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Abstract 

During an ST-elevation myocardial infarction (STEMI), the myocardium undergoes a prolonged 
period of ischaemia. Reperfusion therapy is essential to minimize cardiac injury but can paradoxically 
cause further damage. Experimental procedures to limit ischaemia and reperfusion (IR) injury have 
tended to focus on the cardiomyocytes since they are crucial for cardiac function. However, there is 
increasing evidence that non-cardiomyocyte resident cells in the heart (as discussed in a separate 
review in this Spotlight series) as well as circulating cells and factors play important roles in this 
pathology. For example, erythrocytes, in addition to their main oxygen-ferrying role, can protect the 
heart from IR injury via the export of nitric oxide bioactivity. Platelets are well-known to be involved 
in haemostasis and thrombosis, but beyond these roles, they secrete numerous factors including 
sphingosine-1 phosphate (S1P), platelet activating factor (PAF) and cytokines that can all strongly 
influence the development of IR injury. This is particularly relevant given that most STEMI patients 
receive at least one type of platelet inhibitor. Moreover, there are large numbers of circulating 
vesicles in the blood, including microvesicles and exosomes, which can exert both beneficial and 
detrimental effects on IR injury. Some of these effects are mediated by the transfer of miRNA to the 
heart. Synthetic miRNA molecules may offer an alternative approach to limiting the response to IR 
injury. We discuss these and other circulating factors, focussing on potential therapeutic targets 
relevant to IR injury. Given the prevalence of co-morbidities such as diabetes in the target patient 
population, their influence will also be discussed. This article is part of a Cardiovascular Research 
Spotlight Issue entitled ‘Cardioprotection Beyond the Cardiomyocyte’, and emerged as part of the 
discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology 
(COST) Action, CA16225.  

 

 



CVR-2018-935R1 

1. Introduction 

During an ST-elevation myocardial infarction (STEMI) the myocardium undergoes a prolonged period 
of ischaemia. Reperfusion therapy is essential to minimize cardiac injury but can paradoxically cause 
further damage.1 Experimental procedures to limit ischaemia and reperfusion (IR) injury have been 
developed.1-3 These strategies include ischaemic conditioning applied before ischaemia 
(preconditioning or IPC), after ischaemia (postconditioning or IPost) or to a distal organ or limb 
(remote conditioning, RIC). In addition, numerous pharmacological strategies activate either the 
PI3K/AKT (Reperfusion Injury Salvage Kinase, RISK), JAK/STAT (survivor activating factor 
enhancement or SAFE), or cGMP/PKG signalling pathways. These pathways have various effects on 
cardiomyocytes, but inhibition of the mitochondrial permeability transition pore (MPTP) has been 
described as a common end effector.1 Furthermore, the mechanism of cardioprotection may also 
involve global changes in cardiac gene expression.4, 5 

Unfortunately, despite success in limiting IR injury in experimental animal models, the above 
approaches have not translated well to the clinical setting.1, 6 Possible reasons for this have been 
extensively discussed.1, 2, 6, 7 One reason is likely to be the prevalence of co-morbidities such as 
dyslipidaemia, diabetes and age in the STEMI patient population, which can impede cardioprotective 
strategies.8 Another reason is that many patients are already taking drugs (e.g.: statins) or are 
administered drugs (e.g.: platelet P2Y12 inhibitors) that are known to influence cardioprotection.8 It 
may also be relevant that, because of their crucial role in cardiac function, most cardioprotection 
studies have focussed on protecting the cardiomyocytes. However, increasing evidence suggests 
that solely targeting cardiomyocytes may be insufficient to protect the heart in the complex scenario 
of STEMI, and a multi-target approach may be necessary.9 In this regard, it may also be important to 
consider the roles played by innate immunity and inflammation, and the nervous system in addition 
to non-cardiomyocyte cells resident in the heart - topics which are discussed in a separate review in 
this Spotlight series.(references to be added in proof) Here, we address the importance of 
circulating blood cells and factors in IR injury and cardioprotection. We examine the role played by 
platelets, erythrocytes, as well as the extracellular vesicles (EVs) they release into the blood. While 
thrombosis is clearly a fundamental cause of coronary occlusion and myocardial ischaemia, factors 
targeting the thrombus and clotting factors may exert cardioprotective effects independent of 
occlusion. Furthermore, non-vesicular RNA may be an important cardioprotective approach. 
Lymphocytes play a complex role in IR injury. Circulating B- and T-lymphocytes are recruited to the 
injured myocardium in the days following infarction, and contribute to healing after AMI, but there is 
also some evidence that T cells contribute to acute myocardial IR injury. The role of lymphocytes and 
other immune cells is discussed in detail in an accompanying review in this series.(reference to be 
added in proof) 

While there are certainly roles for circulating cells and factors in the longer time-scale of response to 
IR including inflammation and ventricular remodelling, we focus on their role in initial myocardial 
injury following acute IR injury. 

2. Platelets 

Platelets are small, anucleate cell fragments whose primary function is to initiate haemostasis in 
response to small vessel injury. However, they are emerging as important factors in the regulation of 
vascular homeostasis in many organs, including the heart. When activated, platelets can initiate 
haemostasis to prevent bleeding and eventually propagate a thrombus. STEMI is the consequence of 
coronary occlusion by thrombosis following plaque rupture. The latter promotes platelet adhesion 
and aggregation and thereby contributes to the blood clotting process. Platelets release various 
factors that may influence the heart during IR including cytokines, microRNAs (miRNAs), chemerin, 
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sphingosine-1-phosphate (S1P), and platelet-activating factor (Figure 1), thereby affecting the non-
thrombogenic properties of the vascular endothelium and disturbing cardiomyocyte functions.  

Activated platelets release a variety of factors that can affect IR injury. Some of these are vaso-
active, as discussed further in an accompanying review.(reference to be added in proof) Other 
factors may act directly on cardiomyocytes and worsen their response to IR. For example, activated 
platelets release chemerin, an adipokine involved in inflammation, obesity, insulin resistance and 
metabolic syndrome.10 Acting through chemokine-like receptor1 (CMKLR1 or ChemR23), it reduces 
AKT phosphorylation, activates caspase-9, and induces apoptosis in murine cardiomyocytes, which 
suggests it could also increase cardiac IR injury.11 

Platelets also release numerous factors which may activate cardioprotective RISK and SAFE 
pathways. For example, they are a major source of CXCL12 (stromal cell derived factor -1α, SDF-1α), 
which is released upon activation and can reduce IR injury in rodent and human myocardium, in 
addition to promoting longer time-scale repair mechanisms.12, 13  

Platelet-derived S1P appears to make an important contribution to protection from IR injury. 
Platelets contain sphingosine kinase, which can transform membrane sphingosine into S1P for 
storage and release.14 S1P can have both pro- and anti-aggregatory effects via G-protein coupled 
receptors (GPCRs) on platelets.14 Importantly, S1P can also directly induce myocardial protection, 
apparently via S1P1, S1P2 and S1P3 receptors in cardiomyocytes, leading to activation of the RISK and 
SAFE pathways.15-18 It has also been reported that PAK1/AKT/NOS3 signalling may mediate 
cardioprotection by S1P.18, 19 Mice lacking both S1P2 and S1P3 receptors have 50% smaller infarcts 
after IR,18 but it is not clear which cell type mediates this effect. Nevertheless, studies demonstrate 
that S1P is a pivotal mediator of cardioprotection and can trigger IPC and IPost. Indeed, S1P 
mediates powerful cardioprotection in isolated mouse hearts.20, 21 

Diabetes can increase platelet hyperactivity and oxidative stress leading to cardiovascular 
complications.22 These alterations may, at least in part, be responsible for the reduced ability to 
induce cardioprotection in models of uncontrolled diabetes.8 Pre-treatment of isolated rat hearts 
with platelets from healthy subjects was protective against IR injury, whereas platelets from diabetic 
subjects were not, possibly due to altered release of S1P.23  

Cardioprotective strategies such as IPC and IPost can induce the release of S1P.21, 24 Whether these 
manoeuvres affect S1P release from platelets is not clear. Nevertheless, P2Y12 inhibitors induce a 
conditioning-like cardioprotection that requires both platelets and S1P.25-27 Platelets collected from 
patients with ACS increased injury when perfused through isolated rat hearts, and this cytotoxicity 
was blocked by P2Y12 inhibitors.28 However, prevention of platelet aggregation alone is not 
protective in vivo, since infarct size is unaltered in thrombocytopenic rats that remain untreated.27 
All P2Y12 antagonists tested to date have been found to be cardioprotective in animals, and neither 
IPC nor IPost can add protection to that induced by the anti-platelet drugs.25, 29 Since virtually all PCI-
patients are treated with P2Y12 inhibitors, it is important that future cardioprotective interventions 
are tested in an animal model receiving a P2Y12 antagonist. The failure to clinically translate IPost-
mimetics, which had appeared so protective in animal studies25, 29 has led to the mistaken 
assumption that animal hearts are not appropriate models of human hearts. But even in animal 
studies, IPost was unable to confer further infarct size reduction in an animal concomitantly treated 
with a P2Y12 antagonist.25 It would therefore appear that in the presence of a P2Y12 antagonist, 
further cardioprotection can be achieved only if the intervention has a different mechanism of 
protection from the platelet inhibitor.15, 25, 29, 30 This approach should pave the way to translation of 
cardioprotective protocols into successful clinical treatments. 
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The phosphoglyceride Platelet Activating Factor (PAF) is produced and released by platelets, 
endothelial cells and leukocytes.31 PAF acts as an autocrine/paracrine mediator on various cell types 
including cardiomyocytes, endothelial cells, smooth muscle cells, and platelets.31 PAF has a dual role 
in IR31. IR causes the release of high quantities of PAF (1-10 nmol/L) with direct and indirect negative 
effects on coronary and cardiac functions, including a strong arrhythmogenic effect.31 At very low 
concentrations (pM), PAF has a cardioprotective effect similar that that elicited by IPC.31-33 
Cardioprotection by PAF involves activation of the RISK kinase pathway, including PKC, AKT, and 
NOS.32 Interestingly, a PAF-receptor antagonist impairs the infarct-sparing effect of both IPC and 
PAF.32  

Although PAF or other endogenous factors within platelets may participate in triggering IPC-induced 
cardioprotection, they appear not to be required for cardioprotection by IPC, since 
thrombocytopenia did not abolish cardioprotection by IPC.15 However, platelets might still affect 
infarction in patients with coronary artery disease or co-morbidities such as diabetes where platelets 
may be activated. Thus, platelets not only affect haemostasis and thrombosis, but platelet-derived 
products including EVs can have a profound effect on infarct size and cardioprotection. 

3. Erythrocytes 

It is well-known that erythrocytes are involved in the regulation of the cardiovascular system via 
mechanisms that include their interaction with the endothelium.34-36 These mechanisms include the 
export of NO-like bioactivity and ATP that exert important cardiovascular effects. Additionally, 
erythropoietin (EPO), a kidney-derived cytokine that has the ability to increase red blood cell mass, 
can protect cardiomyocytes from apoptotic cell death through NOS3-derived NO production.37 In the 
setting of IR, erythrocytes were originally suggested to protect the isolated rat heart from IR injury 
via a NOS-dependent mechanism.38 This was supported by the observation that mice with blood cells 
lacking NOS3 had lower circulating nitrite and developed larger infarcts following IR than control 
mice, supporting a role of erythrocyte NOS3 under in vivo conditions.37, 39 It was subsequently shown 
that export of NOS3-derived NO bioactivity from erythrocytes induced cardioprotection in the 
isolated heart.40 This effect was tightly controlled by the enzyme arginase which is known to 
reciprocally regulate NO formation by competing with NOS3 for the substrate L-arginine. 
Consequently, inhibition of erythrocyte arginase induces cardioprotection via a mechanism that is 
entirely dependent on erythrocyte NOS3 (Figure 2).40  

Interestingly, arginase is upregulated in erythrocytes in type 2 diabetes - an important co-morbidity 
in patients with STEMI.41, 42 Accordingly, it was recently demonstrated that erythrocytes from both 
mice and patients with type 2 diabetes markedly impair recovery of cardiac systolic function, 
increase left ventricular end-diastolic pressure and increase infarct size following IR in comparison 
with erythrocytes from control mice or healthy humans.42 The underlying mechanism behind this 
effect was increased arginase activity in erythrocytes which led to a decrease in NO production. It 
further resulted in increased reactive oxygen species (ROS) production due to uncoupling of NOS3 
and increased expression of NADPH oxidase (NOX2) in erythrocytes.43 The ROS species hydrogen 
peroxide produced by erythrocytes activates endothelial cell arginase and NOX1 which results in 
endothelial oxidative stress and impaired endothelium-dependent relaxation.43 Thus, available data 
suggest that erythrocytes are prominently involved in events occurring during IR by export of NO 
bioactivity under strict control of erythrocyte arginase. Furthermore, erythrocytes are important 
targets for cardioprotective therapies including arginase and ROS inhibition. In addition, erythrocyte 
NOS/NO bioactivity has been suggested to be associated with RIC via increased erythrocyte 
deformability.44 Finally, erythrocyte dysfunction characterized by increased arginase activity and ROS 
production leading to endothelial dysfunction aggravates IR injury and increases infarct size in type 2 
diabetes.42 Therefore, erythrocytes represent an important potential target for cardioprotection. 
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4. Extracellular vesicles and circulating miRNA  

In addition to circulating cells, blood contains large numbers of EVs.45-48 Most of these EVs originate 
from platelets and erythrocytes, but they are also produced by other circulating cells such as 
leukocytes, and by vascular cells particularly the endothelium. Historically, the cardiovascular field 
has focussed on the population of larger EVs, called microvesicles (MVs), in part because they are 
relatively easy to study using methods such as flow cytometry. Over the past few years, there has 
been increasing interest in the smaller type of EVs called exosomes, particularly because of their 
apparent signalling role.45-48 As we discuss these different types of EVs below, it is important to be 
aware that results can be highly dependent on the isolation and purification methods used, and that 
the purity and specific fractions of exosomes achieved using commonly used isolation methods can 
be quite variable.46, 48, 49 Furthermore, while EVs certainly contain miRNA, miRNA is also found in the 
blood complexed to lipoproteins and Argonaute proteins, and the relative importance of these 
different vehicles for the transfer of miRNA is highly debated. 

i. Exosomes 

Exosomes are nano-sized (50-150 nm diameter) lipid bilayer vesicles released from cells when 
multivesicular bodies fuse with the plasma membrane.46, 48 Exosomes are secreted by all cell types 
and act as universal propagators of intercellular communication. Since high concentrations of 
exosomes are found in the blood (~1010 per ml50),  they have been hypothesized to mediate the 
transmission of the cardioprotective signal of RIC.51 Indeed, RIC was shown to increase the 
concentration of exosomes in the blood,50 and in 2014, the first evidence that cardioprotection by 
RIC might be transmitted by EVs, most likely exosomes, was obtained.52 In this study, pre-treatment 
with exosomes from conditioned donor hearts attenuated infarct size in non-preconditioned 
recipient hearts undergoing IR.52 Recently it has been shown that exosomes derived from the plasma 
of rats subjected to RIC play a role in reducing oxidative stress-mediated injury.53 

Platelets are a major source of circulating EVs, releasing both exosomes and microvesicles.48, 54 
Platelet EVs are also present in atherosclerotic plaques.55 Several stimuli can augment the release of 
EVs, including physical-chemical stresses and pro-apoptotic stimuli. Platelet exosomes appear to 
have an anti-thrombotic effect.45 Platelet-derived EVs can transfer RNAs to recipient cells and 
influence their activity.45, 56 While studies suggest an important role for platelet-derived miRNAs in 
haemostasis, thrombosis, and unstable coronary syndromes,56 it is less clear whether miRNA, either 
from platelets or EVs, could act rapidly enough to influence acute infarct formation after IR.  

Exosomes are increasingly being exploited for their therapeutic cardioprotective role in 
progenitor/stem cell-based therapy.46 Molecules and EVs secreted by progenitor cells appear to 
create a reparative and regenerative milieu in the tissue microenvironment, which may be more 
important than the differentiation potential of the cells themselves. Exosomes purified from culture 
medium conditioned by resident cardiac progenitor cells (Exo-CPC), but not exosomes released from 
normal dermal fibroblasts, are cardioprotective and proangiogenic in vivo.57, 58 Exo-CPC injected into 
the infarct border zone reduced scar size, increased viable mass and vessel density, and improved 
global heart function after MI in mice.57, 58 Not only CPC-derived exosomes can induce a 
cardioprotective signal, since differences are observed when comparing CPC with exosomes from 
patient-matched, bone-marrow derived, mesenchymal stem cell (BMC). Although Exo-BMC provide 
some cardioprotection after acute MI, they are not as effective as Exo-CPC.59  

The exact mechanism by which exosomes protect cardiomyocytes from IR injury has yet to be 
elucidated but it may involve the exosome’s cargo of mRNA, short non-coding RNA (miRNAs, Y-RNA) 
and/or proteins.57, 58, 60 Given their abundance and specific expression within tissue-specific 
exosomes, miRNAs appear to be an important component, although there are some aspects that are 
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not yet clear, including how transferred miRNAs are incorporated into an endogenous RISC complex 
and mediate their effect in competition with large amounts of host miRNA.61 The most highly 
enriched miRNAs in Exo-CPC include miR-146a-3p, miR-132 and miR-210.57, 58 Gain and loss-of-
function studies revealed antiapoptotic and proangiogenic properties of these miRNAs. Plasma 
exosomes induced by RIC transfer miR-24 and decrease oxidative stress-mediated apoptosis into 
cardiomyocytes by downregulating expression of the pro-apoptotic protein Bim.53 

CPC cultured as 3-D cardiospheres (CDC) release exosomes that contain many short RNAs that are 
unique to CDCs compared to fibroblast-derived exosomes.60 The most abundant RNA species found 
in CDC-exosomes is a Y RNA fragment (EV-YF1).60 Its relative abundance in CDC-exosomes correlates 
with an indirect in vivo reduction of cardiomyocyte apoptosis, by increasing expression of the known 
cardioprotective cytokine interleukin 10 (IL-10) into macrophages within the ischaemic area.60 CDCs-
exosomes reduced infarct size 48 h after reperfusion when injected in rats subjected to 45 min 
coronary artery occlusion.62 In this case, cardioprotection was mediated by miR-181b, as 
demonstrated by the loss of cardioprotection caused by miR-181b antagomir and by the fact that 
inert exosomes from fibroblasts, after enrichment with miR-181b, were able to reduce infarct size.62 
Cardioprotection was found to be related to the expression of the pro-inflammatory genes NOS2 
and TNF, protein kinase C δ (PKCδ), and increased macrophage polarization.62 

The protein cargo of plasma-derived exosomes includes heat-shock protein 70 (HSP70), which plays 
a crucial role in pro-survival effects of circulating exosomes when used in ex vivo, in vivo, and in vitro 
settings of IR.50 Extracellular exosome-mediated signal activates ERK1/2 in cardiomyocytes, which 
trigger toll-like receptor (TLR4) leading to phosphorylation of the cardioprotective protein HSP27.50 
When any of these proteins are selectively blocked, or HSP70 is absent from the surface of 
exosomes, the cardioprotective signal is not propagated.50 Diabetes impairs the cardioprotective 
activity of exosomes.63 However, exosomes from non-diabetic rats retained the ability to protect 
cardiomyocytes from diabetic rats, indicating that exosome therapy can still be effective despite the 
hyperglycaemic environment found in diabetic patients.63 Among the most highly expressed protein 
on Exo-CPC is pregnancy-associated plasma protein-A (PAPP-A), a protease that releases active 
insulin growth factor 1 (IGF-1), a key cardioprotective agent. PAPP-A appears to be required for Exo-
CPC to improve functional recovery after permanent coronary artery occlusion.59  

Small animal studies suggest that exosomes could revolutionize medicine due to their potent effects 
on cell behaviour including cardioprotection. However, there is a long route to the final goal of 
clinical benefits in patients using exosome-based therapeutics.48 Little is known about what is the 
most active fraction of collected samples for exosome studies. Improved techniques for the isolation 
of defined size-ranges of exosome populations are needed.48 It will also be important to develop 
methods to target exosomes to the heart to limit their potential side effects on other tissues. Finally, 
although some research groups have recently begun to approach the technical challenge of isolating 
GMP (good laboratory procedures)-grade exosomes,64 several technical and regulatory aspects will 
need to be overcome to enable the large-scale production of exosomes.48 Furthermore, pre-clinical 
large animals studies will be necessary before exosomes can be considered as a realistic therapeutic 
approach for cardioprotection. 

ii. Microvesicles 

Microvesicles (MVs), also known as microparticles or ectosomes, are a heterogeneous population of 
EVs formed by outward budding and/or shedding of the plasma membrane. This process can occur 
in several cell types, including endothelial cells, erythrocytes, leucocytes, platelets and 
cardiomyocytes.45, 48 MVs are also heterogeneous in their size and molecular composition.45, 48 
Although initially considered plasma membrane fragments emanating from platelets as part of the 
coagulation process,65 it is now established that MVs are important players in intercellular 
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communication, since they can convey proteins, lipids, nucleic acids and other molecules with 
biological activity such as cytokines, hormones and coagulation factors between distant cells.66 
Circulating MVs have been implicated in several physiological functions such as the coagulation 
process, reticulocyte maturation, angiogenesis, tissue repair and inflammation.46, 48, 66 The 
concentration of MVs in the plasma is estimated to be ~2-4 x 108 per ml.66 In healthy subjects, the 
majority are of platelet origin as indicated by the presence of CD41, while the remaining MVs derive 
from granulocytes, ECs, erythrocytes and monocytes.66 In contrast to the beneficial effects of 
platelet exosomes, noted above, platelet microvesicles can promote interactions between platelets, 
endothelial cells, and monocytes favouring atherogenesis.45, 47, 66, 67 Since microvesicles contain 
procoagulant platelet membrane components, they can potentiate the coagulation response.45  

The number of circulating MVs increases in patients with heart failure and vascular inflammation, 
most likely due to platelet activation.45, 48 Moreover, the number of circulating procoagulant MVs is 
elevated in patients with acute coronary syndrome and chronic ischemic heart disease.48 
Endothelial-derived MVs can increase in heart failure, hypertension, coronary artery disease and 
carotid artery disease, possibly due to endothelial injury and dysfunction.68  

In addition to their importance as biomarkers, MVs elicit biological responses in recipient cells which 
may depend on the cell-type and of origin as well as its physiological status.48 For example, platelet-
derived MVs injected into the myocardium induced angiogenesis and stimulated post-ischaemic 
revascularization in a rat model of MI.69 IPC increased the number of circulating MVs derived from 
platelets, endothelial cells and erythrocytes, and administration of these MVs significantly alleviated 
damage to the myocardium and restored cardiac function after IR injury by inhibiting endoplasmic 
reticulum stress.70 MVs from mesenchymal stem cells overexpressing GATA-4 were found to be 
cardioprotective, and this was attributed to an increase in miR-221 levels in the MVs, which were 
taken up by cardiomyocytes and silenced the pro-apoptotic protein PUMA.71  
 
On the other hand, IR may cause the release of MVs that are more damaging. MVs released from 
endothelial cells after IR were pro-apoptotic and pro-oxidative to cardiomyocytes.72 Furthermore, 
MVs originating from cardiomyocytes and endothelial cells following acute MI can also be 
internalized by infiltrating monocytes and regulate local inflammatory responses.73 
 

iii. Non-vesicular non-coding RNAs 

The majority (98%) of RNA molecules in the body are noncoding RNA molecules.74, 75 These include 
ribosomal RNA, transfer RNA, microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular 
RNAs (circRNAs).74 miRNAs are single-stranded RNA molecules, 21-23 nucleotides in length that 
affect gene expression by binding to particular mRNAs and promote their degradation or inhibiting 
their translation into proteins. LncRNAs and circRNAs regulate the expression of genes via a complex 
array of epigenetic, post-transcriptional and translational modes. The effects of miRNAs are 
sequence-specific, but each miRNA can affect numerous mRNA molecules and each mRNA can be 
affected by numerous miRNAs. Since noncoding RNA molecules are involved in “fine tuning” of the 
expression of proteins in numerous signalling processes in the body, there is great interest in 
developing approaches to administer them systemically as therapeutic agents.  

The miR-15 family was reported to be detrimental in IR.76 In this study, a locked nucleic acid–
modified (LNA)–anti-miR complementary to the seed region of the miR-15 family (LNA-miR-15), 
administered intravenously at the onset of reperfusion, limited infarct size in mice subjected to 75 
min ischaemia followed by 24 h reperfusion.76 Targeting miR-15 also prevented the decrease in Pdk4 
(a key regulator of mitochondrial function) and Sgk1 (an inhibitor of cardiomyocyte apoptosis).76 
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In pigs subject to 60 min ischaemia followed by reperfusion, administration of LNA-miR-92a 5 min 
prior to reperfusion reduced infarct size and left ventricular function improved.77 However, a benefit 
was only seen after catheter-based delivery, and not by intravenous infusion. LNA-92a also increased 
capillary density and decreased leukocyte infiltration and cardiomyocyte cell death.77  

In rabbits, intravenous administration of liposomal-encapsulated miR-145 immediately after 
reperfusion (following 30 min coronary artery occlusion) reduced myocardial infarct size and 
improved left ventricular function two weeks after infarction.78 The target of miR-145 was found to 
be fibroblast growth factor receptor substrate 2, and its effect was at least partially mediated by the 
activation of autophagy.78 

Following physical or pharmacological interventions, changes in the expression of certain noncoding 
RNAs might be expected to reveal those that represent the most promising targets. Several studies 
have explored which noncoding RNAs are affected by IR or interventions such as IPC and IPost and 
have tested whether these noncoding RNAs have protective effects in experimental models.4 

Using unbiased miRNA omics approach, several miRNAs were identified that affected by IPC and 
IPost and termed these miRNAs protectomiRs. Transfection of protectomiRs (specific miRNA mimics 
or antagomirs as appropriate) into cardiac myocytes validated their cardiocytoprotective efficacy. In 
particular, a miR-125b* mimic was shown to be of high relevance for cardioprotection.79, 80 As 
expected, the concentration of numerous noncoding RNA molecules is altered by ischaemia, IR, 
conditioning stimuli and medications. Several group have shown that by offsetting these changes 
with specific agonists or antagonist, the protective effects of various interventions are lost. For 
example, inhibiting miR-499 abolishes the protective effect of post-conditioning;81 the protective 
effect of pioglitazone in vitro against simulated IR is dependent on downregulating miR-29 levels. 
Hence, 3-day pre-treatment with antagomirs against miR-29a or 29c attenuated apoptosis and 
limited infarct size in an in vivo rat model of 30 min ischaemia/24 h reperfusion.82  

Another example of a cardioprotective miRNA is miR-21. In an isolated heart model, infarct size was 
smaller when mice had been pre-treated 24 h previously with synthetic miR-21.83 However, miR-21 
also appears to contribute to remodelling and fibrosis in the failing heart.84 

Although this review focusses primarily on studies in which noncoding RNAs or their antagonists was 
administered around the time of reperfusion because of their relevance to patients with STEMI, it 
should be noted that benefit for RNA-based therapies has also been seen in models of permanent 
coronary artery ligation and/or when treatment is administered prior to the onset of ischaemia.75  

In general, the use of noncoding RNA based-therapy as a short-term therapy to mitigate IR injury 
and reduce infarct size in patients presenting with STEMI requires rapid and specific delivery of the 
RNA molecules to the heart, and a rapid onset of action.4 In the clinical setting such therapeutic 
agents should either be given intravenously during the ischaemic phase or intravenously or intra-
coronary during primary percutaneous coronary intervention, and must be able to enter the cells 
rapidly and have a rapid effect gene expression. Approaches are being developed to aid intracellular 
RNA delivery or chemically modify RNA to permit its direct cellular uptake.85, 86 However, clinical 
translation of these pharmaceutical agents is still at an early stage. 

5. Thrombosis and blood clotting factors 

Several interventions targeting blood clotting factors have been found to limit infarct size 
independently of the haemostatic function of these proteins. Blood coagulation is initiated when 
plasma factor VII (FVII) binds to its cellular receptor tissue factor (TF), expressed on deeper cell 
layers of the vessel wall,  and is converted to the active protease FVIIa (extrinsic initiation 
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pathway)(Figure 3).87 The TF:FVIIa complex activates the factors IX and X resulting in the generation 
of only minute amounts of thrombin that immediately start to amplify its own production by 
activating factors XI, VIII and V. These reactions of the intrinsic pathway result in the mass 
production of thrombin, now available to induce fibrin formation and blood clotting. Additionally, 
thrombin activates platelets, endothelial cells, and cardiomyocytes, by cleavage of protease 
activated receptors (PARs) and the subsequent activation of intracellular signalling pathways.88 The 
intrinsic regulation of blood coagulation is achieved by the thrombin-induced generation of the 
thrombomodulin-protein C pathway, resulting in an effective control of thrombin generation. 

TF initiates the clotting cascade and is a major prothrombotic factor.89 Increased plasma TF levels, 
associated with EVs, are observed in patients with AMI, reflecting enhanced intravascular 
procoagulant activity.89 Experimental studies indicate that cardiac IR increases TF activity. In vivo 
studies in rabbit models have shown that anti-TF therapy prevented the transient decrease in 
regional myocardial blood flow, reduced platelet and fibrin(ogen) accumulation, and reduced infarct 
size.90 Thrombin may also contribute to the pathology of IR injury, since in a rabbit model of IR, 
selective inhibition of thrombin by recombinant hirudin (lepirudin) decreased infarct size.90 The TF-
thrombin pathway may also contribute to myocardial injury by an additional mechanism that is not 
dependent on fibrin deposition but involves activation of protease activated receptors (PARs) on 
vascular endothelial cells and cardiac myocytes.90 Since myocardial IR injury is partly mediated by 
thrombin and several cellular responses to thrombin are mediated by PARs, PARs have been 
extensively investigated as potential targets for cardioprotection.  

The four known PARs are G-protein coupled receptors that are activated by several serine proteases, 
including coagulation and mast cell-derived proteases. For example, thrombin cleaves and activates 
PAR-1, -3 and -4 on a variety of cells and thereby activates each of these receptors, whose new 
amino-terminal portion serves as leached ligand.91 PAR-1 is the high-affinity receptor for thrombin 
and is expressed by several cell types in the heart, including cardiomyocytes and cardiac fibroblasts. 
Since PAR-1 is expressed as a “cell-bound substrate” of thrombin on both platelets and immune 
cells, hormonal doses of the enzyme are sufficient to provoke platelet aggregation or a variety of 
immune responses in the context of inflammation and cardiovascular disease.92  Treatment of rats or 
isolated hearts with a selective PAR-1 antagonist, reduced infarct size in a dose-dependent manner 
and increased ventricular recovery following IR.93 When PAR-1 is cleaved by thrombin it releases a 
41-amino-acid peptide called parstatin. Both parstatin and its putative signal peptide (N-terminal 
fragment 1-26), reduced infarct size when administered to rats prior to IR94, 95. The underlying 
mechanisms may involve the known cardioprotective pathways including the RISK and the MPTP 
pathway.95  

Activated protein C (APC) is a serine protease that serves as natural anticoagulant with an important 
role in regulating thrombin formation and the extent of fibrin formation. It is recognized by the 
endothelial protein C receptor and alters signalling of the thrombin-PAR-1 complex. In a mouse 
model of acute IRI, administration of APC significantly reduced myocardial infarct size,96-98 with PAR-
1 required for this process.97 Interestingly, a variant APC, lacking catalytic activity, remained 
protective, implying that the protection from IRI is independent of its proteolytic activity.96 
Furthermore, infarct size reduction depended on its PAR-1 signalling, but not its anticoagulant 
properties.98 

Although APC serves as a major ligand/activator of PAR-2 on immune cells, its role in IRI is 
controversially discussed and the protease(s) that activate PAR-2 during cardiac IRI are not known.88 
Infarct size was significantly reduced in PAR-2-/- mice subjected to 30 min ischaemia and 2 h 
reperfusion, as well as exhibiting decreasing oxidative/nitrative stress.99 In contrast, infusion of a 
PAR-2-activating peptide reduced infarct size in isolated perfused rat hearts.100 Interestingly, this 
peptide showed additive protection with an IPC protocol of 2 min ischaemia followed by 10 min 
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reperfusion.101 Furthermore, the PAR-2 agonist peptide SLIGRL reduced infarct size when 
administered to rats at the time of reperfusion, via a pathway involving ERK1/2 and PKC.102 SLIGRL 

also reduced infarct size in isolated rats hearts, via pathways involving PKC or PKA, and transient 
receptor potential vanilloid type 1 -dependent release of calcitonin gene-related peptide and 
substance P.103 

PAR-4 knockout mice exhibited reduced infarct size after acute IR. This may be due to protection 
from a Src- and epidermal growth factor receptor-dependent pathway of JNK-induced apoptosis.104 
Two structurally unrelated PAR-4 antagonists reduced infarct size in rats when administered prior to 
ischaemia either in vitro or in vivo, via a mechanism that appears to involve adenosine.105 

Plasmin is the main enzyme that dissolves fibrin blood clots. The main function of plasminogen 
activator inhibitor type-1 (PAI-1 or SERPIN E1) is to oppose the plasmin activation cascade, thereby 
maintaining the clot. Increased expression of PAI-1 is profibrotic in hearts subjected to MI. A 
markedly greater extent of infarction was observed in PAI-1 knockout mice compared with controls 
and this was associated with haemorrhage and inflammation.106 

Overall, pharmaceutical agents targeting thrombosis and blood clotting factors appear have multiple 
benefits in the setting of IR, including benefits independent of haemostasis, although these are not 
always easy to completely separate mechanistically. 

6. Conclusion 

As can be seen from this review, circulating cells and factors can strongly impact IR injury via various 
mechanisms. Erythrocytes, for example, can export NO bioactivity and be cardioprotective. Platelets, 
in addition to their role in haemostasis and thrombosis, secrete a large number of factors that can 
influence the development of IR injury both positively and negatively. Erythrocytes, platelets and 
other cell types can release both MVs and exosomes which may have both detrimental or protective 
characteristics in the setting of IR. These effects may be mediated by the transfer of miRNA to 
cardiomyocytes, or through ligand-receptor signalling or other mediators (e.g.: NO). 

In many of the experiments described, the end target is likely to be the cardiomyocyte, since 
ultimately, it is these cells that must be preserved in order to limit infarct size and retain contractile 
function. However, there are other important aspects to IR injury such as endothelial damage and 
microvascular obstruction which may be targets. Furthermore, the interactions between thrombus, 
clotting factors and circulating hematopoietic cells have not yet been clarified in terms of IR injury. 
With greater understanding of PAR-1 and PAR-4 signalling pathways and their role in IR injury may 
come opportunities for better tailored therapies to prevent tissue injury. 

One firm conclusion that can be drawn is that it is important to consider the interaction of potential 
cardioprotective agents with co-medications such as platelet inhibitors, since these appear to have 
cardioprotective actions independent of their role in haemostasis. Furthermore, co-morbidities such 
as diabetes can impact not only the induction of cardioprotection in the target cardiomyocytes, but 
can also influence the function of platelets, erythrocytes and EVs, and consequently impair their 
ability to mediate cardioprotection. Finally, future studies of potential cardioprotective agents 
should consider not just their direct effect on cardiomyocytes, but on indirect effects that may be 
mediated via circulating blood cells and factors. 
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11. Figure legends 

Figure 1. Ischaemia and reperfusion causes the activation of platelets, which subsequently release a 
multitude of factors with divergent effects on infarct size. These include exosomes and microvesicles 
(both types of extracellular vesicles), SDF-1a, chemerin, sphingosine-1 phosphate, and platelet 
activating factor (PAF). P2Y12 inhibitors can prevent platelet activation and can also reduce infarct 
size. See text for details. 

Figure 2. Erythrocytes contain endothelial nitric oxide synthase (NOS3) which protects the heart via 
the production of nitric oxide (NO), S-nitrosothiols (S-NO) or nitrite. Since NOS3 competes with 
arginase for the common substrate arginine, inhibition of arginase can be cardioprotective. 

Figure 3. Initiation, amplification and feedback anticoagulant mechanisms in the coagulation 
cascade. The different phases, from initiation of coagulation due to exposure of tissue factor and 
binding of its ligand factor VII/VIIa either at a wound/extravascular site or in the intravascular 
compartment (microvesicles), designated as “extrinsic pathway”, to amplification and production of 
thrombin by the positive feedback reactions of the “intrinsic pathway” are indicated. In parallel to 
fibrin clot formation, the majority of thrombin will distantly bind to its endothelial cell receptor 
thrombomodulin to induce the activation of protein C (PC) into activated protein C (APC), which 
limits further thrombin production by degrading the procoagulant cofactors VIIIa and Va. While 
these reactions are sufficient to achieve wound healing upon physiological haemostasis, when an 
atherosclerotic plaque ruptures, thrombogenic substrates are exposed that can initiate (auto-) 
activation of the factor XII-dependent reactions of the contact phase, resulting in enhanced 
thrombin generation and hence, fibrin clot formation and eventually thrombosis. The inhibitors 
mentioned in the text are indicated in red. 
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