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Abstract

Inter-individual differences in arsenic metabolism have been linked to arsenic-related disease risks. 

Arsenic (+3) methyltransferase (AS3MT) is the primary enzyme involved in arsenic metabolism, 

and we previously demonstrated in vitro that N-6 adenine-specific DNA methyltransferase 1 

(N6AMT1) also methylates the toxic iAs metabolite, monomethylarsonous acid (MMA), to the 

less toxic dimethylarsonic acid (DMA). Here, we evaluated whether AS3MT and N6AMT1 gene 

polymorphisms alter arsenic methylation and impact iAs-related cancer risks. We assessed 

AS3MT and N6AMT1 polymorphisms and urinary arsenic metabolites (%iAs, %MMA, %DMA) 

in 722 subjects from an arsenic-cancer case-control study in a uniquely exposed area in northern 

Chile. Polymorphisms were genotyped using a custom designed multiplex, ligation-dependent 

probe amplification (MLPA) assay for 6 AS3MT SNPs and 14 tag SNPs in the N6AMT1 gene. We 

found several AS3MT polymorphisms associated with both urinary arsenic metabolite profiles and 

cancer risk. For example, compared to wildtypes, individuals carrying minor alleles in AS3MT 
rs3740393 had lower %MMA (mean difference = −1.9%, 95% CI: −3.3, −0.4), higher %DMA 

(mean difference = 4.0%, 95% CI: 1.5, 6.5), and lower odds ratios for bladder (OR=0.3; 95% CI: 

0.1–0.6) and lung cancer (OR=0.6; 95% CI: 0.2–1.1). Evidence of interaction was also observed 

for both lung and bladder cancer between these polymorphisms and elevated historical arsenic 

exposures. Clear associations were not seen for N6AMT1. These results are the first to 

demonstrate a direct association between AS3MT polymorphisms and arsenic-related internal 
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cancer risk. This research could help identify subpopulations that are particularly vulnerable to 

arsenic-related disease.

Keywords

arsenic metabolism; N6AMT1; AS3MT; polymorphism; cancer

Introduction

Inorganic arsenic (iAs) is a toxic metalloid and known human carcinogen [IARC 

(International Agency for Research on Cancer), 2012]. It is estimated that over 200 million 

individuals worldwide consume iAs contaminated drinking water at concentrations that 

exceed the World Health Organization’s recommended standard of 10 µg/L [Naujokas et al., 

2013]. Chronic iAs ingestion is associated with increased risk of skin, lung, bladder, and 

kidney cancers, making iAs exposure a global health concern [Smith et al., 1992; Steinmaus 

et al., 2000].

Humans metabolize ingested iAs through methylation pathways mainly in the liver [Gebel, 

2002; Tseng, 2007; Vahter, 2002]. Once ingested, iAs undergoes oxidative methylation to 

monomethylarsonic acid (MMAV) which is then reduced to monomethylarsonous acid 

(MMAIII). MMAIII is methylated to dimethylarsinic acid (DMAV) and a small amount is 

further reduced to dimethylarsinous acid (DMAIII) [Drobna et al., 2009b]. This metabolism 

process is incomplete in humans; therefore, all three forms (iAs, MMA, and DMA) are 

excreted in urine. Since MMAIII is rather unstable, most epidemiology studies report total 

MMA (MMAIII + MMAV) present in urine [Kalman et al., 2014]. Traditionally, iAs 

methylation was considered a detoxification pathway; however in vitro evidence supports 

that MMAIII is more toxic to human cells than iAs or any other metabolite [Petrick et al., 

2000; Stýblo et al., 2002]. In fact, a number of human studies have identified associations 

between increased MMA and decreased DMA percentages in urine and higher risk of skin, 

bladder and lung cancers and other arsenic related disease [Steinmaus et al., 2010; Smith 

and Steinmaus, 2009]. This suggests that individuals with less efficient arsenic metabolism 

may be particularly susceptible to arsenic toxicity.

There is considerable inter-individual variation in arsenic metabolism [Vahter, 1999]. The 

efficiency of arsenic metabolism is evaluated by the relative distribution of urinary arsenic 

metabolites [Buchet et al., 1981]. Average proportions of urinary iAs, MMA, and DMA 

across human population studies are approximately 10–20%, 10–15%, and 60–75%, 

respectively [Hopenhaynrich et al., 1993]. Multiple factors contribute to inter-individual 

variability in urinary arsenic metabolites. For example, sex, age, smoking status, levels of 

exposure, and folate intake all affect the proportion of arsenic metabolites excreted in urine 

[Gamble et al., 2006; Kile et al., 2009]. Genetic polymorphism may also influence inter-

individual variability [Engström et al., 2007; Vahter, 2000]. However, the factors that 

determine most of the variation in arsenic metabolism, and the factors that make some 

people more susceptible to arsenic related disease than others, remain mostly unexplained. 
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Understanding the role of the factors that impact arsenic metabolism might help identify 

individuals who are particularly susceptible to arsenic toxicity.

The activity of enzymes involved in converting MMAIII to DMAV may influence toxicity 

resulting from arsenic bioactivation. Arsenic (+3 oxidation state) methyltransferase 

(AS3MT) is the primary enzyme involved in catalyzing arsenic methylation [Thomas et al., 

2007]. However, As3mt knockout mice did not exhibit abolished arsenic metabolism, 

suggesting that alternative enzymes facilitate this methylation process [Drobna et al., 

2009a]. Our previous in vitro study identified the novel role of N-6 adenine-specific DNA 

methyltransferase 1 (N6AMT1), a putative methyltransferase, in converting MMAIII to 

DMAV [Ren et al., 2011]. A more recent in vitro investigation confirmed that N6AMT1 is 

involved in MMAIII methylation, but its effects were secondary to AS3MT [Zhang et al., 

2015]. Although several epidemiology studies have found associations between AS3MT 
polymorphisms and the proportion of MMA in urine [Drobná et al., 2016; Pierce et al., 

2012; Engström et al., 2011, 2007], few have examined cancer risk in the same study 

population [Engström et al., 2015; Chung et al., 2009], and only two have assessed the role 

of N6AMT1 polymorphisms in arsenic metabolism [Chen et al., 2017; Harari et al., 2013].

We previously examined the association between arsenic methylation and cancer in an 

arsenic exposed population from Chile, and found higher lung and bladder cancer risks 

associated with increased %MMA in urine [Melak et al., 2014]. In this study, we extend 

these analyses to investigate the role of AS3MT and N6AMT1 polymorphisms in arsenic 

metabolism as well as internal cancer risk.

Materials and Methods

Study Populations

The study uses data from participants that were recruited in northern Chile as part of a case-

control study of arsenic and cancer. Details on subject recruitment and participation rates are 

described in Steinmaus et al., 2013 [Steinmaus et al., 2013]. Briefly, the study area 

comprised two contiguous regions (Regions I, II) in northern Chile. All incident cases of 

primary lung and bladder cancer newly diagnosed from October 2007 to December 2010 

were ascertained from all pathologists, hospitals, and radiologists in the study area. Controls, 

frequency matched to cases by sex and five-year age groups, were randomly selected from 

computerized voter registration lists for Regions I and II, which include >95% of the 

population over age 50 in these regions. The appropriate review boards in the United States 

and Chile approved this study, and informed consent was obtained from all participants.

For this study, subjects had to be alive at the time of the interview and able to provide a urine 

sample and either blood or saliva for genotyping. Of the 937 living subjects in the original 

Chile case-control study, we genotyped 722 participants using 557 clots and 165 saliva 

samples that were collected during the study. We did not limit samples to matched pairs with 

genotyping information, thus the subset of study participants comprised different numbers of 

cases and controls. The response rate of participants did not differ between cases (75.1%) 

and controls (77.8%). Urinary arsenic metabolites were measured in the first 558 subjects 

recruited in the original case-control study, which included 494 of the genotyped subjects. 
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The subset of individuals with genotype and metabolite data was comparable to the original 

case-control study population in terms of mean age, sex, smoking, and cancer status 

(Supporting Information Table I).

Urine Sample Collection and Analysis

A single first morning urine sample was collected from subjects. A previous study found a 

correlation between arsenic excretion in single first morning samples and samples collected 

over 24 h [Calderon et al., 1999]. Urine samples were kept frozen in the field laboratories at 

−20°C and then transported on dry ice to the University of Washington, Seattle, for analysis. 

Urinary arsenic metabolites were measured using high performance liquid chromatography 

and inductively-coupled mass spectrometry (HPLC-ICP/MS). Methodological details are 

provided elsewhere [Melak et al., 2014]. Quantitation limits were: MMA3, 0.5 µg/L; InAs3, 

1 µg/L; DMA5, 5 µg/L; MMA5, 1 µg/L; InAs5, 2.5 µg/L; total arsenic, 1 µg/L; and 

arsenobetaine, 1 µg/L. MMA and DMA were measured as the sums of the trivalent and 

pentavalent forms because of the rapid oxidation of MMAIII and DMAIII. All samples were 

stored frozen at −80°C for 1 to 4 months before analysis. The proportion of arsenic in each 

species in urine (%iAs, %MMA, and %DMA) was calculated by dividing the concentration 

of arsenic in each species by the sum of the concentrations of iAs, MMA, and DMA.

Genomic DNA purification and quantification

DNA was isolated from blood clots using the Gentra Puregene Blood Kit combined with 

Clotspin Baskets (Qiagen, Hilden, Germany) or saliva using Oragene™ saliva collection kits 

according to manufacturer's instructions (DNA Genotek Inc., Ontario, Canada). All DNA 

samples were quantified using PicoGreen dsDNA quantitation kits (Molecular Probes, 

Eugene, OR).

Genotyping AS3MT and N6AMT1 polymorphisms

We selected six AS3MT SNPs (rs7085104, rs3740400, rs3740393, rs3740390, rs11191439, 

rs1046778) based on previously reported associations with arsenic metabolism [Engström et 

al., 2011]. Except for rs11191439 (Met287Thr), all genotyped AS3MT SNPs were intronic 

polymorphisms. We aimed to survey all common genetic variants in the N6AMT1 gene to 

precisely map the association between SNPs and arsenic metabolism. All 108 

polymorphisms in the gene region, including its 50 flanking region, with call rate >90% and 

minor allele frequency (MAF) ≥5% in Europeans (CEU) from the HapMap Project (release 

28) were included. Fourteen tag SNPs were selected using Tagger within Haploview at 

r2>0.8 [Barrett et al., 2005; de Bakker et al., 2005] and captured 100% of the common 

variability in N6AMT1.

AS3MT and N6AMT1 polymorphisms were detected using a novel custom-designed assay 

based on the multiplex, ligation-dependent probe amplification (MLPA) method developed 

by MRC-Holland [Schouten et al., 2002] (www.mlpa.com). Protocol details are described in 

Akers et al., 2011 [Akers et al., 2011]. Mixtures, concentrations, and sequences for each 

probe are provided in Supporting Information Table II. The PCR program was adapted to: 2 

min at 98°C; 32 cycles of 5 sec at 98°C and 15 sec at 65°C; 1 min 72°C. Two probe pairs at 

non-variable sites were included in each reaction as positive controls for DNA quality. 
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Blanks and control DNA samples were included on every plate for quality control. We 

verified our assay using 15 control DNA samples with known sequences acquired from the 

1000 genomes project [The 1000 Genomes Project Consortium, 2012]. Additionally, we 

compared genotyping results for N6AMT1 tag SNP rs1048546 from our method against the 

Taqman® SNP genotyping assay (Applied Biosystems, Carlsbad, CA) using 150 randomly 

selected Chile samples. Agreement was 100% between both methods.

We performed linkage disequilibrium analysis and constructed haplotype blocks from the 

Chile genotyping data in Haploview using the solid spine method for AS3MT SNPs and the 

confidence intervals algorithm by Gabriel et al. [Gabriel et al., 2002] for N6AMT SNPs 

(Figure 1). Haplotypes were inferred by the PHASE software [Stephens and Donnelly, 

2003].

Statistical Analysis

Associations between genotypes or haplotypes and each urinary arsenic species (%MMA, 

%DMA and %InAs) were analyzed using multivariate linear regression. The genotype with 

the largest number of subjects was used as the reference genotype. Minor allele and 

haplotype frequencies <5% were declared as rare and combined. Genotypes/haplotypes were 

modeled as categorical variables (zero, one, or two minor allelles/copies) and as zero copies 

versus at-least one minor allele or haplotype. All metabolite models were adjusted for log 

transformed total urinary iAs concentrations, age (continuous), sex, current smoking status, 

and cancer case status.

Lung and bladder cancer odds ratios (ORs) were calculated for all SNPs and haplotypes 

using logistic regression. The relationship between genotypes/haplotypes, arsenic 

metabolism and cancer status were modeled in two ways: 1) Direct association between 

genotypes/haplotypes and cancer status; and, 2) Greater than additive biological interaction 

between historical arsenic water concentration exposures and genotypes/haplotypes on 

cancer ORs. Both approaches were adjusted for age, sex and current smoking status. Further 

adjustments for pack-years or average cigarettes smoked had little impact on results. To 

examine synergy, we stratified subjects by genotypes and by having ever smoked or by 

highest average contiguous 5-year arsenic water concentrations, excluding the 5-years prior 

to cancer diagnosis or subject interview, above and below 200 µg/L. This cut-off divides the 

subjects into two approximately equal sized exposure groups. Details on calculating the 

highest average contiguous 5-year arsenic water concentrations can be found in Steinmaus et 
al., 2013 [Steinmaus et al., 2013]. Analyses were performed with R software, version 3.1.3 

[R Core Team, 2015]. The epiR package was used to calculate Rothman synergy indices 

[Stevenson et al., 2015].

Mediation analyses were conducted to identify the indirect association between AS3MT 
genotypes and cancer risk attributed to differences in %MMA relative to the total 

association. We implemented the mediation package using nonparametric bootstrapping with 

1000 iterations to quantify the proportion mediated and obtain 95% confidence intervals for 

these estimates [Tingley et al., 2014].
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Results

Of the 937 living subjects in the original Chile case-control study, 119 lung cancer cases, 

147 bladder cancer cases and 456 controls were genotyped for AS3MT and N6AMT1 SNPs. 

All polymorphisms were in Hardy-Weinberg equilibrium (p<0.001) and had a MAF>5%. 

Among the AS3MT SNPs, rs7085104 was in strong linkage disequilibrium (LD) with 

rs3740400 (R2=0.95) and rs3740393 showed modest LD with rs3740390 (R2=0.89) (Figure 

1). The AS3MT minor allele frequencies in this population were similar to previously 

published studies from Mexico [Drobná et al., 2016], Bangladesh [Engström et al., 2011], 

and Mongolia [Chen et al., 2017] (Figure 2). Table I lists the mean proportions of each 

arsenic species stratified by case status, sex, age, current smoking status, and race for the 

494 individuals with genotype and metabolite information in the study. All of these 

variables, except for race, were significantly associated with at least one arsenic metabolite 

and were adjusted for in all regression analyses.

We found statistically significant associations between AS3MT SNPs—rs3740393, 

rs3740390, rs11191439, rs1046778—and urinary arsenic metabolites, even after adjusting 

for total urinary arsenic, age, sex, current smoking status and case status (Table II). There 

was a 3.0 (95% CI: 2.1, 4.0) percent increase in the proportion of MMA among carriers of 

the rs11191439 minor allele (Thr). A monotonic decrease in %MMA was also observed with 

each additional copy of the mutant allele for the other three SNPs. Associations between all 

AS3MT polymorphisms and %DMA were in the opposite direction and of similar 

magnitude compared to those associations identified with %MMA. These associations 

remained even after restricting the analysis to control subjects (Supporting Information 

Table III).

Associations between AS3MT polymorphisms and %MMA were in the same direction as 

the bladder and lung cancer odds ratios (Table II). For example, individuals carrying the 

rs11191439 minor allele (Thr), the polymorphism associated with the greatest increase in 

%MMA, had a statistically significant increase in lung cancer (OR= 1.7; 95% CI: 1.0, 2.7) 

and a modest increase in bladder cancer (OR= 1.3; 95% CI: 0.8, 2.1). Having at least one 

copy of the rs3740393 minor allele (C) was associated with both decreased lung and bladder 

cancer odds ratios (OR= 0.6; 95% CI: 0.4, 0.9 and OR= 0.5; 95% CI: 0.3, 0.8 for lung and 

bladder cancer, respectively). The minor alleles of AS3MT SNPs rs3740390 (A) and 

rs1046778 (C) were also associated with reduced bladder cancer odds ratios.

Mediation analysis revealed that 39.8% (p= 0.02) of the association between AS3MT SNP 

rs11191439 and lung cancer could be attributed to differences in %MMA. We also found 

that 33.5% (p= 0.04) of the association between rs3740393 and lung cancer was mediated by 

%MMA. The proportion of the association between AS3MT SNPs and bladder cancer 

mediated by %MMA was <5% and not statistically significant (data not shown).

Cancer ORs stratified by historical arsenic exposure and polymorphisms are shown in Table 

III. For rs11191439, compared to subjects with arsenic exposures <200 µg/L and genotype 

Met/Met, the lung cancer OR for exposures >200 µg/L was greater in those with at least one 

copy of the Thr allele (OR= 5.6; 95%CI: 3.0, 10.7), compared to wild-type (OR = 2.6; 95% 
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CI: 1.6, 4.3; Rothman synergy index= 3.6, 95% CI: 1.2, 11.1). Evidence of interaction was 

also seen between arsenic and having at least one copy of the rs3740393 minor allele (C) for 

both lung and bladder cancer, although with Rothman synergy indices below 1.0 (i.e., 

antagonism).

We also examined the interaction between AS3MT SNPs and smoking in lung and bladder 

cancer. The minor allele of AS3MT SNPs rs3740393, rs3740390 and rs1046778 were 

protective against lung cancer among individuals who reported ever smoking (Supporting 

Information Table IV). Rothman synergy indices for each of these SNPs were 0.3 (95% CI: 

0.1, 0.8), 0.3 (95% CI: 0.1, 0.8), and 0.4 (95% CI: 0.2, 0.9), respectively. Further adjustment 

for %MMA had little impact on these results (data not shown). There was no evidence of 

interaction between AS3MT SNPs and having ever smoked for bladder cancer (Supporting 

Information Table IV).

Haplotypes were inferred from all six AS3MT polymorphisms (rs7085104, rs3740400, 

rs3740393, rs3740390, rs11191439, rs1046778) and analyzed in relation to urinary arsenic 

metabolites and cancer case status. The observed haplotypes were AAGGTT (51%), 

GCCATC (25%), GCGGCT (11%) and GCGGTC (8%), with their frequencies listed in 

parentheses. The results from the haplotype analyses were similar to those obtained with 

individual SNPs (Supporting Information Table V). We observed a monotonic decrease in 

both %MMA and the bladder cancer odds ratio with each additional copy of the GCCATC 

haplotype. Furthermore, there was a 3.0 (95% CI: 2.1, 4.0) percent increase in MMA and a 

lung cancer OR of 1.7 (95% CI: 1.0, 2.7) among individuals with one copy of the GCGGCT 

haplotype.

Unlike AS3MT, there were no associations between N6AMT1 tag SNPs and urine arsenic 

metabolite proportions that corresponded to differences in cancer risk (Table IV). For 

example, rs7282280 was the only tag SNP associated with a statistically significant decrease 

in %MMA and an increase in %DMA, but was not associated with cancer ORs. The 

haplotype analysis of N6AMT1 tag SNPs did not provide any additional information beyond 

the individual SNPs (data not shown).

Discussion

This study provides strong evidence that multiple AS3MT polymorphisms impact arsenic 

metabolism capacity and lung and bladder cancer risks in a Chilean population exposed to 

arsenic in drinking water. We identified several AS3MT polymorphisms associated with 

lung and/or bladder cancer risks, and all of these were associated with arsenic metabolic 

patterns that were consistent with these risks. For example, in vitro research has shown that 

MMA is a highly toxic metabolite of ingested arsenic, and the polymorphisms we found 

linked to decreases in %MMA were also linked to decreases in cancer risk. This consistency 

not only supports our findings linking these polymorphism to cancer, they also support our 

hypothesis that MMA may be the primary arsenic species responsible for these effects.

We observed that the minor allele of AS3MT SNPs—rs3740393 (C), rs3740390 (A), and 

rs1046778 (C)— were associated with decreased %MMA and increased %DMA, suggesting 
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that carriers of these alleles metabolize arsenic more efficiently compared to the majority of 

individuals in our study who had the reference allele. The direction of these associations are 

consistent with those seen in other population studies [Drobná et al., 2016; Engström et al., 

2011, 2007; Chung et al., 2009; Agusa et al., 2009]. We also confirmed previous findings 

that the Thr allele of rs111191439 increases %MMA and lowers %DMA [Agusa et al., 

2009; Engström et al., 2011; Hernández et al., 2008; Lindberg et al., 2007; Valenzuela et al., 

2009]. A review of AS3MT SNPs highlights the global relationship between rs3740393 and 

rs11191439 with arsenic metabolism efficiency [Agusa et al., 2011]. In 2014, another review 

conducted a pooled analysis of all published studies and observed that rs3740390 and 

rs11191439 were associated with statistically significant changes in %MMA across multiple 

populations [Antonelli et al., 2014]. The reproducibility of these SNPs in our study confirms 

their importance in arsenic metabolism across several populations, including Chile.

To date, few studies have examined the relationship between AS3MT polymorphism and 

internal cancer risk. For instance, our study is the first to analyze the relationship between 

these polymorphisms and lung cancer. This is particularly important because lung cancer is 

the number one cause of long-term mortality from ingested arsenic [Marshall et al., 2007; 

Smith et al., 2006]. We demonstrate that a significant proportion of the association between 

AS3MT polymorphisms and lung cancer risk is mediated by arsenic methylation, which 

provides additional evidence that the human lung is a major target site of arsenic. A previous 

case-control study by Lesseur et al. did not find associations between rs3740393 or 

rs11191439 and bladder cancer in their New Hampshire population [Lesseur et al., 2012]. A 

similar case-control study in Southeastern Michigan did not find any direct associations 

between AS3MT SNPs rs7085104, rs3740400, rs11191439 or rs1046778 and bladder 

cancer. However, possessing at least one copy of the rs11191439 Thr allele, in addition to 

higher average arsenic exposure, did increase bladder cancer risk [Beebe-Dimmer et al., 

2012]. We observed a similar result where individuals with historical arsenic exposure 

greater than 200 µg/L and the rs11191439 Thr allele had a higher lung cancer OR compared 

to those with two copies of the wild-type allele, suggesting a gene-environment interaction. 

In both previous case-control studies, arsenic water concentrations were an order of 

magnitude lower than those in our study. This may have limited the ability of these studies to 

identify true associations, and highlights the potential advantage of investigating 

associations, at least initially, in areas where exposures are high.

The reason we found evidence of greater mediation by %MMA for lung cancer than for 

bladder cancer is not entirely clear. Intra-individual variability in %MMA and the fact that 

we only assessed %MMA at a single point in time likely affected our mediation analysis 

although it’s not clear that this would impact bladder cancer more than lung cancer. It’s 

possible that inter-individual differences in %MMA have greater impacts on lung cancer. In 

a previous report using the same data we used here, associations with %MMA were seen for 

both cancer types but were 2–3 times greater for lung cancer. For each one percent increase 

in %MMA ORs were 1.11 (95% CI, 1.05–1.17) for lung cancer and 1.04 (95% CI, 1.00–

1.09) for bladder cancer. It is also possible that other risk factors or other mechanisms have 

different roles in the two types of arsenic-related cancers but this is mostly speculative. 

Overall, further research is needed to explore this issue.
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We did not observe clear associations between N6AMT tag SNPs, %MMA, and cancer risk. 

Harari et al. analyzed the N6AMT1 SNP rs1048546 in the San Antonio de los Cobres (SAC) 

population of highly arsenic-exposed indigenous women and observed a significant 

association with %MMA. In our analysis, the association between rs1048546 genotypes and 

%MMA was in the same direction observed by Harari et al., despite not being statistically 

significant. We confirmed that our null findings were not a result of the genotyping method. 

The reason for this inconsistency is unclear, but our population was much larger than the 

SAC population, had much lower recent arsenic exposure, and consisted of mostly males, 

smokers and Europeans. Several studies have shown marked differences in arsenic 

methylation patterns and genotypes based on ethnicity, and it is possible these caused the 

differences we identified [Fu et al., 2014; Engström et al., 2010]. Furthermore, the 

distribution of the protective AS3MT haplotype in the SAC population is higher than most 

populations around the world, making them extremely efficient arsenic metabolizers 

[Schlebusch et al., 2013, 2015]. Therefore, the contribution of N6AMT1 to arsenic 

metabolism within this population may differ from Chile. Chen et al. also examined the 

relationship between several N6AMT tag SNPs included in our study and urinary metabolite 

patterns in an arsenic-exposed population from Wuyuan, Inner Mongolia [Chen et al., 2017]. 

Rs1003671 was the only N6AMT polymorphism associated with %MMA in the Mongolian 

population. This SNP did not influence arsenic metabolism or cancer risk in our study 

population. It is important to note that Chen et al. did not find a direct association between 

AS3MT polymorphisms and urinary metabolites, but did show interaction with between 

AS3MT and N6AMT1 SNPs on arsenic metabolism. This indicates that the involvement of 

these two enzymes in the arsenic metabolism process may differ between the Chilean and 

Mongolian populations. Overall, the inconsistency we observed for N6AMT1 limits any 

conclusions we can make regarding this gene at this time and suggest additional research 

may be needed on this topic. Furthermore, although the selected 14 tag SNPs capture all the 

common genetic variation in N6AMT in HapMap-CEU (r28), these might not cover the 

whole N6AMT variant spectrum in Chileans due to it’s admix ancestry nature. Therefore, 

additional tag SNPs selected from appropriate reference panels that better capture the LD 

structure in Chilean populations should be included in future analyses to get a better 

understanding of the association between N6AMT SNPs with %MMA and cancer risk in 

this population.

For this analysis, we only considered the influence of two methyltransferases on arsenic 

metabolism and toxicity. However, additional methyltranserases (e.g DNMT1a and 

DNMT3b) and other enyzymes involved in one-carbon metabolism and glutathione 

biosynthesis, such as methylenetetrahydrofolate reductase (MTHFR), cystathionine-beta-

synthase (CBS), and glutathione-S-transferase omega 1 (GSTO1), have been shown to 

influence the metabolism process [Engström et al., 2011; Porter et al., 2010; Schläwicke 

Engström et al., 2009; Steinmaus et al., 2010]. Follow-up studies in this population should 

explore the contribution of these genes to the inter-individual variability in methylation 

patterns, as well as internal cancer risk.

Urinary methylation patterns were assessed after disease diagnosis and were assumed to be 

representative of subject’s past methylation patterns. It is possible that using a cross-

sectional urine collection at the time of cancer diagnosis influenced methylation status, 
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either from the disease itself or through treatment and lifestyle changes adopted after 

diagnosis. However, we observed associations between genotypes and metabolites even after 

cancer cases were excluded. Studies assessing methylation patterns in the same individual 

over time suggests that patterns remain fairly stable [Concha et al., 2002; Steinmaus et al., 

2005]. Evidence also suggests that stable genetic factors play a more important role in 

determining inter-individual differences in methylation patterns than do factors that are 

likely to have greater day to day variability such as diet or smoking [Chung et al., 2002]. It 

should also be noted that although intra-individual variability in methylation patterns could 

lead to misclassification of past methylation patterns, because we collected and analyzed 

metabolites from all subjects using the same protocols, the resulting bias would most likely 

be non-differential and towards the null, not towards the positive associations identified.

Confounding is possible, however ORs did not change with further adjustments for potential 

confounders such as age, sex smoking, race, and body mass index. Some selection bias may 

have occurred as a result of only genotyping a portion of the total Chilean population and 

measuring urinary metabolites in a smaller subset of these individuals. However, the age, sex 

and smoking status distributions within these three groups were comparable suggesting that 

our results are still representative of the entire study population.

In conclusion, our results highlight the involvement of AS3MT in arsenic metabolism in 

humans, and identify polymorphisms in this gene that account for some inter-individual 

variability of the metabolic process. Our study is the first to use the same population to 

provide evidence that AS3MT polymorphisms increase the risk of arsenic-induced lung and 

bladder cancers by reducing the metabolism of MMA to the less toxic DMA. This research 

may help identify subpopulations that are particularly susceptible to arsenic-induced lung 

and bladder cancer and who may need enhanced regulatory protection.
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Figure 1. 
Linkage disequilibrium values (R2) for AS3MT (A) and N6AMT1 (B) polymorphisms.
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Figure 2. 
Minor allele frequencies of AS3MT polymorphisms in Chile compared to populations from 

Gómez Palacio, Mexico (BEAR cohort), San Antonio de los Cobres (SAC), Argentina, 

Matlab, Bangladesh, and Wuyuan, Inner Mongolia.
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Table I

Mean proportions of urinary arsenic species (standard deviations)

Variable N (%) %iAs %MMA %DMA

Alla 722 (100)

  Urine Sample 494 (68.4) 9.9 (6.3) 11.1 (4.8) 79.0 (6.3)

  Missing Urine 228 (31.6)

Cancer Status

  Control 306 (61.9) 10.7 (6.7) 10.5 (4.3) 78.8 (8.5)

  Lung 80 (16.2) 10.3 (5.5) 12.9 (5.5)* 76.8 (8.1)*

  Bladder 108 (21.9) 7.2 (4.9)* 11.6 (5.2)* 81.2 (7.4)*

Sex

  Male 353 (71.5) 10.1 (6.5) 11.5 (4.8) 78.4 (8.4)

  Female 141 (28.5) 8.5 (5.9) 10.0 (4.4)* 80.5 (7.8)*

Ageb

  <60 152 (30.8) 10.9 (5.9) 10.7 (4.5) 78.4 (7.9)

  60–69 162 (32.8) 9.5 (6.6) 11.4 (5.4) 79.1 (9.1)

  70+ 180 (36.4) 9.4 (6.3) 11.2 (4.4) 79.5 (7.8)

rS=−0.14* rS=0.07 rS=0.06

Tobacco Smoking

  Never 148 (30.0) 10.6 (6.9) 10.4 (4.6) 78.9 (8.6)

  Former 217 (43.9) 9.3 (6.5)* 11.0 (4.3) 79.7 (8.2)

  Current 129 (26.1) 10.0 (5.2) 12.0 (5.4)* 78.0 (8.1)

  0–20 Pack-years 215 (43.5) 10.4 (6.6) 10.8 (4.5) 78.8 (8.4)

  >20 Pack-years 279 (56.5) 9.5 (6.0) 11.4 (5.0) 79.1 (8.3)

Obesityc

  No 413 (83.6) 9.8 (6.1) 11.3 (4.9) 78.9 (8.2)

  Yes 81 (16.4) 10.3 (7.1) 9.9 (4.1)* 79.8 (8.7)

Race

  European 388 (78.5) 10.3 (6.6) 10.7 (4.8) 79.0 (8.53)

  Other 106 (21.5) 9.8 (6.2) 11.2 (4.8) 79.0 (8.23)

a
All genotyped Chile samples with known case status

b
Spearman correlation coefficients (rS)

c
Body mass index ≥30 kg/m2

*
Statistically significant (p<0.05) rS or metabolite difference compared to reference group calculated by the Wilcoxon rank-sum test
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