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Abstract

Results for elastic atom-atom scattering are obtained as a first practical application of RmatRe-

act, a new code for generating high-accuracy scattering observables from potential energy curves.

RmatReact has been created in response to new experimental methods which have paved the way

for the routine production of ultracold (µK) atoms and molecules, and hence the experimental

study of chemical reactions involving only a small number of partial waves. Elastic scattering

between argon atoms is studied here. There is an unresolved discrepancy between different Ar2

potential energy curves which give different numbers of vibrational bound states and different scat-

tering lengths for the Ar2 dimer. Depending on the number of bound states, the scattering length

is either large and positive or large and negative. Scattering observables, specifically the scattering

length, effective range, and partial and total cross-sections, are computed at low collision energies

and compared to previous results. In general, good agreement is obtained, although our full scat-

tering treatment yields resonances which are slightly lower in energy and narrower than previous

determinations using the same potential energy curve.
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I. INTRODUCTION

Laser cooling, Stark deceleration, buffer-gas cooling, and evaporative cooling are among a

wide variety of cooling techniques developed in recent decades, which have allowed for precise

control over individual molecules, especially diatomic molecules [1–4]. As such, a variety of

experiments at millikelvin and microkelvin temperatures (so-called ‘ultracold’ temperatures)

have now become routine, including experiments that probe collisions between small species

in unprecedented levels of detail [5–11]. This has led to the possibility of the fine-tuning

of state-to-state reaction dynamics for reactions involving only a small number of partial

waves [12, 13]. To quote Stuhl et al. [1], this is “perhaps the most elementary study possible

of scattering and reaction dynamics”. These experiments have led to the discovery of a

variety of intriguing quantum phenomena, including shape resonances, Feshbach resonances

[8, 14–16], universal scaling laws [17, 18], and Efimov trimers [18–21].

Ultracold experiments have also revealed that, as with the well-known, near-dissociation

H+
3 spectrum [22–25], ultracold atomic collisions can have an overwhelmingly large density

of resonances in scattering energy [26]. Resonance states also offer the best opportunity

for quantum control and steering: they are already being used to steer the formation of

ultracold diatomic molecules [5].

In response to these developments, this paper demonstrates a novel algorithm for the

simulation of collisions between atoms, with the intention of extending the methods to

collisions involving larger systems. This algorithm, known as RmatReact, is based on the

computable R-matrix-based method widely applied to electron-atom and electron-molecule

collisions [27, 28], which here has been adapted to the atom-atom case. The method is

designed to study reactive and non-reactive, and elastic and inelastic collisions occurring

over deep wells. With the exception of a single proof-of-principle study by Bocchetta and

Gerratt [29], this method has not been applied to so-called heavy particle scattering before.

The R-matrix method, being time-independent, is well-suited to studying the narrow,

short-lived resonances considered here. In contrast to existing methods using only R-matrix

propagation for heavy particle collisions [30, 31], the R-matrix method employed in this work

makes full use of the partitioning of space into inner, outer, and asymptotic regions. This is

in order to leverage the efficiency of variational nuclear motion programs at solving the short-

range (inner region) problem and the R-matrix method for generating high resolution plots
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of scattering observables such as the cross-section. The R-matrix method is very similar in

spirit to the multichannel quantum defect theory (MQDT) which has been extensively used

to study ultracold atom-atom [32–34] and atom-molecule collisions [35, 36]. Both methods

consider the problem in two regions and the treatment of the outer region can be very

similar. However, while MQDT approximates a full solution of the close-coupling equations

by using quantum defects which only have a weak dependence on the collision energy, the

R-matrix method aims to provide an exact solution to the close-coupling problem based on

an inner region with no energy dependence.

The RmatReact algorithm developed in this paper has been discussed in two previous

papers. In Tennyson et al. [37] we presented a preliminary formalism, though the method

has evolved since then. In Rivlin et al. [38] we provided a demonstration of the method

with comparisons to analytic Morse potentials.

In this paper, numerical results from this new algorithm are presented for the elastic

scattering of argon atoms off other argon atoms at ultracold temperatures, ranging from

sub-µK temperatures up to approximately 1 K (= 0.695 cm−1, where cm−1 is used as a unit

of energy). Much of the work in this paper is dedicated to re-creating existing results, and

confirming known pieces of physics, in order to demonstrate the efficacy of the new methods

developed as part of RmatReact.

Several different ground state Ar2 potential energy curves (PECs) [39–45] are examined

in order to simulate this scattering. These PECs are listed in Table I. Despite having a

shallow PEC formed from van der Waals forces, similar to other noble gas dimers, and in

contrast to the more deep-well systems that the method was designed to study [37], the

argon-argon system has been chosen as a test system for the algorithm. This is in order

to compare against existing experimental and computational results. The large number of

high-accuracy PECs available for Ar2 make it a good candidate for testing the RmatReact

method. Experiments have also been performed on cold ground state argon atoms [46].

Barletta et al. [47] studied low-energy Ar-Ar collisions in support of experimental studies

using Ar for sympathetic cooling [48]; they assessed four PECs for the Ar2 system. Of

these four, three are also assessed in this work (PM, Aziz, TT, see Table I); the fourth PEC

of Slav́ıček et al. [49] is not considered here, but two additional ones are. All five PECs

studied here superficially appear very similar. However, as Table I shows, they do have

slight differences which have significant impacts on their low-energy scattering properties.
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TABLE I: The five PECs studied in this work, with their minima and equilibrium distances. The

number of J = 0 bound states derived in this work is the same as in all cited references (see Section

III)). Note here the differing numbers of calculated bound states (Nbound) between the methods.

Label Authors Citation Nbound Vmin / cm−1 rmin / Å

PM Patkowski et al. [39] 9 -99.269 3.7673

Aziz Aziz [40] 8 -99.554 3.7570

TT Tang et al. [43] 8 -99.751 3.7565

PS Patkowski et al. [44] 9 -99.351 3.7624

MD Myatt et al. [45] 8 -99.490 3.7660

The PM and PS PECs were generated ab initio, whilst AZ, TT and MD used experimental

results in their fit.

Barletta et al. [47] generated scattering lengths and effective ranges for the PECs they

studied. These values, especially the scattering lengths, diverge significantly from each other.

A further PEC, and the associated scattering length prediction (computed with the method

of Meshkov et al. [50]), from Myatt et al. [45], is also recreated here.

The issue of the highly varying scattering lengths appears to be closely linked to a long-

standing debate over the number of vibrational (J = 0) bound states belonging to the Ar2

system. Some PECs appear to support only eight bound states, while others appear to

support a ninth bound state. If this state exists, it has a binding energy on the order of

magnitude of 1 µK, which is approximately 0.7 µcm−1, or 86 picoelectronvolts, and thus

would be difficult to detect. Nevertheless, the value of the scattering length of a particular

system is highly dependent on the position of the highest bound state [28]. Consequently,

whether or not this state exists has important implications for the physics of the scattering.

Sahraeian et al. [51] study two Ar2 PECs; those which we have labelled PM and PS.

They claim to have detected the ninth bound state in both cases. This result for the PM

PEC is in agreement with Barletta et al. [47].

The RmatReact method is described in Section II. The results presented in Section III

include predictions of the scattering length and effective range, and partial and total cross-

sections for a variety of partial waves, including the detection and characterisation of three

ultracold shape resonances. These results are compared against literature results. In Section
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IV, along with the conclusions, some allusions to intended future works with this algorithm

are presented.

II. THE RMATREACT METHOD

R-matrix theory has existed in various forms since its invention by Eugene Wigner in the

1940s [52, 53]. The underlying principle behind the R-matrix method is the partitioning

of space into an inner region, an outer region, and an asymptotic region along the reaction

coordinate r [28]. The radius of the boundary between the inner and outer regions is often

designated a0.

Since the reaction is assumed to be spherically symmetric, it can be modelled as taking

place over one dimension, here represented by the internuclear distance, r. The angular

dependence of the scattering observables is accounted for by splitting the overall three-

dimensional scattering wavefunction into one-dimensional partial waves and summing over

these waves. Each partial wave is labelled by a different value of J , which for the system

studied here is the total angular momentum of the system.

In the inner region, the reactants are treated as a bound system. For two atoms scattering

off each other, this means that the inner region consists of a one-dimensional diatomic PEC.

The RmatReact method solves the one-dimensional, time-independent Schrödinger equation

for this system over a range of r values from a minimum of rmin to a maximum of a0. Because

the Schrödinger equation is being solved over a finite region instead of over all space, an

extra surface term must be added to the equation to account for the surface term in the

integration. This is known as the Bloch term [54]. Note that this method differs from some

R-matrix implementations, where a Buttle correction [28, 55] is used to account for this

issue.

In solving the time-independent Schrödinger equation with the Bloch term, the method

diagonalises the inner region to produce finite-region rovibronic eigenenergies and eigenfunc-

tions of the diatomic system, which are needed to construct the R-matrix on the boundary

a0 [28]. The calculations in this region are independent of scattering energy, and so can be

performed once for a given symmetry and for all scattering energies, hence greatly reducing

the computational expense of the method.

Figure 1 shows the PEC of Myatt et al. (MD) [45]. The eight bound states predicted
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FIG. 1: Inner region wavefunctions: One of the potential energy curves studied in this work, MD

[45] with bound and continuum states shown on the curve for an R-matrix inner region ranging

from rmin = 2.2 Å to a0 = 10.2 Å and integration over 200 Lobatto grid points.

by Myatt et al. are located below dissociation at their appropriate eigenenergies (with two

states close to dissociation at −1.58 cm−1 and −0.307 cm−1). The lowest of the continuum

states used by the RmatReact algorithm in the R-matrix calculation are also shown. At the

scale shown in Figure 1, the MD PEC is not distinguishable from the other PECs studied

in this work, and the eigenfunctions are very similar.

Slight numerical instability can be seen in the continuum states in the vicinity of a0 in

Figure 1. This is in part due to the smaller number of grid points used in the calculation to

produce Figure 1 (as opposed to the larger number of grid points used in the results section),

and is not sufficient to significantly impact the results. In practice, it is only the very last

point in the grid which is important for the R-matrix calculations.

In the outer region, the reactants are treated as being unbound. However, they still

interact over a long-range PEC. In this work only PECs which are polynomial in r−1 at

large values of r are considered. The boundary between the outer and asymptotic regions is

denoted here as ap. In the outer region, the RmatReact method uses R-matrix propagation
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techniques, such as those due to Light and Walker [30] or Baluja et al. [56] to extract the

value of the R-matrix function at ap from its value at a0. Although this propagation method

does depend on scattering energy, it is considerably less expensive than the inner region

calculation.

In the asymptotic region, the potential is assumed to be zero. Here, the scattering

observables are calculated by determining the K-matrix at a given energy [28]. Eventually

the RmatReact method will utilise an asymptotic expansion, such as those developed by

Burke and Schey [57] or Gailitis [58], for this calculation. However, at this point a simpler

K-matrix formulation is used (as described below).

Low-energy resonances often have very narrow widths when plotted as a function of

scattering energy. There are also often many resonances close together. As such, it is

important to determine the scattering observables on a fine grid of energies. The R-matrix

method’s inner-outer region separation is ideal for this task.

The details of the R-matrix method for the single-channel (elastic scattering) case have

been discussed extensively in our previous RmatReact papers [37, 38], although there are

differences from the version of the method in [37]. The following is an abridged explanation

derived from Burke’s R-Matrix Theory of Atomic Collisions [28].

A. R-matrix theory

The R-matrix is a quantity with two equivalent definitions. In the single-channel case,

the first definition is:

RJ(k, a0) =
1

a0

N∑
n=1

(
wJn(a0)

)2

(kJn)2 − k2
, (1)

where k is the scattering wavenumber associated with the scattering energy E via the equa-

tion

k =

√
2µE

h̄2 , (2)

RJ(k, a0) is the R-matrix for a certain partial wave J , and µ is the reduced mass of the

system.

kJn are the wavenumbers associated with the rovibronic eigenenergies EJ
n of the diatomic

system in the inner region (labelled by quantum numbers J and n, and following a similar

relationship to Equation (2)), and wJn(a0) are known as boundary amplitudes. EJ
n and wJn(a0)
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are the eigenvalues and eigenfunctions (evaluated at a0) respectively of the time-independent

Schrödinger equation with the Bloch term:(
ĤJ + L(a0)

)
wJn(r) = EJ

nw
J
n(r), (3)

where ĤJ is the Hamiltonian for the system for a given J , which includes kinetic and

potential operator components, and the Bloch term, L(a0), is given by

L(a0) = δ (r − a0)
d

dr
. (4)

Burke [28] also provides a detailed explanation of how to derive the first definition of the

R-matrix given in Equation (1) from the Schrödinger equation with the Bloch term.

The eigenenergies and eigenfunctions of Equation (3) are not restricted to bound states

(in fact bound states tend to contribute little to the R-matrix sum). The numerical diag-

onalisation method used in the inner region creates a discretised continuum of N −Nbound

above-dissociation states, see Figure 1, which all contribute to the R-matrix sum.

Note that this definition is entirely dependent on parameters which appear in the inner

region and arise from the bound diatomic problem. In contrast, the second definition can

be written as

F J(k, a) = aRJ(k, a)
dF J(k, r)

dr

∣∣∣∣
r=a

, (5)

where F J(k, a) is the wavefunction associated with a particular partial wave J , which is

evaluated at a particular point a. In the multichannel case, F J
i (k, a) is associated with a

particular atomic channel i. Hence it is known as a channel function. RJ(k, a) is the R-

matrix, as in Equation (1). This definition is based on quantities that exist in the outer

region. From this definition one can see that the R-matrix can be thought of as a form of

‘log-derivative’ of the channel function. This definition of the channel function is consistent

with the definition used in MQDT [59, 60], which also has similar definitions for the K-matrix

and S-matrix (introduced below).

As a result of the equivalence of the two definitions of the R-matrix given by Equation (1)

and Equation (5), information about the inner region bound problem can be used to obtain

information about the scattering channel functions in the outer region. From these channel

functions, scattering observables can be constructed via the K-matrix, KJ(k), which is de-

pendent on the asymptotic boundary condition involving the channel functions at arbitrarily

8



large distances:

F J
i (k, r) ∼

r→∞
sJi (kr) +KJ(k)cJi (kr). (6)

Here sJi (kr) and cJi (kr) are ‘sine-like’ and ‘cosine-like’ functions which, in general, can have a

variety of forms depending on the specific asymptotic region implementation of the R-matrix

method being used (as described below).

B. Implementation

The RmatReact method is designed to act as a ‘harness’ between other codes that solve

the inner and outer region problems. Ultimately it is intended for the harness to function

with a variety of inner and outer region codes, with a “plug and play”mentality in mind.

In this work, the harness is only used with one inner region code: a modified version

of the diatomic nuclear motion code Duo [61]. The version of Duo used here has been

modified to use a discrete variable representation (DVR) basis [62, 63] based on Lobatto

shape functions, and to solve the inner region problem with the additional Bloch term.

The Lobatto functions are derived from work by Manolopoulos, Wyatt, and others [64–67],

which explain how to derive expressions for the kinetic and potential components of the

Hamiltonian.

This is in contrast to the ‘sinc DVR’ method [68] currently implemented in Duo, which

enforces a zero boundary condition on its eigenfunctions at the ends of the grid – clearly

an unacceptable property for a method which relies on the amplitudes of eigenfunctions at

the boundary. The Lobatto DVR method has boundary conditions that set the derivatives

of the eigenfunctions at the boundary to zero, but the amplitudes themselves are allowed

to take on non-zero values at a0. This is also in contrast to the method of Bocchetta and

Gerratt [29], which used non-orthogonality and a grid that extended slightly beyond a0 to

produce arbitrary boundary conditions at a0. This approach was tested in earlier versions

of this work (see [37]), but has since been supplanted by the Lobatto DVR methods.

The algorithm for generating Lobatto shape function nodes and weights is derived from

Manolopoulos [64], with some modifications. The Duo code with Lobatto functionality used

in this work is provided on the Duo GitHub page.

In this work, the outer region is handled in the harness code itself, with an iteration

method in space based on the R-matrix propagation methods of Light and Walker [28, 30,
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69, 70]. In future work, however, this will be replaced with the fast R-matrix propagation

code PFARM [71], based on the sector diagonalisation method of Baluja et al. [56], which

also includes the asymptotic expansion of Gailitis [58]. Preliminary testing with PFARM

has demonstrated that it is able to re-create the resonances described in the results section

of this paper. The specific implementation of the Light-Walker propagator used in this work

can be seen in Equation (3) and Equation (4) of [38].

The asymptotic region is addressed in this work using the following expression for the

K-matrix:

KJ(k) =
RJ(k, ap)kaps

′
J(kap)− sJ(kap)

cJ(kap)−RJ(E, ap)kapc′J(kap)
, (7)

where E is the scattering energy as before, and where sJ(kap) and cJ(kap) are given by:

sJ(kr) = krjJ(kr)

cJ(kr) = −krnJ(kr).
(8)

Here jJ(kr) and nJ(kr) are the spherical Bessel and Neumann functions respectively [72],

and the derivatives of sJ(kr) and cJ(kr) with respect to r, at the point ap, are defined as

s′J(kap) and c′J(kap). The distance, ap, should be chosen such that the potential is sufficiently

small by that point that the value of the K-matrix is not affected by the specific choice of

ap.

C. Scattering observables

The four quantities generated by the RmatReact method which are presented in this work

are the eigenphase, cross-section, scattering length, and effective range of the argon-argon

interaction. All of these can be constructed from the K-matrix, K(k). In the single-channel

case, they have simplified forms [28]. The eigenphase, δ(k), sometimes known as the phase

shift, is given by:

δ(k) = arctanK(k). (9)

As a result of this definition, the eigenphase (in radians) is the same modulo π. The eigen-

phases presented in this work are given in the range [−π
2
, π

2
]. This leads to seeming discon-

tinuities, e.g. in Figure 5 when the eigenphase passes through |π
2
|. These discontinuities are

characteristic of resonances which are also present in the eigenphases. Although the eigen-

phase is technically not a scattering observable itself, it can be used to construct the other
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three observables used in this work, and is consequently the best variable for the detection

of resonances.

The total cross-section for an interaction can be given as the sum over partial waves from

a minimum J value Jmin to a maximum Jmax, σtot(k). It is given by:

σtot(k) =
Jmax∑
J=Jmin

4π

k2
(2J + 1) sin (δJ(k))

2
, (10)

and the cross-section for a given partial wave, σJ(k) is merely the summand of Equation (10).

The scattering length, A, and the effective range, reff , are numbers that characterise the

properties of the PEC and the scattering process at low energy. They can be defined in

terms of a linear expansion at low energy. If one plots k cot δ(k) for J = 0 as a function

of k2, then for sufficiently low energy the plot should be linear. In this case, A and reff are

defined in the following way:

k cot δ(k) = − 1

A
+

1

2
reffk

2, (11)

ignoring higher order terms in k2.

Another observable it is possible to detect using the eigenphase is a resonance. A reso-

nance will appear as a feature in a plot of the eigenphase or cross-section as a function of

E. Furthermore, the energy of the resonance, and its width – the inverse of its lifetime –

can be determined by fitting a function to the eigenphase following the form of Breit and

Wigner [28, 73, 74]:

δJ(E) = A0 + A1E + arctan
Γres

E − Eres

, (12)

where δJ(E) is the eigenphase for partial wave J at scattering energy E, Γres is the width

of the given resonance, and Eres is the energy of the resonance. Note this definition of Γres

follows that in standard use in scattering (eg [74]), and differs by factor of two from the

definition a full width at half maximum (FWHM).

The non-resonant shape of the eigenphase (the ‘background’ eigenphase) is accounted for

by the two terms A0 and A1, where it is assumed that the width is narrow enough that

the background eigenphase can be approximated by a linear function of E over its length.

By fitting a generated eigenphase to a function of this form, values for Γres and Eres can be

obtained. Note that it is sometimes necessary to replace the final term in Equation (12)

with its negative, if it is required by the resonance shape.
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III. RESULTS

A. Bound states

When performing the inner region calculations with Duo in this work, the number of

bound states was found to be in agreement with literature values [47, 51] for all five PECs

studied (see Table I).

However, there were considerable complications when attempting to detect the ninth

bound state in this work for the PECs where it was predicted to exist – the PS and PM

potentials. As this state is so weakly bound, it was necessary to extend the inner region

calculations out to large distances in order to detect it. This ninth bound state has many

similarities to a halo state [75], as seen in Figure 2, which shows the ninth bound state as a

function of r for the PM PEC for when a0 = 50 Å.

0 10 20 30 40 50

-0.01

0.00

0.01

0.02

0.03

0.04

r / Å

w
9
/
Å
-
1 2

FIG. 2: The ninth bound state of the PM PEC, plotted as a function of r, for when a0 = 50 Å.

The results in Table III of this work were obtained only by extending a0 out to distances

of over 35 Å for the PM PEC and over 40 Å for the PS PEC. As such, a very large number of

points needed to be used in order to maintain precision. The difficulty in detecting the ninth

bound state is underlined by the fact that when the diatomic nuclear motion code LEVEL

[76] was used, the ninth bound state was never detected for any of PECs considered here, no

matter how far out or how many points the inner region was integrated over. Sahraeian et al.
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[51] also cited difficulties in detecting this state, which they quote a value of −0.86233 µcm−1

for.

Consequently the actual binding energy of the ninth bound state, for PECs in which it

was detected, varied as a function of the a0 used in the integration here, up to 100 Å. This is

seen in Figure 3, which shows the value of the ninth bound state, E9, of the PM and PS PECs

as a function of a0, for all values of a0 under 105 Å for which the state was actually bound.

If the calculations are converging on fixed values of E9, they are significantly different from

the value obtained by Sahraeian et al.

40 50 60 70 80 90 100

-25

-20
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-10

-5

0
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E
9
/
cm

-
1

PS

PM

FIG. 3: The ninth bound state of the PM and PS PECs, plotted as a function of the a0 used in

the calculation to generate them, whilst keeping rmin and the average grid spacing used constant.

Once a threshold value of a0 was reached, every PEC that the literature claimed had nine

bound states were consistently found to do so, even if its value changed with a0. No ninth

bound state was detected in this work for any PEC for which it was claimed that there are

only eight bound states, even when using large values of a0 over 100 Å. More assessment of

the numerical issues faced by the R-matrix method can be found in Rivlin et al. [38].

We note that diffuse bound states whose wavefunctions extend significantly beyond a0

can be found rather efficiently within an R-matrix formalism by performing scattering cal-

culations with negative energies [77, 78]. We plan to implement such a procedure within the

RmatReact framework.

13



TABLE II: Positions (Eres) and widths (Γres) with standard errors of three quasibound states ex-

tracted from the supplementary data of Myatt et al. (MD) [45], compared to the three shape

resonances produced in this work by fitting eigenphases to Equation (12) (with background reso-

nance paramters A0 and A1). The widths extracted from Myatt et al. [45] have been multiplied

by two to match the convention employed in this paper.

v J
Eres (MD)

/cm−1

Γres (MD)

/cm−1

Eres (this work)

/cm−1

Γres (this work)

/cm−1

A0 A1

/(cm−1)−1

6 9 0.129 0.660× 10−6 0.1287 0.663× 10−6 0 0

6 10 0.448 0.00330 0.4486(2) 0.00247(46) -0.107 0.757

7 5 0.071 0.00605 0.06993(5) 0.004841(5) 0.00213 -0.997

B. Resonances

The supplementary data provided by Myatt et al. [45] (MD) includes the rovibrational

eigenenergies of the Ar2 system obtained using LEVEL [76]. The supplementary data also

quotes values for states which lie above the dissociation threshold but below a centrifugal

barrier for J > 0, known as quasibound states. The quasibound states from Myatt et al.

[45] which have J quantum numbers J ≤ 10 are quoted in Table II.

In this work, the quasibound states quoted for the MD potential in Myatt et al. [45] were

characterised by analysing resonances in the scattering calculation. The diatomic nuclear

motion code used in this work, Duo, does not have the capacity to detect quasibound

eigenvalues directly (although it is possible to detect them using a stabilisation method

with continuum states). However, these quasibound states should correspond to shape

resonances, which can be detected in plots of the eigenphase and cross-section.

In order to detect the shape resonances, the RmatReact method was used to generate

the eigenphase, and from it the partial cross-sections for all the partial waves with J ≤ 10.

The inner region was calculated using 500 Lobatto grid points between rmin = 2.5 Å and

a0 = 22.5 Å. The outer region propagation was performed from a0 = 22.5 Å to ap = 45 Å,

with over 1,000 propagation iterations.

Figure 5 shows the eigenphase and cross-section generated using the MD potential for

J = 0, J = 5, and J = 10. Figure 6 shows the eigenphase and cross-section generated

using the MD potential for J = 9. In all these cases, the eigenphase and cross-section were
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calculated for energies between E = 0.001 cm−1 and E = 1 cm−1.

The J = 0 partial wave plots are included in Figure 5 to indicate what a typical eigenphase

and cross-section looks like for this system when no resonances are present: in the J = 0

cross-section plot the cross-section sharply rises at low energies.

Myatt et al. [45] predicted (see Table II) that there should be quasibound states in the

J = 5, J = 9, and J = 10 partial waves. These resonances can clearly be seen in our

calculations (Figures 5 and 6) where their positions are marked with dashed lines. These

three states are the only quasibound states given by Myatt et al. for J ≤ 10 and the only

resonances detected in this work.

For the J = 5 and J = 10 resonances, the energy Eres, width Γres, and A0 and A1

parameters were fitted to the Breit-Wigner form of Equation (12), using the values quoted by

Myatt et al. as the starting point of the fitting procedure. The very narrow J = 9 resonance

could not be fit in this way, and so the energy location of the width was determined by

identifying where the eigenphase suddenly went from ≈ π
2

to ≈ −π
2

and identifying the two

points either side of this jump; Eres was taken as the mid-point between them. This energy

was then inserted directly into the Breit-Wigner fit.

Figure 4 shows the result of this procedure for the resonance in the J = 10 partial wave.

The fitting was performed using the energy range E = 0.4006 cm−1 to E = 0.499501 cm−1,

using the Levenberg-Marquardt algorithm as implemented in the software Origin (OriginLab,

Northhampton, MA).

Table II contains the results of this fitting procedure for all three resonances studied in

this work (all using the same software and algorithm with appropriate energy ranges). The

narrowest resonance is for J = 9 and there is very good agreement between our results and

those quoted by Myatt et al. [45]. For the other two, broader resonances we find slightly

different positions and widths. This is consistent with the full treatment of coupling to the

continuum obtained in a scattering calculation: LEVEL, as used by Myatt et al. for their

quasibound states, is known to be less well-adapted for characterising broader resonances

[76, 79]. Both the resonance position and width for J = 10 are also similar to the figures

quoted by Č́ıžek et al. [80].

As Figure 6 and Table II show, narrow resonances can be hard to detect. The only

resonances detected in this work were ones which had been previously predicted and only

needed to be corroborated. In the future, a more sophisticated resonance-detecting software
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FIG. 4: Eigenphases in the region of the J = 10 resonance (solid red line) with our Breit-Wigner

fit (dashed black line).

such as those by Tennyson and Noble [74] or Noble et al. [81], or possibly a procedure based

on the complex analysis of the S-matrix [28] such as that of Č́ıžek and Horáček [82], will be

used to to detect resonances which may otherwise be missed.

Finally, Figure 7 shows the total cross-section generated using the RmatReact method

with the MD potential. The quasibound states predicted by Myatt et al. [45] are also

pictured. This figure gives a good overview of the properties of argon-argon scattering at

low energy. It is notable for having many features. Besides the three resonances, there

is also more structure to the plot – something that is more prevalent in heavy particle

scattering than electron-atom or electron-molecule scattering due to the greater number of

partial waves contributing to the scattering process. Furthermore, the cross-section tends

to a large value at the lowest energies on the graph. This corroborates the feature seen in

Figure 8 towards the lowest energies where the cross section becomes very large.

Thus far we have not considered the consequences of the Pauli principle. 40Ar is a Boson

with zero nuclear spin; as a consequence collisions with odd J are forbidden. Figure 7 shows

the observable cross section obtained by simply summing partial waves with even J . As

a consequence the resonances with J = 5 and J = 9 disappear and there is a pronounced

Ramsauer minimum at about 0.01 cm−1.
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FIG. 5: Eigenphase (top left, bottom left) and cross-section (top right, bottom right) plots for the

J = 0, J = 5 and J = 10 partial waves, generated using the MD potential [45]. The dashed red

lines mark the position of the resonances.

C. Low-energy Scattering

In order to analyse low-energy scattering behaviour, the cross-section for J = 0 was

plotted for E = 10−8 cm−1 to E = 1 cm−1 on a log-log axis, see Figure 8. The same

numerical parameters were used as in Section III B. The plot shows that the cross-section

tends towards a constant at lower energies, which is predicted by Equation (11).

Figure 9 analyses the region of validity of the low-energy linear fit of Equation (11). It is

designed to re-create a plot shared as private communications by the authors of Ref. [47].

The solid, red line of Figure 9 represents the eigenphase calculation generated by the

RmatReact method, using an R-matrix inner region ranging from rmin = 2.5 Å to a0 = 82.5

Å, an integration over 1600 Lobatto grid points, and an R-matrix propagation from a0 = 82.5
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FIG. 6: Eigenphase (left) and cross-section (right) for the J = 9 partial wave. Although the plot

appears to be smooth on the scale in the top two plots, the bottom two plots are on a much

narrower scale, and show clear Fano profiles [83] associated with a resonance (position given by the

dashed red line). Both this narrow width and its position are in agreement with the quasibound

state of Myatt et al. [45] as described in Table II.

FIG. 7: Total cross-section when summing over the partial waves J = 0 to J = 10, using the same

numerical parameters as above. The three quasibound states of Table II are marked with dashed

lines. The sum over even Js allows for the Pauli Principle.

Å to ap = 165 Å, with 1000 propagation iterations. The dashed line represents Equation (11),
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FIG. 8: Cross-section plot for the J = 0 partial wave generated with the MD potential [45]. The

plot is placed on log-log axes. At low energy the plot exhibits the signature constant scaling

behaviour of low-energy scattering.
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FIG. 9: Plot of k cot δ(k) against k2 for low values of k using the Aziz potential [40].

with the parameters A and reff determined by using a least-squares linear fit of the lower-

energy portion of the red line (intercept = 0.00146 Å−1, slope = 18.42 Å), again using the

software Origin. As with Table III, this Figure is in agreement with results provided in

private communications by Barletta et al. [47], who also computed the scattering length of

the Ar2 collision based on the potential due to Aziz [40]. It can be seen from Figure 9 that

the plot is only linear at a very low energy.
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A similar low-energy fitting procedure in Origin was performed for all five PECs studied.

The values of A and reff were calculated in this work for the four PECs where corresponding

literature values could be obtained, the comparison of which can be seen in Table III.

The effective ranges featured in Table III all appear to be in broad agreement. This is to

be expected since this quantity is not especially sensitive to fine changes to the quantity of

the potential, and is not affected significantly by the number of bound states [28].

The values obtained for the scattering length are found to be sensitive to the energy range

used in the fitting procedure, and so whilst numbers are quoted in Table III, it should be

noted that these numbers are not intended to be definitive. When using the energy range of

Figure 9 for the low-energy fit, it is possible to obtain the scattering lengths quoted in [47]

to within a 5% relative difference. However, when using a much lower energy range for the

fit of k2 ≈ 10−10 Å−2 to k2 ≈ 10−8 Å−2, the scattering lengths change significantly. (The

effective ranges also change slightly, but are still in agreement.) The values quoted in Table

III are the ones created using the lower energy range fit. As Figure 9 shows, this lower range

is where the expansion of Equation(11) is most appropriate.

The features seen towards the right of Figure 8 correspond to energies where the eigen-

phase pass through zero. On a log-log plot of the cross-section these crossings manifest as

the dips seen in the Figure.

Although the scattering length values diverge from each other very significantly, the

RmatReact method was able to qualitatively corroborate each one. The PECs in Table III

which have a negative scattering length correspond to PECs for which there are eight bound

states in literature (see Table I). The only PEC considered which supports nine bound states,

PM [39], has a large, positive scattering length.

This is in line with the observation that the scattering length is strongly affected by the

energy of the highest bound state. If the scattering length is plotted as a function of Vmin,

the minimum of the potential, then there is a pole at points where the number of bound

states increments by one, going up to positive infinity in one direction and down to negative

infinity in the other [28]. That means that either side of this pole, the scattering length can

be very different: any real number is a potentially valid scattering length.

It is known [39, 84] that relativistic and nonadiabatic effects can impact potential pa-

rameters such as the depth of the potential. The different PECs studied in this work all

incorporate these effects to different degrees. Whilst this work attempts to verify the scat-
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TABLE III: Scattering lengths (A) and effective ranges (reff) generated using four potentials com-

pared to previous values. For the first three potentials, [39, 40, 43], the scattering lengths and

effective ranges cited are from Barletta et al. [47]. For the fourth potential, the potential and

scattering length are from the same source: Myatt et al. [45].

Potential
A/Å

(literature)

A/Å

(this work)

reff /Å

(literature)

reff /Å

(this work)

Aziz [40] -505.6 -647.1 35.94 35.53

PM [39] 1285 844.0 33.87 33.53

TT [43] -60.79 -62.50 50.12 49.20

MD [45] -714 -709.3 – 35.41

tering observables produced using these potentials, no attempt is made to assess the quality

of each potential relative to the other ones. These effects, along with the other sources of

uncertainty related to the PECs, are by far the biggest source of uncertainty and error in

the results, and contribute much larger error to the numbers quoted here than numerical

errors in the algorithm itself.

No previous values are available for the scattering length and effective range of the PS

PEC [44]; the scattering length and effective range were calculated, using the same lower

energy range fitting as the results in Table III. The scattering length was found to be 1669 Å

to four significant figures. This is noteworthy because both this work and Sahraeian et al.

[51] claim to have detected nine bound states for this system, and so the PS PEC continues

the pattern of large, positive scattering lengths for Ar2 PECs with nine bound states, as

seen in Table III. Finally, the effective range was found to be 33.82 Å, in good agreement

with most of the other effective ranges cited in the literature and this work.

IV. CONCLUSIONS AND OUTLOOK

In this paper the validity and accuracy of the RmatReact method for the single-channel,

diatomic case was demonstrated by comparing results generated using it to other literature

results. In doing so, the accuracy of the scattering length, and the positions of the resonances

generated by Myatt et al. [45] were confirmed. Most of the widths of the resonances
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generated by Myatt et al. were also confirmed.

This paper corroborated the qualitative features of the highly divergent scattering lengths

quoted in Barletta et al. [47]. This has interesting implications for the study of the low-

energy behaviour of the argon-argon scattering interaction – the debate over the scattering

length remains unresolved. Novel experimental techniques such as those in [85] may help to

resolve the dispute over the Ar2 scattering length and the alleged ninth bound state.

Further study of the single-channel, atom-atom scattering problem is intended. A reso-

nance finder will be useful for detecting any narrow resonances missed by other authors. The

S-matrix can be used for this purpose, and also for the equally useful purpose of detecting

weakly-bound bound states [28, 77].

In resolving the numerical difficulties of adapting pre-existing codes to the ‘harness’ of

the RmatReact method, this work paves the way for the study of more complex interactions

with the method. Other follow-ups to this work will include a study of a multichannel

collision between atoms, and collisions between an atom and a diatom.

Eventually the RmatReact method is intended to evolve into a method that can be applied

to even more complex reactants and reactions, to resolve the many outstanding questions in

the field of ultracold scattering. A formulation of the method for treating chemical reactions

in three particle systems has recently been presented [86].
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