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Abstract—High-performance III-V quantum-dot lasers 

monolithically grown on Si substrates have been demonstrated as 

a promising solution to realise Si-based laser sources with very low 

threshold current density, high output power and long lifetime, 

even with relatively high density of defects due to the material 

dissimilarities between III-Vs and Si. On the other hand, although 

conventional III-V quantum-well lasers grown on Si have been 

demonstrated after great efforts worldwide for more than 40 

years, their practicality is still a great challenge because of their 

very high threshold current density and very short lifetime. 

However, the physical mechanisms behind the superior 

performance of silicon-based III-V quantum-dot lasers remain 

unclear. In this paper, we directly compare the performance of a 

quantum-well and a quantum-dot laser monolithically grown on 

on-axis Si (001) substrates, both experimentally and theoretically, 

under the impact of the same density of threading dislocations. A 

quantum-dot laser grown on a Si substrate with a high operating 

temperature (105 °C) has been demonstrated with a low threshold 

current density of 173 A/cm2 and a high single facet output power 

>100 mW at room temperature, while there is no lasing operation 

for the quantum-well device at room temperature even at high 

injection levels. By using a rate equation travelling-wave model, 

the quantum-dot laser’s superior performance compared with its 

quantum well-based counterpart on Si is theoretically explained in 

terms of the unique properties of quantum dots, i.e., efficient 

carrier capture and high thermal energy barriers preventing the 

carriers from migrating into defect states. 

 
Index Terms—quantum dot lasers, silicon photonics, 

Semiconductor growth 

 

I. INTRODUCTION 

I-BASED photonic integrated circuits (PICs) are expected 

to meet the demands of the ever growing increase in data 

traffic by providing an efficient data transmission method via 

optical interconnects integrated on the Si platform [1]. 

Moreover, Si-based PICs have the potential to reduce the cost 

to few cents per gbits-1 compared with InP-based state-of-art 

optical transceiver [2]. An efficient and reliable Si-based laser 
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is the key component for the deployment of Si-based PICs [3]. 

Although great efforts have been made on the development of 

group IV-based lasers [3-6], fabricating and integrating these 

light sources with other well-established photonic components 

is still challenging due to the extremely high threshold current 

densities and restricted device performance arising from the 

indirect bandgap of Si and Ge. Integrating III-V lasers on Si or 

SOI platforms, on the other hand, is an attractive approach, 

because it enables Si-based PICs to leverage the superior 

electrical and optical properties of III-V semiconductors. While 

both monolithic and heterogeneous III-V integration concepts 

have been demonstrated [7-8], growing GaAs- and InP-based 

lasers directly on Si platform is considered the more promising 

method for realizing dense and low-cost integration of III-V 

lasers on Si in the longer term. 

   The major challenges of heteroepitaxial growth of GaAs or 

InP on Si are the antiphase domains (APDs) and threading 

dislocations (TDs) due to the polar on non-polar and lattice-

mismatched heteroepitaxial growth, respectively. Over the past 

years, however, researchers have developed methods to grow 

single-domain III-V materials on offcut and on-axis Si 

substrates successfully, especially GaP and GaAs on Si [9-11], 

which in turn has led to the successful demonstration of 

telecommunication wavelength lasers on GaP/Si and GaAs/Si 

virtual substrates [12-19]. In addition to the APD issue, the high 

density of TDs originating from the lattice mismatch between 

Si and III-V materials, 4 % and 7 % for GaAs and InP, 

respectively, results in a significant degradation of the laser 

performance due to the formation of nonradiative re-

combination centers [20-21]. It has been shown that strained 

layer superlattices (SLSs) act as effective defect filter layers 

(DFLs) being able to reduce the TD density from 1010 cm-2 to 

below 106 cm-2 [16], yet even these reduced defect densities are 

still orders of magnitude higher than those in III-V lasers grown 

on native substrates [22].  
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Since quantum wells (QWs) are the gain medium of choice for 

most commercial laser diode applications, great effort has been 

devoted to developing monolithic III-V QW lasers on Si over 

the past 40 years. However, even at moderate dislocation 

densities, only poor device performance has been obtained with 

operating lifetimes not exceeding ~200 hours [23]. InAs/GaAs 

quantum dots (QDs), on the other hand, have recently been 

proposed to be a more suitable gain medium for direct growth 

on Si, showing impressive laser performance in terms of a very 

low threshold current density of 62.5 Acm-2 and a record 

lifetime of 3,001,402 hours [16,18,19]. What is more, these QD 

lasers have demonstrated good lasing characteristics even at 

high TD densities of the order up to 108 cm-2 [18]. The 

advantage of QD over QW structures on Si has been confirmed 

in systematic experimental studies on the lifetimes of III-V QD 

laser on Si with different densities of TDs in the active region. 

Recently, we have reviewed the progress of InAs/GaAs QD 

lasers monolithically grown on group-IV platforms [24], 

however, the key physical mechanisms behind the high 

performance of Si-based III-V QD lasers, which is comparable 

to record values of QD lasers on native substrates, have not been 

clearly identified yet. In addition, the lack of high-performance 

Si-based QW lasers raises the question of to what value must 

the defect density be reduced, or whether QW active regions 

may not be suitable for direct III-V laser growth on Si at all. For 

this reason, it is necessary to make a direct comparison to 

evaluate the effect of TDs on QD and QW active regions in Si-

based lasers, and to explain the nature behind higher 

performance of QD laser grown on Si. 

   In this paper, we present an experimental and theoretical 

study on the impact of TDs on III-V QD and QW lasers, 

monolithically grown on on-axis Si substrates under the same 

conditions. For the QD laser, a continuous-wave (cw) threshold 

current density as low as 173 Acm-2 has been obtained at room 

temperature, with an output power exceeding 200 mW. The 

QW device, in stark contrast, does not show any lasing at all, 

even under pulsed current injection up to 2 kAcm-2. To explain 

these results at a more fundamental level, a rate equation 

travelling-wave approach including a phenomenological term 

to model enhanced non-radiative recombination induced by 

TDs is used. Our calculations show that ultrafast QD carrier 

capture as well as effective carrier confinement in the QD states 

enable lasers with QD active regions to show lasing up to higher 

dislocation densities than for QW lasers.  

II. CRYSTAL GROWTH AND DEVICE FABRICATION 

An APD-free 400 nm GaAs layer was grown on a 300 mm 

Si on-axis (001) substrate to form a GaAs/Si virtual substrate 

by using MOCVD with two-step growth [10]. Then, the 400 

mm GaAs/Si virtual substrate was diced into 2-inch wafers and 

transferred into a Veeco GEN930 MBE chamber to grow the 

laser structure. III-V buffer layers including a 300 nm GaAs 

layer and four sets of DFLs were grown on the GaAs/Si virtual 

substrate in order to suppress the propagation of TDs generated 

at the GaAs/Si interface. Each set of DFL consists of five 

periods of 10 nm/10 nm In0.18Ga0.82As/GaAs SLSs and a 300 

nm GaAs spacing layer. An active region was embedded within 

two layers of 1500 nm Al0.4Ga0.6As upper and lower cladding 

layers. To compare the performance of QW and QD lasers on 

Si substrates, two types of active region, InAs/GaAs dot-in-well 

(DWELL) and InGaAs/GaAs multi-quantum well (MQW), 

were grown. The QD active region consists of five layers of 

DWELL structure including three monolayers (MLs) of InAs 

QD grown on 2 nm In0.15Ga0.85As QW and capped with 6 nm 

In0.15Ga0.85As at 510 °C. Adjacent DWELL layers are separated 

by a 5 nm low-temperature GaAs spacer layer and a 35 nm high-

temperature GaAs spacer layer [25]. In contrast, the MQW 

active region comprised five layers of low-temperature grown 

8 nm In0.15Ga0.85As QWs each spaced by a 40 nm GaAs spacer 

layer. A highly doped p-type GaAs contact layer completed the 

 
Fig. 1.  (a) Schematic diagram of InAs/GaAs QD and In0.15Ga0.85As/GaAs QW 

laser monolithically grown on Si on-axis (001) substrate. Cross-sectional TEM 

images of (b), III-V buffer layers grown on on-axis Si substrate with 4 sets of 
In0.18Ga0.82As/GaAs SLSs DFLs and a 600 nm GaAs buffer layer. (c) 5 layers 

of DWELL structure and (d) 5 layers of In0.15Ga0.85As/GaAs MQW. 

  

 
Fig. 2 (a) Room-temperature PL spectrum of QDs excited by a 635 nm red laser. 

Inset: AFM image of uncapped InAs/GaAs QDs grown on on-axis Si substrate. 
PL spectra at room temperature (300 K) and low temperature (20 K) of (b) the 

QD laser, and (c) the QW laser excited by a 532 nm green laser. (d) Temperature-

dependent integrated PL intensities of the InAs/GaAs QD and InGaAs/GaAs QW 
lasers from the temperature region of 20 K to 300 K. 
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laser structure. Note that all QD and QW laser growth 

conditions were identical except for the active region growth. 

Broad-area laser devices were fabricated using standard 

photolithography, wet etching, and metallization techniques. 

After forming a 50 μm ridge and exposing the heavily doped n-

type GaAs contacting layer by conventional wet etching, 

Ni/GeAu/Ni/Au (10/100/30/200 nm) and Ti/Au (40/400 nm) 

metal contact layers were deposited on the n-GaAs and the p-

GaAs contacting layer, respectively. After thinning the Si 

substrates to around 120 μm, the laser bars were cleaved into 3 

mm long laser cavities, without high-reflection coatings. 

Finally, the bars were thermally bonded to a copper heatsink, 

and gold-wire bonding was applied for testing. 

III. RESULTS AND DISCUSSIONS 

As shown in Fig. 1(a), the InAs/GaAs QD and InGaAs/GaAs 

QW laser structures were directly grown on on-axis Si (001) 

substrates. The active regions are composed of 5 layers of 

InAs/InGaAs dots-in-a-well (DWELL) or InGaAs/GaAs QWs 

separated by 50 nm GaAs spacer layers. To characterize the 

crystalline quality of the grown samples, various measurement 

techniques such as transmission electron microscopy (TEM), 

photoluminescence (PL) and atomic force microscopy (AFM) 

were performed. Fig. 1(b) presents a cross-sectional TEM 

image of four sets of In0.18Ga0.82As/GaAs SLSs DFLs and a 700 

nm GaAs buffer layer grown on on-axis Si (001) substrate, 

indicating that the TDs are effectively eliminated by the 

strained-layers. A high TD density of 1.0 × 1010 cm-2 is 

generated at the GaAs/Si interface due to the large lattice 

mismatch between the two materials. With the help of tensile 

and compressive strain introduced by the lattice mismatched 

In0.18Ga0.82As/GaAs strained-superlattice, however, the TDs are 

bent toward the edge side of the wafer due to the strain force 

between the SLSs. In addition, the in-situ thermal annealing 

promotes the TDs’ motion and, hence, increases the possibility 

of TDs’ meeting, leading to the elimination of the two 

respective TDs if their Burgers vectors are perpendicular. 

Eventually, a defect density reduced to approximately 5 × 107 

cm-2 is obtained after the four sets of DFLs. Visible defect-free 

DWELL and MQW regions are shown in Fig. 1(c) and (d), 

respectively.  

   The optical properties of optimized InAs/GaAs QDs grown 

on on-axis Si (001) substrate are presented in Fig. 2(a). A dot 

density of 4 × 1010 cm-2 (inset) was obtained with a narrow full-

width-half-maximum (FWHM) of 28 meV, centered at a 

wavelength of 1310 nm at room temperature. Temperature-

dependent PL measurements were performed by using a 532-

nm wavelength laser to excite the samples cooled by a 

cryogenic temperature controller from 300 K to 20 K, as shown 

in Fig. 2(b) and (c), respectively. The room temperature PL 

intensity of the QD sample is six times lower than the PL 

intensity at 20 K. On the other hand, the QW sample’s PL 

intensity at 20 K is ~1000 times higher than the PL intensity of 

the QW sample at room temperature. To estimate the thermal 

activation energy of the two samples, the integrated PL 

intensity (IPLI) is measured as a function of temperature, as 

shown in Fig. 2(d). The IPLI of the QD sample remains 

approximately constant up to 200 K, and then decreases by a 

factor of 10 up to room temperature. This behavior is typical for 

InAs/GaAs QDs and has been attributed to the higher thermal 

energy barrier for the carriers to escape from the QDs due to the 

discrete energy levels within QDs [26-27]. On the other hand, 

the IPLI of QW sample quenches slowly at low temperature and 

 
Fig. 3. (a) Room temperature L-I-V measurements of QD and QW lasers monolithically grown on on-axis Si (001) substrate under the same growth conditions. (b) 

L-I measurement of the QW laser with higher injection current under pulsed mode at room temperature. (c) Lasing spectra of the QD laser with different injection 
current density indicating a threshold current density as low as 173 Acm-2. Temperature-dependent L-I measurement of the QD laser under (d) continuous-wave 

mode and (e) pulsed mode. (f) Characteristic temperature measured under pulsed mode between 16 °C and 100 °C.  
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reduces dramatically above 50 K, which could be understood 

by the thermal carrier escape from QWs’ continuum state [26]. 

As there are continuum states in QWs, small thermal energy 

will cause the carriers to escape from QWs. The PL quenching 

at high temperatures is fitted with the Arrhenius equation, 

giving thermal activation energies of about 240.7 meV and 35 

meV for the QD and the QW sample, respectively. The 

significantly higher thermal activation energy observed for the 

QD sample contributes to its higher optical intensity at high 

temperatures, as carriers are well-trapped by the higher thermal 

barriers of QDs which prevents them from thermalizing into the 

wetting layer and barrier layer continuum, and then transferring 

to defect states [27]. 

Broad-area lasers were fabricated and cleaved then mounted 

on gold-plated copper heatsinks using indium–silver low-

melting-point solder and gold-wire-bonded. Fig. 3(a) presents 

cw light-current-voltage (L-I-V) measurements for the QD and 

QW laser at room temperature. The measured series resistances 

of the QD and QW lasers are very similar, corresponding to 

2.39 ± 0.01 Ω and 2.38 ± 0.02 Ω, respectively. The QD laser 

shows a low threshold current density of 173 Acm-2 and a 

single-facet output power of 100 mW at an injection current of 

650 Acm-2 without any rollover, whereas the QW laser 

produces negligible light output and does not show any lasing 

behaviour at all. Note that the measured maximum output 

power of the QD laser is limited by the current source used. 

Additional measurements up to higher injection currents under 

pulsed operation reveal a clear superlinear increase of the QW 

L-I curve, as can be seen in Fig. 3(b), yet the output power roll-

over at ~1800 Acm-2 seems to prevent the device from entering 

the lasing regime. For the given device geometries, these results 

give clear evidence of the superior lasing characteristics of the 

QD laser monolithically grown on Si compared with its QW-

based counterpart, being in agreement with a similar 

experimental comparison of QD and QW laser structures grown 

on Si with a higher dislocation density of 108 cm-2 reported in 

[28]. Fig. 3(c) shows lasing spectra of the QD laser with 

different injection current densities from 120 Acm-2 to 190 

Acm-2, demonstrating lasing behavior at an injection current 

density of 173 Acm-2 and an emission wavelength of 1326.4 

nm.   

Temperature-dependent QD laser L-I measurements are 

displayed in Fig. 3 (d) and (e) under cw mode and pulsed mode, 

respectively. The maximum operation temperature of the QD 

laser reaches 65 °C under cw mode. In contrast, a maximum 

operation temperature of 105 °C is obtained under pulsed mode. 

The characteristic temperature of the QD laser, measured under 

pulsed mode, is 76.7 K from 16 °C to 50 °C, and decreases to 

20.3 K from 60 °C to 100 °C due to the carrier escape at high 

operation temperatures, as can be seen in Fig. 3 (f). It is 

worthwhile to note that, compared with our previous work, the 

performance of the QD laser monolithically grown on on-axis 

Si (001) substrate is significantly improved, which can be 

ascribed to the optimized QD and III-V growth conditions [13]. 

In order to understand the enormous performance disparity 

observed between the QW and QD structures, a rate equation 

traveling-wave model with one-dimensional spatial resolution 

is used to simulate the impact of dislocations by including 

dislocation-dependent carrier loss. The following is a 

phenomenological approach aimed at explaining the observed 

behaviour qualitatively, considering only mid-bandgap defect 

states. Shallow traps in thermal equilibrium with the conduction 

and valence band are ignored as well as carrier re-emission from 

the defect states. It should also be noted that this approach does 

not consider device degradation due to dislocation climb, which 

is known to be a common failure mechanism in III-V QW lasers 

grown on Si and on native substrates [28-29]. The simulations 

therefore indicate the intrinsic QD and QW laser performance 

as a function of defect density at time zero. 

The impact of TDs can be described as following. Carriers in 

the vicinity of a dislocation can migrate into the defect state, 

where they are likely to recombine non-radiatively [29-30]. 

Since this process involves carriers in the barrier layer (BL) and 

the wells in the instance of a QW laser, it becomes increasingly 

difficult to attain a population inversion in the presence of many 

dislocations. QDs, however, provide a lasing level safe from 

non-radiative recombination, as captured carriers cannot diffuse 

into defect states unless they thermalize back up into the 

wetting layer (WL) [31]. The total carrier lifetime is, therefore, 

written as 

𝜏𝑛𝑟,𝑡𝑜𝑡
−1 =  𝜏𝑛𝑟

−1 +  𝜏𝑑𝑖𝑠
−1                                                                (1) 

where τnr is the minority carrier lifetime in the absence of 

dislocations, and τdis represents the non-radiative component as 

a function of the dislocation density ρdis [32-36]. To estimate 

τdis, we consider the average spacing 2/√𝜋𝜌𝑑𝑖𝑠                                                                                                   

between two dislocations, corresponding to the dislocation-

limited diffusion length Ldiff,dis. The respective dislocation-

dependent minority carrier lifetime is then given over the 

relationship to the diffusion constant D as [36] 

𝜏𝑑𝑖𝑠 =
𝐿𝑑𝑖𝑓𝑓,𝑑𝑖𝑠

2

𝐷
                                                            (2) 

 
 
Fig. 4.  Schematic one-dimensional real-space energy band diagram of the 

investigated InAs/GaAs QD lasers [19,37]. Non-radiative recombination 

processes via defect centers introduced by TDs propagating through the active 
region take place from the wetting layer/QWs and the barrier layer. Carriers 

confined in the QDs are not affected unless they thermalize out of the QD 

states. The respective energy band diagram for the InGaAs/GaAs QW lasers 

does not contain the QD structures but remains the same otherwise. 
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Additionally, it is considered that defect states saturate as 

higher carrier densities are reached [34]. τdis is, therefore, 

multiplied with a phenomenological saturation term (1+ 

nWL,BL/nsat), where nWL,BL is the respective WL/QW or BL carrier 

density and the reference value nsat is 1018 cm-3 [35]. The 

obtained values of τdis differ for electrons and holes, which is a 

result of the different diffusion constants, as pointed out by 

Andre et al.[36]. For ρdis ≳ 7 × 106 cm-2, for instance, the 

dislocation related electron lifetime according to (3) drops into 

the sub-nanosecond range, where it starts to affect the laser 

performance seriously, whereas for holes, this is only the case 

from ρdis ≳ 108 cm-2. This is a result of the faster interaction 

between electrons and dislocations due to the high electron 

mobility, which is in agreement with the short electron lifetimes 

that have been measured in epitaxial GaAs on non-native 

substrates [36]. However, it is currently not known if the defect 

states formed by TDs in III-V structures on Si behave acceptor- 

or donor-like, which will certainly affect the respective capture 

dynamics.  

The InAs/GaAs QD laser is modelled as a system consisting 

of BL, WL, three confined electron QD states (GS, ES1, ES2) 

and five-hole QD levels (GS, ES1 – ES4), as illustrated 

schematically in Fig. 4 [37]. The electron rate equations are 

given as  

           
𝑑𝑁𝐵𝐿

𝑒

𝑑𝑡
=

𝜂𝐼

𝑒

∆𝑧

𝐿
+

𝑁𝑊𝐿
𝑒 𝑓𝐵𝐿

𝑒′

𝜏𝑒𝑠𝑐
𝑊𝐿,𝑒 −

𝑁𝐵
𝑒 𝑓𝑊𝐿

𝑒′

𝜏𝑐
𝑊𝐿,𝑒 −

𝑁𝐵𝐿
𝑒

𝜏𝑛𝑟
𝐵𝐿 −

𝑁𝐵𝐿
𝑒

𝜏𝑑𝑖𝑠
𝐵𝐿,𝑒             (3) 

𝑑𝑁𝑊𝐿
𝑒

𝑑𝑡
=

𝑁𝐵𝐿
𝑒 𝑓𝑊𝐿

𝑒′

𝜏𝑐
𝑊𝐿,𝑒 +

𝑁𝐸𝑆2
𝑒 𝑓𝑊𝐿

𝑒′

𝜏𝑒𝑠𝑐
𝐸𝑆2,𝑒 −

𝑁𝑊𝐿
𝑒 𝑓𝐵𝐿

𝑒′

𝜏𝑒𝑠𝑐
𝑊𝐿,𝑒 −

𝑁𝑊𝐿
𝑒 𝑓𝐸𝑆2

𝑒′

𝜏𝑐
𝑄𝐷,𝑒 −

𝑁𝑊𝐿
𝑒

𝜏𝑛𝑟
𝑊𝐿 −

𝑁𝑊𝐿
𝑒

𝜏𝑑𝑖𝑠
𝑊𝐿,𝑒 

                               (4) 

𝑑𝑁𝐸𝑆2
𝑒

𝑑𝑡
=

𝑁𝑊𝐿
𝑒 𝑓𝐸𝑆2

𝑒′

𝜏𝑐
𝑄𝐷,𝑒 +

𝑁𝐸𝑆1
𝑒 𝑓𝐸𝑆2

𝑒′

𝜏𝑒𝑠𝑐
𝐸𝑆1,𝑒 −

𝑁𝐸𝑆2
𝑒 𝑓𝑊𝐿

𝑒′

𝜏𝑒𝑠𝑐
𝐸𝑆2,𝑒 −

𝑁𝐸𝑆2
𝑒 𝑓𝐸𝑆1

𝑒′

𝜏0
𝑒 −

𝑁𝐸𝑆2
𝑒

𝜏𝑛𝑟
𝐸𝑆2,𝑒      (5)      

𝑑𝑁𝐸𝑆1
𝑒

𝑑𝑡
=

𝑁𝐸𝑆2
𝑒 𝑓𝐸𝑆1

𝑒′

𝜏0
𝑒 +

𝑁𝐺𝑆
𝑒 𝑓𝐸𝑆1

𝑒′

𝜏𝑒𝑠𝑐
𝐺𝑆,𝑒 −

𝑁𝐸𝑆1
𝑒 𝑓𝐸𝑆2

𝑒′

𝜏𝑒𝑠𝑐
𝐸𝑆1,𝑒 −

𝑁𝐸𝑆1
𝑒 𝑓𝐺𝑆

𝑒′

𝜏0
𝑒 −

𝑁𝐸𝑆1
𝑒

𝜏𝑛𝑟
𝐸𝑆1,𝑒      (6) 

      
𝑑𝑁𝐺𝑆

𝑒

𝑑𝑡
=

𝑁𝐸𝑆1
𝑒 𝑓𝐺𝑆

𝑒′

𝜏0
𝑒 −

𝑁𝐺𝑆
𝑒 𝑓𝐸𝑆1

𝑒′

𝜏𝑒𝑠𝑐
𝐺𝑆,𝑒 −

𝑁𝐺𝑆
𝑒

𝜏𝑛𝑟
𝐺𝑆,𝑒 −  𝑣𝑔𝑟𝑔𝑆 ∙

𝑉𝐴𝑅∆𝑧

𝐿
           (7) 

(3) – (7) describe the carrier numbers in a laser section w × 

∆z, with w and ∆z being the waveguide width and the space step 

discretizing the laser. The equations include carrier injection 

into the BL, carrier capture and cascaded relaxation into the QD 

ground states, thermal escape, and standard non-radiative 

recombination. 𝑓𝑛
′ = (1 − 𝑓𝑛) is the probability of finding an 

empty state in the energy level n. A modification of the QD 

equations with respect to dislocation loss is not required, as the 

relative number of QDs directly affected by TDs is very low. 

An explanation of all used symbols is given in Table I. 

The hole BL and WL equations are analogous to (3) and (4), 

whereas the hole QD levels are modelled via one joint equation, 

as the holes thermalize among the various confined states due 

to their small energy spacing [37].  

    
𝑑𝑁𝑄𝐷

ℎ

𝑑𝑡
=

𝑁𝑊𝐿
ℎ 𝑓𝑄𝐷

ℎ′

𝜏0
−

𝑁𝑄𝐷
ℎ 𝑓𝑊𝐿

ℎ′

𝜏𝑒𝑠𝑐
𝑄𝐷,ℎ −

𝑁𝑄𝐷
ℎ

𝜏𝑛𝑟
𝑄𝐷 −  𝑣𝑔𝑟𝑔𝑆 ∙

𝑉𝐴𝑅∆𝑧

𝐿
            (8) 

The gain g is then calculated as a function of the electron and 

hole occupation QD occupation probabilities, and the photon 

density S is computed using a pair of field equations [38].  

Apart from the necessary modifications, the QW model is 

built as similar as the QD model as possible. The QW laser is 

simulated as a two-level system with BL and QWs, yielding 

    
𝑑𝑁𝐵𝐿

𝑒,ℎ

𝑑𝑡
=

𝜂𝐼

𝑒

∆𝑧

𝐿
+

𝑁𝑄𝑊
𝑒,ℎ

𝑓𝐵𝐿
𝑒,ℎ′

𝜏𝑒𝑠𝑐
𝑄𝑊,𝑒,ℎ −

𝑁𝐵
𝑒,ℎ𝑓𝑄𝑊

𝑒,ℎ′

𝜏𝑐
𝑄𝑊,𝑒,ℎ −

𝑁𝐵𝐿
𝑒,ℎ

𝜏𝑛𝑟
𝐵𝐿 −

𝑁𝐵𝐿
𝑒,ℎ

𝜏𝑑𝑖𝑠
𝐵𝐿,𝑒,ℎ        (9) 

𝑑𝑁𝑄𝑊
𝑒,ℎ

𝑑𝑡
=

𝑁𝐵𝐿
𝑒,ℎ𝑓𝑄𝑊

𝑒,ℎ′

𝜏𝑐
𝑄𝑊,𝑒,ℎ −

𝑁𝑄𝑊
𝑒,ℎ

𝑓𝐵𝐿
𝑒,ℎ′

𝜏𝑒𝑠𝑐
𝑄𝑊,𝑒,ℎ −

𝑁𝑄𝑊
𝑒,ℎ

𝜏𝑛𝑟
𝑄𝑊 −

𝑁𝑄𝑊
𝑒,ℎ

𝜏𝑑𝑖𝑠
𝑄𝑊,𝑒,ℎ − 𝑣𝑔𝑟𝑔𝑆 ∙

𝑉𝐴𝑅∆𝑧

𝐿
      

                                         (10) 

The field equations can be adapted directly from the QD model, 

incorporating a standard logarithmic QW gain function [39]. 

The L-I characteristics of QD and QW lasers are modelled as 

a function of the dislocation density. The QD laser parameters 

were chosen based on earlier simulations [38] and adjusted to 

TABLE I PARAMETERS USED FOR QW AND QW SIMULATIONS SHOWN IN FIG. 5(A) AND (B). 

QD parameters QW parameters 
Laser wavelength λQD = 1310 nm Laser wavelength λQW = 980 nm 
Modal gain gmod = 25 cm-1  Gain constant g0 = 3000 cm-1 

Optical confinement factor Γ = 0.005 Optical confinement factor Γ = 0.02 

Gain saturation factor ε = 5 × 1016 cm3 Gain saturation factor ε = 1 × 1017 cm3 

QD degeneracies 𝑝𝑖 = 2, 4, 6, 6, 6 (GS, ES1-ES4) Transparency current density n0 = 1.6 × 1018 cm-3 

QD carrier capture time 𝜏𝑐
𝑄𝐷,𝑒,ℎ

 = 3 ps, 0.5 ps  

Intradot relaxation time 𝜏0
𝑒 = 250 fs  

QD density ρ = 4 × 1010 cm-2  

Thermal escape time 𝜏𝑒𝑠𝑐
𝐺𝑆,𝐸𝑆1,𝐸𝑆2,𝑒 = 1.6 ps, 2.1 ps, 3.7 ps, 𝜏𝑒𝑠𝑐

𝑄𝐷,ℎ
 = 21.5 ps  

  

Parameters unchanged for QD and QW simulations: 
Laser length L = 3 mm Diffusion constant 𝐷𝐺𝑎𝐴𝑠

𝑒,ℎ
 = 191 cm2/s, 10 cm2/s 

Waveguide width w = 50 μm Diffusion constant 𝐷𝐼𝑛𝐺𝑎𝐴𝑠
𝑒,ℎ

 = 176 cm2/s, 8 cm2/s 

Number of active layers Nlayers = 5 Barrier layer current injection efficiency η = 0.55 
WL/QW thickness: hWL,QW =  8 nm WL/QW transport/capture time 𝜏𝑐

𝑊𝐿,𝑒,ℎ = 6.4 ps, 8.2 ps 

BL thickness hBL = 40 nm BL, WL/QW, and QD carrier lifetime 𝜏𝑛𝑟
𝑒,ℎ = 7 ns 

Group velocity vgr, active region volume VAR Waveguide loss αi = 3 cm-1 

Thermal escape time 𝜏𝑒𝑠𝑐
𝑊𝐿/𝑄𝑊,𝑒

 = 3.3 ps, 𝜏𝑒𝑠𝑐
𝑊𝐿/𝑄𝑊,ℎ

 = 2.3 ps Facet reflectivities R1 = R2 = 0.3 
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reproduce the experimental L-I curve, whereas the QW laser 

parameters are based on those in Ref. 39. The simulation results 

are shown in Fig. 5(a) and (b). From Fig. 5(a) it can be seen that 

very good QD lasing characteristics are obtained for TD 

densities between 104 cm-2 and 106 cm-2. There is only a minor 

threshold current density increase from 1 × 106 cm-2 to 1 × 107 

cm-2, indicating that for these dislocation densities, which are 

typical values for III-V lasers grown on Si, the effect on the L-

I characteristics of a high-gain QD laser is limited. This finding 

agrees well with other reports of excellent performance of QD 

lasers grown on Si [12, 19]. As the dislocation density continues 

to rise, however, the threshold rises significantly, as can be seen 

in Fig. 5(c). From ρdis = 1 × 108 cm-2 to 3 × 108 cm-2, the 

threshold current density increases from 225 Acm-2 to 500 

Acm-2 (330 mA and 760 mA, respectively). Furthermore, the 

increase in laser threshold is accompanied by a slope reduction 

of about 34 % from ρdis = 1 × 104 cm-2 to 3 × 108 cm-2, as shown 

in Fig. 5(d), since the high BL and WL carrier loss rate 

manifests itself effectively in a reduced injection efficiency into 

the QDs. These results agree with the experimentally observed 

trends reported by Jung et al. and Orchard et al. [30, 40]. It is, 

however, likely that the modelled slope decrease is even 

underestimated, since a very high TD density will also lead to 

dislocation-induced optical losses, as indicated in Ref. 40. 

Despite the performance reduction observed at higher values of 

ρdis, our theoretical results support the hypothesis that the 

unique properties of QDs, efficient carrier capture and high 

carrier confinement, are key to the impressive capabilities of 

QD lasers on Si to operate under high TD densities [30, 32]. It 

should be noted that our model does not contain thermal effects, 

so it is not considered that the possibility of overcoming the 

laser threshold may be reduced at increased injection levels.  

The good qualitative agreement between theory and 

experiment enables us to apply our approach to the simulation 

of dislocation-dependent QW L-I curves. Fig. 5 (c) reveals that 

an equivalent QW laser without QD energy level is more 

seriously affected by dislocation-induced carrier loss. The 

threshold current density required to pump a QW-based laser is 

naturally much higher, yet the threshold increases drastically at 

ρdis > 1 × 106 cm-2. At a TD density of 107 cm-2, no lasing is 

obtained within the chosen input currents. The finding that ~106 

cm-2 may be the highest tolerable ‘time-zero’ TD density for a 

QW laser correlates well with the defect densities measured for 

the few QW lasers grown on Si [41].  

IV. CONCLUSION 

In conclusion, we have presented a study on the effect of 

enhanced non-radiative recombination through threading 

dislocations (TDs) on the performance of InAs/GaAs QD and 

InGaAs/GaAs QW lasers monolithically grown on (001) Si in 

order to explain the much superior performance obtained with 

InAs/GaAs QD active regions rather than In0.15Ga0.85As/GaAs 

QWs. A high-performance InAs/GaAs QD laser monolithically 

grown on Si was demonstrated with a low cw threshold current 

density of 173 Acm-2, high single-facet output power exceeding 

100 mW, and a high operation temperature of 105 °C under 

pulsed mode. In contrast, an InGaAs/GaAs QW laser with a 

similar TD density grown on Si substrate under identical 

conditions showed no lasing behavior at room temperature, 

confirming the advantages of QDs over QW-based active 

regions in lasers monolithically grown on Si [42]. These 

advantages are well explained by our model. QD structures 

benefit from efficient carrier capture into the QD states and high 

energy barriers, which prevent the carriers from migrating into 

defect states. For this reason, even at very high defect densities 

on the order of 108 cm-2, QD lasers with high-gain active 

regions are able to show lasing, whereas the performance of 

QW lasers suffers significantly at lower TD densities of ~106 

cm-2. Our phenomenological model is able to reproduce the 

trends published in the literature, where an increased TD 

density is accompanied by an increase of the threshold current 

and a reduction of the L-I slope. Ignoring the effects of 

recombination enhanced defect reactions, dislocation climb, 

and the respective device lifetime issues, our simulations show 

that QW lasers are more severely affected by dislocation-

induced carrier loss than QD lasers, meaning that the TD 

density may almost have to be reduced to the level of native 

substrates in order to produce well-functioning monolithic QW 

lasers on Si. The experimental and theoretical study presented 

here is a first approach to assessing how many dislocations may 

be tolerable for QD and QW laser active regions and make a 

significant contribution to understand high-performance III-V 

QD lasers monolithically grown on Si, and hence further 

enhance the performance of III-V/Si QD lasers for Si photonics.  
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