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Abstract

Mild-cognitive impairment (MCI) occurs in up to one-fifth of individuals over the age of 65, with approximately a third
of MCl individuals converting to dementia in later life. There is a growing necessity for early identification for those at
risk of dementia as pathological processes begin decades before onset of symptoms. A cohort of 122 individuals
diagnosed with MCl and followed up for a 36-month period for conversion to late-onset Alzheimer’s disease (LOAD)
were genotyped on the NeuroChip array along with pathologically confirmed cases of LOAD and cognitively normal
controls. Polygenic risk scores (PRS) for each individual were generated using PRSice-2, derived from summary statistics
produced from the International Genomics of Alzheimer's Disease Project (IGAP) genome-wide association study.
Predictability models for LOAD were developed incorporating the PRS with APOE SNPs (rs7412 and rs429358), age and
gender. This model was subsequently applied to the MCl cohort to determine whether it could be used to predict
conversion from MCI to LOAD. The PRS model for LOAD using area under the precision-recall curve (AUPRQ)
calculated a predictability for LOAD of 82.5%. When applied to the MCl cohort predictability for conversion from MCl
to LOAD was 61.0%. Increases in average PRS scores across diagnosis group were observed with one-way ANOVA
suggesting significant differences in PRS between the groups (p < 0.0001). This analysis suggests that the PRS model
for LOAD can be used to identify individuals with MCI at risk of conversion to LOAD.

Introduction

The genetic contribution to late-onset Alzheimer’s
disease (LOAD) is now well established, with heritability
estimates ranging from 58 to 79%'. The APOE gene
located on Chromosome 19 encodes the Apolipoprotein E
protein. This gene represents the largest genetic risk
factor for LOAD to date, with genetic variation producing
three isoforms: €2 (protective), €3 (neutral and most
common form) and €4, which is associated with increased
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risk for LOAD. Further to this a number of both common
and rare genetic risk factors have been identified in recent
years from genome-wide association studies (GWAS) and
next-generation sequencing efforts> . Despite this
increase in our knowledge of genetic associations these do
not account for the entire heritability of the LOAD phe-
notype. Although other factors such as epistasis and epi-
genetics might contribute, it is becoming accepted that far
more genes/polymorphisms with much smaller effect
sizes are involved in complex diseases than previously
envisaged.

Genetic risk calculation studies have typically used only
variants identified by GWAS to try and predict LOAD
phenotype® "%, mild- cognitive impairment (MCI) con-

version to LOAD'>'*, hippocampal cortical thickness'>'°,
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Table 1 Demographics of each group genotyped
Cohort Group N Age Females (%) APOE €4 APOE
+ (%) 44 (%)
BDR LOAD cases 302 83.0 146 (48.3) 196 (64.9) 39 (129
Controls 137 840 68 (49.6) 49 (40.1) 2 (1.5
ICOS MCI Non- 73 760 21 (288) 31 (425 4(55
converters
Ml 49 790 26 (53.0) 23 (469 4 (82
converters

The late-onset Alzheimer's disease (LOAD) cases and controls were recruited
from the brains for dementia research (BDR) resource. The individuals with mild-
cognitive impairment (MCl) were recruited from a single study in Southampton,
UK; conversion to LOAD was identified after 36-month follow-up. LOAD cases
were shown to harbour more APOE €4+ individual than controls (p < 0.001), but
no significant differences were observed between the proportion of females or
age at death. MCI converters were shown to have a significantly higher
proportion of females in comparison to the non-converters (p = 0.008), with no
significant differences observed for age or APOE €4+ carriers.

hippocampal volume'’, cerebrospinal fluid biomarkers'®
and plasma inflammatory biomarkers'®.

The development of polygenic risk score (PRS) analysis
now allows for the sum of genetic risk from the entire
genome to be accounted for, weighted by the effect size
estimates attained from established GWAS data, rather
than selecting a few specific associated single-nucleotide
polymorphism (SNP) markers®’. The study by Escott-
Price et al®’ demonstrated that the predictability of
LOAD from APOE isoform and contribution of the
LOAD GWAS SNPs was improved by incorporating
further variants from across the genome into their PRS
model. The addition of other predictors such as gender
and age into the model resulted in a final predictive ability
of 78.2%. Several other studies have also demonstrated
that this form of analysis can differentiate between con-
trols and LOAD cases with similarly high accuracy***’.

The pathological features of LOAD have been found to
begin decades before the onset of symptoms®*°,
Therefore, the early detection of those likely to be at risk
for LOAD could increase effectiveness of treatments
preventing further damage from occurring®2®, MCI is
diagnosed in up to one-fifth of individuals over the age of
65 and is considered a prodrome of dementia®®. An esti-
mated one-third of those diagnosed with MCI will go on
to develop LOAD over time”’. Consequently, under-
standing genetic risk factors within LOAD pathogenic
mechanisms can improve detection and promote treat-
ment before the pathogenic state arises****?%, A ther-
apeutic intervention at the MCI stage may provide an
opportunity to prevent or delay conversion to LOAD">?°
Therefore, there is a need to investigate if MCI to LOAD
conversion can be predicted using PRS analysis.

In this study, we developed a PRS model to predict
LOAD diagnosis in the brains for dementia research
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(BDR) cohort™. This model was then applied to a long-
itudinal sample of individuals with MCI from the South-
ampton inflammation, cognition and stress (ICOS) study,
to see if the model could predict those individuals who
converted from MCI to LOAD.

Materials and methods
Samples

The BDR resource has recruited patients with dementia
as well as cognitively healthy controls; post-mortem
pathology was used to confirm and classify disease sta-
tus®!. This cohort consists of 302 LOAD cases and 137
controls, with no significant differences in the age at death
and percentage of females between the cases and controls.
The number of €4 carriers was significantly higher
amongst cases (p < 0.001; Table 1) as expected.

Individuals with MCI were recruited from the ICOS study
in Southampton, UK. Diagnoses were made using the
Petersen criteria for amnestic MCI*%, The study followed-
up individuals over a 36-month period (until October 2017)
to identify those who converted to a LOAD (‘converters’ n
=49), and those who remained MCI (‘non-converters’ n =
73). Age at recruitment and presence of at least one APOE
€4 allele was not found to be significantly different between
the converters and non-converters; although the converter
group was found to have a significantly higher proportion of
females (p = 0.008; Table 1).

Genotyping

DNA extraction was performed using a standard phenol
chloroform method on either 2ml of blood (MCI) or
100 mg of brain tissue (BDR). DNA quality was assessed
using the Agilent 2200 TapeStation DNA integrity number
(DIN; average DIN = 8.95) and quantified using Nanodrop
3300 spectrometry. All samples were collected with
informed consent as governed by local guidelines at the
point of collection; experimental procedures were approved
by local ethics committees - Nottingham Research Ethics
Committee 2 (REC reference 04/Q2404/130); London City
and East NRES (REC reference 08/H0704/128 +5), and
completed in accordance with approved guidelines.

Genotyping was performed on the customised Neu-
roChip array®®. Clustering was completed with the assis-
tance of a cluster file provided by Blauwendraat and
colleagues (2017) and the dataset was aligned to the
GRCh37/hg19 assembly using files provided by Rayner, W
(Personal correspondence, Nov 2017). Quality control of
the raw data was completed using GenomeStudio v2 and
PLINK v1.9%*, with samples removed based on a call rate
less than 90%, gender mismatch and deviation from
European population parameters. SNPs were removed
based on a call rate less than 95%, genotype frequencies
significantly out of Hardy—Weinberg equilibrium with a
Bonferroni corrected p value threshold (p =1.03 x 1077)
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and excess heterozygosity (+3 standard deviations from
mean). SNPs where the minor allele was observed in less
than 3 individuals were also removed.

The APOE SNPs rs7412 and rs429358 (which determine
the isoform) were genotyped with TagMan assays using
standard protocols. At least one APOE &4 allele was har-
boured by 70.9% of LOAD cases, 46.9% of MCI con-
verters, 42.9% of MCI non-converters and 40.1% of
controls (Table 1).

Polygenic-risk score generation and predictability
modelling

The APOE gene is the largest known risk factor for
LOAD, with the region surrounding the locus displaying
levels of strong linkage disequilibrium (LD). Therefore,
SNPs  which fell ~within the 500kb region
(chr19:45,160,844-45,660,844; GRCh37/hgl9 assembly)
surrounding the APOE gene were excluded from the
dataset. The genotypes for the APOE & status SNPs
(rs7412 and rs429358) were then reintroduced to the
dataset to ensure genetic risk from APOE was captured.

Samples from the 1000 Genomes Project Consortium
(1000G; n = 2504) were compared ancestrally to the BDR
and MCI samples using common ancestry informative
markers. Principal component analysis was carried out in
PLINK to verify all NeuroChip-genotyped samples (n =
561) fell within the cluster of European descent (# = 503)
to guard against population stratification.

Data from the 1000G samples were also used to calcu-
late LD structure. The clumping algorithm in PRSice-2*°
was set to identify any SNPs within 250 kb in LD with an
#* threshold greater than 0.1 and ‘clump’ them together to
be represented by most significantly associated SNP
within each LD block, denoted the index SNP.

PRSice-2 was utilised to generate PRS for LOAD cases
and cognitively healthy controls, using summary statistic
data from the International Genomics of Alzheimer’s
Disease Project (IGAP) genome-wide association study®”.
Significance values and effect sizes from the IGAP cohort
were used as the base dataset to generate the best PRS
model which was then applied to the BDR and MCI target
datasets. Briefly, the PRS for each individual in the target
dataset is generated from a summation of effect sizes from
all the SNPs included in the best model. The best model
was derived from testing the inclusion of SNPs
(19-73,058 SNPs) from a range of p value thresholds in
the base dataset (10° to 1), to see which threshold gave
the largest Nagelkerke’s R* value. These SNPs were then
used to generate PRS for each individual in both the BDR
and MCI cohorts.

The significance of differences in mean PRS between
the four groups (controls, MCI non-converters, MCI
converters and LOAD) was tested using one-way ANOVA
with post hoc Tukey in SPSS v24. Spearman’s correlation
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analysis was also conducted by ranking the diagnosis
groups from 0 (control), 1 (non-converters), 2 (con-
verters) to 3 (LOAD).

Predictive ability of APOE alone and APOE with the
PRS for identifying LOAD cases and converters in each
cohort was calculated using Area Under the precision-
recall Curve (AUPRC) in R using the ‘PRROC’ package®®
(R Core Team, 2013). AUPRC was calculated to identify
predictive ability, values range from 0 to 100%, where 0%
is random classification and 100% is perfect
classification®”.

The effect of non-genetic predictors (age and gender)
were estimated in SPSS, and were included with PRS in
logistic regression analysis to enable incorporation into
the predictive model.

LOAD cases and controls were distributed into deciles
based on the range of probability values which accounted
for PRS with APOE, gender and age at death. The pro-
portions of LOAD cases which fell into each decile were
calculated and are depicted alongside the proportion of
controls within the same decile. This was also conducted
for the proportions of MCI converters and non-
converters within each decile distributed by PRS includ-
ing APOE, gender and age at recruitment.

Results and discussion

European ancestry of the BDR and MCI samples was
confirmed with principal component analysis, as all
samples clustered accordingly with European samples
from the 1000G dataset. A plot of the first two principal
components is presented in Supplementary Fig. 1. With
confirmation that the BDR and MCI target datasets were
or the same ethnic decent as the IGAP base dataset,
analysis could proceed.

PRSice-2 derived Nagelkerke’s R* values for a range of
SNP p value thresholds from 1 x 107 ° to 1 in the IGAP
base dataset were used to determine the best significance
threshold for inclusion of SNPs required to distinguish
between LOAD cases and controls. There was a total of
73,056 SNPs were found in both the IGAP base dataset
and NeuroChip target datasets after LD based clumping
(”*>0.1; kb=250). The largest Nagelkerke’s R*> value
generated was 0.138, suggesting the inclusion of all SNPs
at the p value threshold of 1.07 x 10 * into the PRS model
plus the two APOE SNPs (total 167 SNPs; Supplementary
Table 1). This model was then applied to both the BDR
and MCI cohorts.

One-way ANOVA analysis of mean PRS scores between
diagnosis groups, suggested an overall significance in PRS
score (p < 0.0001). Pairwise post hoc Tukey analysis of the
groups showed that the mean PRS of the BDR LOAD
samples were found to be significantly higher than that of
the controls (p <0.0001 post hoc Tukey), likewise the
mean PRS for the MCI converters was found to be higher



Chaudhury et al. Translational Psychiatry (2019)9:154

Fok ok

0.03 1

o
Q
S

PRS including APOE
°
=
&—

0.00 1

-0.01

Controls Non-Converters Converters LOAD Cases

Fig. 1 Distribution of polygenic risk score (PRS), including APOE
SNPs (N = 167) amongst late-onset Alzheimer’s disease (LOAD)
cases, converters and non-converters from mild-cognitive
impairment (MCI), and controls. The range of scores for individuals
within each group are described in the figure (grey circles) with the
average PRS for each group indicated by the black circle. Significant
differences were observed with one-way ANOVA across all four
groups (p < 0.0001), with post hoc Tukey indicating significance
between pairwise comparisons indicated with ****(p < 0.0001)

than that of MCI non-converters, however this was not
significant (Fig. 1). Post hoc Tukey also identified sig-
nificant differences in mean PRS between non-converters
and LOAD samples (p < 0.0001).

Predictability of the LOAD phenotype with PRS,
including APOE with gender and age at death incorpo-
rated into the model, produced a final AUPRC for pre-
dictability for LOAD of 82.5%. The APOE genotypes alone
were found to have a predictability of 81.8%. When
applied to the MCI cohort for predictability of conversion
with age at recruitment in the study instead of age at
death, the full model produced a predictability of 61.0%
for conversion, with APOE alone showing 43.8% pre-
dictability. This demonstrates the utility of the PRS to
discern conversion from MCI to LOAD.

Samples for the BDR and MCI cohorts were separately
partitioned into deciles of increasing disease risk based on
PRS, including APOE genotypes, gender and age; the
proportion of LOAD cases and controls which fell into
each decile are depicted in Fig. 2. As of December 2017,
49 individuals diagnosed with MCI had converted to
LOAD (39.3%); the proportion of converters and non-
converters which fell into each decile are also given in Fig.
3. Both figures show the proportion of LOAD/MCI con-
verters increases with increasing PRS.
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PRS is increasingly being used in genetic analyses to
determine predictability of complex disease. In this study,
cognitively healthy controls and individuals with LOAD
or MCI were genotyped on the NeuroChip array®>. PRS
were generated from IGAP summary statistics and use to
calculate risk scores for LOAD cases and controls from
the BDR and MCI samples from the Southampton ICOS
cohort. The best predictive model (82.5%) to distinguish
LOAD cases from controls generated in the BDR cohort
was found to be able to predict LOAD converters in the
MCI cohort with an accuracy of 61.0%.

The difference between mean PRS of controls, non-
converters, converters and LOAD cases was significant
with one-way ANOVA, however, pairwise significance
(post hoc Tukey) was only observed between LOAD cases
and controls and LOAD cases and MCI non-converters.
The distribution profile in Fig. 1 and Spearman’s rank
order correlation (r=0.408; p=0.01) confirms an
increased PRS with disease status from control through
non-converters, converters to LOAD. The lack of a sig-
nificant difference in average PRS between the MCI non-
converters and converters is mostly like due to the small
sample sizes, and it is expected that with increased
numbers in each MCI group the mean PRS will move
towards controls and LOAD cases, respectively. This
hypothesis is supported by several studies suggesting that
possession of LOAD-risk alleles are associated with faster
cognitive decline, MCI and conversion from MCI to
LOAD'"*%% with one study concluding that carrying 6
or more of the non-APOE LOAD risk alleles rapidly
increases conversion from MCI to LOAD™

The resulting risk model, incorporating the APOE
SNPs, 165 non-APOE SNPs, gender and age successfully
predicted LOAD cases from controls with 82.5% accuracy
which is a similar value to previous studies* ~>*%°,

As observed in previous PRS analyses*' there are a
number of controls with high risk scores and cases of
LOAD individuals with a low-risk scores (Fig. 2). It is
possible that in these individuals, lifestyle and environ-
mental factors could be determining the disease presence
independent of, or interacting with genetic factors. Con-
trols with higher PRS might represent individuals who
would have developed disease had they lived longer as the
average age at death of controls in the highest decile was
significantly lower (73.5+ 7.8 years) compared with the
lowest decile (86.3 + 5.0 years; p =0.032). It is also pos-
sible that these individuals harbour unknown protective
factors which may reduce disease risk.

Further study highlighted significantly later age at death
in LOAD cases with the lowest risk compared to LOAD
cases with the greatest risk (average age at death of LOAD
in decile 1 =95.0 + 11.3; average age at death of LOAD in
decile 10 =81.1 + 6.4; p = 0.007); this aligns with previous
studies identifying later age at onset in cases with low PRS
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Fig. 2 Proportion of late-onset Alzheimer’s disease (LOAD) cases and cognitively healthy controls in each decile using the best predictive
model. Individual probabilities were generated using PRSice-2. The polygenic risk scores (PRS) including APOE and covariates for gender and age at
death were used to distribute individuals into deciles. The dark bars represent the proportion of LOAD cases which fall into each decile and the light
bars represent the proportion of controls. The number of LOAD cases and controls who fall within each decile are indicted in each block
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Fig. 3 Proportion of mild cognitive impairment (MCI) non-converters and those who converted to late-onset Alzheimer’s disease.
Individual probabilities for the best predictive model were generated from polygenic risk scores (PRS) including APOE and covariates for gender and
age at recruitment to distribute individuals into deciles. The dark bars represent the proportion of converting MCls in each decile and the light bars
represent the proportion of non-converting MCls. The number of converters and non-converters who fall within each decile are listed

and increased prevalence with age;***3, This could indi-
cate that genetic load is associated with onset and/or
severity of disease.

Predictive ability for LOAD conversion from MCI
(61.0%) was less than between controls and LOAD
(82.5%). This lower predictive ability is likely due to the
smaller sample size of the MCI cohort, furthermore the
ICOS cohort is a longitudinal study, and therefore unlike

the BDR cohort which have the diagnoses post-mortem
verified, the participants are still being clinically and
cognitively assessed. It is possible that as the study pro-
gresses further individuals in this study will convert and
influence the accuracy of the model.

The ability of the LOAD PRS model to predict to some
degree the conversion of MCI to LOAD, highlights a
possible genetic basis for conversion. Whereas non-
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converters have a genetic risk similar to that of controls,
they may still harbour some genetic variations associated
with LOAD which leads to the MCI phenotype though
those with the lowest scores may never convert to LOAD.
Conversely, the MCI subjects that did convert to LOAD
have a PRS that is not significantly different to LOAD
cases, which reinforces the idea that MCI can be seen as a
prodromal state of LOAD and that by using approaches
such as we describe, those at risk of developing LOAD can
potentially be identified before the onset of LOAD
symptoms and would be the best candidates to evaluate
emerging therapeutic approaches.
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