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In this paper we investigate the effect of an inhomogeneous and unsteady velocity field
incident on an array of rigid circular cylinders arranged within a circular perimeter (di-
ameter D¢) of varying solid fraction ¢, where the unsteady flow is generated by placing
a cylinder (diameter D¢) upwind of the array. Unsteady two-dimensional viscous simu-
lations at a moderate Reynolds number (Re=2100) and also, as a means of extrapolating
to a flow with a very high Reynolds number, inviscid rapid distortion theory (RDT) cal-
culations were carried out. These novel RDT calculations required the circulation around
each cylinder to be zero which was enforced using an iterative method. The two main
differences which were highlighted was that the RDT calculations indicated that the tan-
gential velocity component is amplified, both, at the front and sides of the array. For the
unsteady viscous simulations this result did not occur as the two dimensional vortices
(of similar size to the array) are deflected away from the boundary and do not penetrate
into the boundary layer. Secondly, the amplification is greater for the RDT calculations
as for the unsteady finite Reynolds number calculations.

For the two highest solid fraction arrays, the mean flow field has two recirculation
regions in the near wake of the array, with closed streamlines that penetrate into the
array which will have important implications for scalar transport. The increased bleed
through the array at the lower solid fraction results in this recirculation region being
displaced further downstream.

The effect of inviscid blocking and viscous drag on the upstream streamwise velocity
and strain field is investigated as it directly influences the ability of the large coherent
structures to penetrate into the array and the subsequent forces exerted on the cylinders
in the array. The average total force on the array was found to increase monotonically
with increasing solid fraction. For high solid fraction ¢, although the fluctuating forces
on the individual cylinders is lower than for low ¢, these forces are more correlated due
to the proximity of the cylinders. The result is that for mid to high solid fraction arrays
the fluctuating force on the array is insensitive to ¢. For low ¢, where the interaction of
the cylinders is weak, the force statistics on the individual cylinders can be accurately
estimated from the local slip velocity that occurs if the cylinders were removed.

1. Introduction

Laboratory and field measurements of vortical flows through and around arrays, of
varying solid fraction ¢, have highlighted many interesting and practical phenomena
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(Davidson et al. 1995; Taddei et al. 2016), but more detailed studies over a wide range of
Reynolds number are needed to quantify and explain the general results and the complex
effects of these unsteady inhomogeneous flows on the upwind, internal and downwind ve-
locity and force statistics. To further our understanding of this topic the specific questions
we ask in this work are:

e how is the incident flow modified in front, sides and near wake of the array?

e how do variations of solid fraction affect the velocity fluctuations inside the array
and the forces on individual cylinders and on the array as a whole?

The motivation behind this work is that many industrial and environmental engineering
studies involve modelling the flow past isolated groups of long slender obstacles which
may be rigid or flexible; a few examples are the tidal flows past turbines (Martin-Short et
al. 2015), flow past riser groups under oil rigs (Constantinides et al. 2006), dispersion of
organic waste due to caged farmed fish (Wu et al. 2014), flow through vegetation in near-
coastal regions (Nepf 1999) and the interaction of an incident flow (composed of a current
and waves) with many structural members (Santo et al. 2014). In these applications it
is possible that the incident flow is unsteady due to a turbulent boundary layer or the
presence of a larger upstream body. It is necessary to study the effect of an unsteady
flow on these idealised arrays before progressing to more complex configurations.

The modelling first requires characterising the properties of the incident unsteady flow
U; advected by a uniform stream Uy, in relation to the geometrical properties. Following
Hunt & Savill (2005) a measure of the unsteadiness and spatial scale of the inhomogeneity
of the incident flow, we define the characteristic time (7°) and length (£) scale as:

UsLi L
’LL/DG ’ - .DG7

where Ty, = Ly /u’ is the eddy turnover time with u’ the root mean square (rms) stream-
wise velocity, Ly is the integral scale (or eddy size) of the incident flow and D¢ is the
array diameter. This type of definition needs to be adapted for different configurations.
The upstream disturbance depends on the relative strength of the unsteadiness and flow
inhomogeneity, with the comparison made against the characteristic advective timescale
or a spatial scale relative to the size of the array. Four regimes can be broadly identified
in terms of 7 and £ being much greater or less than unity.

For 7 > 1 and £ > 1, the incident flow is slowly varying or is quasi-steady with a weak
spatial variation. Most research has been undertaken in this regime which approximates
to a uniform and steady incident flow. The low Reynolds number flow past a circular
cylinder (in a steady incident flow) has been extensively studied in the early part of
the last century. However it is only more recently that the effect of making the cylinder
porous has been investigated. A general schematic for a porous region within a flow is
shown in figure 1. Early work on uniform flow over disks (i.e. with no upstream cylinder
as in figure 1) showed that their drag coefficient could be reduced by perforating the
disk (Castro 1971). However, by perforating a thin-walled cylinder the drag coefficient
was greater than that of a solid cylinder (Aldridge et al. 1978). Nicolle & Eames (2011)
used two-dimensional direct numerical simulations to investigate the steady flow past an
array of stationary circular cylinders with a solid fraction varying from 0 < ¢ < 1. They
identified three regimes (i) for ¢ < 0.05 the bodies do not interact with each other and
so have a similar force response as an isolated cylinder; (ii) for 0.05 < ¢ < 0.15 the bleed
from the group stabilises the fluctuating shear layers on either side of the array (for up
to 5D downstream) resulting in a steady flow and a negligible lift coefficient and (iii)
for ¢ > 0.15 the array starts to behave as a solid cylinder. The group drag coefficient was
found to increase with increasing solid fraction and the maximum group drag coefficient

T = (1.1)



The effect of an unsteady flow incident on an array of circular cylinders 3

was found to be at ¢ = 0.3 which was slightly greater (< 5%) than the solid large
cylinder (i.e. ¢ = 1). Chang & Constantinescu (2015) performed three-dimensional large
eddy simulations, also with a steady incident flow, at Re = 10,000 (based on the group
diameter) for 0.023 < ¢ < 0.2 and identified only two regimes, namely regimes (i) and
(iii) from Nicolle & Eames (2011). Regime (ii) was not seen in the three-dimensional
simulations as the shear layers became unstable and formed Kelvin-Helmholtz billows.
Similar to the two-dimensional calculations, the group drag coefficent for 0.1 < ¢ < 0.2
was greater than for ¢ = 1. Arrays with the same solid fraction but with individual
elements of a different diameter were found to have very different force coefficients. Two
recirculation regions were observed downstream of the array (approximately Dg) for
¢ =0.2.

When £ > 1 but 7 is finite, we essentially have a body (or an array) within an
incident unsteady flow. An example of this type of flow would be tidal currents in estu-
aries. Providing 7 > 5 and the flow is not reversing, the broader characteristics can be
understood from the steady incident flow problem and can be loosely described as quasi-
steady. When 7 < 1, we tend to have a rapidly changing oscillatory flow which is similar
to the passage of waves past large structures; at even higher values we have oscillatory
boundary layers. While the problem of oscillatory flow past one body has been studied,
the collective action of the flow around many bodies has not been widely studied. This
lies outside the scope of this paper.

When £ < 1 and 7 > 1, the upstream flow is inhomogeneous and unsteady and
characterised by weak disturbances which are smaller than the size of the array. Figure 2
shows the experimental research on turbulent flow incident on a single cylinder. The focus
of most of these studies was looking at how the turbulence affected the drag and lift force
and the shedding frequency. Britter et al. (1979) investigated the effect of blocking on the
velocity statistics in the vicinity of a single cylinder. Analytical methods used to analyse
this interaction include rapid distortion theory (RDT) which refers to a mathematical
technique that can be applied to analyse how weak turbulence (7 > 1) is distorted due
to the action of an ambient flow. This has provided understanding for the interaction of
turbulence and boundaries, stratification, rotation and compression (see the reviews by
Savill 1987 and Salhi & Cambon 2005). For bluff body interactions Hunt (1973), Durbin
(1981) and Graham (1980) applied it to understand the modification of a weak three-
dimensional turbulent flow near the front of two- and three-dimensional rigid bodies and
porous plates respectively.

It is insightful to consider the various length and time scales in figure 1, which are
also highlighted in figure 2. The incident flow on the upstream cylinder is uniform and
steady and so £ = T = oo. For high Re the upstream cylinder periodically sheds vorticity
which results in velocity perturbations comparable to Uy, such that £ =T = O(1). The
ability to shed vortices will be sensitive to the distance between the upstream cylinder
and the array, which is further discussed in §2. The effect of this flow on the downstream
array will depend on the solid fraction of the array. For ¢ = 1, the problem reduces to
the case of large scale free stream unsteadiness impacting a boundary layer (see Hunt
& Savill 2005 for characteristics of this case). For individual cylinders in high solid frac-
tion arrays, the large scale vortices can not penetrate into the array. Also, there is no
shedding from individual cylinders and vorticity annihilation occurs between shear lay-
ers of adjacent cylinders, resulting in weaker velocity fluctuations. For low solid fraction
arrays the cylinders shed small scale vorticity into the flow where 7 ~ £ < 1. For the
highest solid fraction arrays, there will be shedding from the array. However, due to the
unsteady incident flow disrupting the shedding process, these vortices will be less intense
and smaller than the ones from the upstream cylinder.



4 C.A. Klettner, 1. Eames & J.C.R. Hunt

Figure 1: A schematic of the computational domain, of width W = 38 D¢, is shown with
an upstream cylinder and a downstream array (both of diameter D¢) of varying solid
fraction ¢ (dark gray) separated by a distance L(= 3.8D¢). The array is comprised of N,
cylinders of diameter D(= D¢/21) (see table 1 for properties of all the arrays considered
in this study). The amplification of the tangential velocity in front of the array is shown
in light gray (O(Dg)) where the theory of Hunt (1973) is valid for high solid fraction
arrays. Also highlighted are the decay of the fluctuations within the array and the width
of the wake at the side of the array. The origin is located at the centre of the array.
Figure not to scale.

Based on the literature review, shown in figure 2, there is a clear research gap of
unsteady incident flow past an array of cylinders and where u'/Us ~ O(1). However, it
is this spatial and temporal non-homogeneity that makes this problem challenging but
also representative of practical applications. In this study we consider the effect of an
unsteady, inhomogeneous flow on an array of circular cylinders of varying solid fraction.
In the limit of high solid fraction RDT simulations are carried out to investigate the effect
of blocking on the velocity statistics of the incident flow in the vicinity of the array. In
the limit of low solid fraction the interaction between the cylinders is weak and the force
can be accurately estimated from the local slip velocity that occurs when the cylinders
are removed.

We carry out high resolution two-dimensional numerical simulations at a moderate
Reynolds number (Re = 2100) which limits the direct applicability of these simulations
to industrial and environmental situations. However, there at this Reynolds number there
is still sufficient complexity in the wake to be appropriate for this fundamental study.
Additional RDT calculations are carried out as a means of extrapolating to a flow with
a very high Reynolds number and the differences between these two approaches is ex-
plored. This comparison is possible as in three-dimensional RDT calculations past a
two-dimensional body like a cylinder, the component ws is independent of w; and wso
(Hunt 1973). Therefore this work provides a new approach for research and for industrial
and environmental applications.

The paper is structured as follows; the problem is defined in §2. In §3 the mathematical
models used for low and high solid fraction arrays are presented. The numerical methods
used to carry out the direct numerical simulations and RDT calculations are described
in §4. The diagnostics which are applied to the numerical calculations are summarised in
§5. Plots of the vorticity field are discussed in §6 to highlight the effect of solid fraction
on the distortion of the vorticity field as it interacts with the array. The effect of the
array on the velocity statistics adjacent and within the array are analysed in §7. Inviscid
RDT calculations are compared with the viscous simulations and differences are high-
lighted and discussed. The forces on individual cylinders and the array are presented and
discussed in §8. The results are discussed and conclusions are given in §9.

2. Problem definition

Critical aspects of this work are the choices of the spatial array and unsteadiness of
the incident flow. For arrays with a low solid fraction the overall shape of the array is
less important than the individual body shapes within the array and their distribution.
The array shape is critical at high solid fractions and having ’sharp’ edges at square and
rectangular arrays potentially generates behaviour that is not typical of many industrial
problems. For this reason we chose a circular array with a structured placement of circular
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Figure 2: Approximate time and length scales for the different regions (highlighted in fig-
ure 1) in the current viscous simulations: uniform upstream Uy, (A); large scale motion
in between upstream cylinder and array (<); wake behind a small cylinder for low solid
fraction (>) and for high solid fraction (»); large scale motion shed by array for high solid
fraction arrays («t). Scatter plot showing research summary of different types of incident
flow for flow past a single circular cylinder. Britter, Hunt & Mumford (1979) (experi-
ments) (o); Norberg & Sunden (1987) (experiments) (x); Blackburn & Melbourne (1996)
(experiments) (x); Surry (1972) (experiments) (O); Nicolle & Eames (2011) (numerical)
and Chang & Constantinescu (2015) (numerical) (A). The time and length scales are
defined by (1.1).

cylinders; this is the same array as Nicolle & Eames (2011) and gives a basis of comparison
for the array of rigid cylinders in a steady incident flow. Similar configurations have been
used in other multibody flow studies (Chang & Constantinescu 2015; Taddei et al. 2015).

Important choices are the types of unsteady incident flow to study and how to generate
this flow. Previous work on unsteady flow incident on a rigid body has either focussed on
homogeneous turbulent flow (Hunt 1973) or periodic gusts (Goldstein & Atassi 1976). In
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| Number of cylinders (NC) | N51 | N133 | Ng5 | N64 | N3g | N20 | N7 | N1 | N() |

| Solid fraction (¢) |1 ]0.3016|0.2154|0.1451 | 0.0884 0.0454]0.01590.0023 0 |

Table 1: The solid fraction ¢ = (D/Dg)?N. of the arrays is varied by varying the number
of cylinders (IV.) in a region of constant area.

this paper the unsteady flow is chosen to be generated by an upwind cylinder (of equal
array diameter D¢ ) that is continuously shedding alternatively signed vortices. This flow
is easily generated, gives reproducible results and provides a strong link to practical in-
dustrial and environmental problems as highlighted in the introduction. Additionally, in
the limit that the array is a solid cylinder (i.e. ¢ = 1), the problem reduces to that of
two aligned cylinders which is an extremely well studied case both numerically and ex-
perimentally (Zdravkovich 1987), though the physics are still not completely understood
(Lockard 2011).

The distance between the upstream cylinder and the array has been chosen to be large
enough that the upstream cylinder can shed vortices which are advected downstream to
interact with the array. If the upstream cylinder-array separation is below a critical value
it can result in the shear layers from the upstream cylinder reattaching to the array (as
was identified for the tandem cylinder case by Zdravkovich 1987). This minimum distance
is dependent on the vortex formation length (for the upstream cylinder in isolation) which
is sensitive to the Reynolds number and additionally has a non-linear dependence on
the Reynolds number (Norberg 1987, Fig. 12). In two-dimensional numerical simulations
reattachment ceases for a much smaller separation than for three-dimensional simulations
(Papaioannou 2006).

As two-dimensional numerical simulations are performed it is worth discussing the
effect of fully three-dimensional flow in this situation. For a given Reynolds number,
vortices shed in two-dimensional simulations of flow past a cylinder are stronger and
more coherent than those in three-dimensions (Sumner 2010). Even though the wake
behind a cylinder at higher Reynolds numbers is three-dimensional, it has been shown in
Armstrong et al. (1987) that the wake structure is still quite strongly two-dimensional
with a von Karman vortex street for Re = 21, 500. In three-dimensional flow, it is likely
that instabilities will result in the partial or complete breakdown of these vortices as
they impact the array, which will have a significant influence on the forces exerted on
individual cylinders. Therefore quantitative agreement of velocity statistics in front of
the array and forces (for two- and three-dimensional simulations) would not be expected
however qualitative trends can be identified, similar to Nicolle & Eames (2011).

In this work a separation length of L = 3.8D¢ was used and a group Reynolds number
of 2100 (based on the upstream velocity U, and array diameter D) was imposed. This
leads to a Reynolds number of 100 based on the individual cylinder diameters. This
was chosen so that (i) comparison could be made with Nicolle & Eames (2011), (ii) the
minimum critical distance for shedding is achieved for that Reynolds number in two- and
three-dimensions and (iii) this geometry is widely studied case for very high Reynolds
numbers (Lockard 2011). A schematic of the problem is shown in figure 1.
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3. Mathematical model
3.1. High solid fraction arrays (¢ > 0.2)

For high solid fraction arrays the primary interest is the modification of the flow caused
by blocking induced by the collective action of the individual components of the array
which is dominated by the upstream portion of the array.

3.1.1. Rapid distortion theory (RDT)

One method to analyse the influence of the array on the incident flow is to adapt
the RDT model of Hunt (1973) and Durbin (1981). The RDT approach is a non-linear
calculation of how vorticity adjusts due to the differential advection of neighbouring fluid
elements based on a linearisation of the perturbation caused by the inhomogeneous flow.
Here, this is applied to examine the modification of an inhomogeneous flow past an array
of cylinders. The velocity in the vicinity of the array can be expressed as

U= ug + Uy, (3.1)
where @ is the steady mean flow around the array in the absence of the upstream wake
and u,, is the unsteady flow generated by the incident wake on the array. The statistics
and structure of u,, as x — —oo are assumed to be known upstream of the array. While
these are evolving in the streamwise direction, the change is relatively slow compared
to the rapid change in the vicinity of the array. Since the ambient flow is irrotational it
is useful to look at the evolution of the vorticity field. Writing w,, = (V X u,,) - 2, the
vorticity transport equation is

Ow,

761:} + (wo + uy) - Vw, = szwwa (3.2)
since there is no vortex stretching in two-dimensions (Batchelor 1967, p. 268). Denoting
the upstream velocity as U, and the lengthscale and root-mean square velocity (of the
streamwise component) of the incident flow by L and u’ respectively, then the relevant

parameters for the RDT approximation are

27
Re,, = UO; > 1, (3.3)
and
u/
— < 1. 3.4
. < (3.4)

While the condition (3.3) is easily satisfied, the latter condition (3.4) in the numerical
examples is only approximately satisfied. For random turbulent flow, the mean velocity
induced by the vorticity field is zero, however for these structured and organised flows,
the self-induced flow of the wake will have an impact on the mean flow upstream of the
array.

3.1.2. Primary irrotational flow

Upstream of the array, the mean flow ug is irrotational. For a rigid cylinder (¢ = 1),
the mean flow @ is to leading order irrotational except in a thin boundary layer on the
upstream side and is characterised by strong shear layers at the sides. When ¢ = 1, an
approximate velocity field close to the array that satisifies the kinematic condition on
the upwind face is

(3.5)

uy=Vo=U, (1 B (x2 _ yQ)Dé/ﬁl —2xyD%/4>

(@*+92)? 7 (@2 +y?)?
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When 0 < ¢ < 1, there are two options, the array can be treated as a porous cylinder or
as a collection of physical cylinders. In this work only the latter case will be considered.

3.1.3. Velocity field calculation
When the constraints (3.3) and (3.4) are satisfied,
Ow,, Dw,,

W + ugp - wa = 0, Dt =0. (36)
The solution to the Lagrangian equation for vorticity is
W (2,y,t) = wy(x — Uso (A7 + 1),y — Ay), (3.7)

(Durbin 1981) where w, is the prescribed upstream wake vorticity, A is the drift func-
tion, Ay is the vertical displacement function and ¢ is the time. A central feature of
rapid distortion theory of flow past a body or array of bodies is the concept of drift
(Hunt 1973). The drift of fluid particles is usually defined as Ap which is the time taken
for a particle starting at (zo,y0) to get to (X,Y) minus the time taken for the fluid
particle to travel from (zg, yo) to get to (X, yo) without the body or bodies present such

that
1

AT == 7(X - Uoot — l‘o). (38)
Uso
The vertical displacement of a fluid particle as it passes the array is
Ay =Y —y, (3.9)

and corresponds to the point above the initial cross-stream position far upstream. For
¢ =1 the analytical form of Ay and Ay is known (Hunt 1973).

3.1.4. Unsteady incident flow

Two dimensional flow past an isolated cylinder at Re = 100 exhibits the classic von
Karmén vortex street wake. When the Reynolds number is increased to Re = 2100, the
cylinder sheds vortices at oblique angles (see Nicolle & Eames 2011). RDT requires as
an input the wake generated by the upstream cylinder and one possibility of modelling
this wake flow is by specifying the vorticity field as

xo — (j — 1/2Ny)Lyy)? 4 (yo + Ay sinw,g)?
ww(x(),yO) = ZQ“’ (exp (( 0 (] / ) )Rz (yO 0) > ’
J

w

Cexp (_ (o — (j — 1/2 = 1/2N,)L,,)? + (yo + Ay Sinwsx0)2> > (3.10)

R,
where 2, is the maximum vorticity, R,, is the radius of the patch of vorticity, N, is the
number of vortices and L, is the separation between the vortices. This is similar to the
wake model used in Armstrong et al. (1987). To capture the effect of the oblique shedding,
a low frequency cross-stream displacement of the vortices is introduced, A, sinwgsxg,
where A, and ws are the amplitude and frequency of this oscillation. (3.10) does not
capture the oblique motion explicitly, however it captures patches of vorticity propagating
downstream at different cross-stream displacements. The choice of these parameters is
determined by matching the velocity field statistics (i.e. @, 7, v/ and v’) of an isolated
cylinder at Re = 2100 (i.e. case Np) at an equivalent distance downstream (i.e. the array
is situated at distance 3.8D¢ downstream of the cylinder). The parameters which were
used in this work were A, = Dg/2; ws = 0.02; Q,, = 1.2; Ry, = D¢ /2; N, = 500 and
L, =2.5D¢.
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3.2. Low solid fraction arrays (¢ < 1)

For low solid fractions and small cylinders (D/Dg < 1), the whole array has a weak
effect on the local upstream ambient flow and each element in the array tends to see the
alternately signed vortical lumps propagating downstream. Using a similar method as
Bagchi & Balachandar (2003) we try to estimate the force on the individual cylinders,
by removing the cylinders and evaluating the contributions to the total force using the
velocity and velocity gradients measured at the cylinder centre.

3.2.1. Flow and force characteristics of an array of isolated elements in an
inhomogeneous flow

The force experienced by an isolated element (cylinder) may be estimated by adding
together the inviscid and viscous flow contributions (Lighthill 1986, Magnaudet & Eames
2000). This standard technique works because the inviscid contributions are largely deter-
mined by kinematic conditions and viscous effects are determined by the no-slip boundary
condition. The force, F', is estimated to be a summation of various contributions

F(Sc,t)ZFD+FH+FI+FL, (3.11)

where Fp, Fg, F; and Fj, are the form drag, history, inertial, shear induced lift forces
respectively. The drag force on a cylinder (diameter D) is estimated as

1
FD = §pC’D1Du|u|, (312)

where and u and p are the fluid velocity and density respectively. Cp, (Re;) is an em-
pirically determined coefficient, where Re; is the local Reynolds that the cylinder would
experience if present (Re; = |u|D/v), with the drag relationships

Cp = 9.689Re™""8(1 + 0.147Ref-%?)(0.1 < Re; < 5),
Cp = 9.689Re™%"8(1 + 0.227Re5%)(5 < Re; < 40), (3.13)
Cp = 9.689Re™""8(1 + 0.0838 Re-32)(40 < Re; < 400),

taken from Clift, Grace Weber (1978). The history force is important when the local
Reynolds number drops close to zero resulting in the surface vorticity diffusing into the
ambient fluid and it not being advected away from the body resulting in changes to the
force on the body. In this work the local Reynolds number Re; >> 1 and so this term will
not be considered. The inviscid inertial force is estimated to be

7D? Du

F;=p(1+ Cm)Tﬁ7

where the added mass coefficient C,,, = 1 for a cylinder. This force can be interpreted

as comprising a hydrostatic component (—Vp) and a contribution due to its shape

(—Cm AV p); the ratio of the former to the latter is 1:C,. For two-dimensional flows
the lift force that arises from an incident shearing flow is

FL:CLp’U,Xu)'E, (315)

(3.14)

where w = V X w is the fluid vorticity. For inviscid flows, the lift coefficient Cy, = 2 (see
Auton et al. 1988).
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4. Numerical methods

Two types of two-dimensional numerical calculations were performed, namely viscous
direct numerical and inviscid RDT simulations, which will be discussed in this section.

4.1. Direct numerical simulations

Figure 1 shows a schematic of the finite rectangular computational domain. The width
W = 38D¢ gives a blocking ratio of W/Dg = 0.026 which ensures that the channel
walls have a negligible effect (Kumar & Mittal 2006). The upstream cylinder is a length
15.2D¢ from the inlet and there is a centre-centre distance of 3.8 D¢ from the upstream
cylinder to the array. The boundary conditions imposed on the computational domain
are U on the inlet surface, kinematic and no-slip conditions on the rigid cylinders,
zero flux on the sidewalls and a constant pressure constraint on the outlet.

The isothermal, incompressible Navier-Stokes equations were numerically solved using
ACEsim which uses a characteristic-based-split scheme within a finite element framework;
this code has been validated and successfully used for multi-body interactions (Nicolle
& Eames 2011). The defining equations are solved in three steps: involving first the
calculation of an intermediate velocity field using the forcing by the viscous forces. The
second step is the calculation of the pressure field, from the fact that the Laplacian
of pressure is proportional to the divergence of the intermediate velocity. The pressure
gradient is applied to force the intermediate velocity field to be solenoidal, and the
updated velocity field is calculated in the third step.

The mesh specifications for the region adjacent to the upstream cylinder and down-
stream cylinder were chosen such that there was five elements across the boundary layer
§ ~ dRe™1/? (where d = Dg(Re = 2100) and d = D(Re = 100) for the upstream cylinder
and for the individual cylinders respectively) which was estimated to be dp,/Dg ~ 0.5
and 6p/D ~ 0.1 respectively. The mesh independence of these specifications was con-
firmed by performing an additional simulation of C; with double the resolution and the
force statistics (coefficients and Strouhal numbers) on the single body agreed within 1%.

4.2. Inviscid RDT simulations

The key step in applying RDT is to determine the relative travel times of fluid particles
adjacent to one another on the same streamline or on adjacent streamlines. This relative
motion gives rise to a significant compression and distortion local to the upstream stagna-
tion point. The mathematical framework of Hunt (1973) exploited and extended Darwin’s
(1953) work on fluid drift. Here we extend Hunt’s (1973) model to two-dimensional wakes
impacting on a circular array which in one limit is a cylinder.

RDT calculations require the calculation of the drift function A7 and the y-displacement
function Ay. When we have an array with multiple cylinders present, an analytical solu-
tion is not readily available and therefore these variables need to be calculated numeri-
cally. The potential flow past the array is calculated numerically by solving V2® = 0 on
a computational domain where the inlet and outlet are located 14.3D¢g and 7.1D¢ from
the array centre respectively and has a width 38D¢. The boundary conditions imposed
on the computational domain are U, & on the inlet surface and a no flux condition on
the rigid cylinders and sidewalls. Fluid particles are released at the inlet (at regular in-
tervals in the cross-stream) and the particles position is tracked by integrating forward
in time. The distribution of A7 and Ay on the finite element mesh can be obtained by
interpolating the values of adjacent streamlines. The distorted wake vorticity can now
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be calculated from (3.7) and the velocity field is given by
ovr OV
= =,—=— 4.1
u= (G5 ). (4.1)
where the streamfunction satisfies
VA = —w,,. (4.2)

The streamfunction is calculated using the finite element method within ACEsim. A
unique solution to (4.2) is obtained by constraining the circulation around each cylinder
to be zero, i.e.

I; = f. u-dS = 0, (43)
SBi

where ¢ = 1,..., N.. The solution requires the streamfunction value on each body to be
specified which is not known a priori and must be determined through a search algorithm
that exploits the linearity of (4.2).

5. Diagnostics

In this section we will present the key kinematic and dynamic diagnostics which are
used in this work. The mean and root mean square of a time series (t) are defined as

g 1 Ts é-/ 1 To _
s a, & = — &t 5.1
Rt e ol T R b o M (51)

Time is non-dimensionalised as 7 = tU., / D¢. The velocity statistics are non-dimensionalised
as u/Us and v/Us. It should be noted that care is required when calculating the statis-
tics because the time taken for the initial transient caused by starting the computations
may be considerable (7 ~ 60 convective time units).

The force on a body is

F = (pI — 1) -ndS, (5.2)
SB

where 71 is the normal vector pointing out of the fluid domain, p is the fluid pressure,
T is the viscous stress tensor and the integration is taken over Sp the surface of the
body (Batchelor 1967, p. 233). As the incident flow on the array is unsteady and in-
homogeneous, in this work we will be using the force magnitude and angle instead of
the traditional drag and lift coefficients. The total force coefficients on the individual
cylinders (denoted as the i*" subscript) and the group force coefficient of N, cylinders
are respectively,

| _ i |y
0 Crat) =5 >
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where D is the cylinder diameter and D¢ is the diameter of the array. The instantaneous
angle of the total force is defined as

Fi-g Cyg
0)Fi(t) = atan <F1 : j;) , Opc(t) = atan (C’) , (5.4)

XG

Cri(t) = (5.3)

for an individual cylinder or the array respectively. The Strouhal number is the non-
dimensional shedding frequency and is defined as
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Figure 3: Snapshots of the vorticity field (ranging from -1 (blue) to 0 (green) to 1 (red)) at different times showing the effect of the
downstream array (a,b,c) Ng1 and (d, e, f) Ni33 on the patches of vorticity generated by the upstream cylinder (with the flow from left
to right). For Ngj, the patches of vorticity can be seen to slow down and distort around the cylinder which is due to streamwise biased
tilting. For N33, the array is behaving similar to Ng; but there is less intense shedding and secondary vorticity generation from the array.
The Reynolds number is Re = Uy D¢ /v = 2100.
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Figure 4: Snapshots of the vorticity field (ranging from -1 (blue) to 0 (green) to 1 (red)) at different times showing the effect of the
downstream array (a,b,c) Ngs and (d,e, f) Ngs on the patches of vorticity generated by the upstream cylinder. These two arrays are
behaving similar to the other high solid fraction arrays shown in figure 3, with the large scale vortices not able to penetrate far into the
array.
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Figure 5: Snapshots of the vorticity field (ranging from -1 (blue) to 0 (green) to 1 (red)) at different times showing the effect of the
downstream array (a,b,c) N3g and (d, e, f) Nop on the patches of vorticity generated by the upstream cylinder. For N3¢ the individual
cylinders shear layers are mainly attaching to downstream cylinders, however the cylinders on the periphery are shedding small scale
vorticity into the flow. For Nyg, the separation between the cylinders is sufficient that they are mainly shedding vorticity into the flow.
For both these cases the large vortices are capable of penetrating into the array.
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Figure 6: Snapshots of the vorticity field (ranging from -1 (blue) to 0 (green) to 1 (red)) at different times showing the effect of the
downstream array (a,b,c¢) N7y and (d,e, f) Ny on the patches of vorticity generated by the upstream cylinder. The large vortices move
through the array at a near constant velocity and all the cylinders are shedding vorticity. Note the circular and ellipical shape of the
vortices in (d — f) which is dependent on the sign of the small and large scale vorticity.
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6. Qualitative description of flow processes

A starting point to understand the complex interaction between the unsteady flow
generated by the upstream cylinder and the array is to discuss the features associated
with the vorticity field; the kinematics and dynamics are discussed later. The incident flow
on the upstream cylinder is uniform and characterised by a Reynolds number, Re = 2100.
In two-dimensions this results in the shedding of alternate signed vortices which are shed
obliquely in a periodic fashion and are advected downstream (Nicolle & Eames 2011). As
can be seen in figures (3-6) reattachment of the shear layers of the upstream cylinder onto
the array was not observed in any of the cases. The evolution of the vortices is then largely
determined by the collective effect of the blocking and viscous drag of the individual
cylinders in the array, which changes significantly with the array solid fraction. Since the
flow is unsteady, the evolution of the vorticity field is shown with three representative
snapshots that cover a span of time when a vortex shed from the upstream cylinder
interacts with the array. The discussion will start with the case of Ng; and will progress
to arrays with lower ¢.

The effect of a solid cylinder on the vortices is to slow them down and so the distance
between consecutive vortices decreases (figure 3a,b,¢). As the vortex slows down it is also
distorted by the favourable rate of strain of the mean streamwise velocity in front of the
array (|0u/dy| > 0), known as streamwise biased tilting. This feature, together with axial
stretching, was identified to lead to the amplification of vorticity in front of a circular
cylinder subject to an incident three-dimensional turbulent flow (Sadeh & Brauer 1980).
The vortices interact with the array boundary layer and result in secondary vorticity
being generated which is of the opposite sign to the incident vorticity. For Ni33 and Ngs
the arrays also shed large scale vorticity (figure 3e,f), however the incident unsteady flow
continually disrupts the formation of strong shear layers and so the subsequently shed
vortices are smaller and with less circulation than the vortices shed from the upstream
cylinder. For the high solid fraction arrays, Ng4 and higher, the vortices do not penetrate
far into the array and are forced around the array. Although the individual cylinders are
generating shear layers of intense vorticity, the proximity of the cylinders means that
these annihilate with shear layers of the opposite sign from adjacent cylinders (similar as
in Nicolle & Eames 2011) and so no vortices are shed from the individual members for
the case of N3g and above. Therefore the larger vortices moving around and downstream
of the array do not have these smaller intense vortices present (figure 4d-f and 5).

For the case of N3g the proximity of the cylinders is such that the shear layers of the
cylinders are mainly attaching to the downstream cylinders however the cylinders at the
periphery are shedding into the larger vortices. For the case of Ny and N7 the individual
cylinders are all shedding (whether they are interacting with a larger vortex or not). As
the large vortices move through the array, the cylinders shed vorticity into the larger
vortices (for the positive vortex in figure 6b) which are then transported downstream.
This can be seen to the bottom right of the array for the postive vortex in figure 6(c)
where there are intense smaller vortices within the larger vortex. The blocking and viscous
drag from the low solid fraction arrays is minimal and the vortices move towards, through
and out of the array at an almost constant velocity, which can be seen by the constant
distance between the negative (blue) and positive (yellow) vortices in figure 6(a,b,c). For
the case V| the passage of a wake vortex changes the local slip velocity between the
array elements leading to a von Karman vortex street that is shed in a direction parallel
to the local slip velocity. The local strain field induced by the large scale incident wake
vortices causes the smaller opposite signed vortices to be circular, while vortices of the
same sign (as the incident wake vortex) are elliptical (see figure 6a,b).
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Figure 7: Streamline plots of the mean velocity field through the array for the viscous
simulations with an upstream cylinder; (a) Ngs1, (b) Niss, (¢) Nos, (d) Nea, (€) N3g, (f)
Ny, (g) N7 and (k) Ny. The flow is from left to right and the streamline colour represents
speed from low (blue) to high (red). The high solid fraction arrays have recirculation
regions (a — ¢) and the black dashed-dot line in (b, c) show these penetrating into the
array. Note the decelerated internal and near wake flow for the arrays Ngg to Nog (d— f)
and the cylinders behaving as isolated elements in (g — h).
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Figure 8: Centreline streamwise velocity (a, ¢, e) and cross-stream profile of strain ¥ at
x/Dg = —3/4 (b, d, f) for potential flow (a, b), viscous flow with a steady uniform incident
flow (¢, d) and viscous flow with an upstream cylinder present (e, f). The different solid
fractions are represented by N7(o); Nag(+); N3g(*); Nea(.); Nos(x); Nisz3(0); Ngi(o).
The lines in (a,b) are the analytical prediction for a porous region given by Eames &
Bush (1999).
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Figure 9: Streamwise profile of the rms of the (@) normal and (b) tangential velocity
components for viscous simulations with an upstream cylinder, showing the reduction of
the normal and the amplification of the tangential fluctuations respectively. The different
solid fractions are represented by No(<); N1(>); Nz(0); Naog(+); Nag(x); Nea(-); Nos(X);
Ni33(0); Ng1(0). The centre of the upstream cylinder is located at —3.8Dg.
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Figure 10: (a) The average mass flux (rhp = pLRR U)z=0dy/(Uss D)) through the array
for potential flow (o) and for viscous numerical simulations for varying solid fraction. (b)
Fraction of reduced mass flux through the array due to inviscid kinematic blocking 7y
(dashed line) and viscous drag mp (full line). In (a) and (b) the results shown are with
(O) and without (x) an upstream cylinder present.

7. Kinematics

In this section the effect of the solid fraction on the blocking of an incident unsteady
and inhomogeneous flow will be investigated. Rapid distortion theory will be used to gain
insight into this process for the high solid fraction arrays. Three types of simulations will
be considered: potential flow, steady incident flow viscous simulations (similar to Nicolle
& Eames 2011) and viscous simulations with an upstream cylinder. The discussion will
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Figure 11: Cross-stream profile of the mean streamwise velocity at /Dg = 0 for (a) no
upstream cylinder and (b) the upstream cylinder present, showing the weak dependence
of the profile on solid fraction in (b). The different solid fractions are represented by
No(<); N1(>); Nz(0); Nao(+); Nag(*); Nea(.); Nos(x); Nizz(O); Nsi(o).
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Figure 12: Contour plots of the root mean square of the (a) normal and (b) tangential
velocity components in the near vicinity of the array for viscous simulations with an
upstream cylinder present, showing the radial dependence of the velocity fluctuations.
Contour plots of the arrays Nog to Ng; are stacked on top of each other with the array
Ng1 at the bottom (N, is given at the right of the figure). The contour colours are from
zero (blue) to one (red). s is measured from the front stagnation point in the clockwise
direction.

be based around the upstream, side and internal flow and will be split into mean flow and
second order statistics, always starting with the fully blocked case Ng; and progressing
to the lower solid fraction arrays.

7.1. Upstream of the array
7.1.1. Mean flow

To get an understanding of the average velocity field, streamline plots are presented in
figure 7 where the streamlines are coloured by the magnitude of the mean velocity. This
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Figure 13: Time series of the (a) cross-stream and (b) streamwise velocity (full line) and
non-dimensional vorticity (dashed line) at the positions (a) ©1/Dg = {—0.57,0} and ()
x2/De = {0,0.57} for viscous simulations with an upstream cylinder. In (a) the velocity
fluctuates in the positive and negative direction equally due to the passage of positive and
negative vortices. In (b) the horizontal velocity is only decelerated (never accelerated) as
the positive vortices are not able to penetrate into the boundary layer.

shows the deceleration of the streamwise velocity in front of the array and a divergence
of the streamlines around the array for the high solid fraction arrays which decreases for
lower solid fraction arrays. In figure 8(a) we compare potential flow simulations with the
potential flow porous model given in Eames & Bush (1999). There is good agreement
except that the porous model is not capable of capturing the velocity reduction close to
the array, O(D), where the individual cylinders affect the flow field. The effect of including
viscosity (while maintaining a steady incident flow) can be seen in figure 8(c). For ¢ = 1,
there is no effect upstream of the cylinder and so the streamwise velocity profiles are
similar. However, for ¢ < 1 there is a significant difference in the streamwise velocity
reduction. For example for Ni33, @/Uso|z/pg=—1/2 = 0.75 and 0.3 for the potential flow
model and the steady incident viscous flow respectively (figure 8a,c). The difference
between these values is a result of the viscous drag present in the latter simulations and
this effect decreases for lower solid fraction arrays. We can therefore distinguish between
the upstream effects of inviscid kinematic blocking and viscous drag. In figure 8(e) we
can see that if there is an unsteady incident flow there is a further reduction in the
streamwise velocity component due to the upstream cylinder.

The mean strain field is insightful as it gives an indication to the distortion that can
be expected to patches of vorticity in the vicinity of the array. Profiles of the strain
at ©/Dg = —3/4 are shown in figure 8(b,d, f). Similar results are obtained as for the
streamwise velocity. The potential flow simulations give good agreement with the porous
potential model except for the effect of the individual bodies for ¢ < 1 (figure 8b). Figure
8(d) shows the effect of including viscosity on the strain field. For ¢ = 1 the strain due
to viscous drag is negligible and there is no modification to the upstream strain field. For
¢ < 1 the upstream strain field is modified significantly; for example the peak strain for
the case of Nj33 is an order of magnitude greater than the strain in the potential flow
calculations (figure 8b,d). For the current unsteady viscous simulations, the effect of the
upstream wake is noticeable. For ¢ = 1, the maximum strain is at y/Dg = 0 which is
similar to the potential flow and steady incident stream viscous simulations. For ¢ < 1
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Figure 14: Streamwise profiles of the rms of the (a) normal and (b) tangential velocity
components for the viscous simulations with an upstream cylinder present, showing the
decay of the fluctuations through the array. The different solid fractions are represented
by No(<); 1(>); N7(0); Nao(+); Nag(*); Nea(.); Nos(x); Nizz(D).

the strain field profiles are flatter and less than the case of a steady incident flow and
the maximum strain occurs at y/Dg ~ £0.5 (see figure 8f).

7.1.2. Second order statistics

The rms of the streamwise and cross stream components of the velocity are high near
the upstream cylinder (centered at /Dg = —3.8) in figure 9 due to the vortex shedding
process and these metrics decrease with distance downstream (towards the array). All of
the arrays have a similar value of u} up to x/Dg = —2, after which they start to deviate
and, in general, the higher the solid fraction the more u} decreases. As successive lumps
of alternate signed vorticity approach the cylinder they induce an image vorticity in the
individual cylinders of the array (as a consequence of satisfying the kinematic boundary
condition; see Hunt et al. 1990). As the normal velocity component is reduced to zero
(figure 9a), this results in the amplification of the tangential component of the velocity. As
there are alternate signed vortices being distorted above and below the array, this has no
effect on the mean flow statistics. Blocking is greatest for ¢ = 1 and also the amplification
occurs furthest from the array and the relative increase is highest. For ¢ < 1, the greater
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Figure 15: Non-dimensional vorticity plots for the RDT calculations for (a) Ng1, (b) Ni33
and (¢) Ngs showing the distortion of the vorticity field around the arrays. The profiles
of the rms in the tangential velocity component shown in figures 16,18,19 are given by
black dashed lines.

¢, the greater the reduction in w} and although the relative amplification is higher in
front of the array, the maximum tangential fluctuations in this region increases with
decreasing ¢ (figure 9b).

7.2. Around the sides of the array
7.2.1. Mean flow

Another way of analysing the effect of blocking and drag is by using an integral ap-
proach by calculating the average mass flux through the array (based on the mean velocity
field). In figure 10(a) the potential flow calculations show a linear decrease in the mass
flux through the array indicating a linear increase in inviscid blocking. The steady flow
viscous numerical simulations show a significant decrease in the mass flux through the
array which is due to the additional viscous drag. The effect of the unsteadiness of the
current simulations does not have a significant effect on the mass flux through the array
(see figure 10a). In figure 10(b) it can be seen that for low ¢ the reduction of the mass
flow through the array is due to viscous drag whereas as ¢ increases the reduction is
increasingly due to inviscid blocking. A consequence of this is that there is an increased
flow around the array for a higher solid fraction which would have important implications
on scalar transport through and around the array.

When the upstream cylinder is absent (i.e. steady incident flow), figure 11(a) shows
the sensitivity of the wake width with the solid fraction. For arrays N3g and Ng4 the shear
layers at the sides of the array are stable for a far distance downstream, as was seen in
Nicolle & Eames (2011). The consequence is that the flow within the array is essentially
steady. For the solid fraction arrays Ngs and above these shear layers are unstable and the
arrays behave like a solid body and shed large scale vorticity. For an upstream cylinder
present, the flow near the array is dominated by the unsteady upstream wake and strong
shear layers do not have the opportunity to form and so the wake width (at z/D¢g = 0)
is insensitive to the solid fraction (figure 11(b)).
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7.2.2. Second order statistics

When discussing the second order statistics around the side of the array it is more
insightful to consider the velocity field in terms of tangential and normal components
(relative to the array boundary). Figure 12(a) shows that for ¢ = 1 the normal fluctua-
tions have to decrease to zero at the cylinder surface. For ¢ < 1 this condition is relaxed.
In figure 12(b) it is possible to identify the increased fluctuations at O(D) in the tangen-
tial velocity field due to the local distribution of the cylinders. Figure 12(b) shows that the
rms of the tangential velocity at the front of the cylinder (¢ = 1) is approximately twice
that at the sides (i.e. uj|gp—r ~ 2ut|g—r/2). To gain further insight into this, the velocity
and vorticity are recorded at the points 1/Dg = {—0.57,0} and x2/D¢e = {0,0.57}.
At x; there is both positive and negative vorticity peaks which results in a constant
oscillation of the tangential velocity field. The processes at & are more complex. For the
viscous simulations at the point xs negative vorticity diffuses into the fluid interior from
the solid boundary of the cylinder. When coherent structures with a negative vorticity
are advected towards the upper boundary of the cylinder, it is possible for this vorticity
to penetrate into the boundary layer, which will result in the flow decelerating to zero
(figure 13a). In contrast when positive vorticity is advected towards the upper part of
the cylinder it is deflected away from the cylinder and the flow near the boundary is not
accelerated. This is reflected in the time series of the point s which shows that there
can be significant negative vorticity peaks (e.g. 7 = 7 and 7 = 15) which results in the
tangential velocity decreasing to zero. However there is no significant positive vorticity
peaks at this point with the potential to accelerate the flow.

7.3. Internal and near field wake
7.3.1. Mean flow

The streamline plots in figure 7 show that the arrays N33 and Ngs are behaving similar
to the solid cylinder case Ng; as they also have large recirculating regions downstream
of the arrays. From a topological perspective, the case of Ngi, results in four half saddle
points (on the cylinder surface), two nodes (within the flow) and a downstream saddle
point which is consistent with the analysis given in Hunt et al. (1978). The recirculating
regions of Ni33 and Ng; are of a comparable length and width however it is much
narrower for the case of Ngs due to the effect of the increased streamwise and lateral
bleed. This additional flow also displaces the stagnation point further downstream as is
highlighted in figure 7(b, ¢). The streamlines also indicate that the recirculating region
extends into the array from the downstream side; an effect that will also be seen in
the forces experienced by the cylinders at the back of the array. This also contrasts
with the recirculation bubbles seen in the steady incident flow condition in Chang &
Constantinescu (2015). This type of mean flow for the high solid fraction arrays will have
a profound effect on scalar transport as will be discussed later.

For the arrays with a solid fraction less than Ngy, the bleed through the array is
sufficient to prevent recirculation regions. As the solid fraction is decreased the drag due
to the cylinders also decreases which results in a faster flow within the array and in the
wake of the array (figure 7b — h). The width of this slow moving region is shown in blue
in figure 7(d — f) which visibly narrows as ¢ decreases. Especially for the case of N7 and
N the effects of the cylinders is very localised and there is minimal interaction between
the cylinders. Additionally, as the array has little effect on the large vortices, they move
through the array unchanged, resulting in the individual cylinders shedding obliquely in
alternating directions at 6 ~ £30° which can be seen in a decrease of the speed at this
angle (shown in yellow in figure 7g, h).



The effect of an unsteady flow incident on an array of circular cylinders 25

For arrays with cylinders in a steady flow, Nicolle (2009) found that for low ¢ there
were clear recirculation regions behind the individual cylinders. However, for high ¢, it
was found that the flow resembles that of a potential flow through the array which was
also seen in the high Reynolds number three dimensional simulations of Moulinec (2004).
In the current simulations, due to the advection of positive and negative vorticity past
the array the average flow also resembles that of a potential flow, even at low ¢.

7.3.2. Second order statistics

There are three main sources of unsteadiness in this problem; (i) the unsteadiness of
the incident large vortices, (ii) the shedding of the vortices from the individual cylinders
and (iii) the shedding from the array itself (only present for the high solid fraction
arrays). The main source of unsteadiness of the internal cylinders is the upstream wake
but these large scale vortices find it increasingly difficult to penetrate into the array for a
higher solid fraction. Figure 14 shows the internal second order statistics of the velocity
field with distance into the array. The general trend is that the higher the solid fraction
of the array, the greater the decrease in these second order statistics with the normal
component decreasing significantly more than the cross-stream component. Blocking in
front of the cylinder has already decreased this velocity component significantly (before
the fluid enters the array).

7.4. Rapid distortion theory

One possibility of modelling the interaction of an inhomogeneous unsteady flow with an
array of obstacles is rapid distortion theory (RDT). Hunt (1973) analysed the flow of a
homogeneous turbulent flow past a cylinder which we shall extend to the flow past an
array of circular cylinders.

7.4.1. Fully blocked cylinder (case Ng1)

Figure 15(a) shows the RDT interaction of a vortex in front of a fully blocked cylinder.
The decrease in the streamwise velocity immediately upstream of the cylinder (figure 8a)
results in the vorticity slowing down significantly and the favourable rate of strain in the
mean streamwise velocity component (|0a/dy| > 0) distorting the top and bottom of the
vortex around the cylinder.

To show the effect of the vorticity distortion on the velocity statistics close to the
cylinder, radial profiles of the rms of the tangential velocity, at various angles in front of
the cylinder are plotted in figure 16. The modification of } is greatest over O(D¢) and
so, this gives the extent of the profile shown. ui|.,p,—1 varies for the profiles as the free
stream value of u, decreases with cross-stream location (i.e. the wake model given by
(3.10)). uj increases in close proximity to the cylinder and this increase is independent
of the angle at which the profile is taken. As this is different to the viscous simulations,
the velocity and vorticity are again recorded at the points (x; = {—0.57,0}) and side
(z2 = {0,0.57}). Figure 17(a, b) shows that positive and negative patches of vorticity can
penetrate close to the upper cylinder boundary which results in the flow at the point @2
accelerating and decelerating by a similar magnitude as point @, (figure 17e, f).

7.4.2. Effect of porosity

Figure 15(b, ¢) shows the interaction of a patch of vorticity with the arrays Niss and
Nys respectively. The vorticity is severely distorted as it moves through the array due to
the difference in travel time along adjacent streamlines which is dependent on the local
distribution of the cylinders. This is most pronounced when the vortex moves partially
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Figure 16: Radial profiles of the rms of the tangential velocity field in the vicinity of the

array Ng for viscous simulations with an upstream cylinder (dashed lines) and inviscid
RDT calculations (black lines).

through the array, resulting in the high relative speed between vorticity moving along
streamlines within and outside of the array (figure 15b).

The profiles of the variation of the rms of the tangential velocity are shown in figures
18 and 19 for the arrays Ni33 and Ngs respectively. u}|,. /Dg=1 is similar for the arrays as
for Ngy as the same wake model is used. The profiles for the two arrays are quite similar
even though there is a difference in the solid fraction of 0.1, however the variation of the
profile at a distance O(D) from the array is largely dependent on the local geometrical
layout of the array. The location of these profiles can be seen in 15(b,c). For example
for Ni33 the amplification at 6§ = 47/6 is much greater than 6 = 37 /4 due to the close
proximity of the cylinder in the profile at § = 47 /6.

7.5. Applicability of RDT

The differences which were found in the DNS and RDT calculations need to be explored.
The mean flow field for the RDT calculations was taken to be the irrotational flow
through and around the array. As has been highlighted in Hunt (1973), even for steady
incident flow conditions and u'/U,, < 1 this assumption is still only approximate as
the wake affects the flow in this region. In this study u'/U, ~ 1 and the nature of
the incident wake (i.e. an oscillating von Kérmdn vortex street) had the effect that
the mean streamwise deceleration in front of the cylinder was significantly greater than
for the potential flow (figure 8c). An additional consequence of u'/Uy, ~ 1 is that the
upstream vorticity will not necessarily move along the mean streamline (an assumption
of RDT). For ¢ < 1 the upstream strain field is modified due to the effect of viscous drag
resulting in a significantly reduced mass flux through the array leading to differences in
the parameters Ar and Ay . Therefore patches of vorticity in the viscous simulations
will have a greater tendency to be moved around the array than through the array.
Additionally, the effect of the viscous interaction between the vortex and the cylinder
(i.e. secondary vorticity generation) is not captured in the RDT calculation which will
affect the residence time of the vortex in the vicinity of the cylinder.
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Figure 17: Non-dimensional vorticity plots for the inviscid RDT calculations for the case
Ng1 at 7 = (a) 2.38, (b) 3.57, (¢) 7.14 and (d) 11.9. The vorticity field ranges from -10
(blue) to 0 (green) to 10 (red). Time series of the velocity (full line) and vorticity (dashed
line) at the positions (e) x1/Dg = {—0.57,0} (grey marker) and (f) x2/D¢g = {0,0.57}
(black marker). In (a) the velocity fluctuates in the positive and negative direction equally
due to the passage of positive and negative vortices. In (b) the horizontal velocity is both

accelerated and decelerated. These inviscid results are in contrast to the previous viscous
simulations shown in figure 13.
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Figure 18: Radial profiles of the rms of the tangential velocity field in the vicinity of the

array Niss for viscous simulations with an upstream cylinder (dashed lines) and inviscid
RDT calculations (black lines).
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Figure 19: Radial profiles of the rms of the tangential velocity field in the vicinity of the
array Nos for viscous simulations with an upstream cylinder (dashed lines) and inviscid
RDT calculations (black lines).

8. Forces on the array

In this section the effect of varying the solid fraction on the forces exerted on the
individual cylinders and the group as a whole is investigated. For low solid fraction
arrays a method of calculating the forces on the cylinders is demonstrated.

8.1. Forces acting on individual cylinders in array

Figure 20 shows plots of the force characteristics on individual cylinders for the different
solid fractions. The mean force coefficient at the mean force angle is given by the black
line and the red lines are the range of the rms of the force angle. To give an indication
of the rms of the force coefficient of the individual cylinders, the background of each
cylinder shows the ratio of the rms of the force coefficient to the mean of the rms of the
force coefficient of all of the cylinders in the array (i.e. Clp/C"ir).

For the higher solid fraction arrays the effect of blocking and drag is significant and
results in a greatly reduced mean total force coefficient on the front cylinders of the array
and shielding results in a decrease of the cylinder force coefficient with distance through
the array. The rms of the force on the frontal cylinders also decreases which is because
the velocity fluctuations in front of the array increase with decreasing solid fraction (see
figure 9). The rms of the total force on the frontal cylinders is much greater than that of
the central cylinder (a factor of 4 for the case of Nj33). This is because the large vortical
structures can not penetrate far into the array and also the individual cylinders shear
layers all reattach to the next downstream cylinder, thereby suppressing vortex shedding
(figure 3 shows no presence of small scale vorticity in the larger vortical structures for the
high solid fraction arrays). For the case of N33 and N5 the force angle for the individual
cylinders at the back of the array is reversed as the collective effect of the cylinders is
to behave similar to a single solid body and shed vortices. Similar features were seen in
Nicolle & Eames (2011).

For the case of N3g and Nog the interaction between cylinders and the cylinders and
the upstream wake is weaker. The decreased effect of blocking results in an increased
average incident velocity on the front cylinders of the array, resulting in an increased
total force coefficient for these cylinders (compared to the high solid fraction arrays).
The spacing between the cylinders is, A\/D =~ 4, which means that the flow can alternate
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between vortex shedding and reattachment to the next downstream cylinder. This can
be seen in figure 5 as there are not as many intense vortices downstream of the array.
The flow between the individual cylinders does not recover and there is a noticable drop
in the mean and rms of the force coefficients through the array (i.e. shielding). These
trends are greater for N3g than Nog.

For the low solid fraction cases, N; and Ny, there is weak interaction between the
cylinders. For the case N1, Cirg =~ 0.1 which is the equivalent of C17 = 2.1. The effect
of blocking is not significant for these arrays, however there is still a reduction in the
force coefficient of the front cylinders (of N7) of approximately 15% (compared to an
isolated cylinder). The large vortical structures move through the array unobstructed
and for N; the separation distance between cylinders is, \/D > 1, which means that all
the cylinders are shedding vortices (see figure 6) and the flow nearly recovers before it
is incident on the downstream cylinders resulting in similar but slightly reduced mean
total force statistics.

The time series of the angle of the force for Ny in figure 21(b) shows that the single
cylinder experiences two frequencies. Firstly, the cylinder is shedding vortices which is
the higher frequency. Between 136 < 7 < 140, the shedding frequency varies between 4
and 5 which is due to the unsteady local incident Reynolds number. This is higher than
the frequency of vortex shedding of the upstream cylinder which is ~ 0.2. This lower
frequency is observed in all the arrays 21(b, d).

In the steady incident flow simulations (Nicolle & Eames 2011; Chang & Constanti-
nescu 2015) it was found that for the higher solid fractions (N39 and above) the force
on the cylinders was much greater at 6 &~ +130° than at the front of the array (i.e.
6 = 180°). This is due to the effect of blocking of the cylinders decelerating the oncoming
flow and the fluid accelerating around the side of array. The effect of the inhomogeneous
flow in the present simulations is that Cp; is greatest for the cylinders located between
0 ~ £130° which have approximately similar total force coefficients.

8.2. Group force

The trends in the total group force and angle coefficient will be described and then the
statistics of the individual cylinders will be analysed to give insight into these trends.
Figure 20 shows the variation of the mean total force coefficient with solid fraction.
For the cases N7, Nog and N3g (compared to Np), the increased effect of blocking and
shielding results in a less than linear response of the mean group force coefficient. This
effect becomes greater with increasing solid fraction and all the arrays have a mean
force coefficient less than the solid array case Ngi. The effect of the individual cylinders
shedding vortices can be seen in the time series in figure 21(a, b) which is suppressed in
the high solid fraction arrays (figure 21c, d).

The behaviour of the rms of the group total force can be roughly split into low (N3¢ and
below) and high solid (Ngs4 and above) fractions, which is shown in figure 21(c). There
are three potential sources of unsteadiness in this problem, namely (i) the unsteadiness
due to the upstream wake, (ii) the unsteadiness of the individual cylinders in the array
shedding vortices and for the high solid fraction arrays and (iii) the unsteadiness of the
array acting as a solid body and shedding vortices.

For low ¢, the individual cylinders have a similar high rms (e.g. for Nog, C'7; = 0.62),
however there is a low correlation between the forces on these cylinders. For example the
front cylinder N; = 19 is only well correlated (i.e. a correlation coefficient greater than
0.7) to two other cylinders (figure 22a, ¢) resulting in C/.; ~ 0.35. In contrast, for solid
fraction arrays of Ng4 and above, C%., = 0.55. As the solid fraction increases the average
rms of the individual cylinders decreases (for Ny3s, Cl'ri = 0.12) however the correlation
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between the cylinders increases. The dashed horizontal line in figure 22(c) indicates the
correlation of cylinder Njgs 126 (the first subscript denotes array type and the second
indicates the individual cylinder) with all the other cylinders in the array. The cylinders
that are well correlated are shown in figure 22(b). These are the cylinders which also have
the highest individual rms of the force coefficient (figure 20f). The central cylinders and
the cylinders to the rear have a relatively low fluctuating force component.

The mean force angle is zero due to the (near) symmetrical arrangement of the cylinders
and the upstream cylinder sheds vortices of a similar strength but opposite sign in a
periodic fashion. The low solid fraction arrays have high frequency oscillations in the
force angle not seen in the high solid fraction arrays which is due to individual cylinders
in the low solid fraction arrays shedding vortices. This is suppressed in the high solid
fraction arrays. The force angle becomes increasingly correlated for more cylinders as
the solid fraction increases, which can be seen in the lower halves of figure 22(c, d). The
arrays Ng; and Njz3 have the additional unsteadiness associated with the array acting
like a single body and shedding vortices, however it was not possible to discriminate this
effect.

8.3. Estimation of the force on cylinders for ¢ < 1

The cylinder elements of the array are removed and the numerical simulation is repeated
(i.e. case Ny) and velocity statistics are recorded at the centre of the removed cylinders.
This is similar to the method of Bagchi & Balachandar (2003) for calculating the drag on
a sphere in a turbulent flow. The drag, inertial and lift forces are then estimated using
(3.12-3.15) respectively. For the case of Ny, figure 21(e, f) shows that there is a good
agreement between the mean and rms of the force coefficients and angle calculated using
this method and the full viscous numerical simulation with the cylinder present. This
procedure can also be carried out for N7 and Nog. In figure 21(e, f) we can see that the
force characteristics are well predicted for N;. However, as the interaction between the
cylinders increases, as is the case for Nyg, this method will start to overpredict the force
on cylinders which are towards the back of the array. This is due to a process called
shielding whereby the drag coefficient of downstream cylinders is less than that with a
uniform incident flow. This is due to the modification of the local velocity field by the
upstream cylinder, which can not be taken into account using the simulation Ng.

9. Discussion and conclusions

In this study we have looked at the unsteady inhomogeneous flow through and around
an array of circular cylinders of varying solid fraction. Returning to the questions posed
in the introduction, the combination of inviscid blocking and viscous drag leads to the
modification of the upstream mean streamwise velocity and strain field. The mean mass
flux through the array is decreased with increasing solid fraction and two recirculation
regions are present in the near wake for high solid fraction arrays. For the high solid
fraction arrays, the incident vorticity is slowed down in front of the array and the tangen-
tial velocity component is amplified. As a means of extrapolating to very high Reynolds
numbers, rapid distortion theory (RDT) calculations were carried out. These calculations
highlighted that the tangential velocity will be amplified, equally, at the front and sides
of the array which was not found for the finite Reynolds number numerical simulations.

The ability of the unsteady incident flow to penetrate into the array reduces signifi-
cantly with increasing solid fraction. This has a profound influence on the second order
statistics within the array which directly affects the forces on the cylinders. For low solid
fraction arrays (Nog and less), where the interaction between the individual elements and
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Figure 20: Plots of the mean force coefficient at the mean force angle (black line) and the
range of the rms of the force angle (red lines - note it does not represent magnitude) for
each cylinder. The line at the bottom left of each figure represents a force coefficient of
unity. The ratio of the rms of the force coefficient on an individual cylinder to the mean of
the rms of the force coefficients for the cylinders in the array (Ch,/C'r;) is shown as the
background colour of each cylinder. The arrays are: (a) Niz3 (0.12), (b) Ngs (0.17), (c)
Nes (0.24), (d) N3g (0.40), (€) Nag (0.62) and (f) N7 (0.83) where the value in brackets
is the mean of the rms of the force coefficients for all the cylinders in the array (C'z).
The flow is from left to right.
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the individual elements and the incident flow is weak, the total force on the cylinders
and the group force can be estimated by decomposing the total force into drag, inertial
and shear induced lift components. These contributions can be estimated by repeating
the simulation with all the cylinders removed and taking the velocity statistics at the
centre of the removed cylinders. As the solid fraction increases there will be two effects,
the collective action of the cylinders increases, resulting in a reduced incident flow on
the upstream cylinders. Also the upstream cylinders will result in a modified flow on
the downstream cylinders, commonly known as shielding. Both of these elements are
not captured in the model and so these methods can only be used for ¢ < 1. For Ngy
and above, the rms of the group force becomes insensitive to the solid fraction. This is
because although the average rms of the force of the individual cylinders decreases (with
increasing ¢), there are more of them and they are more correlated (due to their close
proximity).

Accurately predicting the flow through and around structures is essential in being
capable of predicting the loading on structures. Depending on the application, the physics
present in the flow can vary dramatically. For example when studying the loading on
members in the offshore sector the incident flow will be oscillatory, a combination of
waves and current. Inundation due to tsunamis and storm surges will have unsteady free
surface flows. Although these flows are quite different, the general mechanism of why the
incident flow is modified by individual members or the collective action of the structure
as a whole is common to both and decomposing this effect into inviscid blocking and
viscous drag is one of the key outcomes of this paper.

The effect of accurately modelling this inviscid blocking and viscous drag is important
in applications such as dispersion of organic waste due to caged farmed fish (where the
cages can be approximated to a region with porosity) in the upper part of the water
column (Wu et al. 2014). Again if the inviscid shallow water equations are used to model
the flow due to tides or rivers, the effect of viscous drag needs to be included to ensure
that, firstly, the mass flux through the array is accurately modelled and secondly, any
recirculation regions behind the array are taken into account. A related problem is that
of pollutant dispersion as flows encounter an array of emergent vegetation (Nepf 1999).

To begin to understand the effect that extending this work to three-dimensions would
have, three-dimensional calculations were carried out of the same geometries with a
spanwise extrusion of 10D. The key difference between the two- and three-dimensional
simulations was that during and after the interaction with the array the coherence of the
vortices (shed by the upstream cylinder) in three-dimensions was much less. Conversely,
the interaction between the vortices and the array (and individual cylinders) is much
stronger in two-dimensions. The quantitative effect is that the total group force for the
arrays is overestimated in the two-dimensional simulations. Additionally, the range of the
rms of the force angle of the individual cylinders throughout the array was not as great
for the three-dimensional simulations. Qualitatively the only difference between the two-
and three-dimensional simulations was that the negative force on the individual cylinders
at the back of the array was not observed in three-dimensions. The other trends of the
force and force angle which were discussed in §8 were similar in both simulations. This
highlights the utility of using two-dimensional simulations for this fundamental study.
Further work is required to fully understand this three-dimensional interaction.
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Figure 21: Time series of the (a,c) total group force coefficient Cr¢ and (b,d) force
angle 0|p|¢ for (a,b): N. = 1 (full black), N7 (dashed black), Ny (full grey) and Nzg
(dashed grey) and (c,d) Nggq (full black), Ngs (dashed black), Ny33 (full grey) and Ngy
(dashed grey). The variation of the mean (o) and rms (x) of (e) Crg and (f) 6|p|c with
solid fraction ¢. The dashed black and grey line indicate the mean and rms for ¢ = 1
respectively. The prediction using the model described in §3.2 is shown for the mean ()
and rms (<) of Crg and || respectively.
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Figure 22: Relative position of the cylinders for (a) Nag and (b) Nisz3 with their index
given within the circle. The dashed line in (a) and (b) indicates the cylinders which have a
correlation coefficient higher than 0.7 with Nag 19 (the first subscript denotes array type
and the second indicates the individual cylinder) and N; = 126 respectively. Contour
plots of the correlation coefficient between the cylinders in the array for (¢) Nog and (d)
Ni33. The upper half is the total force and the lower half is the force angle, which are
divided by the solid black line. The dashed line in (d) indicates the correlation coefficients
for Ni33,126. The flow is from left to right.



