DMD (although not Becker 

muscular dystrophy)202. This may be due to dystrophin-complex mediated 

production of nitric oxide, leading to a lack of opposition to coronary 

vasoconstriction200.  
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In a cross-sectional study of 129 patients who were carriers of DMD or Becker 

muscular dystrophy, 5.4% had DCM and 18% LV dilatation. No carriers had 

detectable TnI and 2 had detectable TnT (TnT detection limit 0.002 mcg/l)197. 

Another study looked at 100 patients with DMD, 25 with Becker muscular 

dystrophy, and 40 carriers of either disease. A high TnI was observed in 

patients able to row their wheelchairs in the second decade. BNP was strongly 

correlated with LVEF but only weekly with TnI. LVEF and TnI were not 

correlated199. The reasons for these findings are not clear.  

High troponin levels have also been noted in patients with myotonic 

dystrophy203, although these are not always associated with cardiac 

dysfunction204.  

5.2.5 Neurohormonal Activation 

As was noted in the introduction, the renin-angiotensin-aldosterone system 

(RAAS) is of great importance in the initially adaptive and later maladaptive 

response of the body to HF. Activation of the sympathetic nervous system 

results in both water retention and an increased risk of arrhythmias and/or 

death205. The extent of neurohormonal and sympathetic nervous system 

activation is difficult to quantify in our cohort, especially as most patients were 

on neurohormonal-axis modifying medications and the hormones themselves 

are very difficult to measure in vivo. The current model of chronic HF assumes 

activation of the RAAS and sympathetic nervous systems. The use of specific 

medications did not appear to affect survival in this study; however, this was 

difficult to assess due to the small sample size.   
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There is evidence of neurohormonal activation in children with CMP. BNP is a 

well-known marker of neurohormonal activation and it has been shown to be 

of use in the diagnosis and prognosis of children with heart failure (see section 

30). In a small sample of 19 children, Ratnasamy et al. found elevated levels 

of NT-proBNP associated with increased severity of HF206. It was indeed 

increased and prognostic in our study (although with a low event rate).  

5.2.6 Obesity 

Obesity was common in both patients and controls subjects in this study due 

to the methods of recruitment. Patients with DMD were also more likely to be 

obese due to their myopathy and steroid use. Obesity is a risk factor for 

cardiovascular disease and increased levels of biomarkers for oxidative stress 

and inflammation have been found in obese subjects without cardiovascular 

disease207. For this reason, subjects with obesity in both groups were excluded 

from the analysis. Subjects with DMD were also excluded from the majority of 

analyses due to the differences in pathophysiology in this condition compared 

to CMP of other aetiologies.  

5.2.7 Diverse Aetiologies 

In terms of aetiology, the cases included in our cohort were representative of 

all patients being followed up in a heart muscle disease clinic. This meant that 

the case mix was broader than in registries including only patients with DCM. 

In comparison with a UK-based registry, our case mix varied208. The 

prevalence of idiopathic CMP was similar in our group and in the published 

data (43% vs. 48%); however, we had lower rates of post-myocarditis CMP 
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(8% vs 22%). Many patients with new-onset myocarditis were not eligible for 

our study due to disease severity, so this aetiology was underrepresented.  

We had no patients included in the study with metabolic disease, which is in 

part due to the complexity of the disease process and the inability to tolerate 

contrast and/or MRI scanning. We were also wary about measuring 

biomarkers in patients with a metabolic disease process, although this was not 

a strict exclusion criterion.  

A large American and Canadian cohort had the following mix of aetiologies; 

idiopathic disease: 66%, myocarditis: 46%, neuromuscular disease: 26%1. 

This study included a prospective and retrospective cohort, so was more 

similar to our study in the mix of patients. Again, the differences are 

unsurprising given the selection bias inherent in our study; only patients who 

were old enough and well enough to tolerate a non-sedated MRI were 

selected. The percentage of children with neuromuscular disease in our study 

was 29%.  

DMD was excluded from the majority of the analysis due to the differences in 

this disease from CMP of other causes. The mechanism of CMP in DMD is 

thought to be due to fibrofatty infiltration as with skeletal muscle. This is 

different to the ‘toxic-insult’ model seen in other forms of this condition, such 

as after myocarditis and anthracycline administration. There is some evidence 

that cardiovascular deterioration is caused by inflammation in patients with 

DMD as shown by MRI and biopsy209. There have been studies showing an 

increase in myocardial fibrosis in patients with DMD on MRI scanning210. 
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These findings, although interesting, would have biased the results of the 

study with both circulating and imaging biomarkers likely to be altered by the 

underlying pathophysiology of the disease.  

5.2.8 Data Collection 

The prognostic power of the study was limited by the small number of events 

that occurred in our population, the reasons for which are discussed in this 

chapter. The other main issue with the project was non-uniformity of data 

collection. Unfortunately, due to the chronic nature of the condition and the 

risk of traumatizing patients, some aspects of the study were omitted for 

certain patients. For example, some patients experienced claustrophobia and 

were unable to tolerate the MRI scan. Others had a needle-phobia and were 

unable to have the biomarker levels or any contrast during the scan. Patients 

were able to consent to all or part of the study as per our ethics approvals and 

this led to many incomplete datasets which confounded the analysis of data.   

Variable data collection was a difficulty experienced many times in the study. 

The use of IV contrast certainly complicated matters and it is interesting to 

note that T1native was significantly different in patients with CMP, thus negating 

the use of contrast in future studies into T1 mapping. However, the problem of 

blood tests remains. Those with chronic CMP do not require very regular blood 

tests and these are often done in secondary centres rather than at ours. 

Further studies into biomarkers in CMP may require a larger infrastructure, 

allowing for regular, local blood testing and serial measurements in ambulatory 

patients.  
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5.2.9 Stable Patient Population 

As previously mentioned, the patients recruited to this study had a relatively 

low NT-proBNP level; 135 (61-537pg/ml) and low-normal LVEF 48.9 ± 14%.  

The patients were ambulatory outpatients with stable CMP and few if any 

symptoms (NYHA class was I in 71%). This population was selected due to 

their ability to tolerate an MRI scan and IV contrast administration during the 

study. However, due to the clinical and age restrictions (breath holding is 

difficult for children below 8 years), there was an inherent bias in the patient 

selection.  

Patients tended to be well, stable and older. The lack of difference in some 

biomarker levels may be a reflection of this stability rather than a true lack of 

difference between CMP and control subjects. Diffuse fibrosis (by T1 mapping) 

may also not be sufficiently severe in our population to show a true difference. 

Patients were followed up clinically, but uptake of MRI at follow up was 

insufficient to draw any conclusions and was not included in this Thesis. 

Unfortunately, ethical considerations precluded the use of gadolinium contrast 

at follow up and therefore many patients elected not to have further biomarkers 

tested at this time.   

There were also very few patients who reached the combined end point of 

listing for transplant, heart transplantation, VAD insertion or death. In fact, 

there were no deaths in this cohort during the study period. This led to 

difficulties assigning prognostic utility to any marker both circulating or 

imaging. Again, this outcome appears to be due to the inherent bias in the 
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selection of participants to the study. Although patients were chosen at 

random, the age constraints and reluctance of those who were unwell to lie 

flat and have extra tests confounded the sample in this study.  

5.2.10 Age 

The control subjects were significantly older than the patients with CMP in this 

study, due to the process of recruitment of normal controls. There was also a 

selection bias inherent to the study, meaning older children who were able to 

cooperate with the MRI scan, which included breath-holding, were selected, 

thus excluding younger and potentially sicker patients.  

The majority of patients presenting with DCM do so before the age of 1, so 

those in the study had time to recover and/or be treated prior to the study’s 

commencement. The most severely affected patients may already have been 

fitted with a ventricular assist device, have been transplanted or died prior to 

enrolment in the study. Of course, there were also many who had recovered 

and took part in the study. We were unable to include patients with 

decompensated heart failure who were inpatients at the time of the study, in 

line with the MRI protocol. One acutely unwell patient did have bloods taken, 

but all biomarker levels were extreme outliers in statistical analysis and it was 

decided to halt recruitment of severely ill patients.  

5.2.11 Low Event Rate 

Patients with different aetiologies have different patterns of survival. A large 

north American registry found neuromuscular disease and familial DCM had 
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the worst survival, whereas patients with myocarditis, inborn errors of 

metabolism and malformation syndromes had the best freedom from death or 

transplant1.  

In our cohort, myocarditis had a worse prognosis than idiopathic DCM, 

followed by ‘other’ causes. The difference between aetiologies in our study 

was not significant on a Kaplan Meier plot (LR 0.566). These differences 

appear to represent the selection bias of our study and the inclusion criteria of 

the study and registry. The grouping of several different pathologies into one 

overarching group of ‘CMP’ may have affected the analysis and conclusions 

of this study.  

The reason for choosing these patients were that they represented a cross-

section of patients commonly seen at a heart failure clinic and similar 

treatments are used for these patients. However, the study group may make 

drawing conclusions difficult as each group seems to have a different pattern 

of biomarkers. Importantly, most patients do not have an identified cause for 

their CMP and more work needs to be done to improve diagnosis of the 

aetiology of CMP. 

5.3 T1 Mapping 

The results of this section were presented in two parts. Adult controls were 

used due to difficulties finding truly healthy paediatric controls who were able 

to have Gadolinium injected due to ethical considerations. The paediatric 

controls having gadolinium did have other pathologies. Once paediatric control 
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data were analysed, it was noticed they had higher levels of creatinine, 

suggesting renal damage and higher ECV, suggesting cardiac 

damage/fibrosis. Importantly, paediatric control patients had significantly 

higher ECV in inferior and lateral segments (10 and 11). These differences 

were likely to confound our results and these controls were excluded from the 

study. The entire patient population (excluding those with DMD) were studied 

and then those with iDCM were studied separately.  

5.3.1 Demographics 

As with the entire study, those in this analysis were very stable with low levels 

of NT-proBNP, normal NYHA and modified Ross scores on the whole. This 

population was representative of the majority of patients seen in heart function 

clinic. However, those with worse function and clinical deterioration were not 

able to be included due to the difficulties in administering contrast and 

reluctance in allowing them to have an MRI scan. Depending on the severity 

of the deterioration, they were often also too unwell for contrast injection at 

this time. The patients needed for the MD-Paedigree project (stable 

DCM/CMP with a dilated ventricle) affected the patients chosen for this study, 

as those with acute deterioration were not able to have MRI scanning and 

were therefore not funded to participate in this study.   

5.3.2 Hypothesis 

Patients with CMP of all aetiologies have significantly higher levels of T1native 

and ECV than control subjects when LGE segments are removed from 

analysis. MRI assessment of fibrosis will correlate with both severity of disease 
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(ejection fraction), and functional class and will vary with aetiology. Those 

blood biomarkers that reflect fibrosis and remodelling will correlate with the 

MRI assessments of fibrosis/remodelling. 

5.3.3 T1native and ECV 

With adult controls, there was a significant difference in septal T1native and ECV 

between control subjects and patients with CMP in this study. This finding is 

in keeping with adult studies of DCM176, 182. T1native and ECV are indirect 

measures of fibrosis and this assumption relies on the assumption that the 

extracellular space is expanded due to increased interstitial fibrosis rather than 

oedema or other infiltrates. It may be that the differences seen were due to 

oedema/inflammation instead, however, adult studies involving biopsy in 

patients with DCM show a positive correlation between histological fibrosis 

and T1/ECV211. Although the prevalence of fibrosis appears lower in paediatric 

patients156 with CMP than adults157 and this has been considered a 

fundamental difference in the disease in children however our results suggest 

fibrosis is common even in mild heart muscle disease.  

The myocardium in DCM is thinner than in normal hearts and MRI scans in 

children are more prone to movement artefacts.  The difference may also lie 

in the inherent difficulties in performing MRI scans on un-sedated young 

people; with difficulties breath-holding well and staying still. However, a recent 

study on children following heart transplantation showed a higher septal ECV 

for transplant recipients than control subjects as well as a correlation between 

total and septal ECV with collagen volume fraction on biopsy212.  
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The finding that ECV was different between groups may be true or may be due 

to any number of reasons including Gadolinium wash-out kinetics, renal 

function of patients and timing of T1 measurement after Gadolinium dosing 

(although the latter was homogenous in our study). There may have been 

differences in these parameters despite a similar protocol being used. T1native 

and ECV have been shown to be predictive of an adverse outcome213, which 

we have been unable to show in this study due to the stability of the patients 

included.  

5.3.4 Late Gadolinium Enhancement 

20% of patients with CMP had LGE in at least one segment. Septal T1native, 

septal and average ECV were significantly associated with remote areas of 

LGE. Segments with LGE were excluded from the measurements of ECV and 

T1native (unless expressly stated) as they would have skewed the T1native and 

ECV measurements to higher levels. LGE analysis is widely practised and the 

knowledge that LGE segments have higher ECV and T1native values is 

expected. By definition, areas of high LGE show focal fibrosis, which would 

have higher T1native and ECV.  

5.3.5 Duchenne Muscular Dystrophy and Late Gadolinium 

Enhancement 

It is unsurprising that patients with DMD and ischaemic heart disease had 

higher numbers of LGE positive segments than those with other aetiologies. 

The association between ischaemia and replacement fibrosis is well known. 

DMD has been shown to be associated with the presence of LGE in a 
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characteristic pattern involving the inferior and lateral myocardial segments214. 

Our patients also had a similar, specific infero-lateral location of LGE. LGE has 

also been associated with clinical presentation in DMD215.  

The actual mechanism of fibrosis in DMD is thought to be due to fibro-fatty 

replacement of myocytes due to the dystrophin gene mutation. This is similar 

to the process taking place in skeletal muscle and has been confirmed in 

dystrophin-deficient mice216.  

MRI may provide a useful method of screening/monitoring patients for 

worsening cardiac involvement in future, especially as mobility and body 

habitus make echocardiography difficult in these patients.  

5.3.6 Correlation of Septal T1native with Left Ventricular 

Ejection Fraction 

Due to few events in this group, disease severity was a surrogate ‘end-point’ 

and septal T1native was increased with severity (worse LVEF) in our cohort. 

This suggests we are seeing an increased level of fibrosis with increased 

disease severity. However, the fact that LGE negative parameters were not 

correlated with LVEF suggests this correlation is explained by LGE rather than 

any more diffuse fibrosis. It may be that changes in LVEF occur at a later stage 

in disease progression where LGE is already noted. The lack of correlation of 

septal T1native with ECV is puzzling.  

If LVEF were to truly correlate with fibrosis this supports the theory that 

increased remodelling is associated with increased fibrosis and longer T1native. 
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Increased septal T1native fits with the pattern of mid-wall fibrosis seen in adults 

with DCM, which may have as its precursor a greater concentration of diffuse 

fibrosis before sufficient contrast with surrounding myocardium develops.  

This correlation has been noted before in patients with congenital heart 

disease217. Tissue characterisation including, but not confined to T1 mapping 

may become more widespread as MRI scanning becomes a more routine part 

of monitoring cardiac disease. Patients in our centre are now having annual 

MRI scans for functional assessment with rapid results reported to clinic on 

the same day. It may be that the within-patient comparison of the amount of 

fibrosis will be available and will allow for characterisation of the degree and 

extent of remodelling.   

5.3.7 Correlation with Clinical Variables 

Septal T1native was significantly correlated with modified Ross score. This has 

not been shown in children but in adults T1native and ECV are correlated with 

all-cause mortality and hospitalisation218, it is unsurprising that they are also 

correlated with modified Ross score. It may well be that the true prognostic 

association between T1 indices and outcome was missed in this study due to 

the relatively low numbers of ‘events’ occurring during follow up. This is an 

issue inherent in the design of this study. Improvements in the motion-

correction and rapidity of scanning techniques should help to negate 

difficulties in patient scanning and recruitment in the future. The similarities 

between ECV and T1native in our study, may lead to further studies in children 

using T1native only (avoiding contrast administration).  
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Not all patients in this study were able to have Ross score/NYHA class 

recorded. Those with DMD were removed from this evaluation. The inability to 

gauge cardiac-related exercise intolerance versus that caused by muscle 

weakness is an important issue in patients with DMD. It may be that MRI 

becomes more important in the detection and monitoring of cardiac 

involvement in these patients as techniques become easier, cheaper and 

faster. There is evidence that presence of LGE correlates with clinical 

parameters in these patients and may be an early warning of cardiac 

involvement219. It should also be noted that echocardiography is technically 

difficult in these patients due to habitus and mobility.  

The relationship between modified Ross score and T1 indices is independent 

of LVEF. The theory that as systolic function declines, signs and symptoms of 

heart failure become apparent, is not borne out by our results. This is 

supported by the fact that those with poor systolic function continued to have 

a low NYHA/modified Ross score on average.  The reality of the association 

is more complex with various psychological and conditioning factors involved.  

5.3.8 Correlation with Biomarkers 

As both blood and imaging biomarkers are related to remodelling and fibrosis, 

the correlation between the two was sought. Average T1native was correlated 

with GDF-15, septal T1native with CT-proET1 and BNP, and septal ECV with 

CT-proET1. As has been explained in prior sections, all of these markers 

correlate with fibrosis or increased remodelling.  
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The correlation of biomarkers and T1 indices is interesting. Both measures 

increase with severe HF in adult studies. The correlation here may well be 

linking the diffuse fibrosis, adverse remodelling and increased LV diameters 

in this study. The biomarkers which were correlated with T1 indices included 

those concerned with fibrosis including ET-1 and GDF-15. NT-proBNP was 

also increased, but this is already known to increase with severity in HF in 

children. 

Cardiac biomarkers and diffuse fibrosis are both indirect ways of indicating 

cellular processes which may be occurring in paediatric HF. One aim of this 

study was to characterise HF in terms of various processes including fibrosis. 

Adverse remodelling appears to have a role to play in the future of these 

patients. It is still unclear; however, which patients will go on to get worse. 

Earlier prognosis remains the goal and this still eludes us.  

The biomarkers which showed a correlation with T1 and ECV are detailed 

below: 

5.3.9 Endothelin-1 

ET-1 correlated with average T1 native, and septal ECV. It has been 

implicated in the increased expression of fibronectins and collagens in ageing 

mice hearts. Inhibition of ET-1 suppressed pro-fibrotic signals and synthetic 

ET-1 upregulated fibrosis in young mice220. Diabetes increased ET-1 in wild-

type mice; further, it promoted fibrosis and HF through accumulation of 

fibroblasts via endothelial to mesenchymal transition221. The septal region was 

especially important in this correlation. The reason for this is unclear, but may 
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reflect the importance of septal fibrosis in CMP as a marker of disease 

progression/severity.  

5.3.10 Growth Differentiation Factor-15 

GDF-15 correlated with septal T1native in this study. It is linked with 

remodelling/ reverse remodelling in adults. LVADs cause reverse remodelling 

by offloading the failing heart. Levels of GDF-15 taken prior to device 

implantation were higher in patients with HF than in controls, and these levels 

decreased after LVAD implantation and remained stable over 6 months161. 

Interestingly, GDF-15 levels correlated with fibrosis. GDF-15 also promoted 

collagen secretion by fibroblasts222.  

5.3.11 Brain Natriuretic Peptide 

BNP was correlated with septal T1native in this study. There has been a 

previous study showing an independent correlation between BNP and 

extracellular volume and therefore fibrosis in patients without MI, amyloidosis 

or HCM223. Fibrosis mass, calculated as the sum of segments with LGE, 

correlated significantly with BNP in a study in patients with HCM224,225.  

The mechanism of induction of fibrosis by BNP is unclear, however BNP is 

released due to myocardial stretch in the context of volume or pressure 

overload. BNP may not be responsible for the production of fibrosis but may 

instead be increased in the context of a failing heart, with remodelling and 

fibrosis occurring at the same time. In opposition to its role as a pro-fibrotic 

marker, Kapoun et al. found that BNP decreased TGF-β-induced effects on 
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primary human fibroblasts (including collagen production)226 and increasing 

BNP may be a compensatory response to remodelling. 

5.3.12 T1native and ECV in Different Aetiologies 

Patients with anthracycline toxicity had higher levels on average of T1native and 

ECV. Anthracycline toxicity remained an independent predictor of average 

ECV, which is a surrogate marker for diffuse fibrosis. A plausible reason for 

this could be remodelling secondary to cardiac damage caused by 

chemotherapy. Increased interstitial fibrosis could be due to the attempts at 

healing the damaged myocardium, which would eventually lead to diastolic 

dysfunction secondary to increased stiffness.  

Anthracycline chemotherapeutic agents cause cell death by intercalation of 

nucleic acids; interfering with cell replication and leading to anti-tumour 

effects227. There is some evidence that up to 50% of people have diastolic 

dysfunction on echocardiogram following anthracycline-based 

chemotherapy228. Diastolic dysfunction seems to precede systolic dysfunction 

and is useful in the earlier detection of cardiotoxicity229. In a rat model of 

anthracycline-induced cardiotoxicity, the addition of an agent which reduced 

fibrosis (SIRT1 activator) improved cardiac dysfunction and survival following 

doxorubicin-induced chemotherapy230.  

Patients with iDCM also showed a similar and unique pattern of raised T1native 

and ECV values on average above control values. Interestingly, mean T1native 

was lower in all patients than septal T1native, suggesting again, that septal 

T1native is of particular significance in this disease process. Patients with DMD 
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showed an even more marked difference between septal and other regions, 

with levels of average T1native below those of control subjects. Patients with 

ischaemic CMP showed a similar pattern with septal ECV rather than T1native.  

The majority of patients with iDCM (non-ischaemic) in adult studies have LGE 

positive segments (up to 70% in some patients231). In this particular dataset, 

patients were more likely to have septal than lateral mid-wall fibrosis.  Septal 

areas of fibrosis are a predictor of sudden cardiac death and implantable 

cardiac defibrillator implantation232. 

5.3.13 Septal region 

The septal myocardium proved the easiest to measure T1 in and this also 

yielded the most significant results. The differences seen may, therefore, be 

due to greater accuracy in the septal region, rather than due to true regional 

differences in the amount of fibrosis present. This is probably explained by a 

greater wall thickness in this region and less artefact due to movement in the 

centre of the image. This is supported by the fact that adult subjects (with 

presumably better ability to breath-hold and remain still) showed a greater 

difference from patients than paediatric controls (however, the oncological 

disease process in paediatric controls may be partially to blame). The findings 

may all be due to the movement artefact which would perturb the model-fitting 

process of T1 mapping, which assumes there is no movement between 

images acquisitions.  

Alternatively, there is a known association with mid-wall fibrosis in DCM in 

adults and this is linked to an increased risk of sudden cardiac death brought 
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on by arrhythmias233. Two studies detailing the extent and pattern of fibrosis 

in iDCM showed septal fibrosis is more prevalent than lateral mid-wall 

fibrosis231, 232. We may be seeing the precursor to this discrete mid-wall fibrosis 

as an increase in diffuse fibrosis in this region. It is of interest that adult 

subjects had a lower T1native than children with CMP, which does not support 

the theory that fibrosis is an inevitable age-related change (or at least that 

CMP causes more fibrosis than ageing). A follow up study of patients with high 

T1native in the septal region would be informative in this regard. Previous 

studies on adults have found higher septal T1native in healthy myocardium234. 

5.4 T1 Mapping in Idiopathic DCM 

5.4.1 T1native and ECV 

With iDCM patients alone included in the analysis, the significance of 

differences in average and septal T1native and ECV increased as both of these 

indices were higher in patients with iDCM than in those of different aetiologies 

(although not significantly, except for septal T1native). The reason for including 

this analysis was to further investigate the differences between patients with 

DCM versus controls. Our patient group was initially heterogenous and our 

theory was that this would dilute the differences seen.  

Removing all but those with one specific disease process did indeed reveal 

greater differences, suggesting we are unmasking a true, significant difference 

in the amount of diffuse fibrosis in patients with iDCM vs controls, despite the 

resulting decrease in numbers. This suggests a common pattern of fibrosis in 
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patients with iDCM including increased septal fibrosis. Whether this 

progresses to replacement fibrosis, giving the pattern of discrete mid-wall 

fibrosis seen in adults, requires further follow up.  

5.5 Potential Confounders 

5.5.1 Control subjects 

The results have been split into two separate sections; one comprising all 

subjects and the other only those with iDCM. Children requiring Gadolinium 

enhanced MRI scans who were healthy proved difficult to find. Ethically, we 

were unable to recruit true ‘healthy’ controls, as giving Gadolinium was 

considered too risky. The compromise involved recruiting patients with non-

cardiac disease and no signs of cardiovascular disease. These patients were 

mainly recovering from intracranial tumour excision and/or chemotherapy. We 

excluded those having cardiotoxic chemotherapy from the study. 

Unfortunately, these patients had still undergone extensive and challenging 

treatment for serious disease and can in no way be considered ‘healthy’ 

controls. Due to this, they were excluded as controls in this analysis and only 

adult controls were used. As an ongoing part of the project, we will measure 

T1native (without contrast) in healthy, paediatric controls in the future.  

We therefore recruited another group of healthy controls, who were adults. 

They were truly healthy and had no previous past medical history of note. 

However, as noted below, age may be a significant factor influencing the 

degree of fibrosis in a subject/population. Of course, as mentioned, measuring 
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ECV in children is extremely difficult and ethically challenging, so the studies 

on age-related T1 values are all in adults. The findings of these studies may 

be able to be extrapolated backwards, or this may be a false assumption. 

There is some dispute as to the actual influence of age on T1 values. 

The mean levels of T1native and ECV measured in our study are analogous to 

normal reference values in adult studies at 1.5T. Average T1native in the mid-

ventricular short axis slice was 991.1 ± 34ms in an adult study and 993.0 ± 

41ms in our study (P=0.11)235. Normal reference values of ECV in one adult 

study (albeit using a FLASH IR sequence at 1.5T) was 28.0 ± 0.004%, 

whereas our normal control subjects had a value of 30.3 ± 4% (P=0.13). The 

only segment in which values were significantly higher were in T1native values 

in the septal segment 984.3 ± 46ms versus 943 ± 45ms (P=0.02)236. The 

reasons for this are unclear. This may be to do with the low average age of 

our control subjects, although the same paper quoted a similar septal T1native 

for those <30 years of age of 944 ± 50ms. The reason for performing our own 

control scans was to negate the effects of different machines, protocols etc, 

which may bias these results.  

5.5.2 Age  

There is a widely held belief that ageing causes an increase in diffuse fibrosis 

in the myocardium237. Studies in adults have shown a variable influence of age 

on T1; with some studies showing no influence of age238, and various gender-

dependent influences234, 239. Studies vary on the proposed changes in T1native 

with age with increases239, decreases240 and no change with age241 reported. 
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This is the reason results were reported with adults included and excluded in 

this Thesis. It is difficult to know what the true effect of age is on normal T1 

values.  

There are few studies on comparisons of T1native or ECV between adults and 

children212. We found lower values of T1native in adults than children in our 

study. There was no significant difference between any T1 or ECV indices in 

control subjects when adults and children were compared, although average 

T1native did approach significance (P=0.054) with an independent T-test. Adult 

T1native values were lower (1000  41ms in adults vs. 1048.9  41ms in 

children), although this was not statistically significant. These findings do not 

fit with the accepted wisdom that fibrosis increases with ageing. It may be due 

to the control children in our study had other pathologies. This may have 

affected the results of this study and reflects the difficulty of finding healthy 

paediatric controls in research. A further study on T1native (not requiring 

contrast) is being planned, using truly healthy control children.  

5.5.3 Gender 

In 75 healthy subjects aged 20-90, T1native and ECV were higher in age-

matched females than males239. In 231 normal controls aged 11-81 (using the 

ShMOLLI protocol), T1native was also found to be higher in females than 

males240. The reason for these differences is not known.  

There appeared to be some influence of gender in our study; female children 

appeared to have a significant difference between T1 and ECV parameters 
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whereas males did not show such a great difference. The link between female 

gender and T1 values is interesting and is an area for further research.  

5.5.4 Accuracy and Precision 

T1 mapping results can be affected by many parameters including Gadolinium 

clearance time, time of sampling, dose of Gadolinium, body composition and 

haematocrit174. We optimised our study design to minimise the effects of the 

majority of these factors, including a strict study protocol with the same 

Gadolinium dose (by weight) for each patient and the same time of sampling. 

The same T1 mapping sequence was used in all experiments170. ECV is 

arguably more accurate and was developed to negate most of the intra-subject 

effects, as it is a ratio and should remain equally perturbed from the ‘true’ value 

of T1 both before and after Gadolinium administration.  

However, the values of T1 in our patients were impossible to link directly to 

the amount of fibrosis present in the myocardium as we did not perform 

biopsies due to ethical considerations. Even if biopsies were performed, these 

are normally taken from the RV and do not always give an accurate indication 

of fibrosis in the LV. Therefore, it is difficult to truly prove the accuracy and 

precision of ECV and T1native in our cohort. Further studies with larger numbers 

of normal subjects could allow for the discovery of normal values by age and 

sex. This would help to design further studies using T1 to measure diffuse 

fibrosis in paediatric disease. 
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5.5.5 LV Volumes 

The analysis of MRI data including LV volumes and function were done at the 

time of the study for clinical reasons. These data were not reanalysed prior to 

the results analysis in this project. The studies were all supervised by AT and 

performed by either JH or DP depending on the time of the study. This may 

have led to bias in the measurements. T1 and ECV measurements were all 

done by DP blinded to disease and timepoint.  

5.5.6 Inflammation 

The T1native and ECV changes seen in patients with CMP may have been due 

to inflammation and not fibrosis. The presence of active inflammation in 

chronic heart failure is something that is not well understood. It may be of 

importance in DMD and herald disease progression242, but the importance of 

this process has not been investigated in other aetiologies. It may well be that 

an increase in interstitial space due to inflammation (and therefore, oedema) 

is occurring in patients with CMP. HsCRP and CRP were measured in a subset 

of patients and did not correlate with T1native or ECV, which suggest 

inflammation was not active in these patients. There were correlations 

between imaging markers and blood markers of remodelling and fibrosis, 

suggesting this may be the cause of the T1 and ECV changes seen. T2 

mapping could help to answer this question, however, further sequences were 

difficult to add into the scan protocol due to the age of patients and the length 

of the scan required. This could be the basis of future research.  
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5.6 Prognosis 

The lack of prognostic prediction by either biomarkers or T1 indices may be 

due to the relatively few events occurring during the study. A longer follow up, 

larger patient population and more acute cohort may be necessary for future 

studies. Interestingly, a patient who had biomarkers measured during an acute 

deterioration for HF did have very high levels of all biomarkers, several orders 

of magnitude higher than other patients. This patient’s data were not included 

in the analysis due to the skewing values. Also, patients who eventually 

reached the end-point had many other comorbidities and all investigations 

were not performed on all patients. Patient safety and comfort remained 

paramount during the study. The main problem with recruiting acute HF 

patients is safety. They are often too young and unwell to tolerate an MRI scan 

in the acute period.  

5.7 Potential Applications and Future Directions 

The potential for circulating biomarkers is great. The use of NT-proBNP as a 

remote-monitoring tool in acutely decompensated HF patients in paediatrics is 

already well established. Levels are taken in the acute setting and allow for a 

decision on future care/admission with no cardiac imaging required (in the 

short term). The other biomarkers may be able to augment these data by 

forming a panel for ‘screening’ for cardiac disease. This would of course be 

limited to the cardiac-specific biomarkers in this group.  
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There may be an application for a panel of biomarkers to be part of an initial 

acute prognosticating tool in the first stages of presentation with CMP/acute 

HF. The difficulties with this approach include the variable time of presentation 

of patients to a cardiac team after first symptoms.  

The most promising biomarker for immediate practical application appears to 

be hsTnI in DMD. This marker is used frequently in many peripheral hospitals 

in adult ischaemic heart disease and is thus readily available in peripheral 

centres. If levels were found to be raised in patients with DMD prior to LV 

dysfunction, this could be used in routine outpatient screening to allow early 

detection and treatment in this vulnerable group. The current system of routine 

echocardiograms can prove time-inefficient and technically challenging due to 

patients’ lack of mobility and habitus. A fast blood test would be preferable to 

many families and would cut down clinic waiting times and allow for patient 

selection for further screening. Of course, further research is required to test 

whether the rise in troponin occurs earlier than LV dysfunction as our cohort 

had already had cardiac deterioration.  

For those without DMD, GDF-15 elevation suggests an antifibrotic response 

is important in children and pursuing this in treatment strategies may be more 

important than neurohormonal treatments that have been unsuccessful in 

paediatric CMP.  In those with the lowest EF, sST2 was also raised which is 

again consistent with a future therapeutic regime targeting fibrosis.  

As MRI scanning becomes faster, cheaper and more widely available for 

younger patients, tissue characterisation may become a more realistic 
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measure in a variety of disease processes. There is already some use of T1 

and T2 mapping in patients with acute inflammation and oedema. The next 

step would be measuring normal values in different genders and ages. This 

would allow for comparison to a normal range and negate the use of normal 

control subjects after this. However, the use of gadolinium or even IV 

cannulation in healthy children is not considered ethically reasonable and 

leads to difficulties in measuring ECV in normal children. T1native, however, 

should be possible and recent studies have suggested comparable ability of 

ECV and T1native to detect and quantify fibrosis243. 

The abnormalities of T1 and ECV in this study are consistent with the blood 

biomarker findings implicating fibrosis and may be useful as targets of disease 

progression or even therapeutic interventions in the future. 

5.8 Conclusion 

This study is the first to measure the levels of biomarkers in children with CMP 

and normal controls and the first to measure T1 indices in paediatric patients 

with CMP. As such, it has allowed some insight into the pathophysiology of 

CMP in children. The data support a process of fibrosis/remodelling following 

an initial insult. Patients with DMD seem to undergo constant, low-level 

myocyte cell death and replacement fibrosis as the mechanism of heart failure. 

Troponin levels may allow for biochemical screening for this population.  

Circulating biomarkers and T1 indices correlate with LVEF in paediatric CMP. 

The chronicity of disease in this cohort makes comments on prognosis difficult, 
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but there is evidence that there are higher levels of biomarkers representing 

processes including fibrosis and inflammation in paediatric HF. Septal fibrosis 

appears to be especially high in paediatric CMP and may precede the septal 

mid-wall fibrosis seen in adults.  

Whether early therapeutic intervention, targeting fibrosis in paediatric heart 

muscle disease, will alter the prognosis is uncertain but this thesis raises the 

possibility of that strategy and the thesis offers blood and MRI biomarkers that 

could be used to track such treatment. 
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