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Abstract
In the modern age, rankings data are ubiquitous and they are useful for a variety of applications such as recommender systems,
multi-object tracking and preference learning. However, most rankings data encountered in the real world are incomplete,
which prevent the direct application of existingmodelling tools for complete rankings.Our contribution is a novelway to extend
kernelmethods for complete rankings to partial rankings, via consistentMonte Carlo estimators for Grammatrices:matrices of
kernel values between pairs of observations. We also present a novel variance-reduction scheme based on an antithetic variate
construction between permutations to obtain an improved estimator for the Mallows kernel. The corresponding antithetic
kernel estimator has lower variance, and we demonstrate empirically that it has a better performance in a variety of machine
learning tasks. Both kernel estimators are based on extending kernelmean embeddings to the embedding of a set of full rankings
consistent with an observed partial ranking. They form a computationally tractable alternative to previous approaches for
partial rankings data. An overview of the existing kernels and metrics for permutations is also provided.

Keywords Reproducing kernel Hilbert space · Partial rankings · Monte Carlo · Antithetic variates · Gram matrix

1 Motivation

Permutations play a fundamental role in statistical mod-
elling and machine learning applications involving rankings
and preference data. A ranking over a set of objects can
be encoded as a permutation; hence, kernels for permuta-
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tions are useful in a variety of machine learning applications
involving rankings such as recommender systems, multi-
object tracking and preference learning. It is of interest to
construct a kernel in the space of the data in order to cap-
ture similarities between datapoints and thereby influence the
pattern of generalisation. A kernel input is required for the
maximummean discrepancy (MMD) two-sample test (Gret-
ton et al. 2012), kernel principal component analysis (kPCA)
(Schölkopf et al. 1999), support vector machines (Boser et al.
1992; Cortes and Vapnik 1995), Gaussian processes (GPs)
(Rasmussen and Williams 2006) and agglomerative cluster-
ing (Duda and Hart 1973), among others.

Our main contributions are: (1) a novel and computation-
ally tractable way to deal with incomplete or partial rankings
by first representing the marginalised kernel (Haussler 1999)
as a kernel mean embedding of a set of full rankings con-
sistent with an observed partial ranking. We then propose
two estimators that can be represented as the corresponding
empirical mean embeddings; (2) a Monte Carlo kernel esti-
mator that is based on sampling independent and identically
distributed rankings from the set of consistent full rankings
given an observed partial ranking; (3) an antithetic variate
construction for the marginalised Mallows kernel that gives
a lower variance estimator for the kernel Gram matrix. The
Mallows kernel has been shown to be an expressive kernel; in
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particular, Mania et al. (2016) show that the Mallows kernel
is an example of a universal and characteristic kernel, and
hence, it is a useful tool to distinguish samples from two dif-
ferent distributions, it achieves the Bayes risk when used in
kernel-based classification/regression (Sriperumbudur et al.
2011). Jiao and Vert (2015) have proposed a fast approach
for computing theKendallmarginalised kernel; however, this
kernel is not characteristic (Mania et al. 2016) and hence has
limited expressive power.

The resulting estimators are used for a variety of ker-
nel machine learning algorithms in the Experiments section.
In particular, we present comparative simulation results
demonstrating the efficacy of the proposed estimators for an
agglomerative clustering task, a hypothesis test task using the
maximum mean discrepancy (MMD) (Gretton et al. 2012)
and a Gaussian process classification task. For the latter, we
extend some of the existing methods in the software library
GPy (GPy 2012).

Since the space of permutations is an example of a discrete
space, with a non-commutative group structure, the corre-
sponding reproducing kernel Hilbert spaces (RKHS) have
only recently being investigated; see Kondor et al. (2007),
Fukumizu et al. (2009), Kondor and Barbosa (2010), Jiao
and Vert (2015) and Mania et al. (2016). First, we provide an
overviewof the connection between kernels and certain semi-
metrics when working on the space of permutations. This
connection allows us to obtain kernels from given semimet-
rics or semimetrics from existing kernels. We can combine
these semimetric-based kernels to obtain novel, more expres-
sive kernels which can be used for the proposedMonte Carlo
kernel estimator.

2 Definitions

We first briefly introduce the theory of permutation groups.
A particular application of permutations is to use them to
represent rankings; in fact, there is a natural one-to-one
relationship between rankings of n items and permutations
(Stanley 2000). For this reason, we sometimes use ranking
and permutation interchangeably. In this section, we state
some mathematical definitions to formalise the problem in
terms of the space of permutations.

Let [n] = {1, 2, . . . , n} be a set of indices for n items, for
some n ∈ N. Given a ranking of these n items, we use the
notation � to denote the ordering of the items induced by
the ranking, so that for distinct i, j ∈ [n], if i is preferred
to j , we will write i � j . Note that for a full ranking, the
corresponding relation � is a total order on {1, . . . , n}.

We now outline the correspondence between rankings on
[n] and the permutation group Sn that we use throughout
the paper. In words, given a full ranking of [n], we will
associate it with the permutation σ ∈ Sn that maps each

ranking position 1, . . . , n to the correct object under the rank-
ing. More mathematically, given a ranking a1 � · · · � an

of [n], we may associate it with the permutation σ ∈ Sn

given by σ( j) = a j for all j = 1, . . . , n. For example, the
permutation corresponding to the ranking on [3] given by
2 � 3 � 1 corresponds to the permutation σ ∈ S3 given
by σ(1) = 2, σ (2) = 3, σ (3) = 1. This correspondence
allows the literature relating to kernels on permutations to be
leveraged for problems involving the modelling of ranking
data.

In the next section, we first review some semimetrics on
Sn because of the existing relationship between semimetrics
with an additional property and kernels. We state such rela-
tionship in Theorem 1.

2.1 Metrics for permutations and properties

Definition 1 Let X be any set and d : X × X → R is a
function, which we write d(x, y) for every x, y ∈ X . Then
d is a semimetric if it satisfies the following conditions, for
every x, y ∈ X (Dudley 2002):

(i) d(x, y) = d(y, x), that is, d is a symmetric function.
(ii) d(x, y) = 0 if and only if x = y.

A semimetric is a metric if it satifies:
(iii) d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X , that

is, d satisfies the triangle inequality.

The following are some examples of semimetrics on the
space of permutations Sn (Diaconis 1988). All semimetrics
in bold have the additional property of being of negative type.
Theorem 1 shows that negative-type semimetrics are closely
related to kernels. This is because the semimetric can be
written as the Hilbert space norm of a feature embedding and
the kernel is the inner product for such feature embedding.

(1) Spearman’s footrule

d f (σ, σ ′) =
n∑

i=1

|σ(i) − σ ′(i)| = ‖σ − σ ′‖1.

(2) Spearman’s rank correlation

dρ(σ, σ ′) =
n∑

i=1

(σ (i) − σ ′(i))2 = ‖σ − σ ′‖22.

(3) Hamming distance

dH (σ, σ ′) = #{i |σ(i) �= σ ′(i)}.
It can also be defined as the minimum number of sub-
stitutions required to change one permutation into the
other.
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(4) Cayley distance

dC (σ, σ ′) =
n−1∑

j=1

X j (σ ◦ (σ ′)−1),

where the composition operation of the permutation
group Sn is denoted by ◦ and X j (σ ◦ (σ ′)−1) = 0 if j is
the largest item in its cycle and is equal to 1 otherwise
(Irurozki et al. 2016b). It is also equal to the minimum
number of pairwise transpositions takingσ toσ ′. Finally,
it can also be shown to be equal to n − C(σ ◦ (σ ′)−1)

where C(η) is the number of cycles in η.
(5) Kendall distance

dτ (σ, σ ′) = nd(σ, σ ′),

where nd(σ, σ ′) is the number of discordant pairs for
the permutation pair (σ, σ ′). It can also be defined as the
minimum number of pairwise adjacent transpositions
taking σ−1 to (σ ′)−1.

(6) l p distances

dp(σ, σ ′) =
(

n∑

i=1

|σ(i) − σ ′(i)|p

) 1
p

= ‖σ − σ ′‖p,

with p ≥ 1.

(7) l∞ distances

d∞(σ, σ ′) = max
1≤i≤n|σ(i) − σ ′(i)| = ‖σ − σ ′‖∞.

Definition 2 A semimetric is said to be of negative type if
for all n ≥ 2, x1, . . . , xn ∈ X and α1, . . . , αn ∈ R with∑n

i=1 αi = 0, we have

n∑

i=1

n∑

j=1

αiα j d(xi , x j ) ≤ 0. (1)

In general, if we start with a Mercer kernel for permutations,
that is, a symmetric and positive-definite function k : Sn ×
Sn → R, the following expression gives a semimetric d that
is of negative type

dk(σ, σ ′)2 = k(σ, σ ) + k(σ ′, σ ′) − 2k(σ, σ ′). (2)

Berlinet and Thomas-Agnan (2004) and Shawer-Taylor
and Cristianini (2004) provide in-depth treatments about
Mercer kernels and reproducing kernel Hilbert spaces
(RKHS); see “Appendix A” for a short overview. A useful
characterisation of semimetrics of negative type is given by
the following theorem, which states a connection between
negative-type metrics and a Hilbert space feature represen-
tation or feature map Φ.

Theorem 1 (Berg et al. 1984) A semimetric d is of negative
type if and only if there exists a Hilbert space H and an
injective map Φ : X → H such that ∀x, x ′ ∈ X , d(x, x ′) =
‖Φ(x) − Φ(x ′)‖2H.

Once the feature map from Theorem 1 is found, we can
directly take its inner product to construct a kernel. For
instance, Jiao and Vert (2015) propose an explicit feature
representation for Kendall kernel given by

Φ(σ) =
⎛

⎝ 1√(n
2

)
[
I{σ(i)>σ( j)} − I{σ(i)<σ( j)}

]
⎞

⎠

1≤i< j≤n

.

They show that the inner product between two such fea-
tures is a positive-definite kernel. The corresponding metric,
given by Kendall distance, can be shown to be the square
of the norm of the difference of feature vectors. Hence, by
Theorem 1, it is of negative type.

Analogously, Mania et al. (2016) propose an explicit fea-
ture representation for the Mallows kernel, given by

Φ(σ) =
(
1 − exp (−v)

2

) 1
2 (

n
2)
(
1 − exp (−v)

1 + exp (−v)

) r
2

r∏

i=1

Φ̄(σ )si

where Φ̄(σ )si = 2I{σ(ai )<σ(bi )}−1 when si = (ai , bi ) and

Φ̄(σ )∅ = 2
1
2 (

n
2)(1 + exp (−v))

1
2 (

n
2).

In the following proposition, an explicit feature represen-
tation for the Hamming distance is introduced and we show
that it is a distance of negative type.

Proposition 1 The Hamming distance is of negative type with

dH (σ, σ ′) = 1

2
Trace

[(
Φ(σ) − Φ(σ ′)

) (
Φ(σ) − Φ(σ ′)

)T
]

(3)

where the corresponding feature representation is a matrix
given by

Φ(σ) =

⎛

⎜⎜⎜⎜⎜⎜⎝

I{σ(1)=1} . . . I{σ(n)=1}
I{σ(1)=2} . . . I{σ(n)=2}

... . . .
...

I{σ(1)=n} . . . I{σ(n)=n}

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Proof The Hamming distance can be written as a square dif-
ference of indicator functions in the following way

dH (σ, σ ′) = #{i |σ(i) �= σ ′(i)}

= 1

2

n∑

i=1

n∑

�=1

(
I{σ(i)=�} − I{σ ′(i)=�}

)2
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where each indicator is one whenever the given entry of the
permutation is equal to the corresponding element of the
identity element of the group. Let the �th feature vector be
φ�(σ ) = (

I{σ(1)=�}, . . . , I{σ(n)=�}
)
, then

= 1

2

n∑

�=1

(φ�(σ ) − φ�(σ
′))T (φ�(σ ) − φ�(σ

′)

= 1

2

n∑

�=1

‖φ�(σ ) − φ�(σ
′)‖2

= 1

2
Trace

[(
Φ(σ) − Φ(σ ′)

) (
Φ(σ) − Φ(σ ′)

)T
]
.

This is the trace of the difference of the product of the fea-
ture matrices Φ(σ)−Φ(σ ′), where the difference of feature
matrices is given by

⎛

⎜⎜⎜⎝

I{σ(1)=1} − I{σ ′(1)=1} . . . I{σ(n)=1} − I{σ ′(n)=1}
I{σ(1)=2} − I{σ ′(1)=2} . . . I{σ(n)=2} − I{σ ′(n)=2}

...
...

...

I{σ(1)=n} − I{σ ′(1)=n} . . . I{σ(n)=n} − I{σ ′(n)=n}

⎞

⎟⎟⎟⎠ .

This is the square of the usual Frobenius norm for matrices,
by Theorem 1, and the Hamming distance is of negative type.

��
Another example is Spearman’s rank correlation, which

is a semimetric of negative type since it is the square of the
usual Euclidean distance (Berg et al. 1984).

The two alternative definitions given for some of the dis-
tances in the previous examples are handy from different
perspectives. One is an expression in terms of either an injec-
tive or non-injective feature representation, whilst the other
is in terms of the minimum number of operations to change
one permutation to the other. Other distances can be defined
in terms of this minimum number of operations, and they are
called editing metrics (Deza andDeza 2009). Editingmetrics
are useful from an algorithmic point of view, whereasmetrics
defined in terms of feature embeddings are useful from a the-
oretical point of view. Ideally, having a particular metric in
terms of both algorithmic and theoretical descriptions gives a
better picture of which are the relevant characteristics of the
permutation that the metric takes into account (Fig. 1). For
instance, Kendall and Cayley distances algorithmic descrip-
tions correspond to the bubble and quick sort algorithms,
respectively (Knuth 1998).

Another property shared bymost of the semimetrics in the
examples is the following

Definition 3 Let σ1, σ2 ∈ Sn , (Sn, ◦) denote the symmetric
group of degree n with the composition operation, a right-
invariant semimetric (Diaconis 1988) satisfies

d(σ1, σ2) = d(σ1 ◦ η, σ2 ◦ η) ∀ σ1, σ2, η ∈ Sn . (4)
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Fig. 1 Kendall and Cayley distances for permutations of n = 4. There
is an edge between two permutations in the graph if they differ by one
adjacent or non-adjacent transposition, respectively

In particular, if we take η = σ−1
1 , then d(σ1, σ2) = d(e, σ2 ◦

σ−1
1 ), where e corresponds to the identity element of the

permutation group.

This property is inherited by the distance-induced kernel
from Sect. 2.2, Example 7. This symmetry is analogous
to translation invariance for kernels defined in Euclidean
spaces.

2.2 Kernels for Sn

If we specify a symmetric and positive-definite function or
kernel k, it corresponds to defining an implicit feature space
representation of a ranking data point. The well-known ker-
nel trick exploits the implicit nature of this representation
by performing computations with the kernel function explic-
itly, rather than using inner products between feature vectors
in high or even infinite-dimensional space. Any symmetric
and positive-definite function uniquely defines an underlying
Reproducing Kernel Hilbert Space (RKHS); see the supple-
mentary material Appendix A for a brief overview about the
RKHS. Some examples of kernels for permutations are the
following

1. The Kendall kernel (Jiao and Vert 2015) is given
by

kτ (σ, σ ′) = nc(σ, σ ′) − nd(σ, σ ′)
(d
2

) ,

where nc(σ, σ ′) and nd(σ, σ ′) denote the number of
concordant and discordant pairs between σ and σ ′,
respectively.

2. The Mallows kernel (Jiao and Vert 2015) is given
by

kλ(σ, σ ′) = exp(−λnd(σ, σ ′)).
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3. The Polynomial kernel of degree m (Mania et al. 2016)
is given by

k(m)
P (σ, σ ′) = (1 + kτ (σ, σ ′))m .

4. The Hamming kernel is given by

kH (σ, σ ′) = Trace
[(

Φ(σ)Φ(σ ′)T
]
.

5. An exponential semimetric kernel is given by

kexp(σ, σ ′) = exp
{−λd(σ, σ ′)

}
,

where d is a semimetric of negative type.

6. The diffusion kernel (Kondor and Barbosa 2010) is given
by

kβ(σ, σ ′) = exp
{
βq(σ ◦ σ ′)

}
,

where β ∈ R and q is a function that must satisfy
q(π) = q(π−1) and

∑
π q(π) = 0. A particular case

is q(σ, σ ′) = 1 if σ and σ ′ are connected by an
edge in some Cayley graph representation of Sn , and
q(σ, σ ′) = −degreeσ if σ = σ ′ or q(σ, σ ′) = 0 oth-
erwise.

7. The semimetric or distance-induced kernel (Sejdinovic
et al. 2013): if the semimetric d is of negative type, then,
a family of kernels k, parameterised by a central permu-
tation σ0, is given by

kd(σ, σ ′) = 1

2

[
d(σ, σ0) + d(σ ′, σ0) − d(σ, σ ′)

]
.

If we choose any of the above kernels by itself, it will gen-
erally not be complex enough to represent the ranking data’s
generating mechanism. However, we can benefit from the
allowable operations for kernels to combine kernels and still
obtain a valid kernel. Some of the operations which render a
valid kernel are the following: sum, multiplication by a posi-
tive constant, product, polynomial and exponential (Berlinet
and Thomas-Agnan 2004).

In the case of the symmetric group of degree n, Sn , there
exist kernels that are right invariant, as defined in Equa-
tion (4). This invariance property is useful because it is
possible to write down the kernel as a function of a sin-
gle argument and then obtain a Fourier representation. The
caveat is that this Fourier representation is given in terms
of certain matrix unitary representations due to the non-
Abelian structure of the group (James 1978). Even though
the space is finite, and every irreducible representation is
finite-dimensional (Fukumizu et al. 2009), these Fourier rep-
resentations do not have closed-form expressions. For this

reason, it is difficult to work on the spectral domain in con-
trast to the R

n case. There is also no natural measure to
sample from such as the one provided by Bochner’s theorem
in Euclidean spaces (Wendland 2005). In the next section,
we will present a novel Monte Carlo kernel estimator for the
case of partial rankings data.

3 Partial rankings

Having provided an overview of kernels for permutations,
and reviewed the link between permutations and rankings
of objects, we now turn to the practical issue that in real
data sets, we typically have access only to partial ranking
information, such as pairwise preferences and top-k rankings.
Partial rankings can be obtained from pairwise comparisons
data given certain assumptions. For instance, a classic gen-
erative model for pairwise comparisons that can be used to
obtain topk rankings is the Bradley–Terry model (Bradley
and Terry 1952) and its extension to multiple comparisons,
the Plackett–Luce model (Luce 1959; Plackett 1974). See
(Chen et al. 2017) for details on how to obtain a topk partial
ranking given pairwise comparisons from the Bradley–Terry
model and (Caron et al. 2014) for a nonparametric Bayesian
extension of the Plackett–Lucemodel and references therein.
In the following, as Jiao and Vert (2015), we assume that our
data are partial rankings of the following types

Definition 4 (Exhaustive partial rankings, top-k rankings)
Let n ∈ N. A partial ranking on the set [n] is specified by
an ordered collection Ω1 � · · · � Ωl of disjoint non-empty
subsets Ω1, . . . ,Ωl ⊆ [n], for any 1 ≤ l ≤ n. The partial
ranking Ω1 � · · · � Ωl encodes the fact that the items in
Ωi are preferred to those in Ωi+1, for i = 1, . . . , l − 1.
A partial ranking Ω1 � · · · � Ωl with ∪l

i=1Ωi = [n]
termed exhaustive, as all items in [n] are included within
the preference information. A top-k partial ranking is a par-
ticular type of exhaustive ranking Ω1 � · · · � Ωl , with
|Ω1| = · · · = |Ωl−1| = 1, and Ωl = [n] \ ∪l−1

i=1Ωi . We
will frequently identify a partial ranking Ω1 � · · · � Ωl

with the set R(Ω1, . . . ,Ωl) ⊆ Sn of full rankings consistent
with the partial ranking. Thus, σ ∈ R(Ω1, . . . , Ωl) iff for
all 1 ≤ i < j ≤ l, and for all x ∈ Ωi , y ∈ Ω j , we have
σ−1(x) < σ−1(y). When there is potential for confusion,
we will use the term “subset partial ranking” when referring
to a partial ranking as a subset of Sn , and “preference partial
ranking” when referring to a partial ranking with the notation
Ω1 � · · · � Ωl .

Several interpretations are compatible with this definition;
for instance, scenarios in which no preference information is
known about items within a particular Ωi are possible, as
well as are scenarios where the preferences of all items in
a particular Ωi are ties. Thus, for many practical problems,
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we require definitions of kernels between subsets of partial
rankings rather than between full rankings, to be able to han-
dle data sets containing only partial ranking information. A
common approach (Tsuda et al. 2002) is to take a kernel K
defined on Sn , and use the marginalised kernel, defined on
subsets of partial rankings by
K (R, R′) =

∑

σ∈R

∑

σ ′∈R′
K (σ, σ ′)p(σ |R)p(σ ′|R′) (5)

for all R, R′ ⊆ Sn , for some probability distribution p ∈
P(Sn). Here, p(·|R) denotes the conditioning of p to the
set R ⊆ Sn . If some prior information about the distribution
of complete rankings is available, it can be used to define a
kernel over partial rankings with a non-uniform distribution.
For instance, letσ ∈ Sn be a permutation, its probabilitymass
function under aMallows distribution (Mallows 1957), given
a metric d : Sn × Sn → R, a location parameter σ0 ∈ Sn ,
and a scale parameter θ > 0, is

p(σ | R) = exp {−θd(σ, σ0)}
ψ(θ)

I{σ∈R},

with normalising constantψ(θ) = ∑
σ∈Sn

exp {−θd(σ, σ0)}
× I{σ∈R}. This family of probability distributions has been
extensively studied for the full rankings case, when R = Sn ;
see Fligner and Verducci (1986), Mukherjee (2016) and
Busse et al. (2007) for mixtures of Mallows distributions.
The R package “PerMallows” (Irurozki et al. 2016) provides
random number generators based on different algorithms to
sample from a Mallows distribution parameterised by dif-
ferent distance functions. These sampling procedures are
not straightforwardly applicable to the partial rankings case.
There have been various extensions for topk partial rankings
such as Lebanon and Mao (2008), who propose a nonpara-
metric estimator based on kernel smoothing; Chierichetti
et al. (2018), who extended the Mallows model by defining
a distance measure directly over topk rankings; and Vitelli
et al. (2017), who developed a Bayesian framework for infer-
ence using a Metropolis–Hastings algorithm, among others.
We assume that we do not have any prior information about
the generative process of full rankings; hence, we only deal
with the case of the marginalised kernel from Equation (5),
in which we take the probability mass function to be uni-
form over each of the partial rankings denoted by R, R′. The
corresponding kernel is given by

K (R, R′) = 1

|R||R′|
∑

σ∈R

∑

σ ′∈R′
K (σ, σ ′). (6)

Jiao and Vert (2015) also use this kernel and called it the con-
volution kernel (Haussler 1999) between partial rankings. In
general, the use of a marginalised kernel quickly becomes
computationally intractable, with the number of terms in the

right-hand side of Eq. (5) growing super-exponentially with
n, for a fixed number of items in the partial rankings R and
R′; see “Appendix E” for a table that illustrates such growth.
An exception is the Kendall kernel case for two interleav-
ing partial rankings of k and m items or a top-k and top-m
ranking. In this case, the sum can be tractably computed and
it can be done in O(k log k + m logm) time (Jiao and Vert
2015).

We propose a variety of Monte Carlo methods to estimate
the marginalised kernel of Eq. (5) for the general case, where
direct calculation is intractable.

Definition 5 The Monte Carlo estimator approximating the
marginalised kernel of Eq. (5) is defined for a collection of
partial rankings (Ri )

I
i=1, given by

K̂ (Ri , R j ) = 1

Mi M j

Mi∑

l=1

M j∑

m=1

w
(i)
l w

( j)
m K (σ

(i)
l , σ

( j)
m ) (7)

for i, j = 1, . . . , I , where ((σ
(i)
n )

Mi
m=1)

I
i=1 are random per-

mutations and
(
(w

(i)
m )

Mi
m=1

)I

i=1
are randomweights.Note that

this general setup allows for several possibilities:

– For each i = 1 . . . , I , the permutations (σ
(i)
m )

Mi
m=1 are

drawn exactly from the distribution p(·|Ri ). In this case,
the weights are simply w

(i)
n = 1 for m = 1, . . . , Mi .

– For each i = 1, . . . , I , the permutations (σ
(i)
m )

Mi
m=1 drawn

from some proposal distribution q(·|Ri )with the weights
given by the corresponding importance weights w

(i)
n =

p(σ
(i)
n |R)/q(σ

(i)
n |R) for m = 1, . . . , Mi .

An alternative perspective on the estimator defined in Eq. (7),
more in line with the literature on random feature approxi-
mations of kernels, is to define a random feature embedding
for each of the partial rankings (Ri )

I
i=1.

More precisely, letHK be the (finite-dimensional) Hilbert
space associated with the kernel K on the space Sn , and letΦ
be the associated featuremap, so thatΦ(σ) = K (σ, ·) ∈ HK

for each σ ∈ Sn . Then observe that we have K (σ, σ ′) =
〈Φ(σ ),Φ(σ ′)〉 for all σ, σ ′ ∈ Sn . We now extend this feature
embedding to partial rankings as follows. Given a partial
ranking R ⊆ Sn , we define the feature embedding of R by

Φ(R) = 1

|R|
∑

σ∈R

K (σ, ·) ∈ HK

With this extension of Φ to partial rankings, we may now
directly express the marginalised kernel of Eq. (5) as an inner
product in the same Hilbert space HK

K (R, R′) = 〈Φ(R),Φ(R′)〉
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Fig. 2 Visualisation of the various embeddings discussed in the proof of
Theorem 3. σ1, σ2andσ3 are permutations in Sn , which are mapped into
the RKHSHK by the embedding Φ. η is a partial ranking subset which
contains σ1, σ2, σ3, and its embedding Φ̃(η) is given as the average
of the embeddings of its full rankings. The Monte Carlo embedding
Φ̂(η) induced by Equation (7) is computed by taking the average of a
randomly sampled collection of consistent full rankings from η

for all partial rankings R, R′ ⊆ Sn . If we define a random
feature embedding of the partial rankings (Ri )

I
i=1 by

Φ̂(Ri ) =
Mi∑

m=1

w(i)
m Φ(σ (i)

m ),

then the Monte Carlo kernel estimator of Eq. (7) can be
expressed directly as

K̂ (Ri , R j ) = 1

Mi M j

Mi∑

l=1

M j∑

m=1

w
(i)
l w

( j)
m K (σ

(i)
l , σ

( j)
m )

= 1

Mi M j

Mi∑

l=1

M j∑

m=1

w
(i)
l w

( j)
m 〈Φ(σ

(i)
l ),Φ(σ

( j)
m )〉

=
〈

1

Mi

Mi∑

l=1

w
(i)
l Φ(σ

(i)
l ),

1

M j

M j∑

m=1

w
( j)
m Φ(σ

( j)
m )

〉

= 〈Φ̂(Ri ), Φ̂(R j )〉 (8)

for each i, j ∈ {1, . . . , I }. This expression of the estimator
as an inner product between randomised embeddings will be
useful in the sequel.

We provide an illustration of the various RKHS embed-
dings at play in Fig. 2, using the notation of the proof of
Theorem 3. In this figure, η is a partial ranking, with three
consistent full rankings σ1, σ2, andσ3. The extended embed-
ding Φ̃ applied to η is the barycentre in the RKHS of the
embeddings of the consistent full rankings, and a Monte
Carlo approximation Φ̂ to this embedding is also displayed.

Theorem 2 Let R ⊆ Sn be a partial ranking, and let (σm)M
m=1

independent and identically distributed samples from p(· |
R). The kernel Monte Carlo mean embedding,

Φ̂(R) = 1

M

M∑

m=1

K (σm, ·) (9)

is an unbiased estimator of the marginalised kernel embed-
ding

Φ̃(R) = 1

|R|
∑

σ∈R

K (σ, ·).

Proof Note that the RKHS in which these embeddings take
values is finite-dimensional, and the Monte Carlo estimator
is the average of iid terms, each of which is equal to the
true embedding in expectation. Thus, we immediately obtain
unbiasedness of the Monte Carlo embedding. ��

Theorem 3 The Monte Carlo kernel estimator from Eq. (7)
does define a positive-definite kernel; further, it yields unbi-
ased estimates of the off-diagonal elements and consistent
for the diagonal elements of the kernel matrix.

Proof We first deal with the positive-definiteness claim. Let
R1, . . . , RI ⊆ Sn be a collection of partial rankings, and for
each i = 1, . . . , I , let (σ

(i)
m , w

(i)
m )

Mi
m=1 be an i.i.d. weighted

collection of complete rankings distributed according to
p(·|Ri ). To show that the Monte Carlo kernel estimator K̂ is
positive definite, we observe that by Eq. (8), the I × I matrix
with (i, j)th element given by K̂ (Ri , R j ) is the Grammatrix
of the vectors (Φ̂(Ri ))

I
i=1 with respect to the inner product of

the Hilbert spaceHK . We therefore immediately deduce that
the matrix is positive semidefinite. Furthermore, the Monte
Carlo kernel estimator is unbiased for the off-diagonal ele-
ments and consistent for the diagonal elements of the kernel
matrix; see Appendix C in the supplementary material for
the proof. ��

We highlight that whilst the mean embedding estimator
in Eq. (9) is unbiased, the corresponding kernel estimator is
consistent for the diagonal elements of the kernel matrix and
unbiased for the off-diagonal elements. Having established
that the Monte Carlo estimator K̂ is itself a kernel, we note
that when it is evaluated at two partial rankings R, R′ ⊆ Sn ,
the resulting expression is not a sum of iid terms; the follow-
ing result quantifies the quality of the estimator through its
variance.

Theorem 4 The variance of the Monte Carlo kernel esti-
mator evaluated at a pair of partial rankings Ri , R j , with
Mi , N j Monte Carlo samples, respectively, is given by
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Var
(
K̂ (Ri , R j )

)

= 1

Mi

∑

σ (i)∈Ri

p(σ (i)|Ri )

⎛

⎝
∑

σ ( j)∈R j

p(σ ( j)|R j )K (σ (i), σ ( j))

⎞

⎠
2

× −1

Mi

( ∑

σ (i)∈Ri
σ ( j)∈R j

K (σ (i), σ ( j))p(σ (i)|Ri )p(σ ( j)|R j )

)2

−1

Mi N j

∑

σ (i)∈Ri

p(σ (i)|Ri )

( ∑

σ ( j)∈R j

p(σ ( j)|R j )K (σ (i), σ ( j))

)2

+ 1

Mi N j

∑

σ (i)∈Ri
σ ( j)∈R j

K (σ (i), σ ( j))2 p(σ (i)|Ri )p(σ ( j)|R j ).

The proof is given in the supplementary material,
“Appendix D”. We have presented some theoretical prop-
erties of the embedding corresponding to the Monte Carlo
kernel estimator which confirm that it is a sensible embed-
ding. In the next section, we present a lower variance
estimator based on a novel antithetic variates construction.

4 Antithetic random variates for
permutations

A common, computationally cheap variance-reduction tech-
nique in Monte Carlo estimation of expectations of a given
function is to use antithetic variates (Hammersley and
Morton 1956), the purpose of which is to introduce neg-
ative correlation between samples without affecting their
marginal distribution, resulting in a lower variance estima-
tor. Antithetic samples have been used when sampling from
Euclidean vector spaces, for which antithetic samples are
straightforward to define. Ross (2006) defines the antithetic
of a full ranking by reversing the order of the original per-
mutation. We give a definition of antithetic permutations for
partial rankings in terms of distance maximisation and show
that this coincides with the definition of Ross (2006) in the
case of full rankings. We begin with a preliminary lemma,
before giving the full definition of antithetic permutations
given a fixed partial ranking.

Lemma 1 Let R ⊆ Sn be a top-k partial ranking, let σ ∈ R.
Then, there exists a unique solution to the problem

argmaxσ ′∈R dτ (σ, σ ′).

Moreover, it can be calculated directly; if the preference par-
tial ranking corresponding to R is given by a1 � · · · � ak, so
that the full ranking σ ∈ R satisfies σ(1) = a1, . . . , σ (k) =
ak, then the unique distance-maximising permutation σ ′ is

given by

σ ′(i) = ai for i = 1, . . . , k,

σ ′(k + j) = σ(n + 1 − j) for j = 1, . . . , n − k.

In this case, we have dτ (σ, σ ′) = (n−k
2

)
.

See “Appendix B” for the proof.

Definition 6 (Antithetic permutations) Let R ⊆ Sn be a top-
k partial ranking. The antithetic operator AR : R → R maps
each permutation σ ∈ R to the permutation in R of maximal
Kendall distance from σ . AR(σ ) is said to be antithetic to σ .

This definition of antithetic samples for permutations has
parallels with the standard notion of antithetic samples in
vector spaces, in which typically a sampled vector x ∈ R

d is
negated to form −x , its antithetic sample; −x is the vector
maximising the Euclidean distance from x , under the restric-
tions of fixed norm.We note here also that the computational
cost of generating an antithetic permutation via the method
described in Lemma 1 is no greater than the cost associated
with generating an independent permutation.

Proposition 1 Let R be a partial ranking and {σ, AR(σ )}
be an antithetic pair from R, σ is distributed uniformly in
the region R. Let dτ : Sn → R

+ be the Kendall distance
and σ0 ∈ R a fixed permutation, let X = dτ (σ, σ0) and
Y = dτ (AR(σ ), σ0), then X and Y have negative covariance.

Proposition 1 is useful because one of the main tasks in sta-
tistical inference is to compute expectations of a function
of interest, denoted by h. Once the antithetic variates are
constructed, the functional form of h determines whether or
not the antithetic variate construction effectively produces
a lower variance estimator for its expectation. The proof of
this proposition is presented after the relevant lemmas are
proved. If h is a monotone function, we have the following
corollary.

Corollary 2 Let h be a monotone increasing (decreasing)
function. Then, the random variables h (X) and h (Y ) have
negative covariance.

Proof The random variable Y from Proposition 1 is equal in

distribution to Y
d= C − X , where C is a constant which

specialises depending on whether σ is a full ranking or an
exhaustive partial ranking; see the proof of Proposition 1
in the next section for the specific form of the constant
for each case. By Chebyshev’s integral inequality (Fink and
Jodeit 1984), the covariance between a monotone increasing
(decreasing) and a monotone decreasing (increasing) func-
tions is negative. ��

The next theorem presents the antithetic empirical feature
embedding and corresponding antithetic kernel estimator.
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Indeed, if we take the inner product between two embed-
dings, this yields the kernel antithetic estimator which is a
function of a pair of partial rankings subsets. In this case, the
h function from above is the kernel evaluated in each pair,
and this is an example of aU -statistic (Serfling 1980, Chapter
5).

Theorem 5 Let Ri ⊆ Sn be a partial ranking, Sn denotes
the space of permutations of n ∈ N, (σ

(i)
m , ARi (σ

(i)
m ))

Mi
m=1

are antithetic pairs of i.i.d. samples from the region Ri . The
kernel antithetic Monte Carlo mean embedding

φ̂(Ri ) = 1

Mi

Mi∑

m=1

[
K (σ

(i)
m , ·) + K (ARi (σ

(i)
m ), ·)

2

]

is a unbiased estimator of the embedding that corresponds to
the marginalised kernel. The corresponding antithetic kernel
estimator is

K̂ (Ri , R j ) = 1

4M N

M∑

m=1

N∑

n=1

(
K (σ (i)

m , σ
( j)
n )

+ K (ARi (σ
(i)
m ), σ

( j)
n ) + K (σ (i)

m , AR j (σ
( j)
n )

+ K (ARi (σ
(i)
m ), AR j (σ

( j)
n )

)
(10)

using M antithetic pairs of samples (σ
(i)
m , ARi (σ

(i)
m ))M

m=1
from region Ri and N antithetic pairs of samples
(σ

( j)
n , AR j (σ

( j)
n ))N

n=1, from R j .

Proof Since the antithetic kernel embedding is a convex com-
bination of theMonte Carlo kernel embedding, unbiasedness
follows. ��

In the next section, we present the main result about the
kernel estimator from Eq. (10), namely, that it has lower
asymptotic variance than the Monte Carlo kernel estimator
from Eq. 7 if we use the Mallows kernel.

4.1 Variance of the antithetic kernel estimator

We now establish some basic theoretical properties of anti-
thetic samples in the context of marginalised kernel estima-
tion. In order to do so, we require a series of lemmas to derive
the main result in Theorem 6 that guarantees that the anti-
thetic kernel estimator has lower asymptotic variance than the
Monte Carlo kernel estimator for the marginalised Mallows
kernel.

The following result shows that antithetic permuta-
tions may be used to achieve coupled samples which are
marginally distributed uniformly on the subset of Sn corre-
sponding to a top-k partial ranking.

Lemma 2 If R ⊆ Sn is a top-k partial ranking, then if σ ∼
Unif(R), then AR(σ ) ∼ Unif(R).

See “Appendix B” for the proof. Lemma 2 establishes a
base requirement of an antithetic sample—namely, that it has
the correct marginal distribution. In the context of antithetic
sampling in Euclidean spaces, this property is often trivial to
establish, but the discrete geometry of Sn makes this property
less obvious. Indeed, we next demonstrate that the condition
of exhaustiveness of the partial ranking in Lemma 2 is nec-
essary.

Example 1 Let n = 3, and consider the partial ranking 2 � 1.
Note that this is not an exhaustive partial ranking, as the ele-
ment 3 does not feature in the preference information. There
are three full rankings consistent with this partial ranking,
namely 3 � 2 � 1, 2 � 3 � 1, and 2 � 1 � 3. Encod-
ing these full rankings as permutations, as described in the
correspondence outlined in Sect. 2, we obtain three permu-
tations, which we, respectively, denote by σA, σB, σC ∈ S3.
Specifically, we have

σA(1) = 3, σA(2) = 2, σA(3) = 1.

σB(1) = 2, σB(2) = 3, σA(3) = 1.

σC (1) = 2, σC (2) = 1, σA(3) = 3.

Under the right-invariant Kendall distance, we obtain pair-
wise distances given by

dτ (σA, σB) = 1,

dτ (σA, σC ) = 2,

dτ (σB, σC ) = 1.

Thus, the marginal distribution of an antithetic sample for
the partial ranking 2 � 1 places no mass on σB , and half of
its mass on each of σA and σC , and is therefore not uniform
over R.

We further show that the condition of right invariance of
the metric d is necessary in the next example.

Example 2 Let n = 3, and suppose d is a distance on S3 such
that, with the notation introduced in Example 1, we have

d(σA, σB) = 1,

d(σA, σC ) = 0.5,

d(σB, σC ) = 1.

Note that d is not right invariant, since

d((σA, σC )

= d(σBν, σAν)

�= d(σB, σA),

where ν ∈ S3 is given by ν(1) = 1, ν(2) = 3, ν(3) = 2.
Then, note that an antithetic sample for the kernel associated
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with this distance and the partial ranking 1 � 2 is equal to
σB with probability 2/3 and the other two full rankings with
probability 1/6 each and therefore does not have a uniform
distribution.

Examples 1 and 2 serve to illustrate the complexity of
antithetic sampling constructions in discrete spaces. Finally,
we remark that an alternative phrasing of Lemma 2 is that the
pushforward of the distributionUnif(R) through the function
AR is again Unif(R). Whilst it may be possible to design dis-
tributions such that p(·|R) has this property for each top-k
ranking R ⊆ Sn , many commonly used non-uniform distri-
butions over permutations, such as Mallows models, do not
satisfy this property.

We now begin direct calculation with antithetic permuta-
tions and partial rankings. We primarily focus on the case
of top-k rankings, as calculation turns out to be particularly
tractable in this case and also due to the fact that top-k rank-
ings feature in many applications of interest. The following
two lemmas state some useful relationships between the dis-
tance between twopermutations (σ, ν) and the corresponding
pair (AR(σ ), ν) in both the unconstrained and constrained
cases which correspond to not having any partial ranking
information and having partial ranking information, respec-
tively.

Lemma 3 Let σ, ν ∈ Sn. Then, dτ (σ, ν) = (n
2

)− dτ (ASn (σ ),

ν).

Proof This is immediate from the interpretation of the
Kendall distance as the number of discordant pairs between
two permutations; a distinct pair i, j ∈ [n] is discordant for
σ, ν iff they are concordant for ASn (σ ), ν. ��
In fact, Lemma 3 generalises in the following manner.

Lemma 4 Let R be a top-k ranking a1 � · · · � al � [n] \
{a1, . . . , al}, and let σ, ν ∈ R. Then dτ (σ, ν) = (n−l

2

) −
dτ (AR(σ ), ν).

See “Appendix B” for the proof. Next, we show that it is
possible to obtain a unique closest element in a given par-
tial ranking set R, denoted by ΠR(ν), with respect to any
given permutation ν ∈ Sn, ν /∈ R. This is based on the usual
generalisation of a distance between a set and a point (Dud-
ley 2002). We then use such closest element in Lemmas 6
and 7 to obtain useful decompositions of distances identi-
ties. Finally, in Lemma 8 we verify that the closest element
is also distributed uniformly on a subset of the original set
R.

Lemma 5 Let R ⊆ Sn be a top-k partial ranking, let ν ∈ Sn

be arbitrary. There is a unique closest element in R to ν. In
other words, argminσ∈R dτ (σ, ν) is a set of size 1.

See “Appendix B” for the proof.

Definition 7 Let R ⊆ Sn be a top-k partial ranking. Let
ΠR : Sn → R be the map that takes a permutation to the cor-
responding Kendall-closest permutation in R; by Lemma 5,
this is well defined.

Lemma 6 Let σ ∈ R, and ν ∈ Sn. We have the following
decomposition of the distance d(σ, ν)

dτ (σ, ν) = dτ (σ,ΠR(ν)) + dτ (ΠR(ν), ν).

See “Appendix B” for the proof.

Lemma 7 Let σ ∈ R, and let ν ∈ R′. We have the following
relationship between dτ (AR(σ ), ν) and dτ (σ, ν)

dτ (AR(σ ), ν) = dτ (σ, ν) +
(

n − k

2

)
− 2dτ (σ,ΠR(ν)).

(11)

See “Appendix B” for the proof.

Lemma 8 Let R, R′ ⊆ Sn be top-k rankings, in preference
notation given by

R :a1 � · · · � al � [n] \ {a1, . . . , al},
R′ :b1 � · · · � bm � [n] \ {b1, . . . , bm}.

If ν ∼ Unif(R′), then ΠR(ν) is a full ranking with distribu-
tion Unif(R′′), where R′′ ⊆ R is the partial ranking given
by

R′′ : a1 � · · · � al � bi1 � · · · � biq

� [n] \ {a1, . . . , al , b1, . . . , bm},

where {bi1 , . . . , biq } = {b1, . . . , bm}\{a1, . . . , al}, and i j <

i j+1 for all j = 1, . . . , q − 1.

See “Appendix B” for the proof.
Having introduced the antithetic operator for a top-k par-

tial ranking R, AR : R → R and the projection map
ΠR : Sn → R, we next study how these operations inter-
act with one another.

Lemma 9 Let R′′ ⊆ R ⊆ Sn be top-k partial rankings. Then
for σ ∈ R, we have

AR′′(ΠR′′(σ )) = ΠR′′(AR(σ )).

See “Appendix B” for the proof.
Finally, the last lemma states the most general identity for

a distance, which involves the antithetic operator, the closest
element map given a partial rankings set R and a subset of
it, denoted by R′′.
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Lemma 10 Let R′′ ⊆ R ⊆ Sn be top-k partial rankings,
given in preference notation by

R : a1 � · · · � al � [n] \ {a1, . . . , al},
R′′ : a1 � · · · � al � al+1 � · · · am � [n] \ {a1, . . . , am}.

Let α be the number of unranked elements under R, and let
β be the additional number of elements ranked under R′′
relative to R. Then for σ ∈ R, we have

dτ (σ,ΠR′′(σ )) = ((n − l) − (m − l))(m − l)

+
(

m − l

2

)
− dτ (AR(σ ),ΠR′′(AR(σ ))).

See “Appendix B” for the proof.

Proof of Proposition 1 Case σ0 ∈ Sn be the fixed permuta-
tion, then

Cov (dτ (σ, σ0), dτ (AR(σ ), σ0)) < 0.

This holds true since
dτ (AR(σ ), σ0) = (n

2

) − dτ (σ, σ0),∀σ ∈ Sn , ∀n ∈ N by
Lemma 3.
Case ∅ ⊂ R: Let σ0 ∈ R, we have that
dτ (AR(σ ), σ0) = (n−k

2

) −dτ (σ, σ0) ∀σ0 ∈ R by Lemma 4.
��

In general, if σ0 /∈ R, by Lemma 7, dτ (AR(σ ), σ0) =
dτ (σ, σ0) + (n−k

2

) − 2dτ (σ,ΠRi (σ0)).
After proving all the relevant Lemmas, we now present

our main result regarding antithetic samples, namely, that
this scheme provides negatively correlated pairs of samples.

Theorem 6 Consider the antithetic kernel estimator for
the Mallows kernel evaluated on a pair of partial rank-
ings Ri , R j using M antithetic pairs of samples (σ

(i)
m , ARi

(σ
(i)
m ))M

m=1 from region Ri and N antithetic pairs of samples

(σ
( j)
n , AR j (σ

( j)
n ))N

n=1, from R j . The asymptotic variance of
this estimator is lower than the kernel estimator using 2M
(respectively, 2N) i.i.d. samples from Ri (respectively, R j ).

Proof It has been shown previously that the antithetic kernel
estimator is unbiased (in the off-diagonal case), so showing
that it has lower MSE in the antithetic case which is equiv-
alent to showing that its second moment is smaller in the
antithetic case than in the i.i.d. case. The second moment is
given by

E
[
K̂ (Ri , R j )

2]

= E

[(
1

4N M

N∑

n=1

M∑

m=1

(
K (σn, νm)

+ K (̃σn, νm) + K (σn, ν̃m) + K (̃σn, ν̃m)
))2]

= 1

16M2N 2

N∑

n,n′=1

M∑

m,m′=1

E

[(
K (σn, νm) + K (̃σn, νm)

+ K (σn, ν̃m) + K (̃σn, ν̃m)
) × (

K (σn′, νm′)

+ K (̃σn′ , νm′) + K (σn′, ν̃m′) + K (̃σn′, ν̃m′)
)]

.

We identify three types of terms in the above sum: (i) those
where n �= n′ and m �= m′; (ii) those where n = n′ but
m �= m′, or m = m′ but n �= n′; (iii) those where n = n′ and
m = m′.

We remark that in case (i), the 16 terms that appear in the
summand all have the same distribution in the antithetic and
i.i.d. case, so terms of the form (i) contribute no difference
between antithetic and i.i.d.. There are O(N 2M + M2N )

terms of the form (ii) andO(N M) terms of the form (iii). We
thus refer to terms of the form (ii) as cubic terms and terms
of the form (iii) as quadratic terms. We observe that due to
the proportion of cubic terms to quadratic terms diverging as
N , M → ∞, it is sufficient to prove that each cubic term is
less in the antithetic case than the i.i.d. case to establish the
claim of lower MSE.

Thus, we focus on cubic terms. Let us consider a termwith
n = n′ and m �= m′. The term has the form

E

[(
K (σn, νm) + K (̃σn, νm) + K (σn, ν̃m) + K (̃σn, ν̃m)

)

×
(

K (σn, νm′) + K (̃σn, νm′) + K (σn, ν̃m′) + K (̃σn, ν̃m′)

)]
.

Of the sixteen terms appearing in the expectation above, there
are only two distinct distributions they may have. The two
types of terms are given below:

E [K (σn, νm)K (σn, νm′)] , (12)

and

E [K (σn, νm)K (̃σn, νm′)] . (13)

Terms of the form inEq. (12) have the same distribution in the
antithetic and i.i.d. cases, so we can ignore these. However,
terms of the form in Eq. (13) have differing distributions in
these two cases, so we focus in on these. We deal specifically
with the case where Kλ(σ, ν) = exp(−λdτ (σ, ν)), so we
may rewrite the expression in Eq. (13) as

E
[
exp(−λ(dτ (σn, νm) + dτ (̃σn, νm′)))

]
. (14)

We now decompose the distances dτ (σn, νm), dτ (̃σn, νm′)
using the series of lemmas introduced before. First, we use
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Fig. 3 An example of the variables appearing in the decomposition in
Eq. (15)

Lemma 6 to write

dτ (σn, νm) = dτ (σn,ΠR1(νm)) + dτ (ΠR1(νm), νm),

dτ (̃σn, νm′) = dτ (̃σn,ΠR1(νm′)) + dτ (ΠR1(νm′), νm′).
(15)

We give a small example illustrating some of the variables at
play in this decomposition in Fig. 3.

Now,writing R3 ⊆ R1 for the partial ranking described by

Lemma 8, we have that ΠR1(νm),ΠR1(νm′)
i.i.d.∼ Unif(R3).

Therefore, the distances in Eq. (15) may be decomposed fur-
ther

dτ (σn, νm) = dτ (σn,ΠR3(σn))

+ dτ (ΠR3(σn),ΠR1(νm))

+ dτ (ΠR1(νm), νm),

dτ (σ̃n, νm′) = dτ (̃σn,ΠR3 (̃σn))

+ dτ (ΠR3 (̃σn),ΠR1(νm′))

+ dτ (ΠR1(νm′), νm′). (16)

We now consider each term and argue as to whether the dis-
tribution is different in the antithetic and i.i.d. cases, recalling
that in the i.i.d. case, σ̃n is drawn from R1 independently from
σn , whilst in the antithetic case, σ̃n = AR1(σn).

– Each of the terms dτ (ΠR1(νm), νm) and
dτ (ΠR1(νm′), νm′) has the same distribution under the
i.i.d. case and antithetic case. Further, in both cases,
dτ (ΠR1(νm), νm) is independent of ΠR1(νm), and
dτ (ΠR1(νm′), νm′) is independent of ΠR1(νm′), so these

two terms are independent of all others appearing in the
sum in both cases.

– Each of the terms dτ (ΠR3(σn),ΠR1(νm)) and
dτ (ΠR3 (̃σn),ΠR1(νm′)) has the same distribution under
the i.i.d. case and the antithetic case and is independent
of all other terms in both cases.

– We deal with the terms dτ (σn,ΠR3(σn)) and
dτ (̃σn,ΠR3 (̃σn)) using Lemma 10. More specifically,
under the i.i.d. case, these two distances are clearly i.i.d..
However, under the antithetic case, the lemma tells us that
the sum of these two distances is equal to the mean under
the distribution of the i.i.d. case almost surely. Thus, in the
antithetic case, this random variable has the same mean
as in the i.i.d. case, but is more concentrated (strictly so
iff d(σn,ΠR3(σn)) is not a constant almost surely, which
is the case iff R1 �= R3).

Thus, dτ (σn, νm)+dτ (σ̃n, νm′) has the same mean under the
i.i.d. and antithetic cases, but is strictly more concentrated
when R1 �= R3 This holds true iff the partial rankings R1 and
R2 do not concern exactly the same set of objects. Thus, by
a conditional version of Jensen’s inequality, since exp(−λx)

is strictly convex as a function of x , we obtain the variance
result. ��

4.2 The antithetic kernel estimator and kernel
herding

In this section, having established the variance-reduction
properties of antithetic samples in the context ofMonte Carlo
kernel estimation, we now explore connections to kernel
herding (Chen et al. 2010). Kernel herding is a determinis-
tic approach to numerical integration, in which quadrature
points are selected according to a distance-minimisation
algorithm taking place in a particular Hilbert space.

More precisely, given an integration problem of the
form EX∼μ[ f (X)], for some domain X , a function f :
X → R and probability measure μ ∈ P(X ), kernel
herding proceeds by first selecting a kernel K : X 2 →
R. Successively, the reproducing kernel Hilbert space is
chosen HK = span{K (x, ·)|x ∈ X } with inner prod-
uct defined as the unique continuous linear extension of
〈K (x, ·), K (y, ·)〉HK = K (x, y) for all x, y ∈ X , and
with corresponding embedding φK : X → HK given by
φK (x) = K (x, ·) for all x ∈ X . An initial quadrature point
x1 ∈ X is then specified, and then, additional quadrature
points are selected iteratively according to the following rule:
given m quadrature points x1:m , the next quadrature point
xm+1 is selected by

xm+1 = argminx∈X

∥∥∥∥∥EX∼μ [K (X , ·)] − 1

m

m∑

i=1

φK (xi )

∥∥∥∥∥

2

HK

.

123



Statistics and Computing

Our main result in this section makes clear the connection
between kernel herding and our antithetic construction.

Theorem 7 The antithetic variate construction of Theorem 5
is equivalent to the optimal solution for the first two steps of
a kernel herding procedure in the space of permutations.

Proof Let R be a partial ranking of n elements. We cal-
culate the sequence of herding samples from the uniform
distribution p(·|R) over full rankings consistent with R asso-
ciated with the exponential semimetric kernel Kexp(σ, σ ′) =
exp(−λd(σ, σ ′)), for a metric d of negative definite type.
Following Chen et al. (2010), we note that the herding sam-
ples from p(·|R) associated with the kernel K , with RKHS
embedding φ : Sn → H, are defined iteratively by

σT = argmin
σT

∥∥∥∥∥μp − 1

T

T∑

t=1

φ(σt )]
∥∥∥∥∥

2

H
for T = 1, . . . ,

where μp is the RKHS mean embedding of the distribution
p. Since p is uniform over its support, any ranking σ in the
support of p(·|R) is a valid choice as the first sample in a
herding sequence. Given such an initial sample, we then cal-
culate the second herding sample, by considering the herding
objective as follows

∥∥∥∥∥μp − 1

2

2∑

t=1

φ(σt )]
∥∥∥∥∥

2

H
= ‖μp‖2H −

2∑

t=1

1

|R|
∑

σ∈R

K (σt , σ )

+ 1

4

(
Kexp(σ1, σ1) + 2Kexp(σ1, σ2)

+ Kexp(σ2, σ2)
)

(17)

which, as a function of σ2, is equal to 2Kexp(σ1, σ2) =
2 exp(−λd(σ1, σ2)), up to an additive constant. Thus, select-
ing σ2 to minimise the herding objective is equivalent to
maximising d(σ1, σ2), which is exactly the definition of the
antithetic sample to σ1. ��

After this result, one would like to do a herding procedure
for more than two steps. However, the solution is not the
same as picking k herding samples simultaneously. Specif-
ically, the following counterexample, illustrated in Fig. 4,
clearly shows why. The left plot shows the result of solving
the herding objective for 2 samples—the result is an anti-
thetic pair of samples for the region R. If a third sample is
selected greedily, with these first two samples fixed, it will
yield a different result than if the herding objective is solved
for 3 samples simultaneously, as illustrated in the right of the
figure.

Remark 3 Theorem 7 says that if we first pick a point uni-
formly at random from R, then put it into the herding

Fig. 4 Samples from the region R, illustrating the difference between
solving the herding objective greedily and solving for all samples simul-
taneously

objective and then select the second deterministically to min-
imise the herding objective and this is equivalent to the
antithetic variate construction of Definition 6. Alternatively,
we could pick the second point uniformly at random from R,
independently from the first point. This second scheme will
produce a higher value of the herding objective on average.

After the two estimators for kernel matrices have been
constructed, we use them in some experiments to assess their
performance in the next section.

5 Experiments

Algorithm 1 SampleAntitheticConsistentFullRankings
Input: top−k partial ranking i1 � i2 � · · · � ik , degree n
Returns: two full rankings σ1, σ2 consistent with the given partial
ranking
Set σ1(l) = σ2(l) = il for l = 1, . . . , k
Obtain a random ordering j1, . . . , jn−k of the remaining items
{1, . . . , n} \ {i1, . . . , ik}
Let b1 < · · · < bn−k be the ordering of {1, . . . , n} \ {i1, . . . , ik}
Set σ1(bl ) = jl for l = 1, . . . , n − k
Set σ2(bl ) = jn−k−l+1 for l = 1, . . . , n − k
Return σ1, σ2

In this section, we use the Monte Carlo and antithetic ker-
nel estimators for a variety of machine learning unsupervised
and supervised learning tasks: a nonparametric hypothesis
test, an agglomerative clustering algorithm and a Gaussian
process classifier.

Definition 6 states the antithetic permutation construction
with respect to a given permutation for Kendall’s distance. In
order to consider partial rankings data, we should respect the
observed preferences when obtaining the antithetic variate.
Algorithm 1 describes how to sample an antithetic permuta-
tion and simultaneously respect the constraints imposed by
the observed partial ranking. Namely, the antithetic permuta-
tion has the observed preferences fixed in the same locations
as the original permutation and only reverses the unobserved
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Table 1 Tree purities for the sushi data set using a subsample of 100 users with the full Gram matrix K , a censored data set of topk = 4 partial
rankings for the vanilla Monte Carlo estimator K̂ and the antithetic Monte Carlo estimator K̂ a , with nmc = 20 Monte Carlo samples

Kendall Mallows Semiexp Hamming Semiexp Cayley Semiexp Spearman

K Average 0.83 0.75 0.81 0.72 0.81

K̂ Average 0.78 (0.052) 0.79 (0.058) 0.79 (0.063) 0.82 (0.040) 0.78 (0.062)

K̂ a Average NA 0.77 (0.050) NA NA NA

Tree cut at k = 10 clusters. The median distance criterion was used to select the inverse of the lengthscale for the semimetric exponential kernels

locations. This corresponds to maximising the Kendall dis-
tance between the permutation pair whilst respecting the
constraints and ensures that both permutations have the right
marginals as stated in Lemmas 1 and 2.

5.1 Data sets

Synthetic data set The synthetic data set for the nonpara-
metric hypothesis test experiment, where the null hypothesis
is H0 : P = Q and the alternative is H1 : P �= Q, is the
following: the data set from the P distribution is a mixture
of Mallows distributions (Diaconis 1988) with the Kendall
and Hamming distances. The central permutations are given
by the identity permutation and the reverse of the identity,
respectively, with lengthscale equal to one. The data set from
the Q distribution is a sample from the uniform distribution
over Sn , where n = 6.

Sushi data set This data set contains rankings about sushi
preferences givenby5000users (Kamishimaet al. 2009). The
users ranked 10 types of sushi, and the labels correspond to
the user’s region This data set is used for the Gaussian and
ten for the agglomerative clustering task.

5.2 Agglomerative clustering

In this experiment, we used both the full and a censored ver-
sion of the sushi data set from Sect. 5.1. We used various
distances for permutations to compute the estimators for the
semimetric matrix between pairs of partial rankings subsets.
In order to compute our estimators, we censored the data
set by storing the topk = 4 partial rankings per user. The
Monte Carlo and antithetic kernel estimators were used to
obtain negative-type semimetric matrices using the relation-
ship from Equation (2) in the following way:

̂D(R, R′)2 = K̂ (R, R) + K̂ (R′, R′) − 2K̂ (R, R′).

These matrices were then used as an input to the average
linkage agglomerative clustering algorithm (Duda and Hart
1973). The tree purity measure is reported, and it provides
way to asses the tree produced by the agglomerative cluster-
ing algorithm. It can be computed in the followingway:when
a dendrogram and all correct labels are given, pick uniformly

at random two leaves which have the same label c and find
the smallest subtree containing the two leaves. The dendro-
gram purity is the expected value of #leaves with label c in subtree

#leaves in the subtree
per class. If all leaves in the class are contained in a pure
subtree, the dendrogram purity is one. Hence, values close
to one correspond to high-quality trees.

In Table 1, the true and estimated purities using the full
rankings and the partial rankings data sets are reported. We
assumed that the true labels are given by the user’s region,
and there are ten different possible regions. The true purity
corresponds to an agglomerative clustering algorithm using
the Gram matrix obtained from the full rankings. We can
compute the Gram matrix for the full rankings because we
have access to all of the users’ rankings over the ten dif-
ferent types of sushi. The antithetic Monte Carlo estimator
outperforms the vanilla Monte Carlo estimator in terms of
average purity since it is closer to the true purity. It also has
a lower standard deviation when estimating the marginalised
Mallows kernel.

5.3 Nonparametric hypothesis test with MMD

Let P and Q be probability distributions over Sn , the null
hypothesis is H0 : P = Q versus H1 : P �= Q using

samples σ1, . . . , σn
i.i.d.∼ P and σ ′

1, . . . , σ
′
m

i.i.d.∼ Q. We can
estimate a pseudometric between P and Q and reject H0 if
the observed value of the statistic is large. The following is
an unbiased estimator of the M M D2 (Gretton et al. 2012)

M̂ M D2(P, Q) = 1

m(m − 1)

m∑

i=1

m∑

j �=i

K (σi , σ j )

+ 1

n(n − 1)

n∑

i=1

n∑

j �=i

K (σ ′
i , σ

′
j )

− 2

nm

m∑

i=1

n∑

j �=i

K (σi , σ
′
j ). (18)

This statistic depends on the chosen kernel as can be seen
in Eq. (18). If the kernel is characteristic (Sriperumbudur
et al. 2011), then the M M D2 is a proper metric over
probability distributions. Analogously, we can compute an
MMD squared estimator for partial rankings sets, such that
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Fig. 5 Mean p values (y-axis) versus number of datapoints in synthetic
data set (x-axis)

R1, . . . , Rn
i.i.d.∼ P and R′

1, . . . , R′
m

i.i.d.∼ Q, in the following
way

M̂ M D2(P, Q) = 1

m(m − 1)

m∑

i=1

m∑

j �=i

K̂ (Ri , R j )

+ 1

n(n − 1)

n∑

i=1

n∑

j �=i

K̂ (R′
i , R′

j )

− 2

nm

m∑

i=1

n∑

j �=i

K̂ (Ri , R′
j ). (19)

We used the synthetic data sets for P and Q described in
Sect. 5.1 to asses the performance of the Monte Carlo and
antithetic kernel estimators in a nonparametric hypothesis
test. The data sets consist of rankings over n = 10 objects,
and we censored them to obtain top−k partial rankings with
k = 3. We then computed the MMD squared statistic for the
samples using the samples from the two populations. Since
the non-asymptotic distribution of the statistic from Eq. (19)
is not known, we performed a permutation test (Alba Fer-
nández et al. 2007) in order to estimate consistently the null
distribution and compute the p value. We did this repeatedly
as we varied the number of observations for a fixed num-
ber of Monte Carlo samples to see the effect of the sample
size in the p value computations. Specifically, Fig. 5 and
Table 2 show how the p value computed with the antithetic
kernel estimator has lower variance as we vary the number of
observations in our data set. Both p values converge to zero
since the samples from both populations come from different
distributions. In Table 2, we report the standard deviations of
the estimated p values. The p value obtained with the anti-
thetic kernel estimator has lower variance across all sample
sizes.

5.4 Gaussian process classifier

In this experiment, two different kernels were used to com-
pute the estimators for the Gram matrix between different
pairs of partial rankings subsets. The matrix was then pro-

Table 2 Standard deviations for
p values computed with the
Monte Carlo and antithetic
estimators

# obs 10 15 20 25 30 35 40

Monte Carlo 0.0853 0.0910 0.0830 0.1109 0.0677 0.0596 0.0236

Antithetic 0.0706 0.0663 0.0712 0.0594 0.0502 0.0363 0.0222

Table 3 Averaged over 10 runs
with 4 Monte Carlo samples per
run, n = 10, topk = 6

Test accuracy Train ave-loglik Test ave-loglik

Mallows

Full model 0.9 −0.2070 −0.5457

MC 0.74 −0.2486(0.005) −0.563(0.020)

Antithetic 0.75 −0.262(0.001) −0.573(0.002)

Gaussian

Full model 0.75 −0.2215 −0.7014

MC 0.72 −0.2890(0.0245) −0.5737(0.043)

Antithetic NA NA NA

Kendall

Full model 0.7 −0.311(3.01×10− 6) −0.597(3.5×10− 6)

MC 0.66 −0.3575(0.008) −0.7063(0.052)

Antithetic NA NA NA

The model in bold has the highest test accuracy when the antithetic kernel estimator was used, with respect
to all models where only partial rankings data was used to compute the kernel Monte Carlo estimators of the
Gram matrix
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vided as the input to a Gaussian process classifier (Neal
1998). The Python library GPy (2012) was extended with
custom kernel classes for partial rankings which compute
both the Monte Carlo and antithetic kernel estimators for
partial rankings subsets. Previously, it was only possible to
do pointwise evaluations of kernels, but our implementation
allows to compute the kernels over pairs of partial ranking
subsets by storing the sets in a tensor first.

We used the sushi data set from Sect. 5.1 with the labels
binarised in East Japan or West Japan regions. We selected a
random subset of the observations of size 100 and used 80%,
for the training set and 20% for the test set. In the Mallows
kernel case, we used the median distance heuristic (Takeuchi
et al. 2006; Schölkopf and Smola 2002) with the Kendall
distance to compute the bandwidth parameter and a scale
parameter of 9.5. We performed a grid search over different
values of the scale parameter and picked the one that had the
largest classification accuracy for the test set.

In Table 3, the results of running the Gaussian process
classifier are reported using the marginalised Mallows ker-
nel, the marginalised Gaussian kernel and the marginalised
Kendall kernel as well as the corresponding estimators. Since
the Mallows kernel is based on the Kendall distance, it is a
kernel specifically tailored for permutations and it is the best
in terms of predictive performance. In contrast, the Gaussian
kernel is a kernel that is suitable for Euclidean spaces and it
does not take into account the data type, and it still exhibits
good predictive performance. The Kendall kernel does take
into account the data type; however, it performs the worst.
The full model corresponds to using the Gram matrix com-
puted with the full rankings, and MC and antithetic refer to
the Gram matrix obtained with the Monte Carlo and anti-
thetic kernel estimators. We observe that the test and train
loglikelihoods obtained with the antithetic kernel estimator
have lower variance as expected.

6 Conclusion

We addressed the problem of extending kernels to partial
rankings by introducing a novelMonteCarlo kernel estimator
and explored variance-reduction strategies via an antithetic
variates construction. Our schemes lead to a computationally
tractable alternative to previous approaches for partial rank-
ings data. The Monte Carlo scheme can be used to obtain
an estimator of the marginalised kernel with any of the ker-
nels reviewed herein. The antithetic construction provides an
improved version of the kernel estimator for themarginalised
Mallows kernel. Our contribution is noteworthy because the
computationofmost of themarginalisedkernels grows super-
exponentially with respect to the number of elements in the
collection; hence, it quickly becomes intractable for rela-
tively small values of the number of ranked items n. An

exception is the fast approach for computing the convolution
kernel proposed by Jiao and Vert (2015), which is only valid
for Kendall kernel. Mania et al. (2016) have showed that the
Kendall kernel is not characteristic using non-commutative
Fourier analysis to show that it has a degenerate spectrum.
For this reason, using other kernels for permutations might
be desirable depending on the task at hand.

One possible direction for future work includes the use
of explicit feature representations for traditional random fea-
tures schemes to further reduce the computational cost of
the Gram matrix. Another possible application is to use our
method with pairwise preference data where users are not
necessarily consistent about their preferences. In this type
of data, we could still extract a partial ranking from a given
user, then sample from the space of the corresponding full
rankings consistent with this observed partial ranking and
obtain our Monte Carlo kernel estimator. This would benefit
from our framework because having a partial ranking is in
general more informative that having pairwise comparisons
or star ratings.

Another natural direction for future work is to develop
variance-reduction sampling techniques for a wider variety
of kernels over permutations, and to the extent the theoret-
ical analysis of these constructions to discrete graphs more
generally.
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A Reproducing kernel Hilbert spaces

A reproducing kernel Hilbert space (RKHS) (Berlinet and
Thomas-Agnan 2004) over a set X is a Hilbert spaceH con-
sisting of functions on X such that for each x ∈ X there is a
function kx ∈ H with the property

〈 f , kx 〉H = f (x), ∀ f ∈ H. (20)

The function kx (·) = k(x, ·) is called the reproducing ker-
nel of H (Aronszajn 1950). The space H is endowed with
an inner product 〈·,·〉H and a norm can be defined based
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on it such that ‖ f ‖H := √〈·,·〉H. In order to be a Hilbert
space, it needs to contain all limits of Cauchy sequences, i.e.
it has to be complete. In the case of the symmetric group
of degree n, X = Sn , the space is finite-dimensional which
guarantees that it is complete. Finally, any symmetric and
positive-definite function kx : X × X → R uniquely deter-
mines an RKHS. Alternatively, a function k : X × X → R

is called a kernel if there exists a Hilbert spaceH and a map
φ : X → H such that ∀x, y ∈ X , k(x, y) = 〈φ(x), φ(y)〉H.
The function φ is usually referred to as the feature represen-
tation of x . Even though the RKHS induced by the kernel is
unique, there can be more than one feature representations
that define the same kernel.

B Proofs

Lemma 1 Let R ⊆ Sn be a top-k partial ranking, let σ ∈ R.
Then, there exists a unique solution to the problem

argmaxσ ′∈R dτ (σ, σ ′).

Moreover, it can be calculated directly; if the preference par-
tial ranking corresponding to R is given by a1 � · · · � ak, so
that the full ranking σ ∈ R satisfies σ(1) = a1, . . . , σ (k) =
ak, then the unique distance-maximising permutation σ ′ is
given by

σ ′(i) = ai for i = 1, . . . , k,

σ ′(k + j) = σ(n + 1 − j) for j = 1, . . . , n − k.

In this case, we have dτ (σ, σ ′) = (n−k
2

)
.

Proof We use the interpretation of Kendall’s tau distance as
counting numbers of discordant pairs. From this perspective,
it straightforwardly follows that all permutations in R can
be at most distance

(n−k
2

)
from one another, since any pair

of items involving one of the top-k items must necessarily
be concordant for any two permutations in R. It also follows
straightforwardly that there is a unique permutation in R for
which this distance is realised, given when all pairs of items
not in the top-k have the opposite ordering to that under σ ,
from which the formula in the statement follows. ��
Lemma 2 If R ⊆ Sn is a top-k partial ranking, then if σ ∼
Unif(R), then AR(σ ) ∼ Unif(R).

Proof The proof is immediate from Lemma 1, since AR is
bijective on R. ��
Lemma 4 Let R be a top-k ranking a1 � · · · � al � [n] \
{a1, . . . , al}, and let σ, ν ∈ R. Then dτ (σ, ν) = (n−l

2

) −
dτ (AR(σ ), ν).

Proof As for the proof of Lemma 3, we use the “discor-
dant pairs” interpretation of the Kendall distance. Note that
if a distinct pair {x, y} ∈ [n](2) has at least one of x, y ∈
{a1, . . . , al}, then by virtue of the fact that σ, AR(σ ), ν ∈ R,
any pair of these permutations is concordant for x, y. Now
observe that any distinct pair x, y ∈ [n] \ {a1, . . . , al} is
discordant for σ, ν iff it is concordant for AR(σ ), ν, from
the construction of AR(σ ) described in Lemma 1. The
total number of such pairs is

(n−l
2

)
, so we have dτ (σ, ν) +

dτ (AR(σ ), ν) = (n−l
2

)
, as required. ��

Lemma 5 Let R ⊆ Sn be a top-k partial ranking, let ν ∈ Sn

be arbitrary. There is a unique closest element in R to ν. In
other words, argminσ∈R dτ (σ, ν) is a set of size 1.

Proof We use the interpretation of the Kendall distance as
the number of discordant pairs between two permutations.
Let R be the top-k partial ranking given by x1 � · · · � xk �
[n] \ {x1, . . . , xk}, and let X = {x1, . . . , xk}. We decompose
the Kendall distance between σ ∈ R and ν as follows:

dτ (σ, ν) =
∑

x,y∈X ,x �=y

1x,y discordant for σ,ν

+
∑

x∈X ,y /∈X

1x,y discordant for σ,ν

+
∑

x,y /∈X ,x �=y

1x,y discordant for σ,ν . (21)

As σ varies in R, only some of these terms vary. In particular,
it is only the third term that varies with σ , and it is minimised
at 0 by the permutation σ in R which is in accordance with
ν on the set [n] \ X . ��

Lemma 6 Let σ ∈ R, and ν ∈ Sn. We have the following
decomposition of the distance d(σ, ν)

dτ (σ, ν) = dτ (σ,ΠR(ν)) + dτ (ΠR(ν), ν).

Proof We compute directly with the discordant pairs defi-
nition of the Kendall distance. Again, let R be the partial
ranking x1 � · · · � xk , and let X = {x1, . . . , xk}. We
decompose the Kendall distance between σ ∈ R and ν as
before:

dτ (σ, ν) =
∑

x,y∈X ,x �=y

1x,y discordant for σ,ν

+
∑

x∈X ,y /∈X

1x,y discordant for σ,ν

+
∑

x,y /∈X ,x �=y

1x,y discordant for σ,ν . (22)
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By the construction of ΠR(ν) in the proof of Lemma 5, we
have that

d(ΠR(ν), ν) =
∑

x,y∈X ,x �=y

1x,y discordant for σ,ν

+
∑

x∈X ,y /∈X

1x,y discordant for σ,ν,

i.e. the first two terms of the decomposition in Equation (22).
Similarly, we have

d(ΠR(ν), σ ) =
∑

x,y /∈X ,x �=y

1x,y discordant for σ,ν,

and so the result follows. ��
Lemma 7 Let σ ∈ R, and let ν ∈ R′. We have the following
relationship between dτ (AR(σ ), ν) and dτ (σ, ν)

dτ (AR(σ ), ν) = dτ (σ, ν) +
(

n − k

2

)
− 2dτ (σ,ΠR(ν)).

(11)

Proof We begin by observing that, by Lemma 6, we have

d(σ, ν) = d(σ,ΠR(ν)) + d(ΠR(ν), ν), (23)

and

d(AR(σ ), ν) = d(AR(σ ),ΠR(ν)) + d(ΠR(ν), ν). (24)

Now, from Lemma 4, we have that d(AR(σ ),ΠR(ν)) =(n−k
2

) − d(σ,ΠR(ν)). Hence, the result follows. ��
Lemma 8 Let R, R′ ⊆ Sn be top-k rankings, in preference
notation given by

R :a1 � · · · � al � [n] \ {a1, . . . , al},
R′ :b1 � · · · � bm � [n] \ {b1, . . . , bm}.

If ν ∼ Unif(R′), then ΠR(ν) is a full ranking with distribu-
tion Unif(R′′), where R′′ ⊆ R is the partial ranking given
by

R′′ : a1 � · · · � al � bi1 � · · · � biq

� [n] \ {a1, . . . , al , b1, . . . , bm},

where {bi1 , . . . , biq } = {b1, . . . , bm}\{a1, . . . , al}, and i j <

i j+1 for all j = 1, . . . , q − 1.

Proof We first show that ΠR maps R′ into R′′. This is
straightforward, as given ν ∈ R′, we first observe that

ΠR(ν) ∈ R, and so the full ranking ΠR(ν) is consistent
with the partial ranking

a1 � · · · � al � [n] \ {a1, . . . , al}.

Next, since ΠR(ν) is concordant with ν for all pairs outside
the set {a1, . . . , al},ΠR(ν)must be consistentwith the partial
ranking

bi1 � · · · � biq � [n] \ {a1, . . . , al , b1, . . . , bm}.

Putting these two facts together shows that the full ranking
ΠR(ν) must be consistent with the partial ranking

a1 � · · · � al � bi1 � · · · � biq

� [n] \ {a1, . . . , al , b1, . . . , bm}.

Thus, given ν ∼ Unif(R′), the distribution of ΠR(ν) is sup-
ported on R′′. To show that it is uniform, we now argue that
equally many rankings in R′ are mapped to each ranking in
R′′. To see this, we observe that the pre-image of a ranking in
R′′ is the set of all rankings in R′ which are concordant with
it on all pairs in [n] \ {a1, . . . , al , b1, . . . , bm}. The number
of such rankings is independent of the selected ranking in
R′′, and so the statement of the lemma follows. ��
Lemma 9 Let R′′ ⊆ R ⊆ Sn be top-k partial rankings. Then
for σ ∈ R, we have

AR′′(ΠR′′(σ )) = ΠR′′(AR(σ )).

Proof We begin by introducing preference-style notation for
R and R′′. Let R be the top-k ranking given by a1 � · · · �
al � [n]\{a1, . . . , al}, and let R′′ be the partial ranking given
by a1 � · · · � al � al+1 � · · · � am � [n] \ {a1, . . . , am}.
Let σ ∈ R, and let the elements of [n]\{a1, . . . , am} be given
by b1, . . . , bq , with indices chosen such that σ corresponds
to the full ranking

a1 � · · · am � b1 � · · · � bq .

Then, the ranking AR′′(ΠR′′(σ )) is given by

a1 � · · · am � bq � · · · � b1,

and a straightforward calculation shows that this is also the
case for ΠR′′(AR(σ )), as required. ��
Lemma 10 Let R′′ ⊆ R ⊆ Sn be top-k partial rankings,
given in preference notation by

R : a1 � · · · � al � [n] \ {a1, . . . , al},
R′′ : a1 � · · · � al � al+1 � · · · am � [n] \ {a1, . . . , am}.
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Let α be the number of unranked elements under R, and let
β be the additional number of elements ranked under R′′
relative to R. Then for σ ∈ R, we have

dτ (σ,ΠR′′(σ )) = ((n − l) − (m − l))(m − l)

+
(

m − l

2

)
− dτ (AR(σ ),ΠR′′(AR(σ ))).

Proof Again, we denote {b1, . . . , bq} = [n] \ {a1, . . . , am},
with indices chosen such that σ corresponds to the full rank-
ing a1 � · · · � am � b1 � · · · � bq . From earlier
arguments, we have

dτ (σ,ΠR′′(σ )) =
∑

x∈{al+1,··· ,am }
y∈{al+1,...,am }

1(x,y) discordant for σ,ΠR′′ (σ )

+
∑

x∈{al+1,··· ,am }
y∈{b1,...,bq }

1(x,y) discordant for σ,ΠR′′ (σ ).

Now observe that for ai , a j with l +1 ≤ i < j ≤ m, this pair
is discordant for the pair of rankings σ,ΠR′′(σ ) iff a j � ai

under σ iff ai � a j w.r.t AR(σ ) iff ai , a j are concordant for
the pair of rankings AR(σ ),ΠR′′(AR(σ )). Hence, we have

∑

x∈{al+1,··· ,am }
y∈{al+1,...,am }

1(x,y) discordant for σ,ΠR′′ (σ )

+
∑

x∈{al+1,··· ,am }
y∈{al+1,...,am }

1(x,y) discordant for AR(σ ),ΠR′′ (AR(σ )) =
(

β

2

)
.

By analogous reasoning, we have

∑

x∈{al+1,··· ,am }
y∈{b1,...,bq }

1(x,y) discordant for σ,ΠR′′ (σ )

+
∑

x∈{al+1,··· ,am }
y∈{b1,...,bq }

1(x,y) discordant for AR(σ ),ΠR′′ (AR(σ )) = (α − β)β.

Altogether, these statements yield the result of the
lemma. ��

C Expectation of the Kernel Monte Carlo
estimator

Proof For distinct i, j = 1, . . . , I , let
{
σ

(i)
n

}Ni

n=1
be an

independent and identically distributed (i.i.d.) sample from

p(σ | Ri ) and
{
σ

( j)
m

}N j

m=1
be an i.i.d. sample from p(σ | R j ).

Then,

E
(
K̂ (Ri , R j )

) = 1

Ni N j

Ni∑

n=1

N j∑

m=1

E

(
K (σ (i)

n , σ
( j)
m )

)
(25)

By linearity of expectation, since the samples are identically
distributed, the expectation in the summand above reduces
to

=
∑

σ∈Ri

∑

σ ′∈R j

K (σ, σ ′)p(σ | Ri )p(σ ′ | R j )

as required. Hence, the kernelMonte Carlo estimator is unbi-
ased for the off-diagonal elements of the kernel matrix. In
the diagonal case the expectation is biased but consistent
since,

E
(
K̂ (Ri , Ri )

) = 1

N 2
i

⎛

⎝
Ni∑

n=1

Ni∑

m=1

E

(
K (σ (i)

n , σ (i)
m )

)
⎞

⎠

= 1

N 2
i

Ni∑

n=1

E

⎡

⎣
Ni∑

m �=n

E

(
K (σ (i)

n , σ (i)
m | σ (i)

n )
)

+ E(K (σ (i)
n , σ (i)

n | σ (i)
n )

]

= 1

N 2
i

Ni∑

n=1

E

[
(Ni − 1)E

(
K (σ (i), σ

′(i) | σ (i)
n )

)

+ E

(
K (σ

′(i), σ
′(i))

)]

= (Ni − 1)

Ni
Eσ,σ ′

(
K (σ (i), σ

′(i))
)

+ 1

Ni
Eσ ′

(
K (σ

′(i), σ
′(i))

)
. ��

D Variance of Kernel Monte Carlo estimator
with i.i.d. samples

Proof The variance of theKernelMonteCarlo estimatorwith
uniform weights is the following:

Var
[
K̂ (Ri , R j )

] = 1

N 2
i N 2

j

Var

⎡

⎣
Ni∑

n=1

N j∑

m=1

K (σ (i)
n , σ

( j)
m )

⎤

⎦

= 1

Ni N 2
j

⎡

⎣Var

⎛

⎝
N j∑

m=1

K (σ
(i)
1 , σ

( j)
m )

⎞

⎠

⎤

⎦
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If we use the law of total variance, then

Var

⎛

⎝
N j∑

m=1

K (σ
(i)
1 , σ

( j)
m )

⎞

⎠

= Var

⎛

⎝E

[ N j∑

m=1

K (σ
(i)
1 , σ

( j)
m ) | σ

(i)
1

]⎞

⎠

+ E

⎛

⎝Var

[ N j∑

m=1

K (σ
(i)
1 , σ

( j)
m ) | σ

(i)
1

]⎞

⎠

= N j
2Var

(
E

[
K (σ

(i)
1 , σ

( j)
1 )

∣∣σ (i)
1

])

+ N j E

(
Var

[
K (σ

(i)
1 , σ

( j)
1 )

∣∣σ (i)
1

])

= N 2
j Var

⎛

⎝
∑

σ ′∈R j

K (σ
( j)
1 , σ ′)p(σ ′ | R j )

⎞

⎠

+ N j E

⎛

⎝
∑

σ ′∈R j

K (σ
(i)
1 , σ ′)2 p(σ ′ | R j )

⎞

⎠

− N j E

⎛

⎝
( ∑

σ ′∈R j

K (σ
(i)
1 , σ ′)p(σ ′ | R j )

)2
⎞

⎠

= N 2
j

∑

σ∈Ri

p(σ ′ | Ri )

( ∑

σ ′∈R j

p(σ ′ | R j )K (σ, σ ′)
)2

− N 2
j

(∑

σ∈Ri

∑

σ ′∈R j

K (σ, σ ′)p(σ | Ri )p(σ ′ | R j )

)2

+ N j

∑

σ∈Ri

p(σ | Ri )

⎛

⎝
∑

σ ′∈R j

p(σ ′ | R j )K (σ, σ ′)

⎞

⎠
2

− N j

∑

σ ′∈R j

∑

σ∈Ri

K (σ, σ ′)2 p(σ ′ | R j )p(σ | Ri )

So the variance for the Monte Carlo kernel estimator is
given by

Var
[
K̂ (Ri , R j )

]

= 1

Ni

[∑

σ∈Ri

p(σ | Ri )

( ∑

σ ′∈R j

p(σ ′ | R j )K (σ, σ ′)
)2

Table 4 Table of partial rankings subset cardinalities for a givennumber
of items and number of observed preferences (by overlapping pairs)

n/#pairs 1 2 3 4

3 3 1 − −
4 12 4 1 −
5 60 20 5 1

6 360 120 30 6

7 2520 840 210 42

8 20,160 6720 1680 336

9 181,440 60,480 15,120 3024

10 1,814,400 604,800 151,200 30,240

−
(∑

σ∈Ri

∑

σ ′∈R j

K (σ, σ ′)p(σ | Ri )p(σ ′ | R j )

)2]

+ 1

Ni N j

[∑

σ∈Ri

p(σ | Ri )

⎛

⎝
∑

σ ′∈R j

p(σ ′ | R j )K (σ, σ ′)

⎞

⎠
2

−
∑

σ∈Ri

∑

σ ′∈R j

K (σ, σ ′)2 p(σ | Ri )p(σ ′ | R j )

]
.

��

E Factorial growth of the space of consistent
full rankings for a given partial ranking

See Table 4.
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