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Abstract

Soft artificial intelligence (AI) is defined as non-sentient AI de-
signed to perform close to human level in one specific domain.
This is in contrast to “Artificial General Intelligence” (AGI)
which solves the problem for human level intelligence across
all domains. Soft AI is a reality now in the new generation
of smart Internet of Things devices like Amazon’s Alexa, Ap-
ple’s Siri or Microsoft’s Cortana, giving rise to concerns about
privacy and how the technology is being used. This research
is based around an experiment in “AI as a service” where fif-
teen chatbot agents using Google’s “Dialogflow” are deployed
around the Queen Elizabeth Olympic Park in London for the
general public to interact with. The physical devices are 3D
printed representations of creatures living in the park, designed
to fit with the park’s biodiversity remit. Park visitors interact
with the creatures via their mobile phones, engaging in a con-
versation where the creature offers to tell them a memory in
exchange for one of their own, while warning them that any-
thing they say might be repeated to others.

The scope of the work presented here is as follows. After ex-
plaining the details of the deployment and three month study,
the conversational data collected from visitors is then anal-
ysed. Following a review of the current literature, techniques
for working with the unstructured natural language data are de-
veloped, leading to recommendations for the design of future
conversational “chatbot” agents. The results show distinct pat-
terns of conversation, from simple and direct “verb plus noun”
commands to complex sentence structure. How users interact
with the agents, given that they are conversing with a mecha-
nism, is discussed and contrasted with the memories that they
have agreed to share.

The conclusion drawn from this work is that, while the current
generation of devices only listen for commands from users,
there is a danger that smart IoT devices in the future can be
used as active information probes unless properly understood
and regulated. We finish with observations on privacy and se-
curity based on our experiences here.

Fig. 1: Fifteen of these plinths displaying 3d printed creatures
were deployed in the Olympic park for 3 months. This
is Loki the gnome, which is located outside the View-
Tube cafe area near the cycle-hire. The plinth contains
a Bluetooth Beacon which alerts people to his pres-
ence via ‘Physical Web’ notifications on their mobile
phones.
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1 Introduction

This research is based around the deployment of fif-
teen “Geolocated Natural language Objects for Memory
Evocation”, or GNOMEs for short, which are currently located
in the Queen Elizabeth Olympic Park. Visitors are prompted to
have a conversation with the gnomes via their mobile phones,
during which time the gnome will ask them to leave a memory
about the park. This work is motivated by the recent popu-
larity in natural language user interfaces, as demonstrated by
Amazon’s Alexa and a myriad of similar devices. We use the
term ‘command and control’ to describe the current speech in-
terfaces, which are typified by interactions of the form, “do I
need an umbrella today?” or “turn the lights on”. By contrast,
a full conversational interface raises a number of serious secu-
rity and privacy questions. Psychology and social engineering
plays a part here, as, once the computer is able to form its own
questions to ask, then it ceases to be a passive user interface
and instead becomes an active probe for information. The suc-
cess of IBM Watson’s ‘DeepQA’ algorithms in beating human
players at the game of ‘Jeopardy’ gives a hint as to what might
be possible in the future [1]. In a game with no rules and with
a connection to the Internet, an intelligence that can link data
and probe for answers is a dangerous proposition.

While the chatbots used in this experiment lack the level of
sophistication just described, there is an interesting duality be-
tween the data analysis and the ability of the chatbot to hold a
conversation with a human. The gnomes deployed in the park
use Google’s ‘Dialogflow’ API for the chat interface. This is a
deep learning system which has been trained on the huge cor-
pus of natural language text available to an Internet giant like
Google. Where the data analysis of the memories left by the
park users would historically have been of a qualitative form,
the natural language processing techniques behind how con-
temporary systems Dialogflow work now allow for automated
and quantitative analysis. The ability of the computer to hold a
conversation with a human requires the computer to have some
knowledge about how language is used, knowledge and algo-
rithms which are then used in our analysis of the conversations
and memories left by users, which then guides us as to how to
improve the conversational agent. The reinforcement learning
works towards continual system improvements, up to an as yet
unknown cognitive limit.

The analysis is necessarily circular, with understanding of the
data leading to better conversational algorithms. One of the
failings discovered in the Dialogflow system is its inability to
detect non-English names, while detection of the memories ex-
pressed by users in their conversation text is also a hard com-
putational problem. Taking this a step further, our aim is to be
able to contextualise the content of the conversation and quan-
tify the information it gives us about the real world. The work
that follows is an analysis of a ‘Dialogflow’ deployment in the
real world, which we use as a seed experiment to analyse and
improve on for the next generation deployment.

Fig. 2: Four IoT devices: models of a gnome, bat, otter and
honey bee. Fifteen were 3D printed and deployed
around the Queen Elizabeth Olympic Park with Eddy-
stone Beacons for the general public to interact with.
The models were painted in bright colours by local
children from a community group between the ages of
5 and 15.

2 Deployment

Fifteen 3D printed creatures, comprising 7 gnomes, 3 otters,
3 bats and 2 honey bees are sited in 3 geographic clusters
around the Queen Elizabeth Olympic Park (QEOP). Figure 2
shows the four basic models, which were then painted in bright
colours by children from a local community group between the
ages of 5 and 15. The deployment runs from 1st September to
14th December 2017, allowing us to capture 3.5 months of data
from park users. The image in figure 3 shows the layout of the
560-acres-wide park with the locations of the venues and crea-
tures, while table 1 shows the creature names and a summary
of the data collected. The map is available to users on their
mobile phones and has been designed to look like a computer
game. Locations vary between exposed hilltop, entrances to
venues, West Ham thoroughfare, lakeside and residential. Lo-
cation choice is dictated by the creature’s species, with the otter
models sited near to the ‘Timber Lodge’ and ‘Aquatic Centre’
where real otters are expected, the bats are sited along water-
ways and co-located with ultrasonic bat detector boxes, while
the two honey bees and seven gnomes are distributed through-
out the rest of the park.

The chatbot interface was developed using Google’s ‘Di-
alogflow’ system1, using a website to host the park map and
chatbot interface so that the interaction between the user and
the creature happens via their mobile phone and the ‘tales of

1 For Dialogflow, see: https://dialogflow.com
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Fig. 3: This image shows the map of the park used on the mo-
bile website. The distance from the top to the bottom
of this map is 2KM. The alphanumeric codes denote
the creature number, which links with table 1. Image:
http://talesofthepark.com

the park’ website. In addition to this, the GPS position from the
phone is used to limit conversations with creatures to within a
200 metre radius of their physical location. As people walk
through the park, if they have ‘physical web’ and bluetooth en-
abled on their phones, then they will receive notifications as
they approach the vicinity of a creature, prompting an interac-
tion. The link to the website, http:\talesofthepark.
com, to initiate a conversation with the creature is included in
the ‘Eddystone URL’ bluetooth packet, so the user only needs
to click on the link. Instructions for how to chat with the crea-
tures via a direct link are also printed on the plaque on the front
of the plinth.

3 Background
When Joseph Weizenbaum published the ELIZA program in
1966, it applied decomposition rules to natural language in-
puts typed by the user to elicit a conversation [2]. His state-
ment that, “the ELIZA script contains no information about the
real world is not entirely true”, is a reference to the fact that
ELIZA’s only knowledge about the outside world is through
the encoding of its language transformation rules and nothing
else. To compare this to a modern ‘Deep Learning’ architec-
ture, we can look to the ‘Sequence to Sequence’ (SEQ2SEQ)
approach of Sutskever on machine translation of natural lan-
guage [3]. Here, the task of translating text from one human
language into another is accomplished by training the system
on a large corpus of text. Each sentence is converted to a high
dimensional representation of a ‘concept’ so that two similar
concepts with different sentences are mapped close to one an-
other. This relies on the technique of word embedding [4], as

Code Name Lines MemYes MemNo Others
A5 Rosie 646 28 13 9
B6 Denchu 496 19 5 15
A2 Moonlight 366 22 1 5
A3 Shadow Blade 276 12 2 5
B2 Jetpack Gnomey 270 10 2 3
A4 Zack 219 6 2 3
B5 Khadija 211 6 1 4
C3 Parker 199 8 4 1
C4 Beehigh 185 4 4 1
C1 Wombat 157 2 1 8
B1 Yusuf 121 4 0 3
A1 Loki 89 3 0 7
B3 Super Gnome 76 4 1 2
B4 Goku 47 1 0 2
C2 Gnomeo 12 0 0 1

Table 1: The raw interaction data for all the creatures collected
over the two week period. The ‘Lines’ column is the
total number of conversation lines, ‘MemYes’ is the
number of times a user agreed to leave a memory,
while ‘MemNo’ is the number of refusals. The ‘Oth-
ers’ column is the number of times this creature was
visited by a user who had previously visited one of
the other creatures.

used in natural language processing, for example Mikolov [5]
compares ‘Continuous Bag of Words’ (CBOW) and n-Gram
similarity measures with word vector representations from 50
to 1000 dimensions to measure accuracy on different transla-
tion tasks. This follows on from his PhD thesis on neural net-
work language models in 2012 which demonstrated their ef-
fectiveness in language modelling [6].

The motivation behind this work was also to improve on the
current ‘Dialogflow’ chatbot, based on our analysis of break-
downs in the conversation. Repetition of the request by the
user is a clear indicator of when this breakdown occurs and
our agent is responding in the wrong way. Through analysis
of the user responses, we can gauge their information content,
which serves to improve the chatbot’s performance. This leads
to the main result from this work, which is to show the po-
tential privacy and security concerns which arise from an AI
agent that can engage in a two way conversation. Taking a sim-
plistic view of chatbot technology, the mechanism behind how
‘Dialogflow’ works matches text to a context pattern supplied
by the programmer, which then triggers an action by the pro-
gram. For example, given the text, “can you tell me where the
next creature is please”, or even, “next creature”, the chatbot
program enters a state appropriate for its response. However,
where users leave their memories about the park, this state is
much harder to detect. In the following section we define the
language model used for the analysis, before applying it to the
task of testing the data we collected for potentially disclosive
facts.
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4 Language Models

In order to create a language model, all the text collected for
the three months that the creatures were deployed in the park
was cleaned and converted to a sequence of integer word iden-
tifiers based on word frequency. This resulted in a word dic-
tionary containing the 1,066 unique words which compose the
36,347 word corpus2 used for training. Word vectors are learnt
from training the language model to predict a word in the se-
quence, using a subset of the surrounding words as input.3

Given the context that words are used in, the model builds
word vector embeddings where words with similar meanings
are close together. For the purposes of this experiment, a word
embedding vector size of 512 was used. A common technique
with a large text corpus is to order the words by frequency and
drop any below a threshold on the basis that they are either
misspellings or unimportant. Here, though, the group of lower
frequency words corresponds to the data entered by the users
due to the fact that the ‘Dialogflow’ intents and actions scripts
repeat the same sentences. These low frequency words corre-
spond to the memories and other information that we are trying
to extract from the text, including visitor names.

Using this type of word embedding, direct classification of the
sentences in our conversational data is possible. We investi-
gated the ‘gensim’ library’s implementation of the ‘word2vec’
algorithm [7], using vectors of 100 and 512 dimensions for
comparison. In addition to this, a Tensorflow implementation
[8] using a recurrent neural network (RNN) was also tested
to see if it led to improved classification by overcoming the
fixed length input limitations of the CBOW and skip-gram
techniques while also preserving word ordering4. This used
‘long short term memory’ (LSTM) cells [10] [11], which are
trained in batch mode over the input data with a final softmax
layer used to flatten the output states from the LSTM cells and
classify the output into a prediction of the most probable next
word. A cell size of 512 was used with a 2 layer deep RNN,
time step size of 35 and dropout 0.5. Using this architecture, a
sentence context state is stored using 512×2×2×35 = 71, 680
floating point values. The results from the word embedding
comparison showed that the park corpus is too small to show
complex relationships between words, but is nonetheless use-
ful due to the domain specific nature of the conversations about
the park. The word, ‘gnome’, rarely appears in American En-
glish, while the park corpus is able to link the ‘ArcelorMittal’
venue with its common misspelling, ‘ArcellorMittal’ based on
cosine distance. Of particular interest in detecting personal
data are pronouns like, ‘I’, ‘he’, ’she’, ’they’, where the fol-
lowing statement is usually a fact about something that hap-
pened in the park. When detecting conversations about places,

2 By way of comparison, Shakespeare’s Hamlet is 30,557 words.
3 It is usual to build this type of language model on a large corpus of text,

for example the Penn Tree Bank (PTB), Brown corpus, Text8 or Wikipedia
dump, where the vocabulary size could number 70,000 words. Variations on
the use of a large corpus in the context of the park data are currently being
investigated.

4 See [9] for a related technique using paragraph vectors which also rejects
the bag of words approach.

though, the park corpus is able to link the ‘Timber Lodge’,
‘Cafe’ and ‘coffee’ in a way that is not otherwise possible. The
conclusion drawn from the word vector analysis is that local
domain specific information is essential, requiring a fusion be-
tween the small scale and large scale text analysis methods, for
example following Taddy’s methodology on sub-corpus parti-
tions [12].

5 Data Analysis

During the data collection period, a total of 4,186 lines of con-
versation were recorded in 186 distinct chains of conversation.
This can be broken down further into 3,370 lines from the crea-
tures and 816 from the users. Rosie the bee, located at the
foot of the ArcelorMittal Orbit attraction was the most talked
to creature with 646 conversation lines, 31 user interactions
and 28 memories left. The data is summarised in table 1. In-
teraction rates for the creatures are very low compared to the
expected footfall for the locations. From the park’s attendance
figures for 2016, there were 101,633 visitors to the Arcelor-
Mittal Orbit that year. A rough calculation puts the interaction
rate at 0.1% of the orbit’s visitors talking to Rosie.

By way of example, a typical conversation with one of the crea-
tures is as follows:

On 12 September 2017 at 15:13 Anne talking to Denchu the otter:

. . .
Denchu: If you like I can tell you more about the River Lea and the

Waterways
Denchu: Or I can direct you to the next Creature
Anne: Tell me more please
Denchu: The Park’s waterways and wetlands have been identified as

a great habitat for Otters, and one day the Park hopes to be
home to some!

Denchu: What other species would you like to see in the Park?
Denchu: If you’d like to tell me something about this, answer ‘yes’
Anne: Yes
Denchu: Great! What would you like to tell me?
Anne: I’d like to see sharks here
Denchu: Really, well that’s really interesting. I’ll remember

that.
Denchu: In return, here’s a fact about the River Lea and
the Waterways
. . .

On 27 October 2017 at 13:33 Lisa talking to Denchu the otter:

. . .
Denchu: Great! What would you like to tell me?
Lisa: We fed the ducks today
Denchu: Really, well that’s fascinating. I’ll remember that.
Denchu: In return, here’s a memory that Anne left with me

earlier
Denchu: “I’d like to see sharks here”
Denchu: Would you know anything about that?
Denchu: Answer ‘yes’ if you’d like to tell me something
Lisa: I Don’t think there are sharks here but a duck bit me
. . .
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An analysis of the user names recorded reveals the problems
in the Dialogflow scripts: “Hello Rosie I’m a teacher”, “Hi
Parker, I’m Jack” and “Sorry where is the next one” appear
amongst Anne, Lisa, Connie, Katie, Dave and others. This
occurs where a breakdown happens in the initial part of the
conversation script that deals with the names, leading to the
question and answer sequence becoming out of step. When
given anything more than a simple response to the name ques-
tion, our ‘Dialogflow’ script parses the name incorrectly. What
is required here is the ability to split a response into separate
clauses and make an inference about whether a word consti-
tutes a name or not.

By taking only the responses from the visitors and ordering
them by sentence length, it immediately becomes apparent that
the memories they have chosen to leave are the longest parts
of the conversations. At 59 word tokens, the longest memory
left is as follows: “I’ve been rollerblading around the Olympic
Park today, it’s a wonderful place for it. Everywhere is very
accessible on skates, and there’s so much to explore. You can
stick with the crowds, or find quiet corners where it feels like
you’re the only person in the world. It’s great to watch land-
marks like The Orbit as you glide by.”

The original hypothesis was to detect whether the sentence
structure changes as a result of the realisation by the visitors
that they are talking to a mechanism. By plotting how the
length of sentences varies between the beginning and the end
of a conversation, figure 4 shows a strong bias towards sen-
tence length increasing. Where the opposite is true can then
be used as an indicator of where the ‘Dialogflow’ chatbot is
failing. We referred to this as the ‘command and control’ hy-
pothesis, but it is closely related to the information content of
the text as just described in the length of the memories left.
While analysis of large-scale texts, for example the ‘Text8’
corpus previously mentioned, discard words that appear below
a threshold number, these are the words forming the highest
information parts of our small-scale park text corpus. We are
also interested in memories that could lead to unintended in-
formation disclosure, so, for example, “I got married in the
Olympic park [date redacted], Fish Island and Formans after
the Orbit ”, is enough information to start looking for wedding
photographs on the Internet. The design of a privacy violat-
ing chatbot then becomes a two stage search algorithm, where
the computer first determines what the person has said before
looking for a response to extract further information. This is
looking at how to minimise the search space further by asking
a follow-up question. When ‘Dave’ says about the Arcelor-
Mittal tower, “The view is good, and you can see my house
from the top, but the ticket prices are much too expensive.”, a
strategic follow-up question could further narrow down where
he lives. When this is seen as a case of using intersecting par-
tial information to narrow down a search space, an observation
that we can make from the data collected so far is that either
one of spatial or temporal information is valuable, with a third
class of semantic information that can be used to derive one of

Fig. 4: Split between number of words at the beginning (Wb)
and end (We) of conversations. This is defined as
(We−Wb)/W , where W is the total number of words.
The predominantly positive ratio suggests more com-
plex text at the end of conversations where people leave
memories, but with a small cluster of language degen-
eration at the negative end which needs further investi-
gation. This shows more complex language than “verb
+ noun”.

the other two. For semantic, we include things like, ‘Danny’5

saying, “I’ve come to the park to do fieldwork for geography
gcse”. This gives the chatbot an age and a name to look up
in any public information on local schools in the area. Here,
though, the name can have a large impact on how far the search
space can be narrowed down. Using the Office for National
Statistics baby names data for 1996 [13], we find that the prob-
ability of a boy named ‘Aaron’ is 7.88 × 10−3, compared to
6.28 × 10−5 for the alternative spelling ‘Aarron’, while there
were 325 babies named ‘Danny’ in 2002, who would now be
doing their GCSEs. This official dataset on baby names pro-
vides us with the ability to match any UK registered names in
the visitors’ responses, providing us with an indicator variable
and an ability to quantify the disclosiveness.

6 Conclusion

Even in the small sample of 186 park conversations collected
here, we can detect one privacy concern that could be exposed
with a combined spatial and temporal search, “we got married
at the orbit on [date]”, and another spatial statement of the
form, “you can see my house from here”. While the first is
detected by a filter trained to identify months of the year, the
second depends on a deeper understanding of language. Figure
5 shows three of the indicator traces for the park data, based on
a combined ‘Text8’ and ‘park’ word corpus.

While this simple chatbot ‘game’ only serves as a lure for data,
our analysis shows how the context matching used in the chat-
bot’s state transitions could be augmented with information
from the Internet to steer the AI’s response towards further in-

5 The name has been changed to preserve anonymity.
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Fig. 5: Conversation disclosure indicators, sorted by personal
disclosure factor, ‘I’, ’he’, ’she’ etc. Indicators are nor-
malised to ±1 for comparison. Positive means strong
association. The −1 temporal value from conversation
103 onwards indicates too little text to obtain any data.
Two further traces based on word length and entropy
have been omitted for clarity.

formation disclosure. This paper shows that advanced natural
language understanding is not required to achieve this, only
the ability to pick out a key part of the response to prompt
the visitor for further information, much like the original Eliza
program did in 1966.

As further advancements are made in natural language pro-
cessing, we find ourselves in the area of ‘content overhang’,
where large-scale unstructured data is available on the Internet
to any algorithm that is able to use it. As highlighted earlier, if
the requirement is to build a better chatbot, then that requires
improved language capabilities, which leads to improved han-
dling of unstructured text data from the Internet. The algo-
rithmic potential could be there for a large-scale ‘take-off’ in
capability. This is not command and control, this is poking for
data.
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