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Abstract
Henry Stapp has made many significant contributions in quantum physics and its use in trying to understand the mind-
matter relationship. I have been influenced by his use of the notion of process to bring more clarity to understand quantum
phenomena. In this paper, I want to summarise the latest ideas on the time development of quantum processes that relate
the transformation theory of Dirac, Feynman and Schwinger to the notion of weak values which has triggered experimental
investigations of the nature of a deeper underlying stochastic structure of quantum processes.
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Introduction

It is a great privilege to contribute to Henry Stapp’s 90th
birthday Festschrift. My interactions with Henry go back
to the 1970s when I was starting out on my exploration
of quantum mechanics. I joined David Bohm at Birkbeck
College, London, in 1961, beginning a collaboration that
lasted for thirty-five years. In those early years, we did
not discuss his famous 1952 papers (Bohm 1952) on
‘hidden variables’ which eventually morphed into ‘Bohmian
mechanics’, the latter was an approach that we had both
rejected from its inception, instead outlining an alternative
which we summarised in The Undivided Universe (Bohm
and Hiley 1993). We were exploring a more radical idea
that Bohm called ‘structure process’ (Bohm 1965). The aim
was to provide a fundamentally new approach to quantum
phenomena which we hoped would ultimately lead to a
theory of quantum gravity.

We were joined by Roger Penrose who at the time
was in the Birkbeck mathematics department, developing
a theory of spin networks and twistor theory (Penrose
1967, 1971). Naturally, our discussions centred around the
question of how to unite QM and GR. In this environment,
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my introduction to quantum theory was unorthodox to say
the least!

The approaches of both Bohm and Penrose abandoned
the idea of assuming an a priori given space-time in
which fields and particles evolve in time. Instead, we were
exploring possible deeper structures from which space-
time itself would emerge as some form of coarse-grained
approximation. Penrose showed how the classical rotation
group emerged from a quantum spin structure when large
quantum numbers were involved. It is this structure that now
forms the basis of quantum loop gravity, a subject that has
recently developed rapidly into the type of theory that we
had in mind way back in the 1960s but had failed to make
any headway at that stage.

But I get ahead of myself. In the 1960s, we first
discussed a possibility of describing ‘structure process’
in terms of an underlying simplicial structure using a
discrete de Rham cohomology to provide a link to quantum
numbers (Bohm et al. 1970). However, the model was too
static emphasising more the ‘structure’ at the expense of
the ‘process’. I then discovered the work of Benn and
Tucker (1987), who showed how differential forms used in
the de Rham approach could be generalised to link with
the abstract generators of Clifford algebras. The vital piece
of background to this algebra was the work of Clifford
himself. He had started from the idea of process, which
depended crucially on the order of action. Remarkably,
Clifford (1882) was working, in those pre-quantum days,
entirely within classical physics, yet discovered an algebra
that now plays a key role in quantum mechanics when spin
and relativity are introduced. In light of this, we introduced
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the notion of the ‘algebra of process’. This provided a key
link with Penrose’s twistors which were, of course, the
semi-spinors of the conformal Clifford algebra (see Bohm
and Hiley 1984).

The Emergence of the Classical World

Gentle Photons

It was at this time that we became aware of the ideas
that Henry and his colleague, Geoff Chew, were exploring
at Berkeley. There was a common theme. We all agreed
that quantum theory in the hands of Bohr offered a set of
rules for calculating the statistical results under well-defined
experimental conditions. However, it did not provide an
ontology that would unambiguously remove the observer
from playing an essential role in the process. Henry
proposed that it should be the electromagnetic field that
provided the link between classical and quantum properties,
a link in which the twistor was to play a role. My preference
is for gravity to play such a role since it permeates
everything but that is for the future.

Following the ideas discussed in an early paper of Bloch
and Norsdsieck (1937), Henry suggested that the ‘infrared
catastrophe’, rather than being a problem, should be used
in a positive way to provide a method to separate out the
classical aspect of the total process. In this way, he (Stapp
1983) completely solved the technical problem and showed
that it was the coherent state of the electromagnetic field
that replaced the ‘observer’ in Bohr’s approach. Recall
that coherent states have classical-like solutions in phase
space. In the case of the em field, the expectation value
in the coherent state |A(t)〉 of the quantum operator Â(x)

corresponding to the vector potential can be written as

A(x) = 〈A(x′)|Â(x)|A(x′)〉.
Further work shows that the S-matrix can be expressed in
terms of A(x) establishing the presence of the classical
electromagnetic field in the theory with its position in
space-time, rather than configuration space. Furthermore,
the incorporation of light into the S-matrix automatically
brings into this description an exact classical level that is
coordinated to the ordinary four-dimensional space-time
continuum of special relativity.

By this means, the structure process can provide a well-
ordered sequence of actual events in space-time so that it is
meaningful to regard each quantum process as a sequence of
actual events in space-time. Thus, our ontology contains no
explicit dependence on human observers. In this sense, the
ideas discussed in this paper are different from the position
Henry now favours. For example, the Feynman path can be
considered as an actual sequence of events in space-time,

totally independent of human intervention. This enables
us to show exactly how the Bohm approach that I had
worked on in the seventies fits into the standard approach to
quantum mechanics (Flack and Hiley 2018).

The BohmApproach

In the 1970s, I was encouraged by two of our research
students, Chris Philippidis and Chris Dewdney, to examine
in more detail Bohm’s 1952 papers (Bohm 1952). The titles
of these papers contained the phrase ‘hidden variables’,
an approach that many thought had failed in its aims,
including myself and I had never taken it seriously. In
spite of this, we decided to use the rapidly developing new
computer technology to calculate ‘trajectories’, examine
their form and look at the detailed structure of the quantum
potential [see Eq. 2 below] for various characteristic
quantum phenomena such as two-slit interference, barrier
penetration, scattering by square wells etc.

The approach was simple, take the classical canonical
relations p = ∇S and E = −∂tS, replace the classical
action by the phase of the wave function and calculate
‘trajectories’. Amazingly, we found that the results gave
a powerful intuitive picture of what could be going on
provided our assumptions were correct. The key question
was why was this approach apparently working so well?

It was much later when I noticed that Dirac (1947) had
introduced an algebraic approach that turns out to be the
forerunner of the Bohm approach (Bohm 1952), producing
exactly the same equations that Bohm used. However, Dirac
argued that proceeding in this way the existence of a local
momentum would violate the uncertainty principle. Bohm,
in contrast, showed that this was not true. Furthermore, he
realised that one could still retain classical ideas by using the
first-order WKB approximation, but keeping all the terms
of the expansion demanded a radical change of outlook. It
was those terms that summed into the quantum potential,
a notion that Heisenberg regarded as ad hoc (Heisenberg
1958). However, it was the forerunner of deformation
quantum mechanics (Bayen et al. 1978).

Dirac went on to suggest that the Lagrangian played a
key role in his approach and so I took the Lagrangian that
Heisenberg had used to ‘derive’ the Schrödinger equation.
Rewriting the Lagrangian using the polar decomposition of
the wave function ψ = ReiS/� one finds that the Euler-
Lagrange equations give the two equations that Bohm had
used, namely,

∂P

∂t
+ ∇.

(
P

∇S

m

)
= 0 (1)

and

∂S

∂t
+ (∇S)2

2m
+ Q + V = 0 (2)



104 Act Nerv Super (2019) 61:102–107

where Q = − �
2

2mR
(∇2R) is the expression for the quantum

potential. But this still does not explain why the relation
p = ∇S works.

Once we have the Lagrangian, we can use the general
expression for the energy-momentum tensor to find

T 0μ = i

2
[ψ∗←→∂ μ

ψ] = −ρ∂μS.

Explicitly, p = ∇S = T 0j /ρ and E = −∂tS =
T 00/ρ. So the Bohm momentum actually emerges from
the energy-momentum tensor derived from the Schrödinger
Lagrangian. But there is more. The trace of the energy-
momentum is

(T kk − Lδkk)/ρ = (∂kS)2

2m
+ (∂kR)2

2mR2
+ V .

Thus, not only does the kinetic energy, KEB = p2/2m =
(∇S)2/2m, emerge but there also appears a new form of
kinetic energy, namely, KEO = (∇R)2/2mR2. This latter
is clearly connected with the appearance of the quantum
potential. It turns out that I had rediscovered some early
work of Takabayasi (1954).

I found all this very reminiscent of early work
of Feynman (1948) and Schwinger (1951, 1953a, b)
when they laid the foundations of quantum field theory.
Schwinger (1953b) argued that the fundamental quantum
dynamical laws would find their proper expression in
terms of transition amplitudes [TAs], not in terms of the
Schrödinger wave functions. The key ingredient in his
work was the energy-momentum tensor which he used to
define momentum TA. In the non-relativistic theory, the
momentum TA is simply

〈P̂ μ〉 = 〈φ(x, t)|P̂ μ|ψ(x0, t0)〉
〈φ(x, t)|ψ(x0, t0)〉 (3)

an expression that is exactly the same as the weak value of
the momentum, about which we will have more to say later.

It was Dirac (1945) who suggested that, in the non-
relativistic case, we should divide the connection between
two states ψ(x0, t0) and φ(x, t) into a series of infinitesimal
time steps ε = tj+1 − tj , enabling us to construct a ‘path’
out of a series of TAs so that

〈xt |xt0〉 =
∫

〈xt |xj 〉dxj 〈xj |xj−1〉 . . . 〈x2|x1〉dx1〈x1|xt0〉 (4)

where the 〈xj+1|xj 〉 are a set of infinitesimal TAs. In
this way, as Dirac argues (Dirac 1945), we can discuss
trajectories for the motion of a quantum particle, which
makes quantum mechanics more closely resemble classical
mechanics. Indeed, the method enables one to bring out
the close analogy between classical and quantum contact
transformations, an analogy that Bohm highlights in his
book, Quantum Theory (Bohm 1951).

Fig. 1 Enfolding and unfolding at a point

It is interesting to note that in sections 31 and 32 of his
book, Dirac (1947) derived Eqs. 1 and 2 from an algebraic
point of view but did not pursue the approach because he
thought the uncertainty principle would be violated. Bohm
showed that this conclusion was not correct by developing
his causal approach.1 All this prompts the question ‘Is
there a relation between the Feynman paths and the Bohm
trajectories?’

Feynman Paths and Bohm Trajectories

In Eq. 4, one writes 〈x|x′〉 = exp[iS(x, x′)], where
Feynman assumes S(x, x′) = δ

∫
L(x, x′)dt , the classical

action and therefore

S(x, x′) = m(x − x′)2

2ε
ε being a small time interval. The momentum TA at a point
X between x′ and x is

pX(x, x′) = ∂S(X, x ′)
∂X

+ ∂S(x,X)

∂X

=
[
(X − x′)

ε
− (x − X)

ε

]
.

Notice that the derivative is not continuous at X. Instead,
we have a ‘backward derivative’ (X − x′)/ε and a ‘forward
derivative’ (x − X)/ε at X. Thus, the Feynman path is
continuous but nowhere differentiable.

Over time an ensemble of individual particles pass
through X, so that there is a distribution of momenta
arriving at X and a distribution of momenta leaving the
point. Thus at each point X, we have an average value of the
momentum and that average value must be determined by
the wave function. The average momentum at a point turns
out to be the Bohm momentum p = ∇S, S being the phase
of the wave function.

To see how this result follows, consider the process
shown in Fig. 1. This gives an image of an ensemble of
actual individual quantum events occurring at X together
with the incoming and outgoing sprays of momenta. Thus,
we have two contributions to consider, one spray coming
from the point x′ and the other spray leaving for the point

1Bohm refers specifically to these two sections in his book (Bohm
1951) and so he was well aware of what Dirac had done.
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x. We must determine the distribution of momenta in each
spray to produce a result that is consistent with the wave
function ψ(X) at X. Therefore, we can write

lim
x′→X

ψ(x′) =
∫

φ(p′)eip′Xdp′ and

lim
X→x

ψ∗(x) =
∫

φ∗(p)e−ipXdp.

The φ(p′) contains information regarding the probability
distribution of the incoming momentum spray, while φ∗(p)

contains information about the probability distribution in the
outgoing momentum spray. These wave functions must be
such that in the limit ε → 0 they are consistent with the
wave function ψ(X).

Thus, we can define the mean momentum, P(X) as

ρ(X)P (X) =
∫∫

Pφ∗(p)e−ipXφ(p′)eip′X

×δ(P − (p′ + p)/2)dPdpdp′ (5)

where ρ(X) is the probability density at X. We have added
the restriction δ(P − (p′ + p)/2) since momentum is
conserved at X. We can rewrite Eq. 5 and form

ρ(X)P (X)= 1

2π

∫∫
Pφ∗(p+θ/2)e−iXθφ(p−θ/2)dθdP

or equivalently taking Fourier transforms

ρ(X)P (X) = 1

2π

∫∫
Pψ∗(X − σ/2)e−iPσ

×ψ(X + σ/2)dσdP

which means that P(X) is the conditional expectation
value of the momentum weighted by the Wigner function.
Equation 5 can be put in the form

ρ(X)P (X) =
(
1

2i

)
[(∂x1 − ∂x2)ψ(x1)ψ(x2)]x1=x2=X (6)

an equation that appears in the Moyal approach (Moyal
1949), which is based on a different but isomorphic
non-commutative algebra. If we evaluate this expression
for the wave function written in polar form ψ(x) =
R(x) exp[iS(x)], we find P(X) = ∇S(X) which is just the
Bohm momentum.

Since the Bohm momentum is an average value, the
trajectories calculated from them must be averages, so that
each Bohm ‘trajectory’ is an average of an ensemble of
individual Feynman paths. It is not the momentum of a
single ‘particle’ passing the pointX, as assumed in Bohmian

mechanics, but the mean momentum flow at the point in
question.

Weak Values

The previous section was motivated by the appearance in
2011 of an experiment reporting the construction of ‘photon
trajectories’ using a two-slit optical setup that measured
the weak values of the transverse momentum (Kocsis et al.
2011). This was all made possible by utilising a general idea
introduced by Aharonov et al. (1988) who defined the weak
value of any operator Â by

〈Â〉 = 〈φ(t)|Â|ψ(t0)〉
〈φ|(t)|ψ(t0)〉 .

Clearly, Eq. 3 is a special case of a weak value. Indeed,
Leavens (2005) and Wisemen (2007) argued that the weak
value of the momentum provided, in principle, a way of
experimentally constructing Bohm trajectories. It was this
connection that Kocsis et al. (2011) exploited in their
two-slit optical experiment. Their results were remarkably
similar to the Bohm trajectories (Philippidis et al. 1979).
(For a detailed comparison, see Coffey and Wyatt 2011.)
These experimental results show clearly the statistical
nature of the results used to construct the flow lines, thus
confirming the statistical nature of the Bohm trajectories.

There is a problem for the claimed interpretation of
flow lines in that photons, per se, do not have trajectories.
Nevertheless, Flack and Hiley (2016) showed that what
Kocsis et al. (2011) had constructed were mean momentum
flow lines using the real part of the weak Poynting vector.
If one requires a more appropriate comparison to the Bohm
trajectories then one should experiment using atoms. In fact,
our group at UCL are at present measuring weak values
of momentum using argon and helium (Morley et al. 2016,
2017) and the experiments are very close to completion.

The Algebra of Process

The Technical Details

It should by now be apparent that the Bohm approach has
its origins in the non-commutative algebra pioneered by
Born et al. (1926) and which I have called ‘the algebra of
process’ (Hiley 1980). The key link appears in Dirac’s The
Principles of Quantum Mechanics (Dirac 1947) . There a
symbol, 〉, the ‘standard ket’ is introduced into the algebra.
This enables the wave function ψ to be written as a wave
operator, ψ(Q̂, P̂ ) 〉; technically, the new object turns the
wave function into an element of a left ideal. To complete
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the algebra, a dual symbol, the standard bra is introduced.
Thus, Dirac has replaced the usual Hilbert space by a
non-commutative algebra formed by the symbols [Q̂, P̂ , ε]
where the ε = 〉〈 , an idempotent.2 In this way, all the
essential details of the quantum process are contained in the
algebra.

In effect, what Dirac has done is to introduce a new
representation, which I call the Dirac-Bohm picture (Hiley
and Dennis 2018). This representation is unitarily equivalent
to the Schrödinger picture and supplements the Heisenberg,
Interaction and Fock pictures. It is different in that the
unitary transformation is based on the action rather than the
energy. Indeed, ε plays an analogous role to the vacuum
projector in the Fock representation.

Using this approach, I was able to propose two time
evolution equations within the algebra (Hiley 2015),
equations implicitly contained in Dirac’s work (Darrigol
1992). A similar pair of equations can also be constructed in
the Moyal algebra. I have used these equations to extend the
Dirac-Bohm picture to Clifford algebras and shown how the
Pauli and Dirac equations fit into the structure (Hiley and
Callaghan 2012). Contrary to the usual assumption, there is
no problem with extending this picture to include relativity.
In passing, I should also like to mention that this approach
was inspired by Penrose’s development of twistors. It is
this algebra that provides a possible approach to quantum
gravity.

The Overarching Philosophy

The theme of this paper was motivated by the paper that
Henry kindly submitted to Bohm’s 70th Festschrift (Hiley
and Peat 1987). There, Henry talks about the ‘Bohm-
Heisenberg idea of events’. I agree on the notion of
quantum events that actualise, but I wanted to clarify how
Bohm’s 1952 paper (Bohm 1952) related to the Heisenberg
non-commutative algebra. The Bohm approach emerges
as a coarse-grained average, giving the appearance of a
deterministic approach, but being, in fact, very different
from classical determinism.

Our approach restores the position-momentum symmetry
and so two views emerge, a phase space constructed from
(x, p = ∇xS(x)) or from (x = −∇pS(p), p). These are the
shadow phase spaces. In the Dirac picture, they correspond
to choosing the idempotent defined by P̂ εx =0 or X̂εp =0.3

Bohr proposed that we understand this dual view through

2The idempotent symbol is introduced because the Heisenberg algebra
is nilpotent and contains no idempotent.
3In Fock space, these are analogous to a|0〉 = 0 or a†|F 〉 = 0
where |F 〉 is the full or plenum state. The latter is more commonly
experienced with fermions.

the principle of complementarity, a philosophical principle
that does not sit comfortably with physicists in general.
Bohm proposed a new notion of the implicate-explicate
order. The need for non-commutativity suggests that we can
no longer provide one unique, God’s-eye, view of natural
phenomena. Because we are inside, as it were, we can only
project out partial views determined by the experimental
conditions which enable us to construct particular shadow
manifolds, or explicate orders. The underlying reality is
implicate. Bohm investigated the consequences of this
implicate view of reality, not only in physics but also in
other areas of intellectual discourse. The one that would
most interest here is the application of these ideas to mind,
but I do not have the space to discuss this here. Have a happy
90th Henry!
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creativecommons.org/licenses/by/4.0/), which permits unrestricted
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