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Szegő-type Trace Asymptotics for

Operators with Translational

Symmetry

Bernhard Pfirsch

Supervisors:

Prof. Leonid Parnovski

Prof. Alexander V. Sobolev

Thesis submitted for the degree of

Doctor of Philosophy

Academic Year 2018–2019





Declaration

I, Bernhard Pfirsch, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work. Parts of this thesis have been published as [53, 54] (copyright

for [53]: c© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) with the

paper [54] being a result of joint work with Alexander V. Sobolev. Naturally, the

thesis coincides both in content and writing partially with [53, 54].

Bernhard Pfirsch

.............................

3





Abstract

The classical Szegő limit theorem describes the asymptotic behaviour of Toeplitz

determinants as the size of the Toeplitz matrix grows. The continuous analogue are

trace asymptotics for Wiener–Hopf operators on intervals of growing length. We

study two problems related to these scaling asymptotics.

The first problem concerns the higher-dimensional version of the trace asymp-

totics. Namely, consider a translation-invariant bounded linear operator in dimen-

sion two whose integral kernel exhibits super-polynomial off-diagonal decay. Then

we study the spectral asymptotics of its spatial restriction to the interior of a scaled

polygon, as the scaling parameter tends to infinity. To this end, we provide complete

trace asymptotics for analytic functions of the truncated operator. These consist of

three terms, which reflect the geometry of the polygon. If the polygon is substituted

by a domain with smooth boundary, then the corresponding asymptotics are well-

known. However, we show that the constant order term in the expansion for the

polygon cannot be recovered from a formal approximation by smooth domains. This

fact is reminiscent of the heat trace anomaly for the Dirichlet Laplacian.

A prominent application of trace asymptotics for Wiener–Hopf operators lies in

quantum information theory: they can be used to compute the bipartite entanglement

entropy for the ground state of a free Fermi gas in the absence of an external field. At

zero temperature, this requires studying Wiener–Hopf operators with a discontinuous

symbol, which causes notable difficulties. In the second part of the thesis, based on

joint work with Alexander V. Sobolev, we prove a two-term asymptotic trace formula

for the periodic Schrödinger operator in dimension one. This formula can be applied to

compute the aforementioned entanglement entropy when the fermions are exposed to

a periodic electric field. Moreover, the subleading order of the asymptotics identifies

the spectrum of the periodic Schrödinger operator.
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CHAPTER 1

Introduction

Translation-invariant linear operators are omnipresent in the research area of

mathematical analysis, not least because of their occurrence in the description of

many physical systems. When examining spectral properties of these operators, their

symmetry properties are the key to a thorough analysis. In this thesis, we deal with

spatial truncations of operators with discrete or continuous translational symmetry.

The truncation breaks the symmetry and, therefore, complicates the spectral analy-

sis of such operators. However, one can obtain interesting results on their spectral

asymptotics in the regime when the truncation set becomes large. These findings are

also motivated by applications in statistical physics and quantum information theory.

As a starting point, let us look at a translation-invariant bounded linear operator

L on l2(Z). Here, the translation invariance means that L commutes with all finite

shifts on l2(Z), i.e. the doubly-infinite matrix representation of L (with respect to

the canonical basis) has constant entries along each diagonal. Such a matrix is called

Laurent matrix and it is not difficult to see that its entries are the Fourier coefficients

of a bounded, complex-valued function ϕ on the unit circle ∂D := {z ∈ C : |z| = 1},

see [12, Thm. 1.1]. In other words, one has that

Lkl = ϕk−l, k, l ∈ Z,

with

ϕk := (2π)−1

2π∫
0

dθ ϕ(eiθ)e−ikθ,

and via the discrete Fourier transform the operator L = L(ϕ) is unitarily equivalent

to multiplication by the function ϕ on L2(∂D). One naturally refers to the function

ϕ as the symbol or generating function for the Laurent matrix (or the operator L).

Clearly, all spectral properties of the operator L are encoded within the function

ϕ; in particular, the spectrum of L is given by essran(ϕ), the essential range of the

function ϕ.
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20 1. INTRODUCTION

The spectral analysis becomes much harder if one instead looks at the Toeplitz

matrices,

Tn(ϕ) :=
(
ϕk−l

)
0≤k,l≤n−1

,

n = 1, 2, . . . , which are finite sections of the Laurent matrix L(ϕ). We refer to [12, 13]

for an introduction to Toeplitz matrices. While a precise spectral description for a

Toeplitz matrix of fixed size is out of reach, one often looks at the spectral asymptotics

for Tn(ϕ) as n→∞. Here, a powerful tool is to study the asymptotics of the Toeplitz

determinant detTn(ϕ). Notice at this point that the matrix Tn(ϕ) − λIn (with In

being the identity matrix and λ ∈ C) is again a Toeplitz matrix, so that the study

of Toeplitz determinants includes the spectral determinants. The first results on the

asymptotics of Toeplitz determinants date back to the year 1915, when Szegő verified

a conjecture by Pólya: in [71] he proved that, for positive and continuous generating

functions ϕ, we have

lim
n→∞

n
√

detTn(ϕ) = G[ϕ], (1.1)

where

G[ϕ] := exp
[
(logϕ)0

]
= exp

[
(2π)−1

2π∫
0

dθ logϕ(eiθ)
]

(1.2)

denotes the geometric mean of ϕ. Szegő extended this result in [72] to trace asymp-

totics for continuous functions of hermitian Toeplitz matrices: if the symbol ϕ is

real-valued and continuous, and h is a continuous function on the range of ϕ, then

the formula

lim
n→∞

trh(Tn(ϕ))

n
= (h ◦ ϕ)0 =

1

2π

2π∫
0

dθ (h ◦ ϕ)(eiθ), (1.3)

holds. In this context, the function h is sometimes called test function as one can get

information on the spetral asymptotics of Tn(ϕ) (for a fixed symbol ϕ) by evaluating

its trace asymptotics for assorted functions h. Namely, the formula (1.3) shows that,

as n→∞, the eigenvalues of a hermitian Toeplitz matrix Tn(ϕ) densely accumulate

and equidistribute in the range of ϕ. While this does not need to be the case for

non-hermitian Toeplitz matrices, the spectrum of Tn(ϕ) is always contained in the

convex hull of essran(ϕ), see [12].
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Further work on the asymptotics of Toeplitz determinants was stimulated by ap-

plications in statistical mechanics: Kaufman and Onsager related in [36] the two-spin

correlation functions in the two-dimensional Ising model to Toeplitz determinants,

see [22] for a review and further references. In this simple model for a ferromagnet,

the large distance behaviour of the two-spin correlations indicate the existence of a

long-range order at a fixed temperature. However, formula (1.1) is not sufficient to

determine their limiting behaviour: for the relevant Toeplitz determinants the lead-

ing order vanishes so that second order asymptotics are required. This motivated

Szegő to establish his famous strong limit theorem for Toeplitz determinants in 1952,

see [73]. Assuming that ϕ > 0 and ϕ ∈ C1,γ(∂D) is continuously differentiable with

γ-Hölder continuous derivative, he proved the two-term asymptotic formula

detTn(ϕ) = G[ϕ]nE[ϕ](1 + o(1)), (1.4)

as n→∞, with G[ϕ] defined in (1.2) and

E[ϕ] := exp
[ ∞∑
k=1

k|(logϕ)k|2
]
.

Taking logarithms, this formula becomes

log(detTn(ϕ)) = tr(log Tn(ϕ)) = n(logϕ)0 +
∞∑
k=1

k|(logϕ)k|2 + o(1), (1.5)

as n → ∞, which extends (1.3) for h(t) = log(t). Over time, the conditions on

the symbol ϕ in the strong limit theorem have been weakened significantly, see [61]

and references therein. Nevertheless, looking at the definition of E[ϕ], it becomes

clear that some regularity of ϕ is strictly necessary for the two-term formulae (1.4),

(1.5) to hold. In fact, for the Ising model, Szegő’s strong limit theorem only allows

one to determine the limiting behaviour of spin correlations at small temperatures.

Namely, at the critical temperature — where the long-range order breaks down — the

computation of the correlation functions includes Toeplitz determinants with symbols

that have a jump discontinuity on the unit circle. This discontinuity causes a slow

decay (∼1/|k|) of the Fourier coefficients (logϕ)k so that the series in (1.5) no longer

converges. In this framework, Fisher and Hartwig established a two-term asymptotic

formula for a special case of such Toeplitz determinants and conjectured the formula

for general symbols with discontinuities, see [30]. Ever since, determinant asymptotics

for symbols with combinations of root-type singularities and jump discontinuities,
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now called Fisher-Hartwig singularities, have been the subject of indepth research, see

[2, 3, 5, 6, 8, 10, 11, 18, 20, 23, 27, 28, 43, 78, 79]; for a general review we point towards

[39]. To summarise the results for symbols with jump discontinuities, let us mention

the trace asymptotics proved in [4]: for a piecewise C2-symbol ϕ : ∂D → C and a

test function h that is analytic on a disc containing the range of ϕ, the asymptotic

expansion

trh(Tn(ϕ)) = n(h ◦ ϕ)0 + log(n)alog(h, ϕ) + a0(h, ϕ) + o(1) (1.6)

holds, as n→∞, with explicitly computable constants alog(h, ϕ) and a0(h, ϕ). Here,

the coefficient alog(h, ϕ) depends on ϕ only via its jump discontinuities, with each

jump contributing individually. In particular, one has that alog(h, ϕ) = 0 if ϕ is suffi-

ciently regular, say, ϕ ∈ C2(∂D). Thus, jump discontinuities of ϕ create an additional

term of logarithmic order in (1.6). If one, in addition, requires the symbol to be real-

valued, then the works [41] and [81] suggest that one can close the asymptotics (1.6)

up to sub-leading order for (sufficiently) smooth functions h. As a consequence, an

evaluation of the coefficient alog(h, ϕ) shows that in the hermitian case ∼ log(n) of

the n eigenvalues of Tn(ϕ) accumulate on the line segments joining the jumps of ϕ.

These eigenvalues are more sparsely distributed than the ∼n eigenvalues inside the

range of ϕ that contribute to the leading order term in (1.6). Further analysis with

the help of lower order asymptotics for Toeplitz determinants is conducted in [21],

see also references therein. To conclude this short review on asymptotic formulae for

Toeplitz matrices let us remark that multi-dimensional analogues of Szegő’s strong

limit theorem have been obtained as well, see [17, 26, 34, 46, 57, 60, 76].

In this thesis, our interest is closer to the continuous analogue of Toeplitz matrices,

which we introduce in the following. Consider now a bounded and (infinitesimally)

translation-invariant operator A on L2(Rd), d ≥ 1. In other words, let A be a Fourier

multiplier

A = A(a) := F∗aF

with a bounded and complex-valued symbol a ∈ L∞(Rd). Here, the Fourier transform

F is chosen to be unitary on L2(Rd), i.e.

(Ff)(ξ) := (2π)−d/2
∫
dx e−ix·ξf(x), ξ ∈ Rd,
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for Schwartz functions f ∈ S(Rd). For any measurable set Ω ⊆ Rd, introduce the

spatial restriction of the operator A onto Ω,

AΩ = AΩ(a) := χΩF
∗aFχΩ,

where χΩ denotes the characteristic function for the set Ω and both χΩ and a are in-

terpreted as multiplication operators on L2(Rd). Throughout this thesis, the variable

L ≥ 1 is used as a scaling parameter and

ΩL := L · Ω

denotes the scaled version of the set Ω. If d = 1 and Ω = I ⊂ R is a finite interval, then

the operator AIL is the continuous analogue of a one-dimensional Toeplitz matrix,

where the scaling of the interval I corresponds to increasing the size n of the Toeplitz

matrix. Such an operator AIL is sometimes called truncated Wiener–Hopf operator

because of its close relation to the Wiener–Hopf operator

W (a) := A[0,∞)(a) = χ[0,∞)F
∗aFχ[0,∞). (1.7)

It is not difficult to prove that the operator AΩL is trace class if the set Ω ⊂ Rd is

bounded and the symbol a is integrable, see Lemma 2.9. This property transfers to

operators h(AΩL) if the function h is sufficiently regular and satisfies h(0) = 0.

Determinant and trace asymptotics for truncated Wiener–Hopf operators come

with no surprises with the knowledge about the results in the discrete case. Again,

the exact form of the asymptotic formulae depends on the regularity of the symbol.

A continuous version of Szegő’s strong limit theorem for one-dimensional truncated

Wiener–Hopf operators was first established by Kac in [33]. Using different meth-

ods, Widom later proved a two-term trace formula for Wiener-Hopf operators with

sufficiently regular symbols: for the sake of discussion, assume that the symbol a is

smooth and integrable and the test function h : C→ C is entire with h(0) = 0. Then

[82] contains the asymptotics

trh(AIL(a)) = L|I|B1(h, a) + B0(h, a) + o(1), (1.8)

as L→∞. Here, the leading-order coefficient is

B1(h, a) :=
1

2π

∫
dξ(h ◦ a)(ξ),
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and the constant

B0(h, a) := 2 tr
[
h(W (a))−W (h ◦ a)

]
is given in terms of Wiener–Hopf operators on the half-line, but also has an explicit

integral representation. Clearly, the formula (1.8) is the exact continuous analogue

of (1.6) for smooth symbols, compare, in particular, the leading order coefficients.

Again, if one assumes that the symbol a is real-valued, and hence AIL is self-adjoint,

the asymptotics (1.8) extend to sufficiently regular test functions h : R → C. As

in the Toeplitz case, jump discontinuities of the symbol a create an additional term

of logarithmic order in the trace asymptotics. Let, for instance, a = χJ be the

characteristic function for a finite interval J ⊂ R, and suppose that the test-function

h is (piecewise) continuous on [0, 1], differentiable at t = 0 and t = 1, and satisfies

h(0) = 0. Then the results of [41] and [81] imply the asymptotic formula

trh(AIL(χJ)) =
L

2π
h(1)|I||J |+ log(L)W(h) + o(log(L)), L→∞, (1.9)

with the coefficient

W(h) :=
1

π2

1∫
0

dt
[h(t)− th(1)]

t(1− t)
, (1.10)

which is independent of the intervals I and J . Notice that in this case the symbol of A

is supported on the set {0, 1} and, thus, the spectrum of AIL(χJ) is contained in the

interval [0, 1]. Looking at (1.9), the leading order term captures the ∼L eigenvalues

of AIL(χJ) close to 1, whereas the sub-leading order term describes the distribution

of the ∼ log(L) eigenvalues in every interval (ε, 1− ε) for ε > 0. The eigenvalues close

to 0 do not show up in the asymptotics since we require h(0) = 0 to gain a trace class

operator h(AIL(χJ)). Note also that B1(h, χJ) = h(1)
2π |J |, i.e. the leading order term

in (1.9) is the same as in (1.8).

The trace asymptotics (1.8) and (1.9) have extensions to dimensions d ≥ 2, in

which the geometry of the truncation set starts to play an essential role. Let us first

describe the results in the case of a smooth symbol. For simplicity, assume that a

belongs to the Schwartz space S(Rd) and h is an entire function with h(0) = 0. If

Ω ⊂ Rd is a set with smooth boundary ∂Ω, then [83] provides a complete asymptotic

expansion for

trh(AΩL) (1.11)
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as L → ∞, see also [15]. More precisely, for any K ≥ −d there exist constants

Bj = Bj(Ω, h, a) such that

trh(AΩL) =

d∑
j=−K

LjBj + o(L−K), (1.12)

as L→∞. While

Bd =
|Ω|

(2π)d

∫
Rd

dξ (h ◦ a)(ξ) (1.13)

only depends on Ω through its volume |Ω|, the coefficients Bj for j ≤ d − 1 contain

geometric information on the boundary ∂Ω: Bd−1 arises from a hyperplane approxi-

mation at each point of ∂Ω and Bd−2 contains the curvature and the second funda-

mental form of ∂Ω, see also [58]. As a general principle, the coefficient Bd−k depends

on Ck-attributes of ∂Ω; more precise formulae in terms of the geometric content are

collected in [59]. On the other hand, if the symbol a has jump discontinuities, for in-

stance a = χΛ for some bounded set Λ ⊂ Rd with sufficiently smooth boundary, then

only a two-term asymptotic formula for the trace (1.11) is known, where again the

leading order term remains unchanged and the subleading order term gets enhanced

to order Ld−1 log(L). This result has been obtained quite recently, see [63, 64]; further

extension to non-smooth functions h was done in [44, 66, 67].

The increased recent interest in trace asymptotics for (multi-dimensional) Wiener–

Hopf operators with possibly non-smooth test functions h is partly due to their con-

nection with the study of the bipartite entanglement entropy (EE), see e.g. [31, 32, 44,

45]. The (bipartite) EE is a quantifier for the non-classical correlations between two

subsystems of a quantum system. We refer to the general reviews [1, 16, 19, 40, 42]

on the importance of the EE in the study of black holes, condensed matter systems

and quantum information theory. For a gas of free fermions, the EE with respect to

a bipartition of position space may be calculated via the corresponding one-particle

Hamiltonian H. In the following, we will always assume H to be a self-adjoint opera-

tor on L2(Rd), which corresponds to considering the Fermi gas in the thermodynamic

limit. At zero temperature, the Von Neumann EE with respect to the bipartition

into the set ΩL ⊂ Rd and its complement is given by

tr η1

(
χΩLχ(−∞,µ](H)χΩL

)
, (1.14)
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where µ ∈ R denotes the Fermi energy and

η1(t) := −t log t− (1− t) log(1− t), t ∈ [0, 1], (1.15)

see [31, 38]. If the one-particle Hamiltonian H is (formally) a function of the momen-

tum operator, the trace (1.14) may be rewritten in terms of truncated Wiener–Hopf

operators. In particular, for H = −∆, the Von Neumann EE is given by

tr η1

(
AΩL(χΛ)

)
, (1.16)

with Λ ⊂ Rd denoting the Fermi sea Λ = Λ(µ) = {ξ ∈ Rd : |ξ|2 ≤ µ}. Notice that the

function η1 is smooth on (0, 1) but not differentiable at the endpoints of the interval

[0, 1]. Moreover, let us mention that η1 is just one representative of the family

ηγ(t) :=
1

1− γ
log
[
tγ + (1− t)γ

]
, t ∈ [0, 1], (1.17)

with γ > 0, where η1 is defined as the point-wise limit of ηγ as γ → 1, γ 6= 1.

Replacing η1 by ηγ in (1.14) or (1.16) one obtains the more general γ-Rényi EE, see

e.g. [44]. Since ηγ ◦ χΛ ≡ 0, the leading order coefficient in the asymptotics of (1.16)

vanishes, see (1.13) for its definition. Thus, the EE (for H = −∆ and µ > 0) behaves

— because of the discontinuous symbol χΛ — like Ld−1 log(L), as L → ∞. If one

instead looks at a free Fermi gas at positive temperature T , again with one-particle

Hamiltonian H = −∆, then the symbol χΛ in (1.16) is replaced by the smooth

function

a(ξ) =
[
1 + exp

( |ξ|2 − µ
T

)]−1
,

see [38, 45]. Thus, the asymptotics of the type (1.12) apply, see [68] for their extension

to non-smooth test functions.

In accordance with the above, it is justified to call an asymptotic trace formula a

formula of Szegő type if it describes the scaling asymptotics of

trh
(
AΩL

)
(1.18)

or

trh
(
χΩLa(H)χΩL

)
, (1.19)

for a fixed class of test-functions h, a bounded function a ∈ L∞(R), a set Ω ⊂ Rd,

and a self-adjoint operator H on L2(Rd). In the context of the EE, the asymptotics

of (1.19) have been studied especially for (random) ergodic Hamiltonians H, see
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[25, 29, 37, 51, 52]. Here, the authors mostly worked in the spectrally localised regime,

which corresponds to a fast decaying kernel of the spectral projection χ(−∞,µ](H).

In this sense, the operator χ(−∞,µ](H) behaves similarly to a Fourier multiplier with

smooth symbol even though it has less symmetries. As a consequence, the bipartite

EE for fermions in a disordered d-dimensional medium obeys (when averaged over

the randomness) an area law at zero temperature, see [29]. This means that the EE

behaves to leading order like Ld−1 (the area of ∂ΩL). In contrast, in the homogeneous

case H = −∆, the area law is violated: the EE at zero temperature is proportional

to Ld−1 logL, as it was mentioned above.

In this thesis, we consider two problems related to Szegő-type trace asymptotics.

As a first topic, we are interested in trace asymptotics for truncated Wiener–Hopf

operators, i.e. the asymptotics of (1.18), for smooth symbols a but for a set Ω with

non-smooth boundary. Let us give a review on the known results in this specific

context. As before, assume that a ∈ S(Rd) and that h is an entire function with h(0) =

0. In [77], the author dealt with polytopes Ω and proved a two-term asymptotic

expansion of the trace (1.18). Recently, this result was extended to a larger class

of domains, see [68]. Namely, let Ω be a bounded Lipschitz region with piecewise

C1-boundary. Then [68] contains the asymptotics

trh(AΩL) = LdBd + Ld−1Bd−1 + o(Ld−1), (1.20)

as L → ∞, where the coefficients Bj = Bj(Ω, h, a), j = d, d − 1, are given via the

same formulae as in the smooth boundary case. The coefficient Bd agrees with (1.13)

and a formula for Bd−1 can be found, for instance, in [58, Thm. 1.1]. In particular,

one observes that the edges (or if d = 2 the corners) of Ω do not enter the trace

asymptotics up to order Ld−1. In the special case of cubes Ω, [25, Thm. 2.2] actually

implies complete asymptotics for (1.18), consisting of d + 1 terms. However, the

latter result is established in the more general framework of Zd-ergodic operators.

This entails an exclusively abstract formulation of the asymptotic coefficients, which

makes it difficult to relate them to the smooth boundary case. In addition, [25,

Thm. 2.2] makes for the Wiener–Hopf case unnecessary symmetry assumptions; for

instance, it is applicable to radially symmetric symbols a. Within the context of our

discussion, let us also mention the works [48, 49], which identify the limits of norms
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of inverses and the limits of pseudospectra for Wiener–Hopf operators on convex

polytopes ΩL as L→∞.

Similar results have been obtained in the discrete setting, where AΩL is replaced

by the d-dimensional Toeplitz matrix TΛL , which is the restriction of a d-dimensional

Laurent matrix to the scaled lattice subset ΛL ⊂ Zd. For polytopes Λ, the work [26]

provides a two-term asymptotic formula for trh(TΛL), analogous to the result in [77].

When Λ is a cuboid, the authors of [60] and [76] proved a (d + 1)-term asymptotic

formula for trh(TΛL), under the additional assumption that the symbol of the Toeplitz

matrix allows for a specific factorisation. In [34] these results were recovered and

further insights were given on the inverses of Toeplitz matrices on convex polytopes.

Moreover, the recent work [57] treats triangles Λ ⊂ Z2 and provides a two-term

asymptotic formula for trL−1
Λ with a new formula for the sub-leading coefficient.

The objective of the first part of this thesis, which is based on the paper [53],

is to investigate further the term of order Ld−2 in (1.20). To this end, we restrict

ourselves to dimension d = 2 and deal with the case when Ω = P ⊂ R2 is the interior

of a polygon. By the latter we mean that P is bounded and ∂P is the finite disjoint

union of piecewise linear, closed curves; we do not require P to be (simply) connected

or convex. In particular, and in contrast to all previous works on the complete

asymptotics of (1.18), we deal with corners of any angle. For a smooth, sufficiently

decaying symbol a and entire test functions h, we obtain complete asymptotics for

the trace trh(APL), consisting of three terms, see Theorem 2.1. More precisely, we

provide constants cj = cj(P, h, a) such that

trh(APL) = L2c2 + Lc1 + c0 + O(L−∞), (1.21)

as L→∞. As it can be inferred from formula (1.20), the coefficient c2 incorporates

the area of the polygon P and c1 depends on the lengths of its edges and their

directions. However, our main focus is the constant order coefficient c0, which contains

contributions from each corner of the polygon. In Theorem 2.1 we provide a formula

for c0 given in terms of abstract traces, similarly to [25, Thm. 2.2]. Yet, in the

polygon case c0 includes additional terms due to the presence of non-parallel edges.

Furthermore, we compute c0 explicitly as a function of the polygon’s interior angles

for radially symmetric symbols a and quadratic test functions h, see Theorem 2.5. As

a consequence, one can compare c0 with the corresponding coefficient in the smooth
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boundary case and we obtain the following result: for a two-dimensional domain

Ω, one can determine from the constant order term of the trace asymptotics (1.20)

whether Ω has a smooth boundary or it is a polygon, see Corollary 2.7. In addition,

the coefficient c0 for the polygon P can not be obtained from (1.12) via approximation

of P by domains with smooth boundary. This anomaly resembles the analogous result

for the constant order term in the heat trace asymptotics for the Dirichlet Laplacian

on a two-dimensional domain with corners, see [50].

In the second part of the thesis, we present formulae of Szegő type for the periodic

Schrödinger operator in dimension one. This part is based on the paper [54], which

emerged from a collaboration with Alexander V. Sobolev. For the sequel, set

H := − d2

dx2
+ V (x), dom(H) = H2(R), (1.22)

where V is a real-valued periodic L2
loc- function, so that the operator H is self-

adjoint on H2(R). Without loss of generality, we will assume that the period equals

2π. The spectrum σ(H) of the operator H is known to be absolutely continuous.

Moreover, it is the union of infinitely many spectral bands (closed intervals), and,

generically, it has infinitely many gaps, see e.g. [55]. We introduce the notation

Pµ := χ(−∞,µ)(H) = χ(−∞,µ](H) for the spectral projection of H associated with the

interval (−∞, µ). Referring to (1.19), obtaining Szegő-type trace asymptotics for the

operator H amounts to studying the trace of operators

h
(
χILa(H)χIL

)
,

where I ⊂ R is, say, a finite interval and a, h are suitably chosen functions. Having

the application to the EE in mind, we focus on the case a = χ(−∞,µ), compare

with (1.14). Moreover, we choose without loss of generality a symmetric interval

I = (−1, 1), i.e. we obtain an asymptotic formula for the trace

trh(BL,µ), BL,µ := χ(−L,L)Pµχ(−L,L), (1.23)

as L→∞. We only require the test-function h : [0, 1]→ C to be piecewise continuous

and Hölder continuous at the points 0 and 1, which allows us to deal with functions

like η1 and ηγ , see (1.15), (1.17). Moreover, we assume that the potential V is

smooth, even though this condition may be relaxed up to L2
loc by requiring slightly

more regularity for h. Under these assumptions, the asymptotic formula for (1.23)
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crucially depends on the position of the parameter µ with respect to the spectrum of

H. If µ ∈
(
σ(H)

)◦
, we prove that

trh(BL,µ) = 2Lh(1)N(µ,H) + log(L)W(h) + o(log(L)), (1.24)

as L → ∞, where N(µ,H) denotes the integrated density of states for the operator

H and W(h) is defined in (1.10). In the special case V ≡ 0, formula (1.24) reduces

to (1.9) with J = (−√µ,√µ). In this sense, (1.24) can be seen as an extension of

(1.9). Remarkably, the sub-leading order term in (1.24) is actually independent of

the potential V and µ, as long as µ remains an interior point of the spectrum. In

contrast, the leading order term in (1.24) depends on both the potential V and the

parameter µ. In other words, for µ ∈
(
σ(H)

)◦
the number of eigenvalues of BL,µ

close to 1 depends crucially on the potential, while the eigenvalue distribution on an

interval (ε, 1− ε) for ε > 0 is to leading order independent of V . If µ /∈
(
σ(H)

)◦
, then

we prove the formula

trh(BL,µ) = 2Lh(1)N(µ,H) + O(1), (1.25)

as L → ∞. Thus, in this case the sub-leading order remains bounded. These two

different behaviours depending on the placement of µ are due to the respective spatial

decay of the kernel of the spectral projection Pµ. While the decay is slow when

µ ∈
(
σ(H)

)◦
, the kernel of Pµ decays super-polynomially away from the diagonal

when µ /∈
(
σ(H)

)◦
. In the first case, the operator Pµ is somewhat comparable to a

Fourier multiplier with discontinuous symbol, while in the second case we are in a

similar regime as in the works [25, 29, 37, 52] mentioned before.

Formulae (1.24) and (1.25) imply the following behaviour of the bipartite EE for

a one-dimensional free Fermi gas in a periodic external field at zero temperature.

Let us, for instance, consider the Von Neumann EE with respect to the splitting

R = (−L,L)∪
(
R \ (−L,L)

)
. For h = η1, see (1.15), the leading order term in (1.24)

and (1.25) vanishes as usual. Thus, if µ /∈
(
σ(H)

)◦
, then the EE remains bounded,

as L → ∞, i.e the EE satisfies an area law. However, if µ ∈
(
σ(H)

)◦
, then the EE

grows logarithmically, like in the unperturbed case V ≡ 0. To the author’s knowledge,

this is the first instance where a violation of the area law could be proved when the

one-particle Hamiltonian is a Schrödinger operator with non-trivial potential.
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A few remarks on the structure of this thesis are in order. The first part concerns

the Szegő-type trace asymptotics for truncated Wiener–Hopf operators on polygons,

see Chapter 2. We start by formulating our main results: Theorems 2.1 and 2.3 state

the asymptotics (1.21) with various formulae for the coefficients cj and Theorem 2.5

deals with the radially symmetric case. The trace norm estimates that enter the

proofs of Theorems 2.1 and 2.3 are collected in Section 2.2. In Section 2.3 we apply

these trace norm bounds to extract the leading order term of the asymptotics (1.21).

Moreover, we reduce the remaining part to individual corner contributions, which

only depend on the corner angle and the lengths and directions of the enclosing

edges. The trace asymptotics corresponding to a single corner of the polygon are

provided in Section 2.4, which completes the proof of Theorem 2.1. The proofs of

Theorems 2.3 and 2.5 can be found in Sections 2.5 and 2.6.

In the second part of the thesis, we deal with the proof of the formulae of Szegő

type (1.24) and (1.25) for the periodic Schrödinger operator in dimension one. In

Chapter 3 we introduce fundamental properties of such Schrödinger operators and

develop a convenient formalism for Bloch eigenvalues and eigenfunctions. This al-

lows us to write out the kernel of the spectral projection, see Section 3.2. Chapter 4

contains the actual proof of our results, which are summarised in Theorem 4.2. To

begin with, an approximation of the kernel of the spectral projection Pµ in terms

of Bloch eigenfunctions corresponding to the Fermi energy µ is given in Section 4.3.

Section 4.4 contains some elementary trace class estimates, similar to the ones ob-

tained in [41]. Here we also introduce an averaging procedure for integral operators

that involve almost-periodic functions, see Subsection 4.4.3. For the logarithmic term

in the trace asymptotic, this can be used to average out the precise dependence on

the Bloch eigenfunctions at the Fermi energy µ. As a consequence, we are able to

prove Theorem 4.2 for polynomial functions h, see Section 4.6. The extension to non-

smooth functions calls for more advanced bounds in Schatten-von Neumann classes,

which are collected in Section 4.5. Finally, the closure of the asymptotics from the

polynomial h, is implemented in Section 4.7.

To conclude the introduction, let us fix some general notation that will be applied

throughout the thesis. If f, g are non-negative functions, we write f . g or g & f

if f ≤ Cg for some constant C > 0. This constant will always be independent of

the scaling parameter L, but it may depend on the test function h, the symbol a,
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the geometry of the polygon P, and the periodic potential V . To avoid confusion

we will comment on its explicit dependence whenever necessary. We make use of the

standard notation for Schatten-von Neumann classes Sp for p > 0, see e.g. [7], [62]. A

compact operator T is an element of Sp if and only if its singular values {sk(T )}∞k=1

are p-summable, that is

‖T‖pp :=

∞∑
k=1

sk(T )p <∞. (1.26)

For a set Ω ⊂ Rd, we denote by Ω◦ the set of interior points, by |Ω| the (d-dimensional)

Lebesgue measure, and by ]Ω the cardinality. For x, y ∈ Rd, we use the notation

〈x〉 := (1 + |x|2)1/2, where | · | is the standard Euclidean norm, and we write x · y

for the scalar product of the vectors x and y. Moreover, Qx denotes the (closed)

unit cube centred at x and Br(x) is the (closed) ball of radius r > 0 around x (with

respect to | · |). In many situation (e.g. for the intervals I, J , K in Section 4.4) it will

not matter whether the considered intervals are open, semi-open or closed. Whenever

this is the case, we shall use open intervals only.



CHAPTER 2

A Szegő Limit Theorem for Translation-invariant

Operators on Polygons

Let P ⊂ R2 be (the interior of) a polygon as specified in the introduction and

consider a (bounded) Fourier multiplier A = F∗aF on L2(R2). In this chapter, we

obtain full trace asymptotics for the operator h
(
APL

)
for a smooth, sufficiently de-

caying symbol a : R2 → C and entire test functions h : C → C with h(0) = 0. As it

was mentioned in the introduction, this chapter is in many parts identical with the

publication [53]. We start by formulating our main results, that is the formula (1.21)

with various formulae for the coefficients cj = cj(P, h, a).

2.1. Results

Let h : C → C be an entire function with h(0) = 0 and consider a symbol

a ∈ W∞,1(R2), see (2.30) for the definition. In order to write out the formulae for

the coefficients in (1.21) we need to fix some notation for the polygon P.

2.1.1. Notation for the polygon P and coefficients in the asymptotics.

Let Ξ(P) ⊂ R2 denote the set of vertices of P and E(P) the set of edges of P. In

the following, we specify the contribution of each edge E ∈ E(P) and each corner at

X ∈ Ξ(P) to the asymptotics (1.21).

First, fix an edge E ∈ E(P). Let νE be its inward pointing unit normal vector,

and let τE be the unit tangent vector such that the frame (τE , νE) has the standard

orientation in R2. This induces an orientation on ∂P. Introduce the half-space

HE := {y ∈ R2 : y · νE ≥ 0}, (2.1)

and the semi-infinite strip of unit width,

SE := {tτE + ξνE : (t, ξ) ∈ [0, 1]× [0,∞)} ⊂HE . (2.2)

We label the interior angles between E and its adjacent edges by γ
(1)
E and γ

(2)
E . For

definiteness, the enumeration is chosen in accordance with the orientation of ∂P.

33
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However, the latter is not of much relevance as we will mainly be interested in a

symmetric function of the angles, F : E(P)→ R,

F (E) := − cot(γ
(1)
E )− cot(γ

(2)
E ). (2.3)

Note that F (E) = 0 if and only if γ
(1)
E +γ

(2)
E ∈ {π, 2π, 3π}, i.e. if and only if the edges

adjacent to E are parallel. Define also the function

h1(z) := h(z)− zh′(0). (2.4)

Then we introduce the following coefficients corresponding to the edge E, which are

finite under our assumptions on h and a, see also Theorem 2.1. We set

a1(νE) := tr
(
χSE

[
h1(AHE

)− h1(A)
])
, (2.5)

with SE and HE as in (2.1), (2.2). Note that the strip SE on the right-hand side

of (2.5) may actually be shifted along the edge E, leaving the value of a1(νE) un-

changed since the operator h1(AHE
)− h1(A) is translation-invariant in the direction

τE . Similarly, we define the coefficient

a0(νE) := tr
(
χSEM(x · νE)

[
h1(AHE

)− h1(A)
])
, (2.6)

where M(x · νE) is the multiplication operator

[M(x · νE)f ](x) := (x · νE)f(x),

for any function f : R → C. Clearly, also the operator M(x · νE)
[
h1(AHE

)− h1(A)
]

is invariant with respect to translations along the edge E.

Fix now a vertex X ∈ Ξ(P). Its adjacent edges are named E(1)(X) and E(2)(X),

where the enumeration is again chosen according to the orientation of ∂P. Corre-

sponding to the vertex X we have the two half-spaces

H(j)(X) := HE(j)(X), j = 1, 2, (2.7)

compare with (2.1). Moreover, let γX ∈ (0, π) ∪ (π, 2π) denote the interior angle

at X. In the following, we distinguish convex and concave corners of the polygon,

employing the notation

Ξ≶(P) := {X ∈ Ξ(P) : γX ≶ π}.



2.1. RESULTS 35

Define the semi-infinite sector that models the corner at X ∈ Ξ(P) by

C(X) :=

H(1)(X) ∩H(2)(X), X ∈ Ξ<(P),

H(1)(X) ∪H(2)(X), X ∈ Ξ>(P).
(2.8)

If X ∈ Ξ<(P), the corner at X ∈ Ξ(P) or equivalently the sector C(X) is convex,

otherwise we call it concave. We are now ready to introduce coefficients corresponding

to vertices X ∈ Ξ(P).

If X ∈ Ξ<(P), we define

b0(X) := tr
(
χC(X)

[
h1(AC(X))− h1(AH(1)(X))− h1(AH(2)(X)) + h1(A)

])
, (2.9)

with C(X) and H(j)(X), j = 1, 2, defined in (2.8) and (2.7), respectively.

If X ∈ Ξ>(P), we set

b0(X) := tr
(
χH(1)(X)∩H(2)(X)

[
h1(AC(X))− h1(A)

])
+ tr

(
χC(X)\H(1)(X)

[
h1(AC(X))− h1(AH(2)(X)

])
+ tr

(
χC(X)\H(2)(X)

[
h1(AC(X))− h1(AH(1)(X)

])
. (2.10)

2.1.2. Main result. Our first and main theorem of this chapter provides a com-

plete asymptotic expansion of trh(APL) and contains formulae for all the coefficients

in (1.21).

Theorem 2.1. Assume that a ∈ W∞,1(R2), see (2.30), and let h : C → C be an

entire function with h(0) = 0. Then we have the asymptotic formula

trh(APL) = L2c2 + Lc1 + c0 + O(L−∞), (2.11)

as L→∞, with coefficients

c2 =
|P|
4π2

∫
R2

dξ (h ◦ a)(ξ)

c1 =
∑

E∈E(P)

|E| a1(νE),

c0 =
∑

E∈E(P)

F (E) a0(νE) +
∑

X∈Ξ(P)

b0(X).

In particular, for all E ∈ E(P) and X ∈ Ξ(P), the coefficients a1(νE), a0(νE), and

b0(X) are well-defined, see Subsection 2.1.1 for their definition.
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Remark 2.2. (1) The super-polynomial error in formula (2.11) is a consequence

of both the smoothness of the symbol a and the piecewise-straight boundary

of P. That a smooth symbol leads to the absence of all but two terms in the

trace asymptotics for one-dimensional truncated Wiener–Hopf or Toeplitz

operators has been known for a long time, see [9, p. 120].

(2) Formula (1.20) implies that the corners of the polygon do not affect the two

leading coefficients in the asymptotics compared to the smooth boundary

case. However, the above formula for c0 shows that the corners do enter the

trace asymptotics at the constant order.

(3) An edge E ∈ E(P) does not contribute to the coefficient c0 if F (E) = 0, i.e. if

the edges adjacent to E are parallel, see also (2.3). In particular, all contri-

butions from the edges to c0 vanish if, for instance, P is a parallelogram. As

it becomes clear from the proof of the theorem, the edge contributions to c0

are in fact aggregated local contributions from corners of P.

(4) We emphasise that the coefficients b0(X) are defined by the two distinct

formulae (2.9) and (2.10), depending on the type of the corner at X ∈ Ξ(P).

The coefficients a1(νE) and a0(νE), which only depend on the half-space oper-

ators h(AHE
) and the full-space operator h(A), may be rewritten in terms of one-

dimensional Wiener–Hopf operators. This is the content of the next theorem. Here,

we recall the notation

W (a) = A[0,∞)(a),

for a ∈ L∞(R), see (1.7). As anticipated, the formula (2.15) for c1 reduces the

corresponding formula from the smooth boundary case, see [80, Thm.].

Theorem 2.3. Let a ∈ W∞,1(R2) and let h : C → C be an entire function with

h(0) = 0. Define, for E ∈ E(P) and t ∈ R, the family of one-dimensional symbols

R 3 ξ 7→ aE,t(ξ) := a(tτE + ξνE). (2.12)
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Then, for all E ∈ E(P), the coefficients a1(νE) and a0(νE) in Theorem 2.1 may be

rewritten as

a1(νE) =
1

2π

∫
R

dt tr
[
h
{
W (aE,t)

}
−W (h ◦ aE,t)

]
, (2.13)

a0(νE) =
1

2π

∫
R

dt tr
(
M(x)

[
h{W (aE,t)} −W (h ◦ aE,t)

])
, (2.14)

where M(x) denotes multiplication by x on L2(R). In particular, we have that

c1 =
∑

E∈E(P)

|E|
2π

∫
R

dt tr
[
h
{
W (aE,t)

}
−W (h ◦ aE,t)

]
. (2.15)

Remark 2.4. The advantage of formulae (2.13) and (2.14) lies in the fact that

explicit formulae for the traces of one-dimensional Wiener–Hopf operators are known.

Assuming for simplicity that a ∈ S(R2), [83, Prop. 5.4] implies that

a1(νE) =
1

8π3

∫
R

dt

∫
R

dξ1

∫
R

dξ2
h(aE,t(ξ1))− h(aE,t(ξ2))

aE,t(ξ1)− aE,t(ξ2)

a′E,t(ξ2)

ξ2 − ξ1
,

where the integral over ξ2 is interpreted as a Cauchy principal value. Referring to the

same proposition, one similarly gets that

a0(νE) =− 1

64π2

∫
R

dt

∫
R

dξ h′′(aE,t(ξ))a
′
E,t(ξ)

2

− 1

32π4

∫
R

dt

∫
R

dξ1

∫
R

dξ2

∫
R

dξ3

{
3∑

k=1

h(a(ξk))∏
j 6=k

[a(ξk)− a(ξj)]

}
a′E,t(ξ2)

ξ2 − ξ1

a′E,t(ξ3)

ξ3 − ξ1
.

2.1.3. The radially symmetric case. In contrast to the above, the coefficients

b0(X), see (2.9) and (2.10), can naturally not be transformed into integrals over traces

of one-dimensional fibre operators since they incorporate the truly two-dimensional

sector operators h(AC(X)). This makes their explicit calculation rather involved.

However, we manage to compute the coefficients b0(X) in the special case when h

is a quadratic polynomial and the symbol a is radially symmetric. By the latter we

mean that, for any orthogonal matrix O ∈ R2×2 and for all ξ ∈ R2,

a(ξ) = a(Oξ).

Define

f̌(x) := (2π)−d/2(F∗f)(x) = (2π)−d
∫
Rd

dξ eiξ·xf(ξ), (2.16)
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for functions f ∈ L1(Rd), so that the operator A has the difference kernel

A(x, y) = ǎ(x− y), x, y ∈ Rd.

If a is radially symmetric, so is ǎ and we shall write, slightly abusing notation,

a(|ξ|) = a(ξ), ǎ(|x|) = ǎ(x),

for all x, ξ ∈ R2. In the following theorem, all coefficients cj in the asymptotics (1.21)

are computed explicitly for such symbols a and quadratic test functions h. Again,

our focus lies on the coefficient c0 since the formulae for c2 and c1 are known to be

the same as in the smooth boundary case.

Theorem 2.5. Suppose that a ∈ W∞,1(R2) is radially symmetric and let h(z) =

z2 + dz for some d ∈ C. Then we have that

trh(APL) = L2c2 + Lc1 + c0 + O(L−∞),

as L→∞, with

c2 =
|P|
2π

∞∫
0

dRR (h ◦ a)(R),

c1 = −2 |∂P|
∞∫

0

dr r2ǎ(r)2,

c0 =
∑

X∈Ξ(P)

1
2

[
1 + (π − γX) cot γX

] ∞∫
0

dr r3ǎ(r)2.

Remark 2.6. (1) As in Theorem 2.1, the coefficients c1 and c0 only depend on

the test function h via the function h1(z) = z2.

(2) Notice that, due to the radial symmetry of a, the dependence of the coeffi-

cients cj , j = 0, 1, 2, on the geometry of P separates from their dependence

on the symbol a.

(3) Interestingly, the contribution of convex corners and concave corners to c0

are obtained via the same formula, in contrast to the two distinct formulae

(2.9), (2.10).

The explicit formula for the coefficient c0 given in Theorem 2.5 allows us to

compare it with the corresponding coefficient B0 from the smooth boundary case,

see (1.12). As in the theorem, let h be a quadratic test function and assume that
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a ∈W∞,1(R2) is radially symmetric. Applying [58, Thm. 1.1], one gets that, for any

bounded Ω ⊂ R2 with smooth boundary,

B0 = B0(Ω, h, a) = 0. (2.17)

To our knowledge, this surprising fact has not been noted explicitly before and it even

holds without the radial symmetry of a. For the reader’s convenience we provide a

proof of (2.17) in the appendix to this thesis, see Lemma A.1. In contrast to the

above, the function

f(γ) := 1 + (π − γ) cot(γ) (2.18)

is positive on (0, π) ∪ (π, 2π). This yields the following corollary.

Corollary 2.7. Let h(z) = z2 + dz and suppose that the symbol 0 6= a ∈ W∞,1(R2)

is real-valued and radially symmetric. Moreover, assume that P is a polygon and

Ω ⊂ R2 is a bounded set with smooth boundary. Then one has that

c0(P, h, a) > 0,

while

B0(Ω, h, a) = 0,

where c0 and B0 are the constant order coefficients from (1.21) and (1.12).

Remark 2.8. The corollary implies the following: consider a bounded set Λ ⊂ R2

with either smooth or piecewise linear boundary. Then the type of the boundary can

be determined from the spectral asymptotics of AΛL , as L→∞.

As a consequence of Corollary 2.7, the constant order coefficient in the trace

asymptotics exhibits an anomaly, similarly to the heat trace asymptotics for the

Dirichlet Laplacian on two-dimensional domains with corners, see e.g. [47, 50]. Any

approximation of a polygon P by a sequence of smooth domains {Ωn} can not recover

the coefficient c0: for functions h and a as in the corollary, one gets that

B0(Ωn, h, a) = 0 9 c0(P, h, a),

as n→∞. On the other hand, the approximation of domains with smooth boundary

by polygons works fine. As a simple but representative example consider a disc Ω
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and let {Pn} be a sequence of inscribed regular n-gons, approximating Ω. Since the

function f , see (2.18), vanishes to second order at γ = π, one easily checks that

c0(Pn, h, a)→ 0 = B0(Ω, h, a),

as n→∞.

We also point out that one may apply Theorem 2.5 to compute the particle number

fluctuation (PNF) of an infinitely extended free Fermi gas (in dimension d = 2) with

respect to the spatial bipartition R2 = PL ∪̇R2 \PL at positive temperature. The

PNF is a basic measure for quantum correlations: it constitutes a lower bound for

the entanglement entropy, but the PNF is easier to compute. If the one-particle

Hamiltonian is the unperturbed two-dimensional Laplacian −∆, the PNF is given by

trh(APL),

with

h(x) = x(1− x), a(ξ) =
[
1 + exp

( |ξ|2 − µ
T

)]−1
,

see [38]. Here, µ ∈ R is the chemical potential and T > 0 denotes temperature.

Corollary 2.7 allows us to compare the PNF for a scaled polygon PL with the PNF

for a scaled set ΩL with smooth boundary: if P and Ω have the same area and

perimeter, then the PNF for the polygon PL is strictly larger than the PNF for ΩL,

as L→∞.

2.1.4. Strategy of the proofs. Let us comment on the basic ideas for the

proofs of Theorems 2.1, 2.3, and 2.5.

The strategy of the proof of Theorem 2.1 is as follows. The leading order term in

the asymptotics originates from approximating the operator h(APL) by its bulk ap-

proximation χPLh(A)χPL , which is a very familiar idea. Indeed, one easily computes

that

tr
(
χPLh(A)χPL

)
=

∫
PL

dxh(A)(x, x) = |PL|(h ◦ a)̂(0) = L2c2. (2.19)

Subtracting the latter from trh(APL) leaves a remainder that is independent of the

linear part of h, hence we may replace h by the function h1(z) = h(z)− zh′(0):

tr
(
χPL

[
h(APL)− h(A)

]
χPL

)
= tr

(
χPL

[
h1(APL)− h1(A)

]
χPL

)
. (2.20)
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γX

0

C(X)
P \ V

V

N(X)

X E(2)(X)

E
(1

)(X
)

Figure 1. The sector C(X), the one-sided boundary neighbourhood

V, and the corner neighbourhood N(X)

For the following steps we mainly rely on the locality of the operator A: due to the

assumptions on the symbol a, the kernel A(x, y) = ǎ(x−y) decays super-polynomially

away from the diagonal, see Lemma 2.10. As a first consequence, we can prove that

the operator χPL

[
h1(APL)−h1(A)

]
χPL is concentrated on the boundary ∂PL. More

precisely, defining for small but fixed ε > 0 the (unscaled) one-sided ε-neighbourhood

of ∂P,

V := V(ε) := {y ∈P∪ ∂P : dist(y, ∂P) ≤ ε}, (2.21)

we show that

tr
(
χPL

[
h1(APL)− h1(A)

])
= tr

(
χVL

[
h1(APL)− h1(A)

])
+ O(L−∞), (2.22)

as L → ∞. It is convenient to partition V into corner neighbourhoods N(X), X ∈

Ξ(P), that extend along half of the edges E(1)(X) and E(2)(X), see Figure 1 above.

This reduces the problem to computing the asymptotics of

tr
(
χNL(X)

[
h1(APL)− h1(A)

])
, (2.23)

for a fixed vertex X ∈ Ξ(P). In view of the translation-invariance of A, we may

assume that X = 0, hence the sector C(X) models the corner at X ∈ Ξ(P), see (2.8)

and Figure 1. Again the locality of the operator A implies that one can replace the

operator h1(APL) in (2.23) by the L-independent sector operator h1(AC(X)):

tr
(
χNL(X)

[
h1(APL)− h1(A)

])
= tr

(
χNL(X)

[
h1(AC(X))− h1(A)

])
+ O(L−∞).

(2.24)
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Thus, we have completely localised the problem to the corner at X ∈ Ξ(P). It

remains to prove that the right-hand side of (2.24) exhibits a two-term asymptotic

expansion with super-polynomial error: the leading order term, linear in L, results

from the parts of N(X) near an edge E(1)(X) or E(2)(X), whereas its constant order

correction is solely produced by the fraction of N(X) close to the vertex X. In order

to extract these two terms, we provide a trace-class regularisation of the operator

h1(AC(X)), see Proposition 2.18. This part of the proof shows some commonalities

with the analysis in [25] for the case of cubes. Summing up the contributions from

all X ∈ Ξ(P) finishes the proof of Theorem 2.1.

Theorem 2.3 is deduced from Theorem 2.1. Here, the key observation is that,

for a fixed edge E ∈ E(P), the operator h(AHE
) − h(A) is invariant with respect

to translations along E. As a consequence, it is unitarily equivalent to a direct

integral over one-dimensional fibre operators that are parametrised by the tangential

coordinate. Not surprisingly, these fibre operators can be rewritten in terms of one-

dimensional Wiener–Hopf operators, which results in the formulae (2.13) and (2.14)

for the coefficients a1(νE) and a0(νE).

The proof of Theorem 2.5 requires the evaluation of all the coefficients cj , j =

0, 1, 2, from Theorem 2.1. To compute a1(νE) and a0(νE) for all E ∈ E(P) we

apply Theorem 2.3. Moreover, the specific choice of the function h allows us to

evaluate b0(X) for each X ∈ Ξ(P) via a straightforward calculation. Here, the radial

symmetry of the symbol a is essential to extract the dependence of b0(X) on the

interior angle γX .

2.2. Trace Norm Estimates

In this section, we collect the trace norm estimates that will be sufficient to prove

Theorems 2.1 and 2.3. For the notation regarding Schatten-von Neumann classes and

Schatten (quasi)norms we refer to the end of the introduction, in particular (1.26).

We shall often utilise Hölder’s inequality

‖T1T2‖1 ≤ ‖T1‖p‖T2‖q, (2.25)

for T1 ∈ Sp, T2 ∈ Sq, and p, q > 0 such that 1
p + 1

q = 1. Notice also the interpolation

inequality

‖T‖pp ≤ ‖T‖p−q‖T‖qq, (2.26)
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which holds if T ∈ Sq, 0 < q < p.

2.2.1. Finite volume truncations of the operator A. We recall the notation

A = A(a) = F∗aF,

and

AΩ = AΩ(a) = χΩF
∗aFχΩ,

where Ω ⊆ Rd is a measurable subset and a : Rd → C is the symbol of the operator

A, acting on L2(Rd). The dependence of A on a will be mostly suppressed, unless

we consider the dimension-reduced symbol as in Section 2.5. Let us also remind the

reader of the following general notation, which was introduced in the introduction: If

f, g are non-negative functions, we write f . g or g & f if f ≤ Cg for some constant

C > 0. This constant will always be independent of the scaling parameter L, but it

might depend on the test function h, the symbol a, and the geometry of the polygon

P.

The next lemma shows that, under mild assumptions on the symbol a, the op-

erator AΩ is trace class if Ω ⊂ Rd is bounded. Even though this is well-known, see

[13, Subsec. 10.83] for the one-dimensional case, we provide a proof for the reader’s

convenience. Having the application to the polygon P in mind, one deduces from

(2.28) below the trace norm bound

‖h(APL)‖1 . L2|P|,

if a ∈ L1(R2) ∩ L∞(R2), and h : C → C is an entire function such that h(0) = 0.

Here, the implied constant depends on h and a.

Lemma 2.9. Let a ∈ L1(Rd) and assume that Ω,Λ ⊂ Rd are bounded sets. Then one

has the bound

‖χΛAχΩ‖1 ≤ (2π)−d|Λ|1/2|Ω|1/2‖a‖L1(Rd). (2.27)

If in addition a ∈ L∞(Rd) and h : C → C is an entire function with h(0) = 0, then

also the estimate

‖h(AΩ)‖1 . |Ω| (2.28)

holds, with implied constant only depending on h and a.
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Proof. We start by proving the estimate (2.27). Without loss of generality, we

may assume that a ≥ 0 since the symbol can be decomposed as a = a1−a2+i(a3−a4)

for suitable functions aj ≥ 0. We have that

χΛAχΩ = B1B2,

where B1 and B2 are the operators on L2(Rd) with kernels

B1(x, ξ) := (2π)−d/2χΛ(x)eix·ξ
√
a(ξ)

B2(ξ, y) := (2π)−d/2
√
a(ξ)e−iy·ξχΩ(y).

Hence, (2.25) yields

‖χΛAχΩ‖1 ≤ ‖B1‖2‖B2‖2 = (2π)−d|Λ|1/2|Ω|1/2‖a‖L1(Rd),

which proves (2.27).

Let us now assume that a ∈ L1(Rd)∩L∞(Rd) and that h is as in the formulation

of the lemma. The boundedness of a implies the (uniform) operator norm bound

‖AΩ‖ ≤ ‖A‖ ≤ ‖a‖L∞(Rd).

It follows that

‖h(AΩ)‖1 . ‖AΩ‖1,

with implied constant depending only on h and ‖a‖L∞(Rd). In view of (2.27), this

finishes the proof of the lemma. �

2.2.2. Symbol estimates. Introduce, for N ≥ 0, the Sobolev spaces

WN,1(Rd) := {f ∈ L1(Rd) : ∂αf ∈ L1(Rd) for all α ∈ Nd0, |α| ≤ N},

with corresponding norms

|f |N :=
∑
|α|≤N

‖∂αf‖L1(Rd). (2.29)

Moreover, set

W∞,1(Rd) :=
∞⋂
N=0

WN,1(Rd).

In view of [24, Thm. 2.31(2)] we note that

W∞,1(Rd) ⊂ C∞(Rd),
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i.e.

W∞,1(Rd) = {f ∈ C∞(Rd) : ∂αf ∈ L1(Rd) for all α ∈ Nd0}. (2.30)

The next lemma recalls the standard fact that, for a symbol a ∈ W∞,1(Rd), its (in-

verse) Fourier transform ǎ, see (2.16), decays super-polynomially at infinity. More-

over, it provides some information on the dimension-reduced symbol, which will be

useful when proving Theorem 2.3.

Lemma 2.10. Let a ∈W∞,1(Rd). Then the following statements hold true.

(i) For all N ∈ N0, one has the bound

|ǎ(x)| . |a|N 〈x〉−N ,

with implied constants only depending on N .

(ii) Assume that d ≥ 2 and define, for t ∈ R, the reduced symbol

Rd−1 3 ξ 7→ at(ξ) := a(t, ξ).

Then we have that at ∈W∞,1(Rd−1), for all t ∈ R. Moreover, for every N ∈ N0,

it holds that (t 7→ at) ∈ L1
(
R,WN,1(Rd−1)

)
∩ C

(
R,WN,1(Rd−1)

)
.

Proof. Using the fact that a ∈W∞,1(Rd) and integrating by parts, we get that

|ǎ(x)| .
∣∣ ∫ dξ eix·ξa(ξ)

∣∣
=
∣∣ ∫ dξ a(ξ)

[1− ix · ∇ξ
1 + x2

]N
eix·ξ

∣∣
=
∣∣ ∫ dξ eix·ξ

[1 + ix · ∇ξ
1 + x2

]N
a(ξ)

∣∣
. |a|N 〈x〉−N ,

where the implied constants only depend on N . For the proof of the second part

of the statement notice that, since a ∈ L1(Rd), there is some t0 ∈ R such that

at0 ∈ L1(Rd−1). This in turn implies that

sup
t∈R
‖at‖L1(Rd−1) ≤ ‖ sup

t∈R
|at|‖L1(Rd−1) =

∫
Rd−1

dξ sup
t∈R

∣∣∣at0(ξ) +

t∫
t0

ds ∂sas(ξ)
∣∣∣

≤ ‖at0‖L1(Rd−1) + ‖∂ta‖L1(Rd) <∞, (2.31)

i.e. at ∈ L1(Rd−1) for all t. Moreover, the fact that a ∈ L1(Rd) ∩ C(Rd) and the

uniform bound (2.31) ensure that (t 7→ at) ∈ L1
(
R,L1(Rd−1)

)
∩C
(
R,L1(Rd−1)

)
. The
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analogous statements for derivatives of at follow along the same lines. This finishes

the proof of the lemma. �

For a ∈ W∞,1(Rd), the off-diagonal decay of the kernel A(x, y) = ǎ(x − y), see

Lemma 2.10, and the continuity of ǎ imply the following lemma. Its proof is not

difficult but technical and can be found in Appendix A.2.

Lemma 2.11. Let a ∈ W∞,1(Rd) and let h : C → C be an entire function with

h(0) = 0. Then for any open set G ⊆ Rd the operator kernel

(x, y) 7→ h(AG)(x, y)

is a continuous function on G×G.

2.2.3. Localisation estimates. Throughout this subsection, let a ∈W∞,1(Rd)

and let h : C→ C be an entire function that vanishes to second order at z = 0. One of

the main tools for proving Theorem 2.1 is the next proposition. It is of similar spirit

as [25, Thm. 2.5], which was recently established in the context of ergodic Schrödinger

operators.

Proposition 2.12. Suppose that Λ ⊆ Ω ⊆ Rd and let v, w ∈ Rd. Then, for any

N ∈ N, there exists a constant Ch,a,N ≥ 0 such that

‖χQv∩Λ

[
h(AΛ)− h(AΩ)

]
χQw‖1 ≤ Ch,a,N 〈dist(v,Ω \ Λ)〉−N

× 〈dist(w,Ω \ Λ)〉−N 〈v − w〉−N . (2.32)

More precisely, if h is given by the power series h(z) =
∞∑
k=2

dkz
k, then the constant

Ch,a,N may be bounded as

Ch,a,N .
∞∑
k=2

k|dk|
[
CN |a|2N+2d+2

]k
, (2.33)

for some constant CN ≥ 0 and implied constant only depending on N .

Remark 2.13. (1) Unlike in [25, Thm. 2.5], we do not require convexity of the

set Ω.

(2) In [25] the author deduced their result with the help of an a-priori Schatten

quasi-norm bound in Sq for some q < 1, see [25, Eq. (2.3)]. In the special

case of Wiener–Hopf-operators, this a-priori bound reduces to

sup
v,w∈Rd

‖χQvAχQw‖q <∞. (2.34)
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This estimate holds if, in addition to a ∈ W∞,1(R2), we suppose that a ∈

Lp(R2) for some p ∈ (0, q), see [7, Ch. 11, Thm. 13]. However, we prefer not

to assume any additional decay on a. Instead, we exploit the basic Hilbert

Schmidt bound (2.35) on unit cubes from Lemma 2.14 below.

(3) The mild decay assumptions on the symbol a are compensated by assuming

that the test function h vanishes to second order at z = 0. This assumption

is sufficient to prove Theorem 2.1: we will exclusively apply Proposition 2.12

to the function h1, see (2.4).

Proposition 2.12 follows from approximation of the test function h by polynomials

and the next lemma.

Lemma 2.14. Let v, w ∈ Rd. Then, for all N ∈ N, there exist constants cN ≥ c̃N ≥ 0

such that

‖χQvAχQw‖ ≤ ‖χQvAχQw‖2 ≤ c̃N |a|N 〈v − w〉−N , (2.35)

and such that, for all k ∈ N \ {1}, p ∈ {1, 2},

sup
G⊆Rd

‖χQv [AG]kχQw‖p ≤
[
cN |a|N+d+1

]k〈v − w〉−N . (2.36)

Proof. The estimate (2.35) is a direct consequence of Lemma 2.10. To prove

(2.36) define, for all N ≥ 1, the constants

c̃N,a := c̃N |a|N ,

and set

c′d := sup
|x|≤1

∑
y∈Zd
〈y + x〉−d−1 <∞. (2.37)

Let N ∈ N, k ≥ 2, G ⊆ Rd, and M := N + d + 1. Then (2.35) implies that, for

p ∈ {1, 2} and for all v, w ∈ Rd,

‖χQv [AG]kχQw‖p ≤
∑

y1,...,yk−1∈Zd
‖χQvAχQy1‖2

( k−2∏
j=1

‖χQyjAχQyj+1
‖
)
‖χQyk−1

AχQw‖2

≤ c̃kM,a

∑
y1,...,yk−1∈Zd

〈v − y1〉−M
( k−2∏
j=1

〈yj − yj+1〉−M
)
〈yk−1 − w〉−M

≤ c̃kM,a

[
2N/2c′d

]k−1〈v − w〉−N . (2.38)
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Here we have used Peetre’s inequality,

〈x− y〉N 〈y − z〉N ≥ 2−N/2〈x− z〉N , for x, y, z ∈ Rd, (2.39)

and the definition of c′d, see (2.37). Setting

cN := c̃M2N/2c′d,

(2.36) follows and the proof of the lemma is complete. �

Proof of Proposition 2.12. Let h be an entire function of the form h(z) =
∞∑
k=2

dkz
k. Then Lemma 2.14 implies that

‖χQv∩Λ

[
h(AΛ)− h(AΩ)

]
χQw‖1 ≤ C ′h,a,N 〈v − w〉−N , (2.40)

where

C ′h,a,N := 2
∑
k≥2

|dk|
[
cN |a|N+d+1

]k
,

and cN is the constant in Lemma 2.14. As we may interpolate with (2.40), it suffices

to show that

‖χQv∩Λ

[
h(AΛ)− h(AΩ)

]
χQw‖1 ≤ C ′′h,a,N 〈dist(v,Ω \ Λ)〉−N 〈dist(w,Ω \ Λ)〉−N ,

(2.41)

for an appropriate constant C ′′h,a,N . Again, we first prove (2.41) for monomials h(z) =

zk, k ≥ 2. Defining for m,n ∈ N0 the operators

τmn := χQv [AΛ]mχΛAχΩ\Λ[AΩ]nχQw ,

one gets that

χQv∩Λ

(
[AΛ]k − [AΩ]k

)
χQw =

k−1∑
l=0

χQv∩Λ[AΛ]k−l−1(AΛ −AΩ)[AΩ]lχQw

= −χΛ

k−1∑
l=0

τk−l−1,l. (2.42)

Fix the numbers M and M ′, depending on N and d:

M := N + d+ 1, M ′ := N + 2d+ 2 = M + d+ 1.

Moreover, define for any set G ⊆ Rd the corresponding lattice point neighbourhood

G+ := {y ∈ Zd : Qy ∩G 6= ∅}. (2.43)
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We apply Lemma 2.14 and estimate as in (2.38) to deduce that, for m,n ∈ N,

‖τmn‖1 ≤
∑
x∈Λ+

y∈(Ω\Λ)+

‖χQv [AΛ]mχQx‖2‖χQxAχQy‖‖χQy [AΩ]nχQw‖2

≤
∑
x∈Λ+

y∈(Ω\Λ)+

[
cM |a|M ′

]n+m+1〈v − x〉−M 〈x− y〉−M 〈y − w〉−M

.
[
cM |a|M ′

]n+m+1〈dist(v,Ω \ Λ)〉−N 〈dist(w,Ω \ Λ)〉−N . (2.44)

Here, the implied constants only depend on N . Similarly, we estimate for n ≥ 1,

‖τ0n‖1 ≤
∑

y∈(Ω\Λ)+

‖χQvAχQy‖2‖χQy [AΩ]nχQw‖2

≤
∑

y∈(Ω\Λ)+

[
cM |a|M ′

]n+1〈v − y〉−M 〈y − w〉−M

.
[
cM |a|M ′

]n+1〈dist(v,Ω \ Λ)〉−N 〈dist(w,Ω \ Λ)〉−N . (2.45)

In case Qw ∩ Ω \ Λ = ∅, one has that τm0 = 0, hence combining (2.42), (2.44), and

(2.45) gives

‖χQv∩Λ

(
[AΩ]k − [AΛ]k

)
χQw‖1 . k

[
cM |a|M ′

]k〈dist(v,Ω \ Λ)〉−N

× 〈dist(w,Ω \ Λ)〉−N , (2.46)

with implied constants only depending on N . If Qw ∩ Ω \ Λ 6= ∅, we estimate

‖τm0‖1 ≤ ‖χQv [AΛ]mχΛAχQw‖1

≤
∑
x∈Λ+

‖χQv [AΛ]mχQx‖2‖χQxAχQw‖2

≤
∑
x∈Λ+

[
cM |a|M ′

]m+1〈v − x〉−M 〈x− w〉−M

.
[
cM |a|M ′

]m+1〈dist(v,Ω \ Λ)〉−N ,

which together with (2.42), (2.44), and (2.45) again implies (2.46). The extension of

Estimate (2.46) to entire functions h of the form h(z) =
∞∑
k=2

dkz
k, and an interpolation

with (2.40) finishes the proof of the proposition. �

Proposition 2.12 implies two corollaries, which will be useful in applications. For

example, it follows from Corollary 2.15 that the coefficient a1(νE), see (2.5), is well-

defined.



50 2. A SZEGŐ LIMIT THEOREM FOR TRANSL.-INVAR. OPERATORS ON POLYGONS

Corollary 2.15. Suppose that the sets M, Λ, Ω ⊆ Rd satisfy

M ⊆ Λ ∩ Ω.

Moreover, assume that there exists β ≥ 0 and a constant Cβ ≥ 0 such that, for all

r > 0,

]{x ∈ M+ : dist(x,Λ4Ω) ≤ r} ≤ Cβ〈r〉β, (2.47)

where the set M+ ⊆ Zd is defined in (2.43).

Then we have that

χM

[
h(AΛ)− h(AΩ)

]
∈ S1.

Proof. An application of the triangle inequality shows that we may restrict

ourselves to the case that Λ ⊆ Ω. Applying Proposition 2.12 for N = d+ β + 1 and

the assumption M ⊆ Λ, one gets that

∥∥χM

[
h(AΛ)− h(AΩ)

]∥∥
1
≤
∑
v∈M+

w∈Zd

∥∥χQv∩Λ

[
h(AΛ)− h(AΩ)

]
χQw

∥∥
1

.
∑
v∈M+

w∈Zd

〈dist(v,Ω \ Λ)〉−d−β−1〈v − w〉−d−β−1

.
∑
v∈M+

〈dist(v,Ω \ Λ)〉−d−β−1

≤
∞∑
k=0

∑
v∈M+

k≤dist(v,Ω\Λ)≤k+1

〈k〉−d−β−1

.
∞∑
k=0

Cβ〈k + 1〉β〈k〉−d−β−1 <∞, (2.48)

where the implied constants depend on β, h, and a. This finishes the proof of the

corollary. �

The next corollary treats L-dependent sets M, Λ, and Ω. Here, the dependence

on L does not need to be linear, unlike for scaled sets. The corollary gives sufficient

conditions under which the spatial restriction of the operator h(AΛ) to M may be

replaced by the corresponding restriction of h(AΩ), with a super-polynomially small

error in trace norm, as L→∞.
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Corollary 2.16. Let M,Λ,Ω ⊆ Rd be sets that all possibly depend on the parameter

L ≥ 1. Suppose that

M ⊆ Λ ∩ Ω and dist(M,Λ4Ω) & L. (2.49)

Moreover, assume that there exists some β ≥ 0 and a constant Cβ ≥ 0, independent

of L, such that at least one of the following conditions is satisfied:

(i) ]M+ ≤ CβLβ.

(ii) Estimate (2.47) holds.

Then one has that ∥∥χM

[
h(AΛ)− h(AΩ)

]∥∥
1

= O(L−∞),

as L→∞.

Proof. As in the proof of Corollary 2.15, we may assume that Λ ⊆ Ω. Moreover,

similarly as in (2.48), an application of Proposition 2.12 yields∥∥χM

[
h(AΛ)− h(AΩ)

]∥∥
1
.
∑
v∈M+

〈dist(v,Ω \ Λ)〉−N ,

with implied constant depending on h, a, and N ≥ d + 1. If the estimate (i) holds,

then one easily concludes with (2.49) that∥∥χM

[
h(AΛ)− h(AΩ)

]∥∥
1
. Lβ−N ,

with implied constant depending on β,N, h, and a. Assuming (ii) instead, we obtain

as in the proof of Corollary 2.15 that∥∥χM

[
h(AΛ)− h(AΩ)

]∥∥
1
. L−N/2

∑
v∈M+

〈dist(v,Ω \ Λ)〉−N/2

. L−N/2,

where we chose N ≥ 2(d + β + 1) and the implied constants depend on N , β, h, a,

and the constant in (2.47). This finishes the proof of the corollary. �

2.3. Proof of Theorem 2.1: Localisation to the Corners of P

Fix ε > 0 to be chosen later and recall the definition (2.21) of V = V(ε), the

one-sided ε–neighbourhood of ∂P. As indicated in Subsection 2.1.4, we split V into

(almost) disjoint sets N(X), X ∈ Ξ(P), such that N(X) contains the part of V close
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to the vertex X, see Figure 1 on page 41. This induces a corresponding partition of

VL = L · V.

2.3.1. Partition of VL. Fix a vertex X ∈ Ξ(P) and recall that its adjacent

edges are named E(1)(X) and E(2)(X), see Subsection 2.1.1. It will be convenient to

introduce the following two choices for the unit normal and the unit tangent vector

at X:

(τ
(1)
X , ν

(1)
X ) := (−τE(1)(X), νE(1)(X)),

(τ
(2)
X , ν

(2)
X ) := (τE(2)(X), νE(2)(X)).

(2.50)

This definition ensures that τ
(1)
X and τ

(2)
X , considered as vectors at X, point into the

direction of the edges E(1)(X) and E(2)(X), respectively. For j = 1, 2, define the

tubes

T(j)(X) : = {tτ (j)
X + ξν

(j)
X : (t, ξ) ∈ [0, |E

(j)(X)|
2 ]× [0, ε]}, (2.51)

and set

N(X) :=
[
T(1)(X) ∪ T(2)(X) ∪Bε(0)

]
∩ C(X), (2.52)

see Figure 2. Then N(X) is a corner-neighbourhood of 0 ∈ Ξ(P−X) and we define

the corresponding neighbourhood at X ∈ Ξ(P) by

N(X) := X + N(X). (2.53)

Combining the scaled neighbourhoods NL(X) = L ·N(X), we arrive at the partition

0

T (2)(X)

T
(1

) (
X
)

|E (2)|/2

|E
(1

) |/
2

ε

Figure 2. The neighbourhood N(X) for a vertex X ∈ Ξ>(P)
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VL =
⋃

X∈Ξ(P)

NL(X). (2.54)

At this point we choose ε > 0 small enough such that the union (2.54) is disjoint up

to sets of zero two-dimensional Lebesgue measure.

2.3.2. Reduction to individual corner contributions. As in the formulation

of Theorem 2.1, let a ∈ W∞,1(R2) and assume that h is an entire function with

h(0) = 0. Notice that due to Lemma 2.9 the operators h(APL) and χPLh(A)χPL are

trace class, the trace of the latter operator being computed in (2.19). This gives us

the leading order term in the asymptotics (2.11):

trh(APL) = L2c2 + tr
(
χPL

[
h(APL)− h(A)

]
χPL

)
. (2.55)

Moreover, it follows from Corollary 2.15 that

χPL

[
h1(APL)− h1(A)

]
∈ S1,

where we recall the definition of the function h1(z) = h(z)− zh′(0). By construction,

we have that

dist(PL \ VL , R2 \PL) & L,

hence Corollary 2.16 with Assumption (i) implies that

tr
(
χPL

[
h(APL)− h(A)

]
χPL

)
= tr

(
χPL

[
h1(APL)− h1(A)

])
= tr

(
χVL

[
h1(APL)− h1(A)

])
+ O(L−∞).

In particular, we may from now on assume that h vanishes to second order at z = 0,

such that h1 = h. Also, we have reduced the proof of Theorem 2.1 to computing the

asymptotics of

tr
(
χVL

[
h(APL)− h(A)

])
=

∑
X∈Ξ(P)

tr
(
χNL(X)

[
h(APL)− h(A)

])
,

employing (2.54) for the latter equality. For fixed X ∈ Ξ(P), the translation-

invariance of the operator A implies that

tr
(
χNL(X)

[
h(APL)− h(A)

])
= tr

(
χNL(X)

[
h(A(P−X)L)− h(A)

])
,

with N(X) = N(X)−X, see (2.53). Moreover, it is not difficult to see that

dist
(
NL(X) , C(X)4(P−X)L

)
& L.
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Hence, Corollary 2.16 with Assumption (i) yields that

tr
(
χNL(X)

[
h(A(P−X)L)− h(A)

])
= tr

(
χNL(X)

[
h(AC(X))− h(A)

])
+ O(L−∞).

We emphasise that the trace

tr
(
χNL(X)

[
h(AC(X))− h(A)

])
(2.56)

depends on the polygon P only via the directions τ
(j)
X , j = 1, 2, and the length of the

edges adjacent to X. To compute its asymptotics for each X ∈ Ξ(P) is the object of

the next section.

2.4. Proof of Theorem 2.1: Asymptotics for a Fixed Corner of P

Throughout this section, we fix a vertex X ∈ Ξ(P). In particular, we shall omit

all arguments, sub- and superscripts “(X)”; for instance, we will write C = C(X)

and NL = NL(X). As before, let a ∈W∞,1(R2) and assume that h = h1 is an entire

function that vanishes to second order at z = 0. The main purpose of this section is

to obtain an asymptotic formula for (2.56), which will complete the proof of Theorem

2.1.

2.4.1. The L-term in the asymptotics. In the smooth boundary case, the

sub-leading order term in the asymptotics (1.12) is (at least morally) obtained via

approximation of the operator h(AΩL) by half-space operators: around x ∈ ∂ΩL, the

operator h(AΩL) is replaced by h(AHx) where Hx is the half-space approximation of

ΩL at x. Similarly, the half-spaces H(1) and H(2), see (2.7), locally model the sector

C in (2.56), as long as one stays away from the apex of the sector. Thus, to get

a first-order approximation to (2.56), the strategy is to replace the sector C by the

half-space H(j), j = 1, 2, on the part of NL close to ∂H(j) ∩ ∂ C. This philosophy

was used for right-angled cones in [76] and [25]. In the course of this section, we will

thus prove that

tr
(
χNL

[
h(AC)− h(A)

])
=

2∑
j=1

tr
(
χ
T
(j)
L

[
h(AH(j))− h(A)

])
+ O(1), (2.57)

as L→∞, see (2.51) and Figure 2 above for the definition of T(j). Here, the O(1)-term

contains the corner contribution at X to the coefficient c0 and a super-polynomial

error in L. The approximation (2.57) is useful since the invariance of the operator

h(AH(j)) − h(A) with respect to translations along the edge E(j) can be applied to
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scale out the length of the tube T
(j)
L . This is demonstrated in the next lemma, which

hence provides the L-term in the asymptotics of (2.56).

Lemma 2.17. Let j ∈ {1, 2} and set S(j) := SE(j), compare with (2.2). Then one

has that

tr
(
χ
T
(j)
L

[
h(AH(j))− h(A)

])
= L |E

(j)|
2 tr

(
χS(j)

[
h(AH(j))− h(A)

])
+ O(L−∞).

Proof. Fix j ∈ {1, 2} and omit the superscript “(j)” for the duration of the

proof. Moreover, we may assume after a suitable rotation that H = R × [0,∞) and

S = [0, 1]× [0,∞). Then it follows from Corollary 2.16 that

tr
(
χTL

[
h(AH)− h(A)

])
= tr

(
χ
L
|E|
2 ·S

[
h(AH)− h(A)

])
+ O(L−∞).

Here, the trace on the right-hand side is well-defined due to Corollary 2.15. Also,

the invariance of the operator h(AH) − h(A) with respect to translations in the x1-

direction implies that, for all x = (x1, x2) ∈ R2,

(h(AH)− h(A))(x1, x2;x1, x2) = (h(AH)− h(A))(0, x2; 0, x2).

Thus, a change of coordinates in the x1-variable finishes the proof of the lemma. �

2.4.2. Regularisation of sector operators. The key to finding the constant

order term in the asymptotics of (2.56) is a trace-class regularisation of the sector

operator h(AC) with the help of the half-space operators h(AH(j)), j = 1, 2, and the

full-space operator h(A). This regularisation is given in the next proposition. For its

proof we consider spatial restrictions of h(AC) to different parts of the sector C and

then compare these to the operators h(AH(j)), j = 1, 2, or h(A), depending on which

part of the sector we localise to. In that respect we follow the ideas of [25]. However,

instead of only looking at a right-angled convex cone, we tackle sectors of any angle;

in particular, we also deal with concave sectors. Moreover, our regularisation for

convex sectors C, see (2.58), does not require a partition of C. At the same time,

it is independent of the scaling parameter L, in contrast to the ones given in [25,

Thm. 2.2].

Proposition 2.18. Let L ≥ 1. If X ∈ Ξ<(P), then the operator

Z := χC

[
h(AC)− h(AH(1))− h(AH(2)) + h(A)

]
(2.58)
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is trace class with

‖χR2\BL(0)Z‖1 = O(L−∞), (2.59)

as L→∞.

If X ∈ Ξ>(P), then the operators

Z1 := χH(1)∩H(2)

[
h(AC)− h(A)

]
,

Z2 := χC\H(1)

[
h(AC)− h(AH(2))

]
,

Z3 := χC\H(2)

[
h(AC)− h(AH(1))

]
,

are trace class and, for every j = 1, 2, 3, one has that

‖χR2\BL(0)Zj‖1 = O(L−∞),

as L→∞.

Proof. As in the statement of the proposition we treat convex and concave

corners separately.

Convex corners, i.e. X ∈ Ξ<(P): we divide the semi-infinite sector C into two halves,

Cl := {y ∈ C : y · (ν(2) − ν(1)) ≥ 0},

Cr := {y ∈ C : y · (ν(1) − ν(2)) ≥ 0},

where we recall the definition (2.50) for ν(j) = ν
(j)
X . Then one can write

Z = χCl

[
h(AC)− h(AH(1))

]
+ χCr

[
h(AC)− h(AH(2))

]
+ χCl

[
h(A)− h(AH(2))

]
+ χCr

[
h(A)− h(AH(1))

]
.

Thus, Corollary 2.15 implies that the operator Z is trace class since the estimate

(2.47) with β = 1 is easily checked for all involved sets. Moreover, applying the same

splitting for Z, the bound (2.59) follows from Corollary 2.16.

Concave corners, i.e. X ∈ Ξ>(P): in the concave case we may directly apply Corol-

laries 2.15 and 2.16 to the operators Zj , j = 1, 2, 3; no further partition is required.

The claim follows as in the convex case, which finishes the proof of the proposition. �
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2.4.3. Contributions from non-right-angled corners. In the next subsec-

tion we will apply the regularisation for the sector operator h(AC) from Proposition

2.18 to find the asymptotics of the trace (2.56). As it turns out during this process,

non-perpendicular edges E(1) and E(2) generate an extra term of constant order.

Technically, this relies on the fact that the tubes T(j), which are responsible for the

L-term in the asymptotics, see Lemma 2.17, are rectangles. In this sense, they are

not compatible with interior angles γ /∈ {π2 ,
3π
2 }.

For the fixed vertex X ∈ Ξ(P), introduce the following sectors, which depend on

j ∈ {1, 2}, see Figure 3 below:

Γ(j) :=

{tτ
(j) + ξν(j) : 0 ≤ t < cot(γ)ξ}, γ ∈ (0, π2 ] ∪ (π, 3π

2 ],

{tτ (j) + ξν(j) : cot(γ)ξ < t ≤ 0}, γ ∈ [π2 , π) ∪ [3π
2 , 2π).

(2.60)

We will see in Subsection 2.4.4 that non-perpendicular edges E(1) and E(2) contribute

the constants

tr
(
χΓ(j)

[
h(AH(j))− h(A)

])
, j = 1, 2, (2.61)

to the asymptotics of (2.56). These traces are well-defined in view of Corollary 2.15

and the following lemma provides an alternative characterisation of (2.61).

Lemma 2.19. Let X ∈ Ξ(P) be a vertex of P and let Γ(j), j = 1, 2, be the sectors

introduced in (2.60). Moreover, let S(j) be the strip of unit width defined in Lemma

2.17. Then we have that, for j = 1, 2,

tr
(
χΓ(j)

[
h(AH(j))− h(A)

])
= | cot(γ)| tr

(
χS(j)M(x · νH(j))

[
h(AH(j))− h(A)

])
.

γ

0

Γ(2)

Figure 3. The sector Γ(2) for γ ∈ (π2 , π)
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Proof. Fix X ∈ Ξ(P). Without loss of generality suppose that γ ∈ (0, π/2] and

j = 2, and, for the matter of readability, omit the superscript “(2)”. The other cases

can be reduced to this one via a symmetry argument. After a suitable rotation we

may also assume that H = R × [0,∞), Γ = {(x1, x2) ∈ H : 0 ≤ x1 ≤ cot(γ)x2},

and S = [0, 1] × [0,∞). Splitting the strip S into unit cubes, one easily gets from

Proposition 2.12 that the operator

χSM(x2)
[
h(AH)− h(A)

]
is trace-class. In view of Corollary 2.15, we likewise have that

χΓ

[
h(AH)− h(A)

]
∈ S1. (2.62)

Furthermore, as in the proof of Lemma 2.17, the invariance of the operator h(AH)−

h(A) with respect to translations in the x1-direction implies that, for all x = (x1, x2) ∈

R2,

(h(AH)− h(A))(x1, x2;x1, x2) = (h(AH)− h(A))(0, x2; 0, x2).

By Lemma 2.11 this kernel is continuous on Γ × Γ ⊂ H ×H, so [14, Thm. 3.5] and

(2.62) ensure that it is integrable on Γ × Γ. Hence, we may apply Fubini’s theorem

to arrive at

tr
(
χΓ

[
h(AH)− h(A)

])
=

∫
Γ

dx1dx2 (h(AH)− h(A))(0, x2; 0, x2)

=

∞∫
0

dx2

cot(γ)x2∫
0

dx1 (h(AH)− h(A))(0, x2; 0, x2)

= cot(γ)

∞∫
0

dx2 x2 (h(AH)− h(A))(0, x2; 0, x2)

= cot(γ)

1∫
0

dx1

∞∫
0

dx2 x2 (h(AH)− h(A))(0, x2; 0, x2)

= cot(γ) tr
(
χSM(x2)

[
h(AH)− h(A)

])
.

This finishes the proof of the lemma. �
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2.4.4. Complete asymptotics. Equipped with Proposition 2.18 and Lemmas

2.17 and 2.19, we are now ready to extract the asymptotics from (2.56). As the

regularisation for the sector operators in Proposition 2.18 depends on the type of the

sector, we naturally have to distinguish convex and concave corners of the polygon

PL. Propositions 2.20 and 2.21 contain the respective results.

Proposition 2.20 (Convex corners). Let X ∈ Ξ<(P). Then we have that

tr
(
χNL [h(AC)− h(A)]

)
= L

2∑
j=1

|E(j)|
2 tr

(
χS(j)

[
h(AH(j))− h(A)

])
+ tr

(
χC

[
h(AC)− h(AH(1))− h(AH(2)) + h(A)

])
− cot(γ)

2∑
j=1

tr
(
χS(j)M(x · νH(j))

[
h(AH(j))− h(A)

])
+ O(L−∞),

as L→∞.

Proof. We write

tr
(
χNL

[
h(AC)− h(A)

])
= tr

(
χNL

[
h(AC)− h(AH(1))− h(AH(2)) + h(A)

])
+

2∑
j=1

tr
(
χNL

[
h(AH(j))− h(A)

])
. (2.63)

Proposition 2.18 implies that the operator

χC

[
h(AC)− h(AH(1))− h(AH(2)) + h(A)

]
is trace class with

tr
(
χC\NL

[
h(AC)− h(AH(1))− h(AH(2)) + h(A)

])
= O(L−∞),

since dist(0, C \ NL) & L. Thus it remains to find the asymptotics for

tr
(
χNL

[
h(AH(j))− h(A)

])
, j = 1, 2.

Recall the definition (2.60) of the sectors Γ(j) and define its finite sections

Γ(j)[r] := {y ∈ Γ(j) : y · ν(j) ≤ r}, j = 1, 2, r ≥ 0.

Applying the definition of N, see (2.52), and Corollary 2.16, we get that

tr
(
χNL

[
h(AH(j))− h(A)

])
= tr

(
χ
T
(j)
L

[
h(AH(j))− h(A)

])
+ sgn(γ − π

2 ) tr
(
χΓ(j)[εL]

[
h(AH(j))− h(A)

])
+ O(L−∞).
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Furthermore, Lemma 2.17 and another application of Corollary 2.16 yield that

tr
(
χNL

[
h(AH(j))− h(A)

])
= L|E(j)|

2 tr
(
χS(j)

[
h(AH(j))− h(A)

])
+ sgn(γ − π

2 ) tr
(
χΓ(j)

[
h(AH(j))− h(A)

])
+ O(L−∞).

Hence, the claim follows from Lemma 2.19 and (2.63). �

Proposition 2.21 (Concave corners). Let X ∈ Ξ>(PL). Then we have that

tr
(
χNL [h(AC)− h(A)]

)
= L

2∑
j=1

|E(j)|
2 tr

(
χS(j)

[
h(AH(j))− h(A)

])
+ tr

(
χH(1)∩H(2)

[
h(AC)− h(A)

])
+ tr

(
χC\H(1)

[
h(AC)− h(AH(2)

])
+ tr

(
χC\H(2)

[
h(AC)− h(AH(1)

])
− cot(γ)

2∑
j=1

tr(χS(j)M(x · νH(j))
[
h(AH(j))− h(A)

])
+ O(L−∞).

as L→∞.

Proof. The proof is analogous to the convex case. We write

tr
(
χNL [h(AC)− h(A)]

)
=η1(L) + η2(L),

with

η1(L) := tr
(
χNL∩H(1)∩H(2)

[
h(AC)− h(A)

])
+ tr

(
χNL∩C\H(1)

[
h(AC)− h(AH(2))

])
+ tr

(
χNL∩C\H(2)

[
h(AC)− h(AH(1))

])
,

and

η2(L) := tr
(
χNL∩C\H(1)

[
h(AH(2))− h(A)

])
+ tr

(
χNL∩C\H(2)

[
h(AH(1))− h(A)

])
.

Proposition (2.18) implies that

η1(L) = tr
(
χH(1)∩H(2)

[
h(AC)− h(A)

])
+ tr

(
χC\H(1)

[
h(AC)− h(AH(2))

])
+ tr

(
χC\H(2)

[
h(AC)− h(AH(1))

])
+ O(L−∞).

Moreover, we notice that the sectors C \ H(j), j = 1, 2, have an interior angle of

γ−π ∈ (0, π). This and the fact that cot(γ−π) = cot(γ) explains why the contribution
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of η2(L) to the asymptotics is the same as in the convex case. Alternatively, one easily

gets that, for instance,

tr
(
χNL∩C\H(1)

[
h(AH(2))− h(A)

])
= tr

(
χ
T
(2)
L

[
h(AH(2))− h(A)

])
+ sgn(γ − 3π

2 ) tr
(
χNL∩Γ(2)

[
h(AH(2))− h(A)

])
.

Thus, as in the convex case the claim follows from Corollaries 2.15 and 2.16, and

Lemmas 2.17 and 2.19. �

The proof of Theorem 2.1 is now complete:

Proof of Theorem 2.1. Subsection 2.3.2 implies that for h = h1,

tr
(
χPL

[
h(APL)− h(A)

]
χPL

)
=

∑
X∈Ξ(P)

tr
(
χNL(X)

[
h(AC(X))− h(A)

])
+ O(L−∞).

Hence, it follows from Propositions 2.20 and 2.21 that

tr
(
χPL

[
h(APL)− h(A)

]
χPL

)
= Lc1 + c0 + O(L−∞).

In view of (2.55), this finishes the proof of the theorem. �

2.5. Proof of Theorem 2.3

Fix an edge E ∈ E(P). It suffices to prove the theorem for test functions h of the

form h(z) =
∞∑
k=2

dkz
k since both sides of (2.13) and (2.14) vanish for linear functions

h. Moreover, we may assume after a suitable rotation that HE = H = R × [0,∞),

i.e. SE = S = [0, 1]× [0,∞). Thus, we have that

aE,t(ξ) = a(t, ξ) =: at(ξ), (t, ξ) ∈ R2.

Define, for α ∈ {0, 1} and fixed t ∈ R, the operator

Bα(t) := M(xα)
[
h{W (at)} −W (h ◦ at)

]
,
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which acts on L2(R). Proposition 2.12 implies that, for α ∈ {0, 1} and t ∈ R,∥∥Bα(t)
∥∥

1
≤
∞∑
n=1

∥∥M(xα)χ[n−1,n]

[
h{A[0,∞)(at)} − h{A(at)}

]
χ[0,∞)

∥∥
1

≤
∞∑
n=1

∥∥M(xα)χ[n−1,n]

∥∥∥∥χ[n−1,n]

[
h{A[0,∞)(at)} − h{A(at)}

]∥∥
1

.
∞∑
n=1

nα〈n− 1〉−3
∞∑
k=2

k|dk|
[
C3|at|12

]k
.
∞∑
k=2

k|dk|
[
C3|at|12

]k
<∞.

Hence, in view of Lemma 2.10 we have that (t 7→ ‖Bα(t)‖1) ∈ L1(R) ∩ L∞(R).

In particular, the right-hand sides of (2.13) and (2.14) are well-defined under our

assumptions on h and a.

Introduce the unitary (identification) map

J : L2(R2)→ L2
(
R,L2(R)

)
, (Jf)(t) := f(t, · ).

Moreover, define the partial Fourier transforms F1, F2 on L2(R2) that only act on

the first and second variable, respectively. To obtain the identities (2.13) and (2.14),

we first prove that

M(xα2 )
[
h(AH)− χHh(A)χH

]
= F∗1J

∗BαJF1, (2.64)

where Bα :=
⊕∫
R
dtBα(t) acts on L2

(
R,L2(R)

)
. For an introduction to direct integral

operators see for example [55]. To verify (2.64), notice that

F1χH = χHF1,

hence

AH = χHF∗1F
∗
2aF2F1χH = F∗1χHF∗2aF2χHF1.

Moreover, the definition of J yields that

χHF∗2aF2χH = J∗
⊕∫

R

dtW (at) J,

implying that

h(AH) = F∗1J
∗h
( ⊕∫
R

dtW (at)
)
JF1 = F∗1J

∗
⊕∫

R

dt h{W (at)}JF1. (2.65)
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Similarly, one gets that

χHh(A)χH = AH(h ◦ a) = F∗1J
∗
⊕∫

R

dtW (h ◦ at) JF1. (2.66)

Thus, combining (2.65) and (2.66) gives

M(xα2 )χH

[
h(AH)− h(A)

]
χH = M(xα2 )F∗1J

∗
⊕∫

R

dtB0(t)JF1 = F∗1J
∗
⊕∫

R

dtBα(t) JF1,

which proves (2.64).

As a consequence of (2.64), the coefficients a1(νE) and a0(νE) are given by the

traces of the operators χSB̃αχS , α = 0, 1, where

B̃α := F∗1J
∗BαJF1.

In order to calculate these traces, we evaluate the quadratic form of B̃α on product

states. Namely, for φ, ψ ∈ L2(R), we have that〈
φ⊗ ψ, B̃α(φ⊗ ψ)

〉
L2(R2)

=
〈
J((Fφ)⊗ ψ), BαJ((Fφ)⊗ ψ)

〉
L2(R,L2(R))

=

∫
R

dt
〈
(Fφ)(t)ψ, (Fφ)(t)Bα(t)ψ

〉
L2(R)

=

∫
R

dt |(Fφ)(t)|2〈ψ,Bα(t)ψ〉L2(R). (2.67)

Choose now an orthonormal basis {ψn}n∈N of L2(R), so that {ψn ⊗ ψm}n,m∈N is an

orthonormal basis of L2(R2). Then (2.67) implies that

tr
(
χSB̃αχS

)
=
∑
n,m∈N

〈ψn ⊗ ψm, χSB̃αχSψn ⊗ ψm〉L2(R2)

=
∑
n,m∈N

∫
R

dt |F(χ[0,1]ψn)(t)|2〈ψm, Bα(t)ψm〉L2(R).

As we have the estimate∑
m∈N

∣∣〈ψm, B(t)ψm〉L2(R)

∣∣ ≤ ‖Bα(t)‖1 ∈ L∞(R),

we may apply Fubini’s theorem to get that

tr(χSB̃αχS) =
∑
n∈N

∫
R

dt |F(χ[0,1]ψn)(t)|2 trBα(t)

=
∑
n∈N
〈ψn, χ[0,1]F

∗ trBα( · )Fχ[0,1]ψn〉L2(R).
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Hence, employing the fact that trBα( · ) ∈ L1(R), we arrive at

tr(χSB̃αχS) = tr
(
χ[0,1]F

∗ trBα( · )Fχ[0,1]

)
= (trBα)̂(0) =

1

2π

∫
R

dt trBα(t).

This finishes the proof of Theorem 2.3.

2.6. Radially Symmetric Symbols – Proof of Theorem 2.5

As in the statement of Theorem 2.5, assume that the symbol a is radially sym-

metric and the test function h is a quadratic polynomial, i.e. h(z) = z2 + dz for some

d ∈ C. The coefficient c2 = c2(P, h, a) is easily computed from Theorem 2.1. Recall

also that the linear part of h does not contribute to the coefficients c1 and c0, so we

may assume in the following that h(z) = z2. To compute c1 and a0(νE), E ∈ E(P),

we apply Theorem 2.3. This is done in the next lemma.

Lemma 2.22. Let h(z) = z2 and assume that a ∈W∞,1(R2) is radially symmetric.

Then the coefficients c1, a0(νE) in Theorem 2.1 satisfy the equations

c1 = −2 |∂P|
∞∫

0

dr r2ǎ(r)2,

∑
E∈E(P)

F (E) a0(νE) =
∑

X∈Ξ(P)

π

2
cot(γX)

∞∫
0

dr r3ǎ(r)2.

Proof. We first notice that the radial symmetry of the symbol implies that

aE,t(ξ) = a(t, ξ) = at(ξ) for all E ∈ E(P), and t, ξ ∈ R. Furthermore, we make use

of the formulae (2.13) and (2.14) in Theorem 2.3. Similarly as in [82], one calculates

that, for α ∈ {0, 1}, t ∈ R,

− tr
(
M(xα)

[
W (at)

2 −W (a2
t )
])

=

∞∫
0

dxxα
0∫

−∞

dy ǎt(x− y)ǎt(y − x)

=

∞∫
0

dxxα
∞∫
x

dy ǎt(y)ǎt(−y)

=

∞∫
0

dy ǎt(y)ǎt(−y)

y∫
0

dxxα

=
1

2

∞∫
−∞

dy
|y|α+1

α+ 1
ǎt(y)ǎt(−y).
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Parseval’s identity in the t-variable and the radial symmetry of ǎ imply that

− 1

2π

∫
R

dt tr
(
M(xα)

[
W (at)

2 −W (a2
t )
])

=
1

4π

∫
R

dt

∫
R

dy
|y|α+1

α+ 1
ǎt(y)ǎt(−y)

=
1

2

∫
R

dy1

∫
R

dy2
|y2|α+1

α+ 1
ǎ(−y1, y2)ǎ(y1,−y2)

=
1

2

∞∫
0

dr r

2π∫
0

dθ
|r sin(θ)|α+1

α+ 1
ǎ(r)2

=


2
∞∫
0

dr r2ǎ(r)2, α = 0,

π
4

∞∫
0

dr r3ǎ(r)2, α = 1.

Hence, the claim follows from Theorem 2.3 and the definition of F (E), see (2.3). �

It remains to compute the coefficients b0(X), X ∈ Ξ(P), from formulae (2.9) and

(2.10). This calculation is performed in the next lemma.

Lemma 2.23. Let h(z) = z2 and assume that the symbol a ∈ W∞,1(R2) is radially

symmetric.

Then for every X ∈ Ξ(P) the formula

b0(X) =
1− γX cot(γX)

2

∞∫
0

dr r3ǎ(r)2 (2.68)

holds.

Proof. Fix X ∈ Ξ(P) and omit the subscript or argument “(X)” for the du-

ration of the proof. As usual, we treat the cases of convex and concave corners

separately.

First, let X ∈ Ξ<(P). Then, due to the radial symmetry of a, we may assume

that

C = {(r cos(θ), r sin(θ)) : r ≥ 0, θ ∈ [0, γ]}, (2.69)

with γ ∈ (0, π). From (2.9) one gets that

b0 = tr
[
χC

(
[AC]2 − [AH(1) ]2 − [AH(2) ]2 +A2

)]
= tr

(
χCAχ−CAχC

)
, (2.70)
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and evaluating the trace gives

b0 =

∫
C

dx

∫
−C

dy ǎ(x− y)2 =

∫
C

dx

∫
x+ C

dy ǎ(y)2 =

∫
C

dy ǎ(y)2 |(y − C) ∩ C| .

For the last equality we have used the fact that x ∈ C and y ∈ x + C is equivalent

to y ∈ C and x ∈ (y − C) ∩ C. Applying (2.69) and the assumption that γ ∈ (0, π),

one easily computes that, for y ∈ C,

|(y − C) ∩ C| = y1y2 − cot(γ)y2
2.

Hence, the radial symmetry of a yields∫
C

dy ǎ(y)2 |(y − C) ∩ C| =
∞∫

0

dr r3ǎ(r)2

γ∫
0

dθ cos(θ) sin(θ)− cot(γ) sin2(θ)

=
1− γ cot(γ)

2

∞∫
0

dr r3ǎ(r)2,

and the claim follows for X ∈ Ξ<(P).

Secondly, let X ∈ Ξ>(P). Then we get from (2.10) that

b0 = tr
[
χH(1)∩H(2)

(
[AC]2 −A2

)]
+ tr

[
χC\H(1)

(
[AC]2 − [AH(2) ]2

)]
+ tr

[
χC\H(2)

(
[AC]2 − [AH(1) ]2

)]
= − tr

(
χH(1)∩H(2)Aχ−H(1)∩H(2)AχH(1)∩H(2)

)
+

2∑
j=1

tr
(
χC\H(j)Aχ−C\H(j)AχC\H(j)

)
.

Note that H(1) ∩H(2) and C \H(j), j = 1, 2, are convex sectors with interior angles

2π − γ and γ − π, respectively. Thus, the formulae (2.70) and (2.68) for X ∈ Ξ<(P)

yield

b0 =
[
− 1− (2π − γ) cot(2π − γ)

2
+ 1− (γ − π) cot(γ − π)

] ∞∫
0

dr r3ǎ(r)2

=
1− γ cot(γ)

2

∞∫
0

dr r3ǎ(r)2.

This finishes the proof of the lemma. �

Theorem 2.5 follows now from combining Lemmas 2.22 and 2.23.



CHAPTER 3

One-Dimensional Periodic Schrödinger Operators

Throughout this chapter, we give an introduction to periodic Schrödinger oper-

ators in dimension one. This builds the foundation for Chapter 4, where we obtain

formulae of Szegő type for these operators. Essentially, the present chapter expands

[54, Sec. 2], which is part of joint work with Alexander V. Sobolev. However, we give

here a gentler introduction to the material and carry out the proofs in more details.

Let V ∈ L2
loc(R) be a real-valued and 2π-periodic function. As in (1.22), we

consider the periodic Schrödinger operator

H := − d2

dx2
+ V (x), dom(H) = H2(R) ⊂ L2(R),

in dimension one, which constitutes a densely defined operator on L2(R). Treating H

as a perturbation of the free Laplacian H0 := − d2

dx2
, which is self-adjoint on H2(R),

it follows from the Kato-Rellich theorem that H is self-adjoint on the same domain:

indeed, V is H0-bounded with relative bound 0, see e.g. [74, Lem. 9.33]. In particular,

H is bounded from below. The characteristic properties of the operator H result

from its (discrete) translation symmetry, i.e. the fact that H commutes with the shift

operator

(T2πψ)(x) := ψ(x+ 2π), ψ ∈ L2(R).

The latter suggests that the operators H and T2π admit a common basis of generalised

eigenfunctions. These can indeed be constructed and will be labelled by the quasi-

momentum k ∈ T := R/Z, which indicates the corresponding (generalised) eigenvalue

e2πik of the operator T2π. A detailed spectral analysis of H with the help of Floquet-

Bloch theory is presented in the next section.

3.1. Floquet-Bloch Theory

Throughout this section, we follow the standard references [55, Sec. XIII.16], [75,

Sec. 5.6]. However, while the potential V in [55] and [75] is assumed to be piecewise

continuous with finite jumps, we stick to the milder assumption V ∈ L2
loc. We remark

67
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at this point that the proofs of the cited results from [55] all remain valid, replacing

the boundedness of V by its relative boundedness with respect to H0. Also the

standard ODE theory holds for our class of potentials, see [74, Thm. 9.1].

Define the Floquet-Bloch-Gelfand transform

U : L2(R) −→ L2
(
T,L2(0, 2π)

)
,T = R/Z,

given by

(Uψ)(x, k) :=
∑
γ∈2πZ

e−ikγψ(x+ γ), k ∈ T, x ∈ [0, 2π],

for Schwartz class functions or L2(R)-function with compact support. The operator

U is easily checked to extend as a unitary operator to the entire L2(R), see [55, Lem.,

p. 289]. Moreover, the following proposition shows that U decomposes the operator

H into operators H(k) corresponding to each quasi-momentum channel k.

Proposition 3.1 ([55, Thm. XIII.88]). Under U the periodic Schrödinger operator

H transforms into the direct integral

UHU∗ =

⊕∫
T

dkH(k),

with self-adjoint fibres

H(k) = − d2

dx2
+ V (x),

dom
(
H(k)

)
= {f ∈ H2(0, 2π) : f(2π) = e2πikf(0), f ′(2π) = e2πikf ′(0)}, (3.1)

that are well-defined for k ∈ T.

Remark 3.2. The operator
⊕∫
T
dkH(k) acts on g ∈ L2(T,L2(0, 2π)) with g(k) :=

g( · , k) ∈ dom(H(k)) by

( ⊕∫
T

dkH(k)g
)
(k) = H(k)g(k), k ∈ T.

For an introduction to direct integral operators see [55, pp. 280-287].

The fibre operators H(k) contain all the spectral information for the operator

H. To begin with, a direct computation shows that, if V ≡ 0, the operator H(k)

has compact resolvent for each k ∈ T. Moreover, this resolvent is analytic in k so

that k 7→ H(k) extends to an analytic family in a neighbourhood of T, see [55, Lem.,
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p. 292]. These properties carry over to the case V 6≡ 0 using the relative boundedness

of V with respect to the unperturbed operator. Consequently, each operator H(k)

has a discrete spectrum that consists of eigenvalues

λ1(k) ≤ λ2(k) ≤ . . . , (3.2)

labelled in ascending order counting multiplicity. Moreover, the standard analytic

perturbation theory is applicable to the family of operators k 7→ H(k). In the follow-

ing, we will make an extensive analysis of the eigenvalues λj( · ) and the corresponding

eigenspaces. This ultimately leads to the following well-known result, for whose proof

we refer to [55].

Proposition 3.3 ([55, Thm. XIII.90]). The spectrum σ(H) of the operator H is

purely absolutely continuous. Moreover, let

kj :=


0, j odd,

1
2 , j even.

(3.3)

and

µj := λj(kj), νj := λj
(
kj + 1

2

)
, σj := [µj , νj ], j = 1, 2, . . . .

Then σ(H) is represented as the union of the spectral bands σj:

σ(H) =

∞⋃
j=1

σj ,

with non-degenerate intervals σj, i.e. |σj | > 0 for every j = 1, 2, . . . .

In the next proposition we summarise the properties of the eigenvalues λj(k).

The points k = 0 and k = 1
2 will play a special role, so it makes sense to introduce

temporarily the notation

T0 := T \
(
{0} ∪ {1

2}
)
.

Proposition 3.4. Let H(k), k ∈ T, be as defined above. Then

(i) For every k ∈ T, the operators H(k) and H(−k) are anti-unitarily equivalent

under complex conjugation. In particular, one has that λj(−k) = λj(k) for all

k ∈ T.

(ii) The eigenvalues λj(k) are continuous functions of k ∈ T. Moreover, they are

simple and analytic on T0.
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(iii) For j odd (resp. even), each λj( · ) is strictly increasing (resp. decreasing) on

(0, 1
2).

(iv) If for some j we have that λj−1(kj) = λj(kj), then it holds that

λ′l(kj±) 6= 0, l = j − 1, j. (3.4)

In particular, in a neighbourhood of kj, the eigenvalues λj−1 and λj are analytic

continuations of each other.

Remark 3.5. As a consequence of (i)–(iii), we have in Proposition 3.3 that νj ≤ µj+1,

j = 1, 2, . . . , and the bands σj can not overlap, but at most touch. If σj−1 and σj

touch, as in (iv), then the analytic continuation of λj−1 through kj is λj+1.

Proof. Let us comment on the main ingredients for the proof of the proposi-

tion. Properties (i)–(iii) are standard facts, which are proved, for instance, in [55,

Thm. XIII.89]. Property (iv) is less well-known; to the author’s knowledge, it has

not been mentioned in the literature before. As a basis for the proof of (iv) we also

paraphrase the ideas for the proofs of (i)–(iii), mainly following [55].

The anti-unitary equivalence (i) follows directly from the definition of H(k) and

it implies that the eigenvalues λj(k), j = 1, 2, . . . , are even functions of k.

These eigenvalues can have multiplicity at most 2 since, for every fixed E ∈ C,

the space of solutions to the ODE

−u′′ + V u = Eu (3.5)

is two-dimensional, see [74, Thm. 9.1]. Besides, the antiunitary equivalence (i) im-

plies that the eigenvalues of H(k) are simple as long as k ∈ T0: if E is an eigenvalue

for H(k) for some k ∈ T0, then it is also an eigenvalue for H(−k) and corresponding

eigenfunctions are linearly independent since they satisfy distinct boundary condi-

tions. As mentioned above, k 7→ H(k) constitutes an analytic family in a neigh-

bourhood of the real axis. Thus, Rellich’s theorem, see [56, Satz 2], implies that –

away from potential branching points – the eigenvalues of H(k) can be described by

analytic functions of k. In fact, the self-adjointness of H(k) ensures that no such

branching points exist for k ∈ T, see [35, Ch. II, Thm. 1.10]. In particular, the eigen-

values λj( · ), j = 1, 2, . . . , are analytic on T0 since they are simple there. In addition,

every eigenvalue λj( · ) must have analytic continuations through k = 0 and k = 1
2 ,

where it potentially crosses the eigenvalues λj−1 or λj+1. Looking at k = kj , this
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λj

λj−1

k = kj

λj

λj−1λ

k = kj

Figure 4. Eigenvalues λj−1 and λj around k = kj . If there is a gap

between the bands σj−1 and σj (as on the left), then the eigenvalues

are analytic at k = kj with λ′l(kj) = 0 for l = j − 1, j. However, if

the bands σj−1 and σj touch, then λ′l(kj±) 6= 0, l = j − 1, j, and the

eigenvalues λj−1 and λj are not analytic at kj , but they are analytic

continuations of each other at this point. For instance, the function λ

(dashed curve) is analytic.

continuation is undoubtedly λj if λj(kj) is simple. However, it might also be λj−1

in case λj−1(kj) = λj(kj). In the following, we shall see that the latter is actually

the only possible analytic continuation when λj(kj) is a double eigenvalue, see also

Figure 4. In any case, the functions λj( · ) are continuous on T, which finishes the

proof of (ii).

Property (iii) is more subtle: that λ1(0) constitutes the minimum of the spectrum

of H is a consequence of the semi-group e−tH(0), t > 0, being positivity improving,

which can be proved as in [74, Thm. 10.12]. The monotonicity of the functions λj(·)

then follows from carefully studying the Floquet discriminant for the ODE (3.5), see

(3.6).

Assume now that λj−1(kj) = λj(kj) for some j, i.e. that λj(kj) is a double

eigenvalue of H(kj). By previous arguments, this double eigenvalue is the inter-

section point of two analytic eigenvalue functions around kj . Let λ = λ(k) be the

analytic eigenvalue on (kj − 1
2 , kj + 1

2) that coincides with λj−1 on (kj − 1
2 , kj).
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In order to prove that λ(k) = λj(k) for k ∈ (kj , kj + 1
2) it suffices to show that

λ′(kj) 6= 0. For if λj−1 was analytic at kj its axis symmetry around kj would imply

that 0 = λ′j−1(kj) = λ′(kj). Let u1(x) = u1(E, x), u2(x) = u2(E, x) be the unique

solutions of (3.5) with u1(0) = 1, u′1(0) = 0, and u2(0) = 0, u′2(0) = 1, respectively.

Then the Floquet discriminant for (3.5), defined by

D(E) := tr

u1(E, 2π) u2(E, 2π)

u′1(E, 2π) u′2(E, 2π)

 = u1(E, 2π) + u′2(E, 2π), (3.6)

is an entire function of E, see again [74, Thm. 9.1], and satisfies the relation

D(λ(k)) = 2 cos(2πk) (3.7)

in a neighbourhood of k = kj , as well as

D(λ(kj)) ∈ {−2, 2}, D′(λ(kj)) = 0,

see [55, p. 296]. Differentiating (3.7) twice gives

D′′(λ(k))[λ′(k)]2 +D′(λ(k))λ′′(k) = −4π2D(λ(k)),

thus at k = kj one has that

D′′(λ(kj))[λ
′(kj)]

2 = −4π2D(λ(kj)) ∈ {±8π2}.

Consequently, we arrive at

[λ′(kj)]
2 =
−4π2D(λ(kj))

D′′(λ(kj))
6= 0,

hence the analytic continuation of λj−1 through kj is indeed λj and (3.4) is proved. �

It is natural to split the spectrum of H into its connected components, which we

will call genuine (spectral) bands. Every genuine spectral band S ⊂ σ(H) is a closed

interval formed by the finite or infinite union of bands σj , see Proposition 3.3 and

Remark 3.5. For a fixed genuine band S, define

jS : = min{j : σj ⊂ S}

nS : = ]{j : σj ⊂ S},
(3.8)

so that S is of the form

S =

nS−1⋃
l=0

σjS+l. (3.9)
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Note that we have that σjS−1 ∩ σjS = ∅ (if jS ≥ 2) and σjS+nS−1 ∩ σjS+nS = ∅ (if

nS < ∞). With the help of Proposition 3.4, we can somewhat simplify the spectral

structure of H inside S. Indeed, set

κ = κS := kjS , (3.10)

see (3.3), and define on [κS−nS/2, κS +nS/2] the real-valued function Λ(k) = ΛS(k)

by

Λ(k) := λjS+l(k), k ∈
[
κS +

l

2
, κS +

l + 1

2

]
, l = 0, 1, . . . , nS − 1,

Λ(k) := Λ(2κS − k), k ∈
[
κS −

nS
2
, κS

]
.

(3.11)

Note that k ∈ R is identified here (and in the following) with its fractional part

in T when we evaluate the functions λj( · ), j = 0, 1, 2, . . . , or H( · ). According

to Proposition 3.4, see also Remark 3.5, the function Λ = ΛS is nS-periodic and

analytic on the circle nST = R/nSZ. Moreover, it is monotonically increasing in

k ∈ [κS , κS + nS/2], and symmetric in k = κS . Here, we use the convention that

∞T = R and some of the closed intervals need to be replaced by semi-closed intervals

when nS =∞.

For the fixed genuine band S, let us also consider the family of one-dimensional

projections P (k) = PS(k) on L2(0, 2π) that is analytic on nST and coincides with

the eigenprojection for the simple eigenvalue Λ(k) of H(k) for k ∈ nST\{κS ± l
2 , l =

1, 2, . . . nS − 1}. This family of projections exists by [35, Thm. 1.10]. The following

proposition constructs a corresponding analytic family of normalised eigenfunctions,

which has convenient symmetry properties.

Proposition 3.6. Let S ⊂ σ(H) be a genuine spectral band and let Λ = ΛS be

defined as in (3.11). Consider the analytic family of one-dimensional projections

P (k) = PS(k) from above. Then there exists a corresponding family of eigenfunctions

Φ(k) = ΦS(k) ∈ ranP (k),

H(k)Φ(k) = Λ(k)Φ(k), k ∈ nST, (3.12)

such that

(i) k 7→ Φ(k) is nS-periodic in k and analytic as a function nST→ L2(0, 2π),

(ii) Φ(k) ∈ dom(H(k)) is normalised on L2(0, 2π),
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(iii) for all k ∈ nST,

Φ(κS − k) = Φ(κS + k). (3.13)

In particular, Φ(κS) and (if nS <∞) Φ(κS + nS
2 ) are real-valued.

Furthermore, we have that, for l = 1, 2, . . . , nS − 1,

2π∫
0

dxΦ(x, κS ± l/2)2 = 0. (3.14)

Remark 3.7. (1) To avoid any ambiguity we fix in the following one analytic

family of eigenfunctions ΦS(k) with the properties stated in Proposition 3.6

for each genuine spectral band S ⊂ σ(H).

(2) In view of (3.11) and Proposition 3.4, for any l = 1, 2, . . . , nS − 1, the

eigenvalue ΛS(κS + l/2) = ΛS(κS − l/2) is a double eigenvalue of H(κS +

l/2). Corresponding eigenfunctions are ΦS(κS + l/2) and ΦS(κS − l/2) =

ΦS(κS + l/2), which form an orthonormal basis of the eigenspace for Λ(κ+

l/2), due to (3.14). Away from these points, the eigenvalues ΛS(k) are simple

eigenvalues of H(k) and their eigenspace is spanned by ΦS(k).

Proof. Fix a genuine band S and omit the super- and subscripts “S” (except

for κS) for the duration of the proof. We deal only with the case n < ∞; the proof

for n =∞ is considerably easier. Since the family of projections k 7→ P (k) is analytic

in a neighbourhood of the real line, [55, Thm. XII.12] implies that there exists an

analytic family U(k) of invertible operators, unitary for k ∈ R, such that

P (κS + k) = U(k)P (κS)U(k)−1. (3.15)

Moreover, one infers from the proof of [55, Thm. XII.12] that the operator U(k) can

be chosen as the unique (analytic) solution of the differential equation

U′(k) = [P ′(κS + k), P (κS + k)]U(k),

U(0) = 1L2(0,2π),
(3.16)

in a neighbourhood of the real axis. As k 7→ P (k) is n-periodic on R, one has that

U(k + n) = U(k)U(n), k ∈ R, (3.17)
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since both sides of (3.17) satisfy (3.16) with initial condition U(n). In view of Propo-

sition 3.4(i), one has that

P (κS − k) = CP (κS + k)C, k ∈ nT, (3.18)

where C denotes complex conjugation on L2(0, 2π). In particular, we can choose

a real-valued and normalised eigenfunction Φ0(κS) from the one-dimensional space

ranP (κS) = ranP (κS). Define

Φ0(κS + k) := U(k)Φ0(κS), k ∈ R

so that, due to (3.15), Φ0(k) ∈ ranP (k) for all k ∈ nT. Thus, Φ0(k) is a normalised

eigenfunction of H(k), which satisfies (3.12). Notice also that Φ0(κS+n) ∈ ranP (κS+

n) = ranP (κS) so that Φ0(κS + n) = eiθΦ0(κS) for some θ ∈ [0, 2π). Hence setting

Φ(κS + k) := e−ikθ/nΦ0(κS + k),

we get from (3.17) that for all k ∈ R,

Φ(κS + k + n) = e−i(k+n)θ/nU(k)U(n)Φ0(κS) = e−i(k+n)θ/nU(k)Φ0(κS + n)

= e−ikθ/nU(k)Φ0(κS) = Φ(κS + k).

So, we have constructed an n-periodic analytic family of eigenfunctions k 7→ Φ(k)

that satisfies (3.12), (i), and (ii). For its symmetry properties notice first that (3.18)

and unique analytic continuation imply that

P (κS − k) = CP (κS + k)C,

for k in a neighbourhood of the real axis. From this we also get that

U(−k) = CU(k)C, (3.19)

in a neighbourhood of R since, due to (3.16), both sides of (3.19) solve the differential

equation

V′(k) = −[P ′(κS − k), P (κS − k)]V(k),

V(0) = 1L2(0,2π).

This equation has again a unique analytic solution V(k) in a neighbourhood of the

real axis, see [55, Lem., p. 23]. Hence, for k ∈ R, we arrive at

Φ0(κS + k) = CU(k)Φ0(κS) = CU(k)CΦ0(κS) = U(−k)Φ0(κS) = Φ0(κS − k),
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and Φ(κS + k) = Φ(κS − k) follows.

Finally, fix l ∈ {1, 2, . . . , n− 1} and let ε ∈ (0, 1
2). Then one has that

Λ(κS + l
2 − ε) = λj+l−1(κS + l

2 − ε)

and

Λ(κS − l
2 − ε) = Λ(κS + l

2 + ε) = λj+l(κS + l
2 + ε) = λj+l(κS + l

2 − ε),

where we used for the last equality that λj+l is a 1-periodic, even function. Thus, the

eigenspaces ranP (κS+ l
2−ε) and ranP (κS− l

2−ε) correspond to distinct eigenvalues

of H(κS + l
2 − ε) = H(κS − l

2 − ε) and are, therefore, orthogonal to each other.

Consequently, we get that

0 =
〈
Φ(κS − l

2 − ε),Φ(κS + l
2 − ε)

〉
L2(0,2π)

=

2π∫
0

dxΦ(x, κS + l
2 + ε)Φ(x, κS + l

2 − ε),

which, together with (3.13), yields (3.14) in the limit ε ↘ 0. This finishes the proof

of the proposition. �

It will be useful to extend the Bloch eigenfunctions Φ(k) = ΦS(k) ∈ H2(0, 2π) from

Proposition 3.6 to functions on the whole real line. For this purpose, we introduce

the functions

E(x, k) = ES(x, k) := e−ixkΦS(x, k), (3.20)

for x ∈ [0, 2π] and k ∈ nST, which have the same regularity properties as the Bloch

eigenfunctions. As for fixed k, ΦS(k) ∈ dom(H(k)) ⊂ C1[0, 2π], it follows from the

imposed boundary conditions that the functions ES(k) := ES( · , k), k ∈ nST, extend

to 2π-periodic C1-functions on the real line. This induces a corresponding extension

of the functions ΦS(k). Slightly abusing notation, these extensions are again denoted

by ES(k) and ΦS(k), respectively. The following technical lemma will be useful in

Chapter 4. It provides further information on the regularity of the functions ES and

ΦS , also depending on the regularity of the potential V .

Lemma 3.8. Let S ⊂ σ(H) be a genuine spectral band. Then the functions

(x, k) 7→ ΦS(x, k) and (x, k) 7→ ∂mk E
S(x, k),

m = 0, 1, 2, . . . , are continuous and infinitely differentiable with respect to the k-

variable as functions R × nST → C. They are uniformly bounded on R × K for
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any compact subset K ⊆ nST. Moreover, if V ∈ C∞(R), then we have that ES,

ΦS ∈ C∞(R× nST).

Proof. Let us again fix the genuine band S and omit all super- and subscripts

“S” during this proof. Also, we restrict ourselves to the case n <∞; otherwise replace

in the following nT by a compact subset K ⊂ R. As the functions E(k), k ∈ nT,

are 2π-periodic and continuously differentiable, we can expand them into a uniformly

convergent Fourier series

E(x, k) =
1

2π

∑
l∈Z

al(k)eilx, (3.21)

(x, k) ∈ R× nT, with

al(k) =

2π∫
0

dx e−ilxE(x, k).

In view of Proposition 3.6(i), the coefficients al(k) are analytic functions of k. More-

over, integrating by parts twice, we get that

al(k) =

2π∫
0

dx e−i(k+l)xΦ(x, k)

=
1

i(k + l)

2π∫
0

dx e−i(k+l)x∂xΦ(x, k)

=
−1

(k + l)2

2π∫
0

dx e−i(k+l)x∂2
xΦ(x, k),

for l 6= −k. Here, the boundary terms vanish since ∂rxΦ(x + 2π, k) = e2πki∂rxΦ(x, k),

r = 0, 1, for all x, k. Due to the eigenvalue equation (3.12), the coefficients al(k) may

be rewritten as

al(k) =
1

(k + l)2

2π∫
0

dx e−i(l+k)x
[
Λ(k)− V (x)

]
Φ(x, k). (3.22)

This yields the bounds

|∂mk al(k)| . 〈l〉−2, m = 0, 1, 2, . . . , (3.23)

with implied constants continuously depending on m, ‖V ‖L2(0,2π), the derivatives

∂rkΛ(k), and the norms ‖∂rkΦ(k)‖L2(0,2π), for r = 0, . . .m. In particular, the estimate

(3.23) is uniform on nT. Together with the representation (3.21) this implies the
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(classical) infinite differentiability of ES and ΦS with respect to the k-variable as well

as the (joint) continuity of ∂mk E and ∂mk Φ, m = 0, 1, 2, . . . . Furthermore, the uniform

boundedness of the functions ∂mk E, m = 0, 1, 2, . . . , follows from their periodicity in

x. This, in turn, implies the uniform boundedness of the function Φ. If the potential

V is smooth, then one can continue integrating by parts in (3.22) to prove super-

polynomial l-decay of the coefficients al(k), locally uniformly in k. An estimate of

similar nature can be obtained for their k-derivatives. Thus, the function (x, k) 7→

E(x, k) is smooth in this case, finishing the proof of the lemma. �

3.1.1. Mean values of Bloch eigenfunctions. As the functions ES(k), k ∈

nST, have uniformly convergent Fourier series, the functions ΦS(k), k ∈ nST, belong

to the algebra CAP(R) of uniformly almost-periodic functions on R. These are defined

as the closure of the span of exponentials eixξ, ξ ∈ R, in the L∞-norm. We refer to

[70] or [69] for an introduction to almost periodic functions and their properties. For

any f ∈ CAP(R), the almost-periodic mean

M(f) := lim
T→∞

(2T )−1

T∫
−T

dt f(t) (3.24)

is well-defined. For future use we need to evaluate some means for the eigenfunctions

ΦS(k).

Lemma 3.9. Let k 7→ Φ(k) = ΦS(k) be the family of eigenfunctions associated with

a genuine band S ⊂ σ(H), see Proposition 3.6. Then one has that

M(|Φ(k)|2) =
1

2π
, ∀k ∈ nST, (3.25)

and

M(Φ2(k)) = 0, ∀k 6= κS , k 6= κS + nS/2. (3.26)

Proof. We again omit super- and subscripts “S”. In view of Proposition 3.6(ii),

the functions Φ(k), k ∈ nT, are normalised in L2(0, 2π), whence M(|Φ|2) = (2π)−1,

as claimed in (3.25).

To prove (3.26), suppose first that 2k 6≡ 0 mod Z, so that k 6= κ ± l/2, l =

0, 1, . . . , n. We use the representation (3.20), so

M(Φ2(k)) = M(e2ikxE2(k)).
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The function w = E(k)2 is again continuously differentiable and 2π-periodic, thus its

Fourier series is uniformly convergent. Hence, picking an ε > 0, we can approximate

w by a trigonometric polynomial

p(x) =
N∑

s=−N
pse

isx,

so that |w − p| < ε. Let us find the mean for each component of the polynomial p

separately:

T∫
−T

dx e2ikx+isx =
ei(2k+s)x

i(2k + s)

∣∣∣∣∣
T

−T

,

which is bounded uniformly in T for all s = −N,−N+1, . . . , N . Thus M(e2ikxp) = 0,

and

|M(Φ2(k))| = |M(e2ikx(w − p))| ≤ ε.

As ε > 0 is arbitrary, this entails that M(Φ2(k)) = 0, as required.

Finally, the equality M(Φ2(k)) = 0 at the points k = κ± l/2, l = 1, 2, . . . , (n− 1)

follows from (3.14). This leads to (3.26) again and finishes the proof of the lemma. �

3.1.2. The integrated density of states. Introduce the counting function of

H(k):

N(µ, k) := #{j : λj(k) < µ}, µ ∈ R, k ∈ T,

and the (integrated) density of states:

N(µ;H) :=
1

2π

∫
T

dkN(µ, k). (3.27)

In view of Proposition 3.4(iii), the function µ 7→ N(µ;H) is continuous. The definition

(3.27) agrees with the standard definition of the density of states which is given via

the Hamiltonian with Dirichlet boundary condition on a large cube, see e.g. [70,

Thm. 4.2] or [55, Ch. XIII]. Moreover, with the eigenvalues ΛS(k), see (3.11), we may

rewrite (3.27) as

N(µ;H) =
1

2π

∑
S⊂σ(H)
genuine

∣∣{k ∈ nST : ΛS(k) < µ}
∣∣. (3.28)
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3.2. The Kernel of the Spectral Projection

Using the eigenfunctions ΦS(k) for each genuine band S, we can write out the

kernel Pµ(x, y) of the spectral projection Pµ = χ(−∞,µ)(H).

Lemma 3.10. Let µ ∈ R. Moreover, let Pµ[S] := χ(−∞,µ)∩S(H) be the spectral

projection corresponding to each genuine band S ⊂ σ(H). Then the operator Pµ has

the integral kernel

Pµ(x, y) =
∑

S⊂σ(H)
genuine

Pµ[S](x, y)

with

Pµ[S](x, y) =

∫
k∈nST:ΛS(k)<µ

dk ΦS(x, k)ΦS(y, k), (3.29)

and the functions ΦS as constructed in Proposition 3.6.

Proof. It suffices to check formula (3.29) for a fixed genuine band S. To this

end, we compute the quadratic form of Pµ[S] for compactly supported functions

f, g ∈ L2(R). As before, let U denote the Floquet-Bloch-Gelfand transform, set

Sµ := S ∩ (−∞, µ), and note that

Pµ[S] = U∗χSµ(UHU∗)U = U∗
( ⊕∫

T

dk χSµ(H(k))

)
U,

by the functional calculus for direct integral operators, see [55, Thm. XIII.85]. In

view of Proposition 3.6, we have that, for all k ∈ T,

χSµ(H(k)) =

nS−1∑
l=0

χ(−∞,µ)(Λ
S(k + l))PS(k + l),

where PS(k + l) is the one-dimensional orthogonal projection onto ΦS(k + l). Thus,

one gets that

〈f, Pµ[S]g〉L2(R) =
〈
Uf,

( ⊕∫
T

dk χSµ(H(k))

)
Ug
〉

L2(T,L2(0,2π))

=

nS−1∑
l=0

∫
T

dk χ(−∞,µ)(Λ
S(k + l))

〈
(Uf)(k), PS(k + l)(Ug)(k)

〉
L2(0,2π)

=

∫
nST

dk χ(−∞,µ)(Λ
S(k))

〈
(Uf)(k), PS(k)(Ug)(k)

〉
L2(0,2π)

. (3.30)
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Furthermore, note that〈
(Uf)(k), PS(k)(Ug)(k)

〉
L2(0,2π)

=
〈
(Uf)(k),ΦS(k)〉L2(0,2π)

× 〈ΦS(k), (Ug)(k)
〉

L2(0,2π)
, (3.31)

with

〈
ΦS(k), (Ug)(k)

〉
L2(0,2π)

=

2π∫
0

dxΦS(x, k)
∑
γ∈2πZ

e−ikγg(x+ γ)

=
∑
γ∈2πZ

2π∫
0

dxΦS(x+ γ, k)g(x+ γ)

= 〈ΦS(k), g〉L2(R). (3.32)

Due to Lemma 3.8, the function (x, k) 7→ ΦS(x, k) is uniformly bounded on R ×(
ΛS
)−1(

(−∞, µ]
)
, thus combining (3.30), (3.31), and (3.32) and an application of

Fubini’s theorem yields (3.29). �





CHAPTER 4

Formulae of Szegő Type for the Periodic Schrödinger

Operator

The purpose of this chapter is to obtain the asymptotic trace formulae (1.24)

and (1.25) for the periodic Schrödinger operator in dimension one. In doing so, we

will extensively rely on the Floquet-Bloch theory introduced in Chapter 3. Most of

the present chapter coincides with parts of the paper [54], which is joint work with

A.V. Sobolev. We start by formulating the main results in all details.

4.1. Main Result

Let H = − d2

dx2
+ V be the periodic Schrödinger operator defined in (1.22). More-

over, recall the notation Pµ for its spectral projection as well as the abbreviation

BL,µ = χ(−L,L)Pµχ(−L,L) for the spatial truncation of Pµ. Notice that, as both Pµ

and χ(−L,L) are projections, one has that 0 ≤ BL,µ ≤ 1. We prove trace asymptotics

for the operators h
(
BL,µ

)
with test functions h that satisfy the following condition.

Condition 4.1. The function h : [0, 1] 7→ C is piecewise continuous, it is Hölder

continuous at t = 0 and 1, and h(0) = 0.

For such functions h, the integral

W(h) =
1

π2

1∫
0

dt
[h(t)− th(1)]

t(1− t)
, (4.1)

see also (1.10), is well-defined. The next theorem is the main result of this chapter.

Theorem 4.2. Let H be the operator defined in (1.22) and suppose that V ∈ C∞(R).

Assume that the function h satisfies Condition 4.1. Then for any µ ∈
(
σ(H)

)◦
, we

have the asymptotic formula

tr[h(BL,µ)] = 2Lh(1)N(µ,H) + log(L)W(h) + o(log(L)), as L→∞. (4.2)

83
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If µ /∈
(
σ(H)

)◦
, then

tr[h(BL,µ)] = 2Lh(1)N(µ,H) + O(1), as L→∞. (4.3)

Here,
(
σ(H)

)◦
is the set of interior points of the spectrum, and N(µ,H) denotes the

integrated density of states for the operator H, defined in (3.27).

Remark 4.3. (1) To emphasize the dependence of the asymptotics on the spec-

tral parameter µ consider a test function h such that h(0) = h(1) = 0. Then

trh(BL,µ) remains bounded if µ is in a spectral gap. If however, µ is inside

a spectral band, then the asymptotics are exactly as in the case V ≡ 0,

described by the formula (1.9).

(2) Notice that the coefficient W(h) in (4.2) vanishes for test functions h that

are point-symmetric around t = 1/2, i.e. satisfy h(t) = −h(1− t). Thus, for

µ ∈ σ(H)◦ the spectrum of the operator BL,µ (in every interval (ε, 1− ε), for

fixed ε > 0) is to leading order symmetric around 1/2, as L tends to infinity.

(3) We point out that the function h in Theorem 4.2 is not required to be

smooth, not even at the endpoints t = 0, 1. If we do assume that h is

differentiable at the endpoints, then the conditions on the potential V can be

relaxed to V ∈ L2
loc(R). This can be observed at the first step of Section 4.7,

where we take the closure of the asymptotics, starting from polynomial test

functions h. The increased smoothness of V , i.e. the condition V ∈ C∞(R),

is required to handle functions h that are only Hölder-continuous at t = 0, 1.

To be precise, a finite smoothness of V , depending on the Hölder exponent,

would be sufficient, but we do not go into these details to avoid excessive

technicalities.

Let us describe the strategy of the proof of Theorem 4.2, focusing on the case

where µ ∈
(
σ(H)

)◦
. The proof of (4.3) is considerably easier, and we do not comment

on it now.

To prove formula (4.2) we proceed in three steps. First we represent the function

h as the sum

h(t) = th(1) + h0(t) (4.4)



4.2. THE LEADING ORDER TERM IN THE TRACE ASYMPTOTICS 85

so that the function h0 satisfies Condition 4.1 and, in addition, h0(1) = 0. The

function th(1) is responsible for the first term in (4.2) and the trace asymptotics for

this function are found easily, see Section 4.2.

The analysis of the asymptotic behaviour of trh0(BL,µ), which yields the loga-

rithmic correction in (4.2), is the second and main part of the proof. Here, we follow

the strategy of [41], where the asymptotics (1.9) were derived. As in [41], we focus

first on polynomial functions h0, choosing pn(t) = [t(1− t)]n and qn(t) = t[t(1− t)]n,

n = 1, 2, . . . , as basis elements for polynomials that vanish at t = 0 and t = 1. How-

ever, the method of [41] is not directly applicable since the kernel of the operator BL,µ

contains the Bloch eigenfunctions of H instead of plain waves. One of the central

points of our proof is to show that, at the cost of constant order errors in trace norm,

for the operators pn(BL,µ) one can replace terms involving Bloch eigenfunctions by

their mean values. This reduces the problem to the case V ≡ 0, and enables us to

use the known formula (1.9) with h = pn. Exploiting the periodicity of H, the study

of polynomials qn can be reduced to the polynomials pn. This requires extra work

since, in contrast to [41], the reflection symmetry and translation invariance of H,

which were essential for [41], are not available in our problem.

At the final stage of the proof we extend the asymptotics to functions h0 satisfying

Condition 4.1. To this end, we approximate h0 by polynomials, for which the sought

formula has been proved at the previous step of the proof. The error term is shown

to be of order o(log(L)) with the help of bounds for pseudo-differential operators in

Schatten-von Neumann classes obtained in [65]. The required extension of the bounds

from [65] to the periodic setting is relatively straightforward. This finishes the proof.

4.2. The Leading Order Term in the Trace Asymptotics

Having established Lemma 3.10 for the kernel of the spectral projection Pµ, we

can already prove Theorem 4.2 for the special case h(t) = t. Via the decomposition

(4.4) this gives the main term in the trace asymptotics (4.2), (4.3), as explained above.

Indeed, according to Lemma 3.10,

‖BL,µ‖S1 = trBL,µ =
∑

S⊂σ(H)
genuine

tr
(
χ(−L,L)Pµ[S]χ(−L,L)

)
,
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with

tr
(
χ(−L,L)Pµ[S]χ(−L,L)

)
=

L∫
−L

dx

∫
nST

dk χ(−∞,µ)(Λ
S(k))|ΦS(x, k)|2.

Assume first that L is a multiple of 2π. Since the function ΦS(k) is normalized on

(0, 2π), it follows from Fubini’s theorem and (3.28) that

trBL,µ =
L

π

∑
S

∣∣{k ∈ nST : ΛS(k) < µ}
∣∣ = 2LN(µ,H).

If L is not a multiple of 2π, then one easily checks, using the monotonicity of the

trace in L, that

4π

⌊
L

2π

⌋
N(µ,H) ≤ trBL,µ ≤ 4π

⌈
L

2π

⌉
N(µ,H), ∀L > 1. (4.5)

Consequently, we conclude that

trBL,µ = 2LN(µ,H) + O(1), as L→∞.

The study of trh0(BL,µ) is much more difficult, and the rest of Chapter 4 is focused

on this task.

4.3. An Expansion of the Integral Kernel of the Spectral Projection

Let us from now on assume that µ ∈ σ(H). Namely, if µ < minσ(H), then

Theorem 4.2 becomes trivial, and if µ lies in a spectral gap we can simply replace

it by the maximum of the band below µ. So, let S be the genuine band (i.e. the

connected component) of σ(H) that contains µ. Inspecting the formula (3.11), we

observe that the set {k ∈ nST : ΛS(k) < µ} is the interval (2κS − δ, δ) where

δ = δ(µ) ∈ [κS , κS + nS/2] is the uniquely defined value such that ΛS(δ) = µ. The

following lemma provides a convenient expansion of the kernel Pµ[S](x, y), see (3.29),

in powers of |x− y|−1.

Lemma 4.4. Let µ ∈ S ⊂ σ(H), where S is a genuine spectral band, and let δ = δ(µ)

be as defined above. Then for all x, y ∈ R, we have

Pµ[S](x, y) = Πµ(x, y) +Rµ[S](x, y), (4.6)

where

Πµ(x, y) :=
ΦS(x, δ)ΦS(y, δ)− ΦS(x, δ)ΦS(y, δ)

i(x− y)
, (4.7)
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and

Rµ[S](x, y) = O
(
(1 + |x− y|2)−1

)
, ∀x, y ∈ R. (4.8)

Moreover, Rµ[S](x, y), Pµ[S](x, y) and Πµ(x, y) are continuous functions of x, y ∈ R,

and

|Pµ[S](x, y)|+ |Πµ(x, y)| = O
(
(1 + |x− y|)−1

)
, ∀x, y ∈ R. (4.9)

If µ /∈ S◦, then Pµ[S](x, y) is a continuous function of x, y ∈ R, and it satisfies the

bound

Pµ[S](x, y) = O
(
(1 + |x− y|2)−1

)
, ∀x, y ∈ R. (4.10)

Remark 4.5. If µ /∈ S◦, then Pµ[S](x, y) actually decays super-polynomially, as

|x − y| → ∞. This is easily deduced from formula (3.29), the fact that k 7→ ΦS(k)

is analytic on nST, and successive integration by parts as in the proof of the lemma.

However, the bound (4.10) suffices for our purposes.

Proof. Let us deduce Estimate (4.10) first. Observe that if µ /∈ S◦, then either

µ = minS and Pµ[S] = 0, or µ = maxS < ∞ and δ(µ) = κS + nS/2. In the first

case, the bound (4.10) is trivial. In the second case, the function ΦS(δ) is real-valued,

see Proposition 3.6(iii). Hence, Πµ(x, y) = 0, and the bound (4.10) follows from (4.6)

and (4.8).

It remains to prove the continuity and the bounds (4.8) and (4.9) for µ ∈ S. Note

that the kernel Pµ[S](x, y) (see (3.29)) is continuous and uniformly bounded in x, y

since, due to Lemma 3.8, the function (x, k) 7→ ΦS(x, k) is uniformly bounded on

R× (2κS − δ, δ) and continuous. For the same reason, the kernel (4.7) is continuous

and bounded by |x − y|−1 for all x, y : |x − y| ≥ 1. Due to the continuity of both

ΦS(δ) and ∂xΦS(δ), the kernel (4.7) is also continuous and uniformly bounded for

|x− y| < 1. As a consequence, the kernel Πµ(x, y) satisfies (4.9), and the remainder

Rµ[S](x, y) is continuous and uniformly bounded. Thus it remains to prove (4.9) for

Pµ[S](x, y) and the bound (4.8), both when |x− y| ≥ 1.

Using (3.20), we rewrite

Pµ[S](x, y) =

δ∫
2κS−δ

dk eik(x−y)ES(x, k)ES(y, k), (4.11)
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and, for |x− y| ≥ 1, integrate by parts to arrive at

Pµ[S](x, y) =
eiδ(x−y)

i(x− y)
ES(x, δ)ES(y, δ)− ei(2κS−δ)(x−y)

i(x− y)
ES(x, 2κS − δ)ES(y, 2κS − δ)

+Rµ[S](x, y)

with

Rµ[S](x, y) = −
δ∫

2κS−δ

dk
eik(x−y)

i(x− y)
∂k
(
ES(x, k)ES(y, k)

)
.

Due to (3.20) and the symmetry property (3.13), one obtains the representation (4.6).

Another integration by parts for Rµ[S] gives

Rµ[S](x, y) =
eik(x−y)∂k

(
ES(x, k)ES(y, k)

)
(x− y)2

∣∣∣∣∣
δ

2κS−δ

−
δ∫

2κS−δ

dk
eik(x−y)

(x− y)2
∂2
k

(
ES(x, k)ES(y, k)

)
.

Hence, the estimate (4.8) follows from the fact that the functions ES , ∂kE
S , and

∂2
kE

S are uniformly bounded on R× (2κS − δ, δ), see Lemma 3.8. �

Now, Lemma 4.4 may be used for each genuine spectral band separately to get

the corresponding expansion of the kernel Pµ(x, y).

Lemma 4.6. Let µ ∈ S ⊂ σ(H), where S is a genuine spectral band, and let δ = δ(µ)

be as defined above. Then for all x, y ∈ R we have

Pµ(x, y) = Πµ(x, y) +Rµ(x, y), (4.12)

where Πµ is as defined in (4.7), and

Rµ(x, y) = O
(
(1 + |x− y|2)−1

)
, ∀x, y ∈ R. (4.13)

Moreover, Rµ(x, y), Πµ(x, y) and Pµ(x, y) are continuous functions of x, y ∈ R, and

|Pµ(x, y)|+ |Πµ(x, y)| = O
(
(1 + |x− y|)−1

)
, ∀x, y ∈ R. (4.14)

If µ /∈
(
σ(H)

)◦
, then Pµ(x, y) is a continuous function of x, y ∈ R, and it satisfies

the bound

Pµ(x, y) = O
(
(1 + |x− y|2)−1

)
, ∀x, y ∈ R. (4.15)
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Remark 4.7. Again, the decay in (4.15) is actually super-polynomial away from the

diagonal.

Proof. The continuity of the kernel Pµ(x, y) follows immediately from the pre-

vious lemma. Moreover, if µ /∈
(
σ(H)

)◦
, then (4.15) follows directly from (4.10).

Assume now that µ ∈ S ⊂ σ(H). Let S1, S2, . . . , SN , be genuine spectral bands

lying below the band S. With the notation of Lemma 4.4 we can write

Pµ(x, y) =
N∑
l=1

Pµ[Sl](x, y) + Pµ[S](x, y)

= Πµ(x, y) +Rµ(x, y),

where

Rµ(x, y) =
N∑
l=1

Pµ[Sl](x, y) +Rµ[S](x, y).

By Lemma 4.4, the kernel Rµ[S] and each term Pµ[Sl] = PmaxSl [Sl], l = 1, 2, . . . , N

satisfy (4.13), whence (4.12). The bound (4.14) for the kernel Pµ[S](x, y) follows from

(4.9). �

4.4. Elementary Trace Norm Estimates

Throughout the proof of Theorem 4.2 we need various trace class bounds for

operators involved. It is interesting that for most of our needs we can get away with

rather elementary bounds, as in [41]. This fact is due to the specific form of the

operators studied. As we see in the next few pages, many of the technical issues that

we come across boil down to trace class bounds for the operators of the form

χIPµχJPµχK , (4.16)

where I, J,K ⊂ R are some intervals that may depend on the parameter L > 0.

While in this section we limit ourselves to estimates in the trace class S1, Section 4.5

treats operators in the classes Sq for q ∈ (0, 1].

The next basic trace class estimate (see [41, Eq. (12)]) plays a central role in this

section. We provide a proof for the reader’s convenience.



90 4. FORMULAE OF SZEGŐ TYPE FOR THE PERIODIC SCHRÖDINGER OPERATOR

Lemma 4.8. Let M ⊂ R be a Borel-measurable set. Consider (weakly) measurable

mappings f, g : M 7→ L2(R), such that∫
M

dz ‖f(z)‖L2‖g(z)‖L2 <∞.

Then the operator A : L2(R)→ L2(R) which is defined via the form

〈u,Av〉L2 :=

∫
M

dz 〈u, f(z)〉L2〈g(z), v〉L2 , u, v ∈ L2(R),

is of trace class with

‖A‖1 ≤
∫
M

dz ‖f(z)‖L2‖g(z)‖L2 .

Proof. Let (dn)n and (en)n be orthonormal bases (ONB’s) of L2(R) and denote

by 〈·, ·〉 and ‖ · ‖ the scalar product and the norm on L2(R), respectively. Then we

have that

∑
n

∣∣〈dn, Aen〉∣∣ ≤∑
n

∫
M
dz
∣∣〈dn, f(z)〉〈g(z), en〉

∣∣
=

∫
M
dz
∑
n

∣∣〈dn, f(z)〉〈g(z), en〉
∣∣.

Moreover, the Cauchy-Schwartz inequality and Parseval’s identity yield

∑
n

∣∣〈dn, f(z)〉〈g(z), en〉
∣∣ ≤ (∑

n

∣∣〈dn, f(z)〉
∣∣2) 1

2
(∑

n

∣∣〈g(z), en〉
∣∣2) 1

2

= ‖f(z)‖ ‖g(z)‖,

implying that

∑
n

∣∣〈dn, Aen〉∣∣ ≤ ∫
M

dz ‖f(z)‖ ‖g(z)‖.

The supremum of the left-hand side over all ONB’s coincides with the trace norm,

whence the claimed estimate. �

Equipped with this basic trace norm estimate, we can start now our investigation

of the operator (4.16).
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4.4.1. Replacing the Spectral Projection by its Approximation. Let us

recall the following general notation, which was introduced in the introduction. If

f , g are real-valued functions we write |f | . |g| if and only if |f | ≤ C|g| for some

constant C > 0 which might depend on the potential V but does not depend on the

dilation parameter L. The following lemma provides a condition under which one can

replace the spectral projection Pµ in the operator (4.16) by its approximation Πµ, see

Lemma 4.4, leading to a constant order error in trace norm.

Lemma 4.9. Let I, J , K ⊂ R be intervals, possibly depending on the scaling param-

eter L, such that I ∩ J = ∅ and K ∩ J = ∅. Then we have that∥∥χIPµχJPµχK − χIΠµχJΠµχK
∥∥

1
. 1, (4.17)

where the integral kernel of Πµ is defined in (4.7).

Proof. With the notation of Lemma 4.6, we may write

χIPµχJPµχK = χIΠµχJΠµχK + χIΠµχJRµχK + χIRµχJPµχK .

Let us then estimate the trace norm of the operator χIRµχJPµχK , which has the

integral kernel

(x, y) 7→ χI(x)χK(y)

∫
J

dz Rµ(x, z)Pµ(z, y).

We apply Lemma 4.8 with

f(x, z) = χI(x)Rµ(x, z), g(y, z) = χK(y)Pµ(z, y) = χK(y)Pµ(y, z),

leading to

‖χIRµχJPµχK‖1 ≤
∫
J

dz ‖Rµ(·, z)‖L2(I)‖Pµ(·, z)‖L2(K).

Thus, Estimates (4.13) and (4.14) yield

∥∥χIRµχJPµχK‖1 . ∫
J

dz

[∫
I

dx (1 + |x− z|)−4

] 1
2
[∫
K

dy (1 + |z − y|)−2

] 1
2

.
∫
J

dz
(
1 + dist(z, I)

)− 3
2
(
1 + dist(z,K)

)− 1
2

.
∫
J

dz
[(

1 + dist(z, I)
)−2

+
(
1 + dist(z,K)

)−2]
. 1.

The operator χIΠµχJRµχK satisfies the same bound. Hence, the claim follows. �
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4.4.2. Uniform trace norm bounds. Under particular assumptions on the

intervals I, J , and K, the operator (4.16) is of trace class with uniformly bounded

trace norm. We list some of these conditions in the following proposition.

Proposition 4.10. Let I, J , K ⊂ R be intervals, possibly depending on L, such that

one of the following conditions holds:

(i) |J | . 1,

(ii) Either

(a) |J | . max{dist(I, J), dist(J,K)}, or

(b) |K| . dist(J,K), |I| . dist(I, J), or

(c) |K| . dist(J,K), |J | . dist(I, J).

(iii) J is finite, and I and K lie on opposite sides of J , i.e.

x ≤ y ≤ z or z ≤ y ≤ x, for all (x, y, z) ∈ I × J ×K. (4.18)

(iv) |I| . 1 and I ∩ J = ∅,K ∩ J = ∅.

Then the operator χIPµχJPµχK is uniformly bounded (independently of L) in trace

norm, i.e.

‖χIPµχJPµχK‖1 . 1. (4.19)

Remark 4.11. In the unperturbed case, that is for V ≡ 0, Proposition 4.10 with

assumptions similar to (i) and (iii) has been obtained in [41, Lem.].

Proof of Proposition 4.10. According to Lemma 4.8 and bound (4.14), one

has that

‖χIPµχJPµχK‖S1 .
∫
J

dz

[∫
I

dx (1 + |z − x|)−2

] 1
2
[∫
K

dy (1 + |z − y|)−2

] 1
2

. (4.20)

Let us estimate this integral under the conditions of the lemma.

Assume Condition (i), i.e. |J | . 1. Then both integrals inside (4.20) are uniformly

bounded, even if I and K are unbounded. Thus the trace norm does not exceed

|J | . 1, as required.

Assume now Condition (ii). Using the Cauchy-Schwarz inequality, we estimate

the right-hand side of (4.20) by[∫
J

dz

∫
I

dx (1 + |z − x|)−2

] 1
2
[∫
J

dz

∫
K

dy (1 + |z − y|)−2

] 1
2

.
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The first integral is bounded by

|J |
(
1 + dist(I, J)

)−1
or |I|

(
1 + dist(I, J)

)−1
,

and the second integral is bounded by

|J |
(
1 + dist(J,K)

)−1
or |K|

(
1 + dist(J,K)

)−1
.

Thus, under any of the conditions (ii), the right-hand side of (4.20) is uniformly

bounded, as required.

Assume that the first of the conditions (4.18) holds (for the second one look at

the adjoint operator). Let

I = (s1, t1), J = (s2, t2),K = (s3, t3) (4.21)

with

−∞ ≤ s1 < t1 ≤ s2 < t2 ≤ s3 < t3 ≤ ∞.

Using (4.20), we get the bound

‖χIPµχJPµχK‖1 .
t2∫
s2

dz

[ t1∫
s1

dx |z − x|−2

] 1
2
[ t3∫
s3

dy |z − y|−2

] 1
2

.

t2∫
s2

dz (z − t1)−
1
2 (s3 − z)−

1
2

≤
t2∫
s2

dz (z − s2)−
1
2 (t2 − z)−

1
2 =

s∫
0

dz z−
1
2 (s− z)−

1
2 ,

with s = t2 − s2. By rescaling, the last integral equals

1∫
0

dz z−
1
2 (1− z)−

1
2 . 1,

which leads to (4.19) again.

Finally, assume that (iv) holds. Then the right-hand side of (4.20) is bounded by

|I|
1
2

∫
J

dz
(
1 + dist(z, I)

)−1(
1 + dist(z,K)

)− 1
2

.
∫
J

dz
(
1 + dist(z, I)

)− 3
2 +

∫
J

dz
(
1 + dist(z,K)

)− 3
2 . 1.

Thus, the proof is complete. �
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4.4.3. Replacing almost periodic functions by their mean value. Looking

at formula (4.7), we see that the kernel of χIΠµχJΠµχK contains kernels of the form

SI,J,K(x, y; f) = χI(x)χK(y)

∫
J

dz
f(z)

(z − x)(z − y)
, (4.22)

where f is a product of functions such as ΦS(δ) and ΦS(δ). The following lemma gives

conditions for the intervals I, J , K under which we may replace f in SI,J,K(x, y; f)

by its almost periodic mean value, see (3.24), while the resulting error is uniformly

bounded in trace norm.

Lemma 4.12. Let Θ ⊂ R be a countable set, and let (aθ)θ∈Θ ⊂ C be such that∑
θ∈Θ
θ 6=0

|aθ|
(
1 + |θ|−1

)
<∞. (4.23)

Let the function f ∈ CAP(R) be defined by

f(x) =
∑
θ∈Θ

aθe
iθx.

Assume that the intervals I, J , K ⊂ R satisfy dist(I, J), dist(J,K) & 1 and consider

the operator SI,J,K(f) in L2(R) with the integral kernel (4.22). Then one has that

‖SI,J,K(f)− SI,J,K
(
M(f)

)
‖1 . 1. (4.24)

Proof. Without loss of generality, we may assume that M(f) = 0, i.e. 0 /∈ Θ

(otherwise consider f −M(f)). Introduce the primitive F (x) :=
∫ x

0 f(t)dt of f . Then

the assumption (4.23) implies that F is uniformly bounded:

|F (x)| =

∣∣∣∣∣∑
θ∈Θ

aθ

x∫
0

dt eiθt

∣∣∣∣∣ ≤∑
θ∈Θ

∣∣∣aθ
iθ

(eiθx − 1)
∣∣∣ . 1, ∀x ∈ R.

Let J = (s, t), so integrating by parts gives

SI,J,K(x, y; f) = χI(x)χK(y)
F (z)

(z − x)(z − y)

∣∣∣∣t
z=s

+ χI(x)χK(y)

∫
J

dz

[
F (z)

(z − x)2(z − y)
+

F (z)

(z − x)(z − y)2

]
. (4.25)

The first term in formula (4.25) constitutes the kernel of a rank two operator, whose

norm, and hence trace norm as well, is easily estimated by a constant times

dist(I, J)−1/2 dist(J,K)−1/2. The second term on the right-hand side of (4.25) is
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treated with the help of Lemma 4.8, as in the proof of Lemma 4.9. Thus (4.24)

follows. �

4.5. Schatten-von Neumann Class Estimates for Pseudo-differential

Operators with Periodic Amplitudes

So far, our main tool for getting trace-class estimates has been Lemma 4.8. At

the final stages of the proof of Theorem 4.2, however, when we pass to non-smooth

functions h, we also need some estimates in more general Schatten-von Neumann

classes Sq with q ∈ (0, 1]. Lemma 4.8 is no longer applicable, and we have to appeal

to other results available in the literature.

Throughout this section, we use the formalism of pseudo-differential operators

(ΨDOs). For a complex-valued function p = p(x, y, ξ), x, y, ξ ∈ R, that we call

amplitude, we define the ΨDO Op(p) that acts on Schwartz class functions u as

follows:

Op(p)u(x) :=
1

2π

∫∫
dξdy eiξ(x−y)p(x, y, ξ)u(y). (4.26)

This integral is well-defined, e.g. for any amplitude p which is uniformly bounded and

compactly supported in the variable ξ.

The main result of this section is the following lemma that implies Schatten-

(quasi)norm estimates for the operator

AL,µ := BL,µ(1−BL,µ), (4.27)

see Corollary 4.15.

Lemma 4.13. Let I, Ω ⊂ R be bounded intervals, independent of L, and let p ∈

C∞(R3). Furthermore, assume that the function p = p(x, y, ξ) is 2π-periodic in x

and y, and there exists a constant R > 0 with p(x, y, ξ) = 0 for all x, y ∈ R, and

|ξ| ≥ R. Denote

p[Ω](x, y, ξ) := p(x, y, ξ)χΩ(ξ).

Then, for any q ∈ (0, 1] we have the bounds

‖χIL Op(p)(1− χIL)‖q . 1, (4.28)
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and

‖χIL Op
(
p[Ω]

)
(1− χIL)‖q . (log(L))

1
q . (4.29)

The implicit constants in (4.28) and (4.29) depend on the amplitude p, number R,

and also on the intervals I and Ω.

Our proof relies on similar results from [65]. We state these results in a form

adjusted to our purposes. Namely, the next proposition is a direct consequence of [65,

Cor. 4.4 and Thm. 4.6]. Let us emphasise at this point that the main focus of [65] is

the quasi-classical asymptotics, whereas our objective here is the scaling asymptotics.

In the context of pseudo-differential operators, these two types of asymptotics are

equivalent if the amplitude p is x, y-independent.

Proposition 4.14. Let I, Ω ⊂ R be bounded intervals, and let the function p = p(ξ)

be smooth and compactly supported. In particular, fix R > 0 such that p(ξ) = 0 for

|ξ| ≥ R. For q ∈ (0, 1] denote

Nq(p) := max
0≤m≤b2q−1c+1

sup
ξ
|p(m)(ξ)| <∞. (4.30)

Then

‖χIL Op(p)(1− χIL)‖q . Nq(p), (4.31)

and

‖χIL Op
(
p[Ω]

)
(1− χIL)‖q . (log(L))

1
qNq(p). (4.32)

The implicit constants in (4.31) and (4.32) depend on the intervals I, Ω and number

R, but are independent of the amplitude p.

In order to prove Lemma 4.13, we need to extend Proposition 4.14 to amplitudes,

that are periodic in x and y.

Proof of Lemma 4.13. We only prove the bound (4.29); Estimate (4.28) can

be derived in a similar way.

Performing translations, dilations and renormalization of L, one may assume that

I = Ω = (0, 1). Since p is 2π-periodic in x and y, we can represent it as a Fourier

series

p(x, y, ξ) =
∑
n,l∈Z

einx+ilyanl(ξ),
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where anl( · ) are C∞ in ξ with supports in (−R,R), and decay in n and l faster than

any reciprocal polynomial, uniformly in ξ ∈ (−R,R). More precisely, a straightfor-

ward integration by parts shows that

|a(m)
nl (ξ)| . (1 + |n|)−s(1 + |l|)−t

2π∫
0

dx

2π∫
0

dy |∂sx∂ty∂mξ p(x, y, ξ)|, n, l ∈ Z,

for arbitrary t, s = 0, 1, . . . , so that

Nq(anl) . (1 + |n|)−s(1 + |l|)−t, n, l ∈ Z,

with a constant independent of n, l, but depending on s, t, q (see (4.30) for the defi-

nition of Nq). Consequently, the operator Op(p[Ω]) can be represented as

Op(p[Ω]) =
∑
n,l

einxAnle
ily, Anl = Op(anlχΩ).

Using (4.32), we immediately obtain the bound

‖χILAnl(1− χIL)‖qq . (1 + |n|)−sq(1 + |l|)−tq log(L).

Furthermore, employing the q-triangle inequality for the ideals Sq (see [7, p. 262]),

we arrive at

‖χIL Op
(
p[Ω]

)
(1− χIL)‖qq ≤

∑
n,l

‖χILAnl(1− χIL)‖qq

. log(L)
∑
n,l

(1 + |n|)−sq(1 + |l|)−tq.

The sum on the right-hand side is finite if sq, tq > 1. This completes the proof of the

lemma. �

Corollary 4.15. Assume that V ∈ C∞(R) and let AL,µ be defined as in (4.27).

(i) Let I ⊂ R be a bounded interval. If µ ∈
(
σ(H)

)◦
, then for any q ∈ (0, 1],

‖χILPµ(1− χIL)‖qq . log(L). (4.33)

If µ /∈
(
σ(H)

)◦
, then for any q ∈ (0, 1],

‖χILPµ(1− χIL)‖qq . 1. (4.34)
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(ii) For any q ∈ (0, 1],

‖AL,µ‖qq .


1, µ /∈ (σ(H))◦,

log(L), µ ∈ (σ(H))◦.

(4.35)

Moreover, assume that h satisfies Condition 4.1. Then h(BL,µ) is of trace class

and

‖h(BL,µ)‖1 .


L|h(1)|+ 1, µ /∈ (σ(H))◦,

L|h(1)|+ log(L), µ ∈ (σ(H))◦.

(4.36)

(iii) If µ /∈ (σ(H))◦, then (4.3) holds.

The implicit constants in the inequalities (4.33), (4.34), (4.35), and (4.36) are inde-

pendent of the scaling parameter L.

Proof. It suffices to prove (4.33) and (4.34) for the projections Pµ[S] under the

conditions µ ∈ S◦ and µ /∈ S◦ respectively, for any genuine spectral band S.

Suppose first that µ ∈ S◦. By virtue of (4.11), the operator Pµ[S] has the form

Op
(
p[Ω]

)
with

p(x, y, ξ) = ES(x, ξ)ES(y, ξ) and Ω = (2κS − δ, δ),

where κS is defined in (3.10), and δ ∈ (κS , κS + nS/2) is the unique solution of the

equation Λ(δ) = µ. The function (x, ξ) 7→ ES(x, ξ) is 2π-periodic in x, and infinitely

smooth, due to the C∞-smoothness of V , see Lemma 3.8. Thus, (4.33) follows from

(4.29).

Suppose now that µ /∈ S◦. According to (3.29), either Pµ[S] = 0, in which case

(4.34) is trivial, or

Pµ[S](x, y) =

∫
nST

dkΦS(x, k)ΦS(y, k),

with nS < ∞. Using a straightforward partition of unity on the circle nST, one can

represent Pµ[S] as a finite sum of operators of the form Op(p) with

p(x, y, ξ) = ES(x, ξ)ES(y, ξ)ζ(ξ), ζ ∈ C∞0 (R).

Therefore, (4.34) is a consequence of (4.28).
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From ‖Pµχ(−L,L)‖ ≤ 1 we get that

‖AL,µ‖q = ‖χ(−L,L)Pµ(1− χ(−L,L))Pµχ(−L,L)‖q ≤ ‖χ(−L,L)Pµ(1− χ(−L,L))‖q,

and (4.35) follows from (4.34).

To prove (4.36) we use the representation (4.4): h(t) = th(1) + h0(t), so that

h0(0) = h0(1) = 0 and |h0(t)| . tq(1− t)q, where q ∈ (0, 1] is the Hölder exponent of

the function h. The first term on the right-hand side of (4.36) results from the bound

(4.5). For the second term, note that

‖h0(BL,µ)‖1 . ‖AqL,µ‖1 = ‖AL,µ‖qq, (4.37)

hence the required bounds follow from (4.35). Applying the splitting (4.4), estimates

(4.37) and (4.35) also imply Part (iii) of the corollary. �

4.6. Proof of Theorem 4.2: Polynomial Test Functions

By virtue of Corollary 4.15(iii), formula (4.3) is already proved. Thus it remains

to prove Theorem 4.2 for µ ∈ (σ(H))◦. So, assume from now on that µ is an interior

point of a (fixed) genuine band S ⊂ σ(H). As before, let δ ∈ (κS , κS + nS/2) be the

solution of the equation ΛS(δ) = µ. For simplicity, we abbreviate in the following

Φ := ΦS(δ).

4.6.1. Polynomial classes. We begin the proof of (4.2) with studying polyno-

mial test functions. The following classes of polynomials on the interval [0, 1] will be

relevant:

P := {p : [0, 1] 7→ C, polynomial},

P0 := {p ∈ P : p(0) = p(1) = 0},

Ps := {p ∈ P : p(t) = p(1− t) for all t},

Ps,0 := Ps ∩P0.

(4.38)

By virtue of Section 4.2 and the splitting (4.4), it remains to prove (4.2) for functions

h0 satisfying Condition 4.1, such that h0(0) = h0(1) = 0. Thus we need to study

polynomials p ∈ P0. In fact, it is enough to consider a basis of P0. As in [41] we

choose the basis

{pn(t) = (t(1− t))n, qn(t) = t(t(1− t))n; n = 1, 2, . . . },
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and start by considering the symmetric elements pn(t), which form a basis of Ps,0.

So, we study the operators

pn(BL,µ) = AnL,µ, AL,µ = BL,µ(1−BL,µ).

In so doing, we follow the strategy of [41], where the problem was analysed in the

unperturbed case V ≡ 0. In fact, our objective is to reduce the calculations to the

unperturbed case, by using Lemmas 3.9 and 4.12.

4.6.2. Trace class calculus for the operator AL,µ. Let us rewrite the oper-

ator AL,µ in the form

AL,µ = A−L,µ +A+
L,µ

with 
A−L,µ := χ(−L,L)Pµχ(−∞,−L)Pµχ(−L,L),

A+
L,µ := χ(−L,L)Pµχ(L,∞)Pµχ(−L,L).

(4.39)

Now we perform various transformations with each of these operators that constitute

“small” perturbations in S1. Thus, it is natural to adopt the following notational

convention.

Definition 4.16. Let A and B be bounded operators on L2(R). We write A ∼ B if

‖A−B‖S1 . 1, uniformly in L & 1. We write A ≈ B if A and B are trace class and

| trA− trB| . 1 uniformly in L & 1.

Clearly, for trace class operators A,B the relation A ∼ B implies A ≈ B, but not

the other way round. Note also, that for operators A and B with uniformly bounded

operator norm (in L), A ∼ B implies An ∼ Bn for any n = 1, 2, . . . .

To begin with, by virtue of Proposition 4.10(i), one has that

A+
L,µ ∼ χ(−L,L)Pµχ(L+1,∞)Pµχ(−L,L) (4.40)

and

A−L,µ ∼ χ(−L,L)Pµχ(−∞,−L−1)Pµχ(−L,L). (4.41)
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4.6.2.1. Operators D±L . The next step is to replace A±L,µ with operators that do

not contain any information on the Bloch eigenfunctions for H. These are the oper-

ators D±L : L2(R) 7→ L2(R), defined via their integral kernels

D+
L (x, y) :=

1

4π2
χ(−L,L)(x)χ(−L,L)(y)

∞∫
L+1

dz
1

(z − x)(z − y)
,

D−L (x, y) :=
1

4π2
χ(−L,L)(x)χ(−L,L)(y)

−L−1∫
−∞

dz
1

(z − x)(z − y)
.

Note that D+
L and D−L are unitarily equivalent via the change x 7→ −x. The crucial

fact is that the asymptotic formulae for the traces of powers (D±L )n can be easily

deduced from the results of [41]:

Lemma 4.17. Let pn(t) = tn(1− t)n, n = 1, 2, . . . . Then

tr(D±L )n =
1

4
log(L) W(pn) + o(log(L)), L→∞, (4.42)

where W( · ) is as defined in (4.1).

Proof. Since D+
L and D−L are unitarily equivalent, we show (4.42) for DL := D+

L

only. By translation and reflection, the operator DL is unitarily equivalent to the

operator with kernel

1

4π2
χ(1,2L+1)(x)χ(1,2L+1)(y)

∞∫
0

dz
1

(z + x)(z + y)
,

This is the kernel of the operator which is denoted by Kc in [41, p. 476]. Thus the

formula (4.42) immediately follows from [41, Eq. (19), p. 477]. �

A useful way to write D±L is

D±L = (Z±L )∗Z±L ,

where the operators Z±L have the integral kernels

Z+
L (x, y) :=

χ(L+1,∞)(x)χ(−L,L)(y)

2π(x− y)
and

Z−L (x, y) :=
χ(−∞,−L−1)(x)χ(−L,L)(y)

2π(x− y)
,

(4.43)

respectively. In the following, we establish a few facts for the operators D±L and Z±L .

Recall that we abbreviate Φ = ΦS(δ), δ = δ(µ), remembering that µ is strictly inside

the band S.
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Lemma 4.18. Denote by Y ±L any of the two operators Z±L or (Z±L )∗. With the

notation as above, one has that

Y ±L |Φ|
2(Y ±L )∗ ∼ 1

2π
Y ±L (Y ±L )∗ and Y ±L Φ2(Y ±L )∗ ∼ 0.

Remark 4.19. Taking adjoints, the second estimate in Lemma 4.18 also holds with

Φ2 replaced by Φ2.

Proof. We prove the lemma for the “+” sign and for the case Y +
L = Z+

L only.

The remaining cases are treated in the same way. For brevity, we omit the superscript

“+” and write ZL instead of Z+
L .

For f = |Φ|2 or Φ2, the operator ZLfZ
∗
L coincides with the operator 1

4π2SI,J,K(f)

with

I = K = (L+ 1,∞), J = (−L,L),

see the definition (4.22). Thus, Lemma 4.12 implies that

ZLfZ
∗
L ∼M(f)ZLZ

∗
L.

In view of (3.25) and (3.26), M(|Φ|2) = (2π)−1 and M(Φ2) = 0, whence the claimed

result. �

Corollary 4.20. Let

K±L,n := 2π
[
Φ(D±L )nΦ + Φ(D±L )nΦ

]
, n = 1, 2, . . . . (4.44)

Then for all n = 1, 2, . . . , we have

(K±L,1)n ∼ K±L,n, (4.45)

and

(K±L,1)n ≈ 2(D±L )n, as L→∞. (4.46)

Proof. For brevity, we omit the superscript “±” and write KL,1, DL instead of

K±L,1, D
±
L etcetera. The powers of KL,1 contain terms of the form

DLfDL = Z∗LZLfZ
∗
LZL,

with f = |Φ|2, Φ2 or Φ
2
. Thus by Lemma 4.18,

Kn
L,1 ∼ (2π)n

[
(ΦDLΦ)n + (ΦDLΦ)n

]
∼ 2π

[
ΦDn

LΦ + ΦDn
LΦ
]

= KL,n,
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as claimed.

In order to prove (4.46), we use the cyclicity of the trace. If n = 1, then, again

by Lemma 4.18,

ΦDLΦ ≈ ZL|Φ|2Z∗L ∼
1

2π
ZLZ

∗
L ≈

1

2π
DL.

If n ≥ 2, we arrive in the same way at

ΦDn
LΦ ≈ ZLDn−2

L Z∗LZL|Φ|2Z∗L ∼
1

2π
ZLD

n−2
L Z∗LZLZ

∗
L ≈

1

2π
Dn
L.

For the summand containing Φ and Φ in the reversed order, one can proceed analo-

gously. Thus, (4.46) follows and the proof of the lemma is complete. �

4.6.2.2. Approximating operators A±L,µ. Let µ ∈ S◦ and Φ = ΦS(δ) as before and

recall the definition of the operators A±L,µ, see (4.39). The next lemma compares the

operators A±L,µ with the operators K±L,1, which were defined in (4.44). In view of (4.46)

from Corollary 4.20, this completes the procedure of averaging out the dependence

on the Bloch eigenfunctions.

Lemma 4.21. The trace norm bounds

(A±L,µ)n ∼ (K±L,1)n (4.47)

and

AnL,µ ∼ (A+
L,µ)n + (A−L,µ)n ∼ (K+

L,1)n + (K−L,1)n (4.48)

hold for every n = 1, 2, . . . .

Proof. It suffices to prove (4.47) for n = 1 since the operator norm of A±L,µ is

uniformly bounded with respect to L. As before, we consider A+
L,µ only, omitting the

superscript “+”. From (4.40) and Lemma 4.9 it follows that

AL,µ ∼ χ(−L,L)Πµχ(L+1,∞)Πµχ(−L,L).

Moreover, the definitions (4.7) and (4.43) imply that

χ(L+1,∞)Πµχ(−L,L) = − 2πi
(
ΦZLΦ− ΦZLΦ

)
,

χ(−L,L)Πµχ(L+1,∞) = 2πi
(
ΦZ∗LΦ− ΦZ∗LΦ

)
,
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so that

AL,µ ∼ 4π2
(
ΦZ∗L|Φ|2ZLΦ + ΦZ∗L|Φ|2ZLΦ

)
− 4π2

(
ΦZ∗LΦ

2
ZLΦ + ΦZ∗LΦ2ZLΦ

)
.

Consequently, Lemma 4.18 yields

AL,µ ∼ 2π
(
ΦZ∗LZLΦ + ΦZ∗LZLΦ

)
= KL,1,

as required.

So, let us proceed with the proof of (4.48). By the definition (4.39),

A−L,µA
+
L,µ = χ(−L,L)Pµ

(
χ(−∞,−L)Pµχ(−L,L)Pµχ(L,∞)

)
Pµχ(−L,L).

In virtue of Proposition 4.10(iii), the trace norm of the operator in the middle is

uniformly bounded, and hence A−L,µA
+
L,µ ∼ 0. Taking adjoints, we also get that

A+
L,µA

−
L,µ ∼ 0. Thus,

AnL,µ ∼ (A+
L,µ)n + (A−L,µ)n

follows and (4.48) is now a consequence of (4.47). �

Equipped with Lemma 4.21, we are ready to prove Theorem 4.2 for h = pn,

n = 1, 2, . . . .

4.6.3. Proof of Theorem 4.2 for symmetric polynomials. Estimates (4.48),

(4.46), and the asymptotics (4.42) imply that

trAnL,µ = tr(K+
L,1)n + tr(K−L,1)n + O(1)

= 2 tr(D+
L )n + 2 tr(D−L )n + O(1)

= log(L)W(pn) + o(log(L)), n = 1, 2, . . . . (4.49)

Hence, Theorem 4.2 for polynomials p ∈ Ps,0 follows from the identity pn(BL,µ) =

AnL,µ. �
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4.6.4. Arbitrary polynomials. As above, we assume that µ ∈ S◦, where S is a

genuine spectral band. So far we have proved Theorem 4.2 for polynomials p ∈ Ps,0,

see (4.38) for the notation. To extend this result to arbitrary p ∈ P0 it remains

to treat basis elements of the form qn(t) = t[t(1 − t)]n, n = 1, 2, . . . . Following

[41] for the unperturbed case, this is done by a symmetry argument that reduces

tr qn(BL,µ) = tr
[
BL,µA

n
L,µ

]
to tr pn(BL,µ) = trAnL,µ.

Lemma 4.22. For every n = 1, 2, . . . , we have

BL,µ
(
AL,µ

)n ≈ 1

2
tr
(
AL,µ

)n
, (4.50)

as L→∞.

Remark 4.23. The result of this lemma may be interpreted as follows: if h is a

polynomial, which is point-symmetric around t = 1/2 and vanishes at t = 0 (and

t = 1), then trh(BL,µ) is of constant order. Namely, the functions {t 7→ (t− 1
2)tn(1−

t)n; n = 1, 2, . . . } form a basis for these polynomials. This ultimately leads to

the logarithmic term vanishing in (4.2) for point-symmetric test functions (around

t = 1/2).

Compared to [41], the proof of Lemma 4.22 requires some extra work. The main

difference is that instead of the reflection symmetry used in [41], we exploit the

periodicity of the spectral projection Pµ. The operators A+
L,µ and A−L,µ(see (4.39))

are considered separately. Applying Proposition 4.10 (iib), we get

A+
L,µ ∼ χ(−L,L)Pµχ(L,3L)Pµχ(−L,L). (4.51)

Let U±L be the unitary shift operators defined by

U±L f(x) := f(x∓ L0), L0 = 2π

⌊
L

2π

⌋
.

Then the equivalence (4.51) implies that

(U+
L )∗A+

L,µU
+
L ∼ χ(−2L,0)Pµχ(0,2L)Pµχ(−2L,0). (4.52)

Indeed, (4.51) yields

(U+
L )∗A+

L,µU
+
L ∼ χ(−L−L0,L−L0)Pµχ(L−L0,3L−L0)Pµχ(−L−L0,L−L0),
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since (U+
L )∗PµU

+
L = Pµ. Now, to get (4.52), one needs to use Proposition 4.10(i), (iv)

repeatedly. For the following, let us introduce the notation

χ+
L := χ(0,2L), χ

−
L := χ(−2L,0),

and

T±L,µ := χ∓LPµχ
±
LPµχ

∓
L .

Thus, one can write

(U±L )∗A±L,µU
±
L ∼ T

±
L,µ. (4.53)

This relation with the “+” sign coincides with (4.52), and for the “−” sign it is proved

in the same way. The proof of Lemma 4.22 begins with the following observation.

Lemma 4.24. For any n = 1, 2, . . . , we have that

Pµ(T±L,µ)n ≈ (1− Pµ)(T∓L,µ)n, as L→∞. (4.54)

Proof. For brevity, we write χ± = χ±L , T± = T±L,µ, P = Pµ, and Q = 1 − P .

One has that

P (T+)n = Pχ−Pχ+Pχ−(T+)n−1 = −Pχ−Qχ+Pχ−(T+)n−1

= P (1− χ−)Qχ+Pχ−(T+)n−1

= Pχ+Qχ+Pχ−(T+)n−1 +R1 +R2, (4.55)

with

R1 := Pχ(2L,∞)Qχ
+Pχ−(T+)n−1,

R2 := Pχ(−∞,−2L)Qχ
+Pχ−(T+)n−1.

Moreover, notice that Q = 1 − P can be replaced by −P in R1. By Proposi-

tion 4.10(iii),

χ(2L,∞)Pχ
+Pχ− ∼ 0,

so that R1 ∼ 0. To handle R2, we observe that

χ+Pχ−(T+)n−1 = (T−)n−1χ+Pχ−, (4.56)

and hence, by cyclicity of the trace,

R2 ≈ Qχ+(T−)n−1χ+Pχ−Pχ(−∞,−2L).
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Applying again Proposition 4.10(iii) to the factor χ+Pχ−Pχ(−∞,−2L), we infer that

R2 ≈ 0.

Returning to (4.55), let us apply (4.56) to the first operator on the right-hand

side and use again the cyclicity:

Pχ+Qχ+Pχ−(T+)n−1 = Pχ+Q(T−)n−1χ+Pχ−

≈ Q(T−)n−1χ+Pχ−Pχ+ = Q(T−)n.

Together with (4.55) and R1/2 ≈ 0, this yields (4.54) for the “+” sign. The relation

(4.54) for the “−” sign is obtained in the same way. �

Proof of Lemma 4.22. We shall use the simplified notation as in the proof of

Lemma 4.24 and, in addition, write A = AL,µ, A± = A±L,µ, and B = BL,µ. First,

observe that BAn ≈ PAn. Thus, it follows from (4.48) and (4.53) that

BAn ≈ P (A+)n + P (A−)n ≈ P (T+)n + P (T−)n.

By Lemma 4.24,

2P (T±)n ≈ P (T±)n + (1− P )(T∓)n,

so that

2P (T+)n + 2P (T−)n ≈ P (T+)n + (1− P )(T−)n + P (T−)n + (1− P )(T+)n

= (T+)n + (T−)n.

Hence, using (4.53) and (4.48) again, we arrive at

2BAn ≈ An,

which leads to (4.50) and completes the proof of the lemma. �

As a consequence of Lemma 4.22, Theorem 4.2 can be proved for arbitrary p ∈ P0.

Proof of Theorem 4.2 for arbitrary polynomials. It remains to validate

the theorem for polynomials of the form qn(t) = tpn(t), n = 1, 2, . . . . From Lemma

4.22 and (4.49) we deduce that

tr
[
BL,µ

(
AL,µ

)n]
=

1

2
log(L)W(pn) + o(log(L)), L→∞. (4.57)

Moreover, the function qn − 1
2pn is point-symmetric around t = 1/2 such that

W(qn − 1
2pn) = 0,
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hence W(qn) = 1
2W(pn). Together with (4.57) this leads to Theorem 4.2 for the

polynomials qn and, thus, the theorem is proved for arbitrary polynomials p ∈ P0. �

4.7. Proof of Theorem 4.2: Closure of the Asymptotics

Throughout this final section, we assume that h satisfies Condition 4.1. We recall

that, applying the splitting (4.4), we may, in addition, assume that h(1) = 0. Also,

without loss of generality, suppose that h is real-valued (otherwise treat real and

imaginary part separately). The proof splits into three steps.

Step 1. First, we prove the theorem for continuous functions h that are differen-

tiable at t = 0 and t = 1. The differentiability condition at t = 0 and t = 1 (together

with h(0) = h(1) = 0) implies that h(t) = t(1 − t)g(t) for a continuous real-valued

function g. Fix ε > 0. Due to the Stone-Weierstrass theorem, there exist a real-valued

polynomial p ∈ P with ‖p− g‖∞ < ε. Denoting p̃(t) := t(1− t)p(t), we estimate

h(t) ≤ t(1− t)(p(t) + ε) = p̃(t) + εt(1− t), (4.58)

and

h(t) ≥ t(1− t)(p(t)− ε) = p̃(t)− εt(1− t). (4.59)

The monotonicity of the trace in combination with (4.58) gives

tr
[
h(BL,µ)

]
≤ tr

[
p̃(BL,µ)

]
+ ε tr

[
BL,µ(1−BL,µ)

]
.

From Theorem 4.2 for polynomials from P0, we get

lim sup
L→∞

tr
[
h(BL,µ)

]
log(L)

≤W(p̃) + εW(t(1− t)) = W(p̃) +
ε

π2
,

where we have used that W(t(1− t)) = π−2, see (4.1). Moreover, we notice that∣∣W(h)−W(p̃)
∣∣ =

∣∣W(h− p̃)
∣∣ ≤ ε

π2
,

and, hence,

lim sup
L→∞

tr
[
h(BL,µ)

]
log(L)

≤W(h) +
2ε

π2
.

In the same way, (4.59) implies

lim inf
L→∞

tr
[
h(BL,µ)

]
log(L)

≥W(h)− 2ε

π2
,

and as ε > 0 was chosen arbitrarily we deduce formula (4.2) for our choice of h.
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Step 2. Now, let h be a continuous function that is Hölder-continuous at 0 and 1

with exponent q ∈ (0, 1] so that

|h(t)| . tq(1− t)q, t ∈ [0, 1].

Fix again ε > 0 and choose a smooth function ζε such that 0 ≤ ζε ≤ 1 and

ζε(t) =

1, t ∈ [0, ε/2] ∪ [1− ε/2, 1],

0, t ∈ [ε, 1− ε].

In view of the estimate

|(ζεh)(t)| . [t(1− t)]qζε(t) . εr[t(1− t)]r, r =
q

2
,

we have

‖(ζεh)(BL,µ)‖1 . εr‖BL,µ(1−BL,µ)‖rr.

By Corollary 4.15, the right-hand side does not exceed log(L), L ≥ 2. Consequently,∣∣ tr [(ζεh)(BL,µ)
]∣∣

log(L)
. εr, L ≥ 2. (4.60)

On the other hand, the function hε = (1− ζε)h vanishes in a vicinity of 0 and 1 and,

therefore, by Step 1, we have

tr
[
hε(BL,µ)

]
= log(L)W(hε) + o(log(L)), L→∞. (4.61)

It is clear that∣∣W(h)−W(hε)
∣∣ . (∫ ε

0
dt +

∫ 1

1−ε
dt

)
tq−1(1− t)q−1 . εq, (4.62)

hence, combining (4.60), (4.61), and (4.62) gives

lim sup
L→∞

∣∣∣tr[h(BL,µ)]

log(L)
−W(h)

∣∣∣ . εr.
Since ε > 0 is arbitrary, this yields the claim.

Step 3. Suppose that h satisfies Condition 4.1 and fix ε > 0. Let g1, g2 be two

continuous functions, such that

(i) g1(t) = g2(t) = h(t) in a neighbourhood of the endpoints t = 0, 1,

(ii) g1(t) ≤ h(t) ≤ g2(t), for all t ∈ [0, 1], and

(iii) ‖g1 − g2‖L1 < ε.
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Applying the definition (4.1) of W, this implies that

|W(g1)−W(h)| . ε, |W(g2)−W(h)| . ε.

Also, the monotonicity of the trace yields

tr g1(BL,µ) ≤ trh(BL,µ) ≤ tr g2(BL,µ),

thus, by Step 2,

lim sup
L→∞

∣∣∣∣trh(BL,µ)

log(L)
−W(h)

∣∣∣∣ . ε.
Since ε > 0 is arbitrary, the required result follows.

This completes the proof of Theorem 4.2.



Appendix

A.1. A Remark on the Third Coefficient in the Trace Asymptotics for

Wiener–Hopf Operators with Smooth Symbol

The purpose of this section is to provide a proof of the following result.

Lemma A.1. Suppose that d ≥ 2 and let Ω ⊂ Rd be a bounded set with smooth

boundary. Moreover, assume that a ∈ W∞,1(Rd) and let h(z) = z2 + dz for some

d ∈ C. Then the coefficient Bd−2 = Bd−2(Ω, h, a) in (1.12) vanishes:

Bd−2(Ω, h, a) = 0.

For a and Ω as in the lemma and (general) entire test functions h with h(0) = 0,

a formula for Bd−2 is contained, for instance, in [58]. In order to write it down,

we need to fix some notation. Let dΣ denote the surface measure on ∂Ω and write

νx for the inwards pointing unit normal vector at x ∈ ∂Ω. Consider the canonical

volume element dX = dΣdξ on T ∗(∂Ω) where dξ is the Lebesgue measure on {νx}⊥.

Moreover, let II denote the second fundamental form on ∂Ω with respect to the unit

normal ν and write H for (d− 1) times the mean curvature on ∂Ω. Finally, introduce

for a vector w ∈ Rd its orthogonal projection wTx = wTx(∂Ω) onto Tx(∂Ω) = {νx}⊥.

In view of [58, Thm. 1.1], the coefficient Bd−2 = Bd−2(Ω, h, a) is given by

Bd−2 =− 1

2(2π)d+2

∫
T ∗(∂Ω)

dX

∫
R

dξ1

∫
R

dξ2

ξ1 − ξ2

∫
R

dξ3

ξ1 − ξ3

×

{
3∑

k=1

h(a(ξ + ξkν))∏
j 6=k

[a(ξ + ξkν)− a(ξ + ξjν)]

}(
II
[
(∇a)T (ξ + ξ2ν), (∇a)T (ξ + ξ3ν)

]

−H
[
ν · (∇a)(ξ + ξ2ν)

][
ν · (∇a)(ξ + ξ3ν)

])
, (A.1)

where the integrals over ξ2 and ξ3 are interpreted as Cauchy principal values. Armed

with this formula, we are ready to prove the lemma.
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Proof of Lemma A.1. Note that, for the given function h, one has that

3∑
k=1

h(a(ξ + ξkν))∏
j 6=k

[a(ξ + ξkν)− a(ξ + ξjν)]
= 1,

for all ξ, ν ∈ Rd and ξ1, ξ2, ξ3 ∈ R. Thus, as the Hilbert transform

C∞(R) ∩ L2(R) 3 f 7→ f̃ ; f̃(t) :=
1

π
lim
ε↘0

∫
|s−t|>ε

ds
f(s)

t− s
,

extends to a unitary operator on L2(R), the formula (A.1) for Bd−2 simplifies to

− 1

8(2π)d

∫
T ∗(∂Ω)

dX

∫
R

dζ
{

II
[
(∇a)T (ξ + ζν), (∇a)T (ξ + ζν)

]
−H

[
ν · (∇a)(ξ + ζν)

]2}
.

To see that this expression vanishes identically we repeat an argument from [58,

p. 600]. Writing out the volume element dX = dΣdξ and combining the ξ- and

ζ-integration, one arrives at

Bd−2 = − 1

8(2π)d

∫
∂Ω

dΣ(x)

∫
Rd

dξ
{

IIx
[
(∇a)Tx(ξ), (∇a)Tx(ξ)

]
−H(x)

[
νx · (∇a)(ξ)

]2}
.

Hence, the lemma follows from Fubini’s theorem and the identity∫
∂Ω

dΣ(x)
(

IIx
[
wTx , wTx

]
−H(x)[νx · w]2

)
= 0,

which holds for any w ∈ Rd, see [58, Eq. (4.16)]. �

A.2. Proof of Lemma 2.11

We first prove the lemma for monomials h(z) = zk, k = 1, 2, . . . . For k = 1 the

statement is trivial, so assume that k ≥ 2. The operator [AG]k has the kernel

[AG]k(x, y) = χG(x)

∫
G

dz1· · ·
∫
G

dzk−1 Fk(x, z1, z2, . . . , zk−1, y)χG(y)

with

Fk(x, z1, z2, . . . , zk−1, y) := ǎ(x− z1)ǎ(z1 − z2) · · · ǎ(zk−2 − zk−1)ǎ(zk−1 − y).

Due to Lemma 2.10, there exist a constant Ca,d, depending on the symbol a and d,

such that

|Fk(x,z1, z2, . . . , zk−1, y)|

≤ Cka,d〈x− z1〉−d−1〈z1 − z2〉−d−1 · · · 〈zk−2 − zk−1〉−d−1〈zk−1 − y〉−d−1. (A.2)
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Moreover, the function Fk is continuous on
(
Rd
)k+1

. Fix y0 ∈ G and δ ∈ (0, 1) such

that Bδ(y0) ⊂ G. By Peetre’s inequality, see (2.39), one has that, for y ∈ Bδ(y0) and

z ∈ Rd,

〈z − y〉−d−1

〈z − y0〉−d−1
≤ 2(d+1)/2〈y − y0〉d+1 ≤ 2d+1.

Together with (A.2), this yields the bound

sup
(x,y)∈G×Bδ(y0)

|Fk(x, z1, z2, . . . , zk−1, y)|

≤ 2d+1Cka,d〈z1 − z2〉−d−1 · · · 〈zk−2 − zk−1〉−d−1〈zk−1 − y0〉−d−1,

the right-hand side being integrable on
(
Rd
)k−1 ⊃ Gk−1. Thus, the kernel AkG(x, y)

is continuous on G×G. Furthermore, one deduces from (A.2) that

|[AG]k(x, y)| ≤ Cka,d
[ ∫
Rd

dz 〈z〉−d−1
]k−1

,

for all x, y ∈ G. Hence, by uniform convergence, the kernel h(AG)(x, y) is continuous

on G × G for every entire function h with h(0) = 0. This finishes the proof of the

lemma.
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asymptotique de la trace de l’inverse à l’ordre d. J. Funct. Anal. 67(3): 380 –

412, 1986.

61. B. Simon, Orthogonal polynomials on the unit circle., American Mathematical

Society Colloquium Publications, vol. 54. American Mathematical Society, Prov-

idence, RI, 2005.

62. B. Simon, Trace Ideals and Their Applications, Mathematical Surveys and Mono-

graphs, vol. 120. Second edn., American Mathematical Society, Providence, RI,

2005.

63. A. V. Sobolev, Quasi-Classical Asymptotics for Pseudodifferential Operators with

Discontinuous Symbols: Widom’s Conjecture. Funct. Anal. Appl. 44(4): 313–

317, 2010.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/mana.201800325
https://onlinelibrary.wiley.com/doi/pdf/10.1002/mana.201800325


120 Bibliography

64. A. V. Sobolev, Pseudo-Differential Operators with Discontinuous Symbols:

Widom’s Conjecture. Mem. Amer. Math. Soc. 222(1043): vi+104, 2013.

65. A. V. Sobolev, On the Schatten-von Neumann Properties of Some Pseudo-

Differential Operators. J. Funct. Anal. 266(9): 5886–5911, 2014.

66. A. V. Sobolev, Functions of self-adjoint operators in ideals of compact operators.

J. Lond. Math. Soc. (2) 95(1): 157–176, 2017.

67. A. V. Sobolev, Quasi-classical asymptotics for functions of Wiener–Hopf opera-

tors: smooth versus non-smooth symbols. Geom. Funct. Anal. 27(3): 676–725,

2017.
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