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SUMMARY

AAA+ proteins form asymmetric hexameric rings
that hydrolyze ATP and thread substrate proteins
through a central channel via mobile substrate-
binding pore loops. Understanding how ATPase
and threading activities are regulated and inter-
twined is key to understanding the AAA+ protein
mechanism. We studied the disaggregase ClpB,
which contains tandem ATPase domains (AAA1,
AAA2) and shifts between low and high ATPase
and threading activities. Coiled-coil M-domains
repress ClpB activity by encircling the AAA1 ring.
Here, we determine the mechanism of ClpB activa-
tion by comparing ATPase mechanisms and cryo-
EM structures of ClpB wild-type and a constitutively
active ClpB M-domain mutant. We show that ClpB
activation reduces ATPase cooperativity and in-
duces a sequential mode of ATP hydrolysis in the
AAA2 ring, the main ATPase motor. AAA1 and
AAA2 rings do not work synchronously but in alter-
nating cycles. This ensures high grip, enabling sub-
strate threading via a processive, rope-climbing
mechanism.

INTRODUCTION

AAA+ proteins couple energy from ATP hydrolysis to mechanical

work, which is typically a directional threading activity linked to

force generation for unwinding DNA or RNA, protein complex

disassembly, protein unfolding, or protein disaggregation. They

are usually hexamers, which can consist of a single layer of

ATPase (AAA) domains or two tiers of tandem ATPase domains

that form a ring-shaped oligomer with a central pore. Although

the AAA+ superfamily is very large and diverse, common

features are emerging for the core ATPase and threading

mechanism.
Cell
This is an open access article und
For helicases, a sequential mechanism of ATP hydrolysis and

substrate threading was proposed on the basis of crystal struc-

tures of DNA and RNA helicases (Enemark and Joshua-Tor,

2006; Itsathitphaisarn et al., 2012; Mancini et al., 2004; Moffitt

et al., 2009; Thomsen and Berger, 2009; Thomsen et al., 2016).

The ordered cycling of subunits between active and inactive

states is propelled by ATP hydrolysis, which leads to stepwise

transport of the substrate through the central channel.

Recently, a similar mode of ATPase and threading mechanism

has been suggested for protein threading AAA+members on the

basis of structural snapshots of both single and tandem AAA

domain complexes, several with model substrates bound in

the central channel (de la Peña et al., 2018; Deville et al., 2017;

Gates et al., 2017; Monroe et al., 2017; Puchades et al., 2017;

Ripstein et al., 2017; Su et al., 2017; Wehmer et al., 2017; Yu

et al., 2018; Zehr et al., 2017). Except for the ATPase ring of

the proteasome regulatory subunit, these machines are homo-

hexamers with a markedly asymmetric structure. The rings

have varying degrees of spiral distortion, share onewider subunit

interface (seam), and all harbor AAA domains in diverse struc-

tural states. Each AAA domain extends a flexible pore loop

bearing a conserved aromatic residue, in most cases a tyrosine,

which interacts with the backbone of the threading polypeptide.

The pore loops are arranged to form a spiral staircase around the

translocation channel. The presence of AAA domains in inactive

and active states in the hexameric assemblies is consistent with

a sequential mode of ATP hydrolysis and threading. Cycling of

AAA domains between different activity states was recently

observed directly, in case of the AAA+ rings of the homohexa-

meric archaeal PAN (Majumder et al. 2019) and heterohexameric

eukaryotic 26S proteasome regulatory subunit (de la Peña et al.,

2018; Dong et al., 2019). However, it is unclear how ATPase and

threading activities are coordinated in double-ring AAA+ hexam-

ers composed of tandem AAA domains. How do the two AAA

rings communicate, and what is the consequence for the thread-

ing mechanism? These questions relate directly to the reasons

why some AAA+ proteins have two ATPase rings.

Furthermore, the reported structures do not explain the

diversity of AAA+ protein activities, which vary considerably in
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threading processivity. For instance, the bacterial disaggregase

ClpB exhibits lower processivity and unfolding power than its

close homologs ClpA and ClpC, which work together with the

peptidase ClpP in proteolysis (Haslberger et al., 2008; Li et al.,

2015). The molecular basis of differing substrate threading proc-

essivities is unknown. In particular, the available structures do

not address how the proposed sequential ATPase and threading

mode are regulated. This is biologically significant as the activ-

ities of many AAA+ proteins are tightly controlled by partner pro-

teins (adapters) and substrates, which typically stimulate ATP

hydrolysis strongly (Davies et al., 2010, 2014; Lee et al., 2013;

Rosenzweig et al., 2013; Schlothauer et al., 2003; Seyffer

et al., 2012; Thomsen et al., 2016). Regulatory action restricts

high AAA+ protein activity to the substrate-engaged state. The

mechanistic details of this activation step and how it is linked

to changes in AAA domain coordination and threading are largely

unknown.

The disaggregase ClpB is a suitable model system to analyze

control of ATPase and threading activities. ClpB activation

requires two signals: (1) interaction with the Hsp70 partner chap-

erone and (2) binding to substrate protein (Lee et al., 2013;

Oguchi et al., 2012; Rosenzweig et al., 2013; Seyffer et al.,

2012). ClpB is composed of tandem AAA domains (AAA1,

AAA2), an N-terminal domain (NTD), and a coiled-coil regulatory

M-domain, which forms a repressive belt surrounding the AAA1

ring (Carroni et al., 2014; Heuck et al., 2016; Oguchi et al., 2012).

Hsp70 binds to M-domains if they are released from their head-

to-tail contacts, thereby derepressing ClpB. Full activation of the

ClpB ATPase requires substrate binding as a second stimulus.

Notably, ClpB activation by Hsp70 seems transient, as ClpB

wild-type (WT) exhibits lower unfolding power during protein

disaggregation than ClpB M-domain mutants that weaken

M-domain interactions with the AAA1 ring to cause constitutive

derepression (Haslberger et al., 2008; Oguchi et al., 2012).

Such derepressed ClpB mutants are toxic in vivo, indicating

that tight ClpB regulation is essential (Lipi�nska et al., 2013; Ogu-

chi et al., 2012; Schirmer et al., 2004). The mechanistic basis of

ClpB activation remains largely unknown. How do ATPase and

threading activities differ between repressed and activated

states?

Here we analyze ClpB activation by a combined biochemical

and structural approach. We dissect the modes of substrate-

stimulated ATP hydrolysis and compare the structures of

substrate-engaged ClpB-WT and a constitutively derepressed

M-domain mutant. A set of structural snapshots of the activated

M-domain mutant strongly supports a sequential mechanism of

ATP hydrolysis and substrate handover moving counterclock-
Figure 1. ClpB Activation Triggers a Sequential Mode of ATP Hydrolys

(A) ClpB domain organization and monomer structure. The identity and position

(B) ATPase activities of ClpB wild-type (WT) and ClpB-K476C were determined in

some points, error bars are shorter than the height of the symbol and are not de

(C) MDH disaggregation activities of ClpB-WT and ClpB-K476C in the absence a

(D) ATPase activity of ClpB-WT and ClpB-K476C in absence and presence of ca

(E) vmax of ATPase activities, derived Hill coefficient (h), and ATP concentrations a

loop mutants of ClpB-WT and ClpB-K476C.

(F and G) ATPase activities of ClpB-K476C/ClpB-K476C/E279A/E678A (F) and MD

(red, blue). They are compared with curves calculated from a model (black to gra

activity if it contains the number of wild-type subunits indicated. Mixing ratios ar
wise around the AAA2 ring that constitutes the main ATPase mo-

tor. Accordingly, AAA domains of the substrate-activated ClpB

M-domain mutant hydrolyze ATP with reduced cooperativity.

The structures also suggest that the regulatory AAA1 ring runs

in a sequential mode, out of synchrony with the AAA2 ring, so

that release and engagement of the substrate are anti-correlated

between the rings. Such progressive cycling of AAA domains be-

tween active and inactive states is not observed for ClpB-WT

with fully engaged substrate, suggesting that activation of

ClpB-WT is transient.

RESULTS

Activation of ClpB Coincides with Decreased
Cooperativity
We sought to biochemically and structurally dissect the Hsp70

and substrate-dependent process of ClpB activation. The inter-

action between Hsp70 and ClpB is transient, hampering analysis

of an Hsp70-bound state of ClpB. We therefore made use of the

derepressed ClpB-K476C M-domain mutant, which mimics the

transient state of ClpB activation by Hsp70 (Oguchi et al.,

2012). Lys476 is part of a conserved salt bridge network that reg-

ulates the dynamic interaction between M-domain and AAA1

ring (Figure 1A) (Lipi�nska et al., 2013; Oguchi et al., 2012). This

interaction is weakened in ClpB-K476C, resulting in M-domain

dissociation and persistent, Hsp70-independent derepression

of ClpB ATPase activity. Consequently, ATPase activation by

substrate is much stronger than in ClpB-WT (Figure 1B; Table

S1), and ClpB-K476C has increased protein disaggregation ac-

tivity (Figure 1C), linked to its ability to unfold stable domains,

an activity not observed for ClpB-WT (Oguchi et al., 2012).

Because high ATPase activity of ClpB-K476C requires substrate

binding, we used the disordered model substrate casein, which

is directly recognized by ClpB, to study the activation process.

Both basal and substrate-induced steady-state ATPase activ-

ities of ClpB-K476C are strongly increased over those of ClpB-

WT. ClpB-WT and ClpB-K476C do not differ in nucleotide

affinities (Franke et al., 2017), raising the possibility that an

increased affinity of ClpB-K476C for casein might explain stron-

ger stimulation of ATPase activity. We first determined ClpB-WT

and ClpB-K476C ATPase activities at increasing substrate con-

centrations. Casein concentrations at half-maximal ATPase ac-

tivities were comparable for ClpB-WT and ClpB-K476C (3.6 ±

0.5 versus 3.1 ± 0.4 mM) (Figure S1A), suggesting similar

substrate affinities. This was confirmed by determining

similar binding affinities of ClpB-WT and ClpB-K476C for fluo-

rescein isothiocyanate (FITC)-casein in fluorescence anisotropy
is

of mutated residues are indicated.

the absence and presence of 10 mM casein (± substrate). SDs are indicated; for

picted.

nd presence of Hsp70.

sein (± substrate) as a function of ATP concentration.

t half-maximal ATPase activity (K0.5) for WT, pore 1 (Y251A), and pore 2 (Y653A)

H disaggregation of ClpB-WT/ClpB-E279A/E678A (G) mixes were determined

y) that assumes that a mixed hexamer only displays ATPase or disaggregation

e indicated as number of E279A/E678A mutant subunits.
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experiments (Kd = 0.33 ± 0.05 versus 0.22 ± 0.04 mM) (Fig-

ure S1B). These findings exclude differences in substrate affinity

as the basis for the enhanced ATPase activity of ClpB-K476C.

We therefore determined ATPase activities at increasing ATP

concentrations to analyze whether altered communication be-

tween ATPase subunits (e.g., increased cooperativity) causes

the differing ATPase activities. Basal ATPase activity of ClpB-

WT showed a sigmoidal curve, indicating a cooperative mode

of ATP hydrolysis (Figure 1D). The determined Hill coefficient

(h = 2.5 ± 0.2) agrees well with values determined for

T. thermophilus ClpB (h = 2.7) (Schlee et al., 2001) and the yeast

homolog Hsp104 (h = 2.3) (Hattendorf and Lindquist, 2002).

Notably, casein addition reduced the Hill coefficient of ClpB-WT

(h = 1.5 ± 0.1) and that of ClpB-K476C even more (h = 1.3 ± 0.1)

(Figures 1D and 1E; Table S1), to almost Michaelis-Menten-like

ATPase kinetics, with little positive cooperativity. Furthermore,

ATP concentrations at half-maximal ATP hydrolysis rates of

ClpB-K476C dropped to 1.4 mM in the presence of substrate,

compared with 4.3mM forWTClpB in the presence of substrate.

This indicates that only the fully two-step activated state of ClpB

reaches high ATPase activity at physiological ATP concentra-

tions (Figures 1D and 1E; Table S1), which coincides with

decreased cooperativity.

To substantiate the substrate-triggered decrease in coopera-

tivity of ClpB-K476C ATPase activity, we determined the ATPase

parameters of ClpB-K476C pore loop mutants (AAA1 loop

Y251A, AAA2 loop Y653A) (Figures 1A and 1E; Figure S1C),

which exhibit defects in substrate interaction (Deville et al.,

2017; Lum et al., 2004; Weibezahn et al., 2004). Pore loop muta-

tions increased Hill coefficients in the presence of substrate, and

the double pore loop mutations ClpB-K476C-Y251A-Y653A

restored WT-like cooperativity of ATP hydrolysis (h = 2.47 ±

0.21) (Figure 1E; Table S1). These findings imply that substrate

binding changes the mode of ATP hydrolysis in the ClpB-

K476C hexamer, reducing positive cooperativity.

A reduction in ATPase cooperativity upon ClpB activation is

consistent with a sequential mode of ATP hydrolysis, which

has been proposed for various AAA+ protein unfoldases (de la

Peña et al., 2018; Dong et al., 2019; Gates et al., 2017; Majumder

et al., 2019; Monroe et al., 2017; Puchades et al., 2017; Ripstein

et al., 2017), on the basis of cryoelectron microscopy (cryo-EM)

structures. A sequential mechanism requires subunit coordina-

tion for successive ATP hydrolysis by adjacent ClpB subunits.

A particularly high degree of subunit coordination is therefore

expected for derepressed ClpB-K476C in the presence of sub-

strate. We tested this prediction by determining ATPase

activities of mixed hexamers composed of ClpB-WT or ClpB-

K476C and the corresponding ATPase-deficient E279A/E678A

(double Walker B [DWB]) mutant subunits. Only the substrate-

stimulated ClpB-K476C ATPase activity was reduced upon

incorporation of mutant subunits, confirming increased subunit

coordination (Figures S2A and S2B; Kummer et al., 2016).

Notably, the presence of catalytically dead DWB subunits

increased ATP hydrolysis in the active subunits of mixed oligo-

mers in case of ClpB-WT (without and with substrate) and for

ClpB-K476C in the absence of substrate, relative to ClpB-WT

controls (Figure S2B). This can be explained by altered intra-

or inter-ring communications between AAA domains and indi-
3436 Cell Reports 27, 3433–3446, June 18, 2019
cates that introducing some AAA domains locked in an ATP state

can trigger ATP hydrolysis in the others. Strikingly, this regulatory

mode is not observed for fully activated ClpB mimicked by sub-

strate-bound ClpB-K476C, whose ATPase activity is poisoned

by mutant subunit incorporation (Figure S2A). The degree of

ClpB-K476C ATPase poisoning was reduced when adding

ClpB-K476C-DWB pore loop mutants (Y251A, Y653A) in mixing

experiments (Figure S2C), underlining the impact of substrate

binding in changing the mode of ATP hydrolysis.

We calculated the number of DWB subunits required to block

ATP hydrolysis in a ClpB-K476C hexamer (+ casein). We

compared the measured ATPase activities with those derived

from a model assuming that a mixed hexamer displays activity

only if it contains a certain number of WT subunits (Figure 1E).

We found that incorporation of two DWB subunits abrogated

the substrate-induced ATPase activity of ClpB-K476C. We

considered this number a potential overestimate given the

observed increase in activity of ClpB-K476C ATPase proficient

subunits in the absence of substrate upon DWB incorporation.

Thus the presence of even a single DWB subunit might be suffi-

cient to block the substrate-induced high-ATPase activity mode

of ClpB-K476C. This inhibition is also seen in a functional assay

probing for disaggregation activities of mixed oligomers as the

readout (Figure 1F). Here, the incorporation of a single DWB sub-

unit is sufficient to abrogate disaggregation of aggregated ma-

late dehydrogenase by ClpB-WT or ClpB-K476C. The high

sensitivity of ClpB-WT can be explained by its transient activa-

tion upon binding the Hsp70 partner during disaggregation.

We conclude that the activated state of ClpB hydrolyses ATP

with low positive cooperativity yet in a highly coordinated

manner. This is consistent with a sequential mode of ATP hydro-

lysis, which is specifically initiated upon ClpB activation,

involving dissociation of M-domains and substrate binding to

the ClpB pore sites.

Substrate-Bound ClpB-K476C Structures Reveal Large
Displacements of AAA2 Pore Loops
In order to characterize the structural basis of ClpB activation

and the basis for the observed changes in cooperativity, we

used single-particle cryo-EM to determine the structure of

ClpB-K476C in its substrate-bound state. To allow stable sub-

strate trapping, we used a ClpB-K476C-DWB variant and incu-

bated it with an excess of casein in the presence of ATPgS. Sub-

strate-bound ClpB-K476C protomers form a closed ring state

and adopt an asymmetric arrangement with a right-handed spi-

ral distortion closed by a seam between protomers A and F, as

previously observed for ClpB-WT (Figure 2A; Deville et al.,

2017; Yu et al., 2018). The map of substrate-bound ClpB-

K476C refined to a resolution of 3.4 Å (Figures S3A–S3D; Table

S3). Further three-dimensional (3D) classification allowed the

identification of four states differing mainly in the positions of

the seam subunits (Figure S4A). Those classes refined to resolu-

tions between 3.6 and 4.1 Å. Even after extensive sorting by 3D

classification, the seamprotomers are less resolved than the rest

(4.5–6 Å resolution versus 3.5–4 Å resolution; Figures S3A–S3D;

Table S3), highlighting that this region represents a dynamic hot-

spot. The states were numbered according to the position of the

AAA2 domain of the seam protomer F, the region undergoing the



A

90o

180o

B

seam subunit F

substrate

A

B

CD

F

E

AAA1 tier

AAA2 tier

KC-1 KC-2 KC-3C C C 3
AAA1E

AAA2F AAA2F

C

DE

F

substrate

Figure 2. Overview of Substrate-Bound ClpB-DWB-K476C

(A) Left, top view, and middle and right, side views of the cryo-EM density map of the most populated conformation of casein-bound ClpB-DWB-K476C (KC-2).

The six protomers form a closed ring with a helical arrangement of two stacked AAA tiers and a seam between subunits A and F. The flexible N-terminal domains,

located above the AAA1 tier, are not visible at high contour level. M-domains are partly visible for protomers C–E.

(B) Views of the cryo-EM maps of the three states of substrate-bound ClpB-DWB-K476C. Densities of protomers A and B are removed to show conformational

changes in protomers AAA1E and AAA2F, highlighted by orange and red arrows, respectively. Orange and red hexagons show the position of moving AAA1E and

AAA2F pore loops.
biggest conformational change and were termed KC-1, KC-2A/

2B, and KC-3 (Figure 2B). KC-2A and KC-2B differ only partially

in the orientation of AAA2F (Figures S5A and S5B) and show

otherwise identical features; they were therefore defined as

KC-2 and are described together unless specified otherwise.

The states KC-1, KC-2, and KC-3 were populated to 16%,

33%, and 17%, respectively.

The substrate casein is bound over a distance of 75 Å, corre-

sponding to 24 residues. The main contacts are provided by

AAA1 and AAA2 pore loops containing the conserved tyrosines

(Y251 and Y653) and a charged loop in AAA1 (L10), as previously
described (Deville et al., 2017). The pore loops stabilize casein in

an extended conformation via hydrogen bonds between the

backbones of K250, Y251 (AAA1), G652, and Y653 (AAA2) and

the backbone of the substrate (Figures S5C and S5D). The heli-

cally stacked side chains of Y251 and R252/E256 in AAA1 and

Y653 and V656 in AAA2 form pockets to accommodate side

chain of the substrate (Figures S5C and S5D), as recently

described for M. tuberculosis ClpB (Yu et al., 2018).

The interactions and positions of pore loops of individual pro-

tomers differ considerably between the different ClpB-K476C

states, but their total number remains at ten. In state KC-1, all

six AAA2 pore loops contact the substrate with the AAA2F pro-

tomer positioned at the bottom of the spiral staircase (Figure 3A,

left panel). In the AAA1 ring, pore loops A–D are bound to the
substrate, and protomers E and F are detached, with pore loop

E at the top of the spiral arrangement of AAA1 loops and pore

loop F in an intermediate position (Figure 3A, left panel). In state

KC-2 the pore loop of AAA1E engages the substrate at the high-

est position, above AAA1D, while the pore loop of AAA2F is

dissociated from the substrate at the lowest position (Figures

2B and 3A, middle panel). Substrate binding by pore loops is

therefore anti-correlated in AAA1 (gain) and AAA2 (loss), thus

maintaining a total of ten pore loops gripping the substrate.

The biggest displacement is observed for pore loop AAA2F,

which moves upward by 34 Å, placing it at the top of the AAA2

pore loop track in state KC-3 (Figures 2B and 3A). The AAA2F

pore loop is now placed to grab the substrate two residues

above AAA2E (Figure 3A). Therefore, these three states of

ClpB-K476C show sequential repositioning of pore loops around

the ring with binding of AAA1E at the top of the spiral track of

substrate interactions and cycling of AAA2F from the bottom to

the top position of the AAA2 pore loops (Video S1).

Counterclockwise Cycling of AAA2 Domains between
Active and Inactive States Indicates a Sequential Mode
of ATP Hydrolysis upon ClpB Activation
We next analyzed whether the differences in pore loop posi-

tions between the ClpB-K476C structural states correlate with

changes in the activity states of the respective AAA domains.
Cell Reports 27, 3433–3446, June 18, 2019 3437
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Figure 3. Pore Loop Movements and Argi-

nine Finger Contacts in the Three States of

Substrate-Bound ClpB-DWB-K476C Sug-

gest a Sequential Mechanism of ATP Hydro-

lysis and Substrate Threading

(A) Pore loop interactions with the substrate in

AAA1 (top panels) and AAA2 (bottom panels) rings.

The pore loop AAA1E (orange) engages the sub-

strate in KC-2, while the pore loop AAA2F (red)

dissociates. AAA2F moves from the bottom to the

top of the staircase of pore loops in KC-3.

(B) Arginine finger engagements in the AAA1 and

AAA2 ring. All protomers were aligned to the large

lobe of AAA1 or AAA2 domain of protomer C to

compare engagement of the arginine fingers

with neighboring subunits. Arginine fingers of

AAA1B–C and AAA2B–D are shown as gray rib-

bons and interact with the g-phosphate of ATP

bound at the active site of a neighboring subunit in

all three states. Activity states of AAA2 protomers

are indicated by green (active) and red (inactive)

arrows.

(C) Nucleotide densities for AAA2A, AAA2B, and

AAA2F protomers and assigned nucleotide state.
To be active and competent for ATP hydrolysis, a AAA domain

will have ATP bound while concurrently receiving a trans-acting

arginine finger (AAA1: R331, R332; AAA2: R756), which contacts

the g-phosphate group of ATP, from the clockwise neighboring

subunit (Biter et al., 2012; Yamasaki et al., 2011; Zeymer et al.,

2014). We observe evidence for a counterclockwise change in

the activity states of AAA domains in the AAA1 and AAA2 rings.

Nucleotide exchange and hydrolysis events in AAA2 appear to

drive the repositioning of the seam subunit AAA2F associated

with a two-residue translocation step.

In all states, all AAA1 domains have full occupancy of ATPgS

bound except AAA1F in KC-1 and KC-2 and AAA1A in KC-3,
3438 Cell Reports 27, 3433–3446, June 18, 2019
for which ADP was fitted into a weaker

nucleotide density (Figure S6A). In all

states, AAA1C and AAA1D can be

defined as active in the AAA1 ring (ATP-

bound and receiving arginine fingers of

AAA1B and AAA1C, respectively), and

AAA1A and AAA1F can be defined as

inactive (displaced arginine fingers of

AAA1F and AAA1E respectively, by

6.5–7 Å). However, the activity states of

AAA1B and AAA1E vary (Figure 3B). In

KC-1, the arginine finger of AAA1D is

moderately displaced by 3 Å. This inter-

mediate position suggests AAA1E is in

an intermediate, not fully active state. In

KC-2, substrate engagement by AAA1E

is linked to AAA1E activation as the argi-

nine finger of AAA1D fully moves in. In

KC-3, displacement of the arginine finger

of AAA1A by about 2 Å relative to active

arginine fingers implies partial loss of

AAA1B activity. Therefore, subtle confor-
mational changes of arginine fingers in the AAA1 ring point to-

ward a counterclockwise cycling of active subunits, including

gain of activity (AAA1E in KC-2) and loss of activity (AAA1B in

KC-3) (Figure 3B).

In case of the AAA2 ring we observe larger conformational

changes. In KC-1 and KC-2, the nucleotide binding pockets of

AAA2B–AAA2E show clear densities for ATPgS and receive argi-

nine fingers of their counterclockwise neighbors (Figures 3B, 3C,

and S6B), defining AAA2B – AAA2E as active. In contrast, the

arginine fingers of AAA2E and AAA2F shift 12-16 Å away from

the nucleotide sites of AAA2F and AAA2A, respectively, defining

AAA2F and AAA2A as inactive. In KC-3, gain of activity of AAA2F



and loss of activity of AAA2B leads to a counterclockwise cycling

of the four active subunits by one protomer. This cycling across

three states is linked to nucleotide exchange and likely hydroly-

sis at the seam (Figures 3B and 3C). AAA2F dissociation from the

substrate coincides with nucleotide release from AAA2A and

nucleotide binding to AAA2F (Figure S7). The lower resolution

of the cryo-EM map at the seam subunit AAA2F does not allow

unambiguous identification of the bound nucleotide, but we think

it is likely to be ATPgS, as imposed by a sequential cycle of ATP

hydrolysis. AAA2F activation is coupled with the upward move-

ment of its pore loop, demonstrating tight linkage between the

active sites providing and transmitting the energy derived from

ATP hydrolysis.

How does ClpB ensure that only one out of four active AAA2

domains hydrolyses ATP at a time? In KC-3, the ADP nucleotide

density in AAA2B and the displacement of neighboring AAA2A

arginine finger by 7 Å from the nucleotide (Figures 3B and 3C)

suggest that ATP hydrolysis at AAA2B coincides with conversion

from KC-2 to KC-3 and AAA2B inactivation. In KC-2, an apo

AAA2A provides an arginine finger to AAA2B, while all other

clockwise neighbors of active subunits AAA2 C–E bind ATP.

This suggests that the nucleotide content of an AAA2 domain de-

termines ATPase activity of its counterclockwise neighbor, and

an apo state triggers ATP hydrolysis in an active neighbor, ex-

plaining how ATP hydrolysis sequentially progresses around

the AAA2 ring (Figures 3B and 3C).

Inactivation of AAA2B and activation of AAA2F subunits are

coupled via the interconnecting AAA2A subunit. ATP hydrolysis

at AAA2B causes dissociation of the AAA2A arginine finger and

rotation of AAA2A by 14� while it remains bound to the substrate.

This movement is transmitted to the neighboring F protomer and

causes a 44.5� rotation of AAA2F and an upward movement, al-

lowing the arginine finger of AAA2E to contact the ATP bound at

AAA2F (Figures 4A and 4B) and positioning of the AAA2F pore

loop at the top of the spiral track of AAA2 loops.

Interconversions of AAA2 domains between the three states

support a sequential mechanism of ATP hydrolysis (Video S1),

in agreement with our biochemical analysis. Activation of the

seam subunit AAA2F in state KC-3 is linked to resetting of its

pore loop from the bottom to top position, indicating that

sequential ATP hydrolysis around the ring dictates substrate

threading in sequential, discrete steps on the substrate.

Offset Cycling of AAA1 and AAA2 Rings
The comparison of structural changes in the ClpB-K476C AAA1

and AAA2 rings provides the first insights into ring coupling in

tandem AAA+ proteins. Although we observe cycling of subunits

in both AAA1 and AAA2 rings, this does not happen synchro-

nously but with an offset of one subunit in different structural

states (Figure 3B). This offset is also seen in the organization of

the ClpB hexamer, in which the AAA1 domain of one subunit is

positioned above the AAA2 domain of its counterclockwise

neighbor. In state KC-2, AAA1E becomes active in the AAA1

ring while AAA2E is already active in KC-1. Similarly, activation

of AAA2F in the AAA2 ring occurs in state KC-3, while AAA1F

remains inactive. Thus, the AAA1 ring lags one counterclockwise

subunit ‘‘behind’’ the AAA2 ring, and the changes in activity

states do not happen simultaneously. Similarly, substrate
engagement by the AAA1E pore loop in state KC-2 is coupled

to substrate dissociation of the AAA2F pore loop (Figure 3A).

Notably, activation of AAA1E in state KC-2 is linked to an upward

movement, which creates the space necessary for the large rota-

tion and upward movement of AAA2F upon conversion of state

KC-2 to KC-3 (Figure 4C). Therefore, the offset cycling of the

AAA1 ring seems prerequisite for sequential cycling of the

AAA2 ring.

The AAA2 Domain Constitutes the Main Threading
Motor
Our structural analysis of ClpB-K476C shows that ClpB activa-

tion triggers sequential repositioning of pore loops. This is most

pronounced for AAA2, suggesting that this domain represents

the main motor of the disaggregase. We analyzed the roles of

AAA1 and AAA2 domains upon ClpB activation by mutating

key residues in ATP hydrolysis (Walker B motif: E279A,

E678A; arginine finger: R331A, R756A) or substrate interaction

(pore loop: Y251A, Y653A) in derepressed ClpB-K476C and

tested their impact on disaggregation and ATPase activities

(Figures S2A and S2D–S2G). Walker B and arginine finger mu-

tations strongly reduced protein disaggregation activities for

ClpB-WT and ClpB-K476C. This indicates that derepressed

ClpB-K476C requires two functional AAA domains for efficient

disaggregation. However, the AAA1 mutations (E279A,

R331A) linked to ClpB-K476C retained more of the WT disag-

gregation activity than the corresponding AAA2 mutants (Fig-

ures S2D and S2E). A functional AAA2 domain is therefore

essential for ClpB activation, whereas defects in AAA1 can be

partially compensated by constitutive derepression (ClpB-

K476C). This effect became particularly obvious when deter-

mining disaggregation activities of pore loop mutants. Pore

loop 2 (Y653) was essential for disaggregation in ClpB-WT

and ClpB-K476C. In contrast, the pore loop 1 (Y251A) mutant

retained partial activity in ClpB-WT, which was further stimu-

lated upon ClpB derepression to almost WT-like activity (Fig-

ures S2D and S2E). We infer that persistent ClpB activation

partially compensates for AAA1 defects, while being strictly

dependent on a functional AAA2 domain. Accordingly, blocking

ATP hydrolysis at AAA2 in ClpB-K476C-E678A strongly

reduced substrate-stimulated ATPase activity, while inhibiting

AAA1 activity had a more modest effect (7.6-fold versus 1.7-

fold reduction, respectively) (Figures S2F and S2G). These ob-

servations define the AAA2 domain as the main ATPase motor,

which is particularly stimulated upon ClpB activation.

Structures of Substrate-Bound ClpB-WT Do Not Show
Coupled Cycling of AAA2 Domains
Our biochemical analysis pinpoints strong differences in

ATPase activities of substrate-stimulated ClpB-WT and dere-

pressed ClpB-K476C (Figure 1). To investigate the underlying

mechanism we aimed at a direct structural comparison of

substrate-bound ClpB-WT and ClpB-K476C. Our previous

analysis of substrate-bound ClpB (BAP)-WT yielded a struc-

ture that is similar to KC-1 of ClpB-K476C, but the map

was of lower resolution (4.5–5 Å) (Deville et al., 2017). To

permit a better comparison, we took advantage of improved

sample preparation methods and redetermined the structure
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Figure 4. Activation and Inactivation of Subunits in the AAA2 Ring Are Directly Coupled

(A) Views of the AAA2 domains of protomers A, B, E, and F for states KC-2 and KC-3 are shown. The small lobe of AAA2B is omitted for clarity. In state KC-2 (left),

the arginine finger of AAA2A (highlighted by yellow oval) contacts the g-phosphate of ATP bound at neighboring AAA2B. In the post-hydrolysis state KC-3 (right),

detachment of this arginine finger allows rotation of AAA2A by 14� to move away from AAA2Bwhile remaining bound to the substrate. This rotation is transmitted

to AAA2F, causing its repositioning to the top of the spiral track of AAA2 pore loops and its activation by receiving an arginine finger from AAA2E.

(B) The track of Ca atoms whenmorphing from KC-2 to KC-3 illustrates the amplitude of movements of AAA2A and AAA2F at the seam of the AAA2 ring. Blue and

red arrows highlight the rotations of AAA2A and AAA2F subunits, respectively.

(C) Activation of AAA1E is a prerequisite for AAA2F rotation. Views of AAA1E, AAA2F, and casein substrate in states KC-1, KC-2, and KC-3 are shown.
of ClpB-DWB in complex with casein in the presence of

ATPgS (Figures 5A and S3E–S3H; Table S3).

After two-dimensional (2D) classification, a map was obtained

that refined to a resolution of 3.9 Å but still displayed a poorly

resolved seam area and anisotropy because of preferential end

view orientation. Three-dimensional (3D) classification revealed

three states with different conformations at the seam and

maps were refined to resolutions of 4–6 Å. These states were

termed WT-1, WT-2A, and WT-2B and populated to 15%,

43%, and 20%, respectively (Figures 5A and S4B). WT-1 and

WT-2A are largely similar to states KC-1 and KC-2A of ClpB-

K476C, whereas WT-2B is reminiscent of ClpB-K476C state

2B. A structural equivalent to ClpB-K476C state 3 is missing in

the ClpB-WT population.
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In all three ClpB-WT states all M-domains are fully visible and

enclose the AAA1 ring, in agreement with previous findings (Fig-

ures 6A and 6B; Deville et al., 2017). They adopt a horizontal

‘‘repressed’’ conformation, with head-to-tail contacts around

the ring. Full enclosure of the ClpB-WT AAA1 ring by the M-do-

mains might restrict the mobility of the entire ClpB hexamer,

thereby impeding structural changes required for subunit cycling

and high threading activity.

A continuous M-domain belt is not observed in ClpB-K476C,

in which the M-domains show conformational heterogeneity

with density for both horizontal ‘‘repressed’’ and tilted ‘‘dere-

pressed’’ conformations (Figures 6A and 6B). Forty percent of

ClpB-K476C particles have all six M-domains in a tilted confor-

mation with only their motifs 1 but not their motifs 2 visible,
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A Figure 5. Docked M-Domains Repress the

Activity of ClpB-WT and Reduce the Range

of AAA Domain Movements

(A) Heterogeneity of M-domain conformations. Top

and side views of the cryo-EM density maps for the

two main M-domain conformations of the ClpB-

DWB-K476C:casein complex and for the ClpB-

DWB:casein complex. Detached M-domains are

indicated by green arrows and docked M-domains

by red arrows.

(B) Docking states of M-domains: atomic models

showing the predominant conformation of

M-domains enclosing the AAA1 tier in ClpB-

K476C (left) and ClpB-WT (right) states. In ClpB-

WT, M-domains are docked in a horizontal

conformation that is stabilized by head-to-tail

interactions between motif 1 and motif 2 of

neighboring M-domains. In ClpB-K476C, M-do-

mains adopt a tilted conformation with motif1

contacting the AAA1 domain of the adjacent

protomer. Head-to-tail interactions are broken,

rendering M-domain motif 2 invisible in the

cryo-EM maps. Here, full-length M-domains are

shown, docked in the density of motif1, to

emphasize the differences in M-domain docking

states between ClpB-WT and ClpB-K476C.
because of high flexibility. Sixty percent of particles have M-do-

mains of protomers D–F in a horizontal, docked conformation,

while M-domains of protomers A–C are detached (Figures 6A

and 6B). DetachedM-domains are always associatedwith active

ClpB-K476C protomers. The diversity of M-domain conforma-

tions in ClpB-K476C indicates increased structural flexibility, in

agreement with previous biochemical analysis (Oguchi et al.,

2012). The ratio of dissociated to attached M-domain conforma-

tions does not differ among the ClpB-K476C structural states.

Notably, the partial M-domain docking in ClpB-WT (without sub-

strate) and ClpB-K476C (with substrate) always includes the

seam subunit AAA1F.

We next analyzed whether the complete docking of M-do-

mains in ClpB-WT influences the conformational states and

cycling of AAA domains by comparing ClpB-WT and ClpB-

K476C structural states. We noticed that five ATPase sites

are always inactive in ClpB-WT compared with four in ClpB-

K476C. A major and mechanistically important difference

between ClpB-WT and ClpB-K476C represents the loss of co-

ordinated intra-ring subunit cycling in ClpB-WT. Although we

observe activation and inactivation events (WT-2B: AAA1E acti-

vation, AAA2B inactivation) in ClpB-WT, these are not coupled

within the same ring but between the rings, indicating differ-

ences in ring allostery between ClpB-WT and ClpB-K476C.

Thus, inactivation of AAA2B in state WT-2B is not coupled to

AAA2F activation as seen in ClpB-K476C (state KC-3) but to

activation of AAA1E (Figure 5D). Furthermore, subunit activa-
Cell R
tion (AAA1E) in the AAA1 ring and sub-

unit inactivation (AAA2B) in the AAA2

ring occur simultaneously in ClpB-WT

rather than offset, as observed for

ClpB-K476C. Also, substrate engage-
ment by the AAA1E pore loop no longer coincides with simulta-

neous dissociation of the AAA2F pore loop (Figure 5B).

Activation of AAA2F, involving the dramatic rotation of AAA2F

(44.5� upon conversion from KC-2 to KC-3), is not seen in

ClpB-WT. This can be linked to the delayed activation of

AAA1E that does not leave space for AAA2F rotation in ClpB-

WT. As a result, the AAA2F pore loop remains at a lower posi-

tion in WT-2B (11.7 Å upward movement) and does not move to

the top of the spiral track as in KC-3 (33.8 Å upward movement)

(Figures 5B and 5C; Video S2). Accordingly, the overall move-

ment of the AAA2F seam subunit is more restricted in ClpB-

WT (maximum root-mean-square deviation [RMSD] 5.9 Å)

than in ClpB-K476C (maximum RMSD 8.1 Å).

We conclude that intra-ring and inter-ring communications

differ in ClpB-WT and ClpB-K476C. Ordered cycling of AAA do-

mains between different activity states and a large rearrange-

ment of the AAA2 seam subunit and its pore loop are not

observed in ClpB-WT. This suggests that the intra-ring coupling

of ClpB-WT subunits is weaker than in ClpB-K476C, preventing

the AAA2 motor ring of ClpB-WT from running in a sequential

mode.

DISCUSSION

In this study we biochemically and structurally dissected the

activation of a protein threading AAA+ machine with tandem

AAA domains. We chose the ClpB disaggregase as model
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Figure 6. Overview of Substrate-Bound

ClpB-DWB, Pore Loop Movements and

Arginine Finger Contacts

(A) Views of the cryo-EM maps of the three states

of substrate-bound ClpB-DWB. Densities of

protomers A and B were removed to show

conformational changes in protomers AAA1E and

AAA2F, highlighted by orange and red arrows,

respectively. Orange/red hexagons show the

position of moving pore loops.

(B) Interactions of ClpB-WT pore loops of the AAA1

(upper panel) and AAA2 (lower panel) ringswith the

substrate. The pore loop AAA2F (red) dissociates

from the substrate inWT-2A. The pore loop AAA1E

(orange) binds substrate in WT-2B.

(C) Activity states of ClpB-WT AAA1 (upper panels)

AAA2 (lower panels) domains. All protomers were

aligned to the large AAA1 (AAA2) domain of pro-

tomer C to compare engagement of the arginine

fingers with neighboring subunits. Arginine fingers

of AAA1A-C and AAA2B-D are shown as grey

ribbons and interact with the g-phosphate of ATP

bound at the active site of a neighboring subunit in

all three states. Activity states of AAA1/2 proto-

mers are indicated by green (active) and red

(inactive) arrows.

(D) Comparison of ClpB-WT and ClpB-K476C

pore loop positions of AAA1E and AAA2F for states

WT-1, WT-2A to WT-2B (pale to bright colors) and

for states KC-1, KC-2 to KC-3 (pale to bright

colors).
system because the signals triggering its activation are well

defined: dissociation of inhibitory M-domain contacts and sub-

strate binding. The comparison of ClpB-WT and derepressed

ClpB-K476C enabled the mechanistic analysis of complexes ex-

hibiting low and high ATPase and threading activities. We deter-

mined three structural snapshots of substrate-bound ClpB-

K476C that likely constitute consecutive steps in a cycle in which

ClpB activation triggers a sequential mechanism of ATP hydroly-

sis (Figure 7A). As our structural approach used the ATPase-defi-

cient ClpB-K476C-DWB mutant, ClpB-K476C subunit cycling

likely involves additional conformations that were not accessible

here. We observe cycling of subunits between active and inac-

tive states in both AAA1 and AAA2 rings, with changes being

more pronounced in AAA2. Biochemical analysis of the

ATPase mechanism of activated ClpB-K476C supports these
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findings. ATP hydrolysis by activated

ClpB-K476C invokes a high degree of

subunit coordination in a sequential

rather than a concerted mechanism.

A sequential mechanism of ATP hydro-

lysis has previously been postulated for

various protein threading AAA+machines

with single AAA domains, on the basis of

single cryo-EM structures (Gates et al.,

2017; Monroe et al., 2017; Puchades

et al., 2017; Ripstein et al., 2017), with

direct evidence from structures of the

heterohexameric Rpt1-6 ATPase ring of
the 26S proteasome and of archaeal PAN (de la Peña et al.,

2018; Dong et al., 2019; Majumder et al., 2019). Our structural

snapshots establish that the substrate threading mechanism is

conserved for a homohexameric AAA+ protein with tandem

AAA domains.

The activation of a sequential ATPase and threading mecha-

nism involves several key features of the AAA2 ring. First,

coupled activation and inactivation of ClpB AAA2 domains pro-

ceed in a counterclockwise direction as also observed in the

26S Rpt1-6 ring (de la Peña et al., 2018; Dong et al., 2019). Sec-

ond, four active AAA2 domains are in almost identical states, and

their ordered firing is controlled by the clockwise neighbor, which

blocks hydrolysis when it has nucleotide bound and triggers hy-

drolysis in its apo state. Third, the cycling of AAA domains is

directly linked to changes in the corresponding pore loop



Figure 7. Coupled Sequential ATP Hydrolysis and Polypeptide Translocation upon ClpB Activation

(A and B) Schematic representation of AAA1 and AAA2 rings (A) and side views of A, E, and F subunits bound to the substrate (B). Nucleotide states are shown in

pink, pale pink, and white for ATP, ADP, and apo states, respectively. Engaged and detached arginine fingers are shown as green triangles and red crosses,

respectively. Green, yellow, and red segments indicate activity states of AAA domains (active, intermediate, and inactive states, respectively). The gradient arrow

shows pore loop position on the substrate from lowest in gray to highest in black. In this model, the AAA2 ring drives substrate threading, and the AAA1 ring

follows conformational changes initiated in the AAA2 ring. Binding of ATP to apo AAA2F leads to its dissociation from the substrate and ADP release in AAA2A

(state 2). ATP hydrolysis in AAA2B, triggered by the presence of apo AAA2A, allows detachment of the AAA2A arginine finger and repositioning of AAA2F to the

top position (state 3). In the subsequent step (state 1 + 1) AAA2F contacts the substrate while AAA1A dissociates, resulting in the same conformation as state 1 but

shifted by one protomer counterclockwise. This propels the substrate in discrete steps, ultimately causing the extraction of a polypeptide from a protein

aggregate.
positions, providing the basis of mechanochemical coupling of

ATP hydrolysis and force generation. The protomer contributing

the pore loop at the lowest position of the spiral staircase of sub-

strate interactions is always inactive. Activation of an AAA

domain is linked to dramatic repositioning of its pore loop from

the bottom to the top position. AAA domain activation either

primes for (AAA2) or coincides with (AAA1) substrate engage-

ment. ATP binding and hydrolysis events drive pore loop move-

ments, which translocate the substrate in discrete, two-residue

steps. Despite changes in the ClpB AAA1/2 domain activity

states, the substrate is always bound by ten pore loops, ensuring

high grip and tension force.

Our structures also provide insights into the division of labor

and communication between the two AAA rings of this tandem

AAA+ protein. Structural and biochemical data indicate that

the AAA2 ring constitutes themain ATPasemotor, whose activity

is essential for ClpB activation. This is consistent with reports on
the role of the AAA2 ring of ClpA, which is not controlled by

M-domains and is thus constitutively activated (Kotamarthi

et al., 2019; Kress et al., 2009). Furthermore, we observe offset

cycling of AAA1 and AAA2 rings. Protomer activation in the

AAA2 ring is shifted counterclockwise by one subunit relative

to the AAA1 ring, which is required for ordered cycling of the

AAA2 ring (Figure 7A). Accordingly, substrate interactions

between AAA1 and AAA2 protomers are anti-correlated and

substrate engagement in the AAA1 ring is directly coupled to

substrate dissociation in the AAA2 ring leaving a constant num-

ber of ten AAA domains bound to the polypeptide substrate. This

suggests that AAA1 and AAA2 domains work sequentially rather

than simultaneously in the rope-climbing mechanism of sub-

strate threading, ensuring sufficient grip while ClpB is moving

along the substrate (Figure 7B; Video S1). This finding differs

from a model of substrate threading by the yeast Hsp104 disag-

gregase proposing simultaneous action by AAA1 and AAA2
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domains of the same protomer (Gates et al., 2017). Our biochem-

ical analysis of ClpB as well as earlier work on Hsp104 (Franz-

mann et al., 2011) also indicate offset activities of AAA1 and

AAA2 rings as well. This argues against concurrent action and

suggests that the communication between AAA1 and AAA2

rings established here for ClpB also characterizes the yeast

disaggregase.

Previous findings indicated that ClpB-WT does not thread

with high processivity (Li et al., 2015) and cannot continuously

apply high unfolding forces in contrast to derepressed

M-domain mutants (Haslberger et al., 2008). Cryo-EM struc-

tures of substrate-bound ClpB-WT show a more restricted

range of movement than ClpB-K476C, altered intra- and in-

ter-ring subunit coupling, and fewer active nucleotide sites,

providing a rationale for lower activity. There is no ClpB-WT

structure similar to the ClpB-K476C KC-3 state. We cannot

exclude that a very minor population of ClpB-WT adopts this

conformation. This could permit sequential ATP hydrolysis by

ClpB-WT in AAA2, but subunit cycling and therefore substrate

threading would likely be restricted. Thus, ClpB-WT does not

display the coupled activation and inactivation of AAA2 do-

mains and accompanying dramatic pore loop movement of

the AAA2 seam protomer. Accordingly, analysis of the sub-

strate-stimulated ATPase activity of ClpB-WT revealed weaker

subunit coordination than in ClpB-K476C. We infer that full

activation of ClpB-WT is likely restricted to initial substrate

engagement. This regulation allows high ClpB activity upon

Hsp70-mediated recruitment to aggregates, while ensuring re-

turn to the low-activity mode upon loss of Hsp70 interaction.

This mechanism protects cellular proteins from the cytotoxic

activity characteristic of constitutively active M-domain mu-

tants (Lipi�nska et al., 2013; Oguchi et al., 2012; Schirmer

et al., 2004).

The differences in substrate-stimulated ATPase mechanism

between ClpB-WT and ClpB-K476C correlate with the docking

states of the repressive M-domains, the key structural element

regulating ClpB activity (Haslberger et al., 2007; Oguchi et al.,

2012; Rosenzweig et al., 2013). Substrate engagement by

ClpB-WT causes full enclosure of the AAA1 ring by all M-do-

mains in a constrained, horizontal conformation. In contrast,

M-domains of substrate-bound ClpB-K476C are either partially

or fully displaced from the AAA1 ring. This illustrates that the

M-domain docking state controls ClpB ATPase activity, in agree-

ment with previous findings (Carroni et al., 2014). Why does

M-domain undocking allow ClpB to run in a sequential mode hy-

drolyzing ATP at high rates? In all cryo-EM structures, M-do-

mains interact only with the AAA1 ring, arguing against direct

signaling to AAA2. We speculate that full docking of M-domains

to the AAA1 ring will strongly restrict its mobility, in particular at

the dynamic hotspot, the seam subunit. This is in agreement

with biochemical analysis showing lower flexibility of AAA

domains in Chaetomium thermophilum Hsp104-WT than in a

derepressed Hsp104-K494A M-domain mutant (equivalent to

ClpB-K476C) (Heuck et al., 2016).When partial docking ofM-do-

mains is observed for ClpB-K476C (with substrate) (Figure 6A) or

ClpB-WT (without substrate) (Deville et al., 2017), the interaction

sites always include the seam subunit, implying that this site is

particularly underM-domain constraint. We speculate that encir-
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cling of the AAA1 ring by docked M-domains slows down the

conformational dynamics of the AAA1 ring, thereby hindering

the coupled continuous cycling of the motor AAA2 domains.

In summary, we provide structural and biochemical evidence

for regulated initiation of sequential ATPase and threading by

a tandem AAA+ machine. The activation mechanism involves

dissociation of repressive M-domains that likely function as me-

chanical brakes. This model explains how AAA+ protein activity

can be tightly controlled to run in low- and high-ATPase and

threading modes.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

E. coli XL1 blue Agilent 200249

E. coli BL21 Rosetta Merck/Novagen 70954

Chemicals, Peptides, and Recombinant Proteins

Protease inhibitors Roche 05056489001

FITC-casein Sigma C3777

Pyruvate kinase Roche 10128163001

ATP Sigma A26209

ATPgS Roche 11162306001

L-Malate Dehydrogenase Sigma 10127256001

a-casein Sigma C6780

NADH Sigma 43420

Phosphoenolpyruvate Sigma P7127

DMSO Sigma 276855

Pyruvate kinase / Lactate Dehydrogenase mix

(ATPase assay)

Sigma P0294

ClpB wild type and mutants Bukau Lab N/A

IPTG Roth 3216,4

Phusion DNA polymerase Thermo Fisher Scientific F530L

T4 DNA Ligase Thermo Fisher Scientific EL0011

Critical Commercial Assays

GenElute PCR Clean-Up Kit Sigma NA1020

GenElute HP Plasmid Miniprep Kit Sigma NA0160

GenElute Gel Extraction Kit Sigma NA1111

Oligonucleotides

ClpB E279A FP CATCCTATTTATCGACGCGTTACATA

CCATGGTC

This paper N/A

ClpB E279A RP GACCATGGTATGTAACGCGTCGATA

AATAGGATG

This paper N/A

ClpB E678A FP CCTGCTGGATGCGGTGGAAAAAGCG This paper N/A

ClpB E678A RP CGCTTTTTCCACCGCATCCAGCA G This paper N/A

ClpB Y251A FP GGGGCGAAAGCGCGCGGTGA This paper N/A

ClpB Y251A RP TCACCGCGCGCTTTCGCCCC This paper N/A

ClpB Y653A FP CGCCTCCGGGAGCGGTCGGTTA This paper N/A

ClpB Y653A RP TAACCGACCGCTCCCGGAGGCG This paper N/A

ClpB K476C FP GTACGCAGACCATTTGCGCGGAACTG This paper N/A

ClpB K476C RP CAGTTCCGCGCAAATGGTCTGCGTAC This paper N/A

Recombinant DNA

pET24a-ClpB (& derivatives) Bukau lab; this paper N/A

Software and Algorithms

Prism 6 https://www.graphpad.com N/A

Origin https://www.originlab.com

RELION v2.1 Scheres, 2012 https://www2.mrc-lmb.cam.ac.uk/

relion/index.php?title=Main_Page

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MotionCor2 Zheng et al., 2017 http://msg.ucsf.edu/em/software/

motioncor2.html

cryoSPARC Punjani et al., 2017 https://www.nature.com/articles/

nmeth.4169

Coot v0.8.8 Emsley et al., 2010 http://scripts.iucr.org/cgi-bin/

paper?S0907444910007493

PHENIX v1.13 Adams et al., 2010 http://www.phenix-online.org/

UCSF Chimera UCSF Resource for Biocomputing,

Visualization, and Informatics

https://www.cgl.ucsf.edu/chimera/

Other

Quantifoil UltrAuFoil R 1.2/1.3 electron microscopy grids Quantifoil Micro Tools R 1.2/1.3

Graphene oxide 2mg/mL dispersion in H2O Sigma 763705

Deposited data

ClpB-DWB-K476C bound to casein and ATPgS M-domain

conformation 1 cryoEM map

This paper EMDB: 4622

ClpB-DWB-K476C bound to casein and ATPgS M-domain

conformation 2 cryoEM map

This paper EMDB: 4623

ClpB-DWB-K476C bound to casein and ATPgS state

KC-1 cryoEM map

This paper EMDB: 4624

ClpB-DWB-K476C bound to casein and ATPgS state

KC-2 cryoEM map

This paper EMDB: 4625

ClpB-DWB-K476C bound to casein and ATPgS state

KC-2A cryoEM map

This paper EMDB: 4626

ClpB-DWB-K476C bound to casein and ATPgS state

KC-2B cryoEM map

This paper EMDB: 4627

ClpB-DWB-K476C bound to casein and ATPgS state

KC-3 cryoEM map

This paper EMDB: 4621

ClpB-DWB bound to casein and ATPgS state WT-1

cryoEM map

This paper EMDB: 4640

ClpB-DWB bound to casein and ATPgS state WT-2A

cryoEM map

This paper EMDB: 4641

ClpB-DWB bound to casein and ATPgS state WT-2B

cryoEM map

This paper EMDB: 4642

ClpB-DWB-K476C bound to casein and ATPgS state

KC-1 atomic coordinates

This paper PDB: 6QS6

ClpB-DWB-K476C bound to casein and ATPgS state

KC-2A atomic coordinates

This paper PDB: 6QS7

ClpB-DWB-K476C bound to casein and ATPgS state

KC-2B atomic coordinates

This paper PDB: 6QS8

ClpB-DWB-K476C bound to casein and ATPgS state

KC-3 atomic coordinates

This paper PDB: 6QS4

ClpB-DWB bound to casein and ATPgS state WT-1

atomic coordinates

This paper PDB: 6RN2

ClpB-DWB bound to casein and ATPgS state WT-2A

atomic coordinates

This paper PDB: 6RN3

ClpB-DWB bound to casein and ATPgS state WT-2B

atomic coordinates

This paper PDB: 6RN4
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Helen

Saibil (h.saibil@mail.cryst.bbk.ac.uk).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

E. coli XL1 blue and E. coli BL21 Rosetta strains were used in this study. Cells were grown at 30�C or 37�C in LB medium.

METHOD DETAILS

Construction and purification of ClpB variants
ClpB was amplified by PCR and inserted into pDS56 and verified by sequencing. Mutant derivatives of clpBwere generated by PCR

mutagenesis and standard cloning techniques in pDS56 and were verified by sequencing. ClpB was purified after overproduction

from E. coli DclpB::kan cells. ClpB wild-type and mutant variants were purified using Ni-IDA (Macherey-Nagel) and size exclusion

chromatography (Superdex S200, Amersham) following standard protocols. Purifications of DnaK, DnaJ, GrpE, Luciferase and

Casein-YFP were performed as described previously (Haslberger et al., 2008; Oguchi et al., 2012; Seyffer et al., 2012). Pyruvate ki-

nase of rabbit muscle and Malate Dehydrogenase of pig heart muscle were purchased from Sigma. Protein concentrations were

determined with the Bio-Rad Bradford assay.

ATPase assay
ClpB ATPase activities were determined in Reaction buffer (50 mM Tris pH 7.5, 25 mMKCl, 20 mMMgCl2, 2 mMDTT) in the absence

or presence of substrate (10 mM casein) using a NADH-coupled colorimetric assay (Sigma) by measuring the decrease of NADH ab-

sorption at 340 nm in a BMG Labtech FLUOstar Omega plate reader. ClpB wild-type and variants were typically used at 0.5 mM

except for K476C (0.15 mM in presence of casein) and E279A or K476C/E279A (0.25 mM in presence of casein). ATPase activities

were derived from the linear decrease of NADH absorbance and K0.5, vmax and nHill values were determined by fitting the curves using

nonlinear regression applying an allosteric sigmoidal model (Origin, Prism software).

MDH disaggregation
ClpB disaggregation activities were determined by following the disaggregation of heat-aggregated malate dehydrogenase (MDH:

1 mM, 30min at 47�C) in Reaction buffer. Chaperones were used at the following concentrations: 1 mMClpB (wild-type or derivatives),

E. coli Hsp70 system: 1 mM DnaK, 0.2 mM DnaJ, 0.1 mM GrpE. Disaggregation reactions were performed in Reaction Buffer

(50 mM Tris pH 7.5, 150 mM KCl, 20 mM MgCl2, 2 mM DTT) containing an ATP regenerating system (2 mM ATP, 3 mM phospho-

enolpyruvate, 20 ng/ml Pyruvate Kinase) and the GroEL/GroES chaperone system (1 mM each) to couple MDH disaggregation

with subsequent refolding. MDH reactivation was determined by determining MDH activity at different time points during disaggre-

gation reaction. MDH activity was determined in 150mMpotassium phosphate buffer pH 7.6, 0.5 mM oxaloacetate, 0.28 mMNADH,

2 mM DTT by monitoring NADH oxidation at 340 nm with a NovaSpec Plus Photometer (GE Healthcare). Disaggregation rates were

derived from the linear phase of MDH activity regain.

Anisotropy measurements
Binding of ClpB (WT or mutant) to FITC-casein (100 nM) was monitored by fluorescence anisotropy measurements using a BMG

Biotech CLARIOstar platereader. Samples were incubated in Reaction buffer for 10 min at 30�C in presence of 2 mM ATP and po-

larization of FITC-casein was determined in black 384 well plates (excitation: 482 nm; emission: 530 nm, Target mP: 35). A sample

containing FITC-casein only served as reference. Kd valueswere determined using nonlinear regression curve fitting (Prism software).

Sample preparation for cryo-electron microscopy
The ClpB:casein complex was formed by incubating ClpB hexamer with a 20-fold molar excess of casein, to maximize complex oc-

cupancy, for 10 minutes at room temperature in 25 mM Tris-HCl (pH = 7.4), 25 mM KCl, 10 mMMgCl2, 2mM ATPgS and 1mM DTT.

For casein-bound Clp-DWB-K476C, the complex solution was diluted to 1.6 mg/ml of complex, applied on 1.2/1.3 300 mesh AuFoil

grids (quantifoil) coated with graphene oxide and vitrified by plunge freezing in liquid ethane after blotting for 2 s using a Vitrobot

(Thermofisher). For casein-bound ClpB WT, the complex solution was diluted to 8 mg/ml of complex, applied on 1.2/1.3 300

mesh AuFoil grids (quantifoil) and vitrified as above.

For casein-bound Clp-DWB-K476C in absence of substrate, the complex solution was diluted to �1 mg/ml, applied on lacey car-

bon grids with a carbon support, glow-discharged in presence of amylamine (quantifoil) and vitrified as above.

Cryo-electron microscopy image acquisition
Images were collected using EPU software on a Titan Krios transmission electron microscope (FEI) operating at 300 kV, equipped

with a GatanK2 Summit direct electron detector and bioquantum energy filter with 20 eV slit. The defocus range was set

between �1.5 and �3.5 um, and the total dose was �50 electrons/Å2. Pixel size was 1.055 Å/pixel for unbound casein-bound

Clp-DWB-K476C and 1.043 Å/pixel for casein-bound ClpB-DWB and 1.4 Å/pixel for Clp-DWB-K476C without substrate.
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Image processing
After initial sorting of the collected images, movie frames of eachmicrograph were aligned usingMotionCor2 (Zheng et al., 2017) with

25 patches per image, and dose compensation was applied. The contrast transfer function was estimated with CTFFIND4 (Rohou

and Grigorieff, 2015). Particles were picked without using a template using Gautomatch and extracted in Relion 2.1 (Scheres,

2012) with a 256x256 box size. The initial datasets were subjected to reference-free 2D classification in Cryosparc (Punjani et al.,

2017) and poorly resolved class averages were removed. A consensus initial model was generated by ab initio reconstruction using

stochastic gradient descent in Cryosparc. For ClpB-DWB-K476C in absence of substrate, ab initiomodel generation led to an open

spiral and a closed ring conformation. Those twomodels were used for homogeneous 3D refinement of the corresponding particles in

Cryosparc and post-processing yieldedmaps at an estimated 7-8 Å resolution (gold standard 0.143 FSC criterion). For processing of

casein-bound ClpB-DWB-K476C, the Cryosparc initial closed ring model was used for homogeneous 3D refinement in Cryosparc

and post-processing yielded a map at an estimated 3.4 Å resolution (gold standard 0.143 FSC criterion). The seam region of this

map was poorly resolved and some of the middle domains showed density for multiple conformations. Heterogeneous refinement

in Cryosparc with three classes revealed two conformations for themiddle domains: (1) all tilted, 44% of the particles refining to 3.5 Å

resolution (2) three tilted and three horizontal, 56% of the particles refining to 3.2 Å resolution. The AAA seam region was still poorly

resolved in these maps. 3D classification with 10 classes was performed in Relion with an angular search restricted to 10� and 3D

masking of the N-terminal domains and middle domains. Three out of ten classes showed different conformations and high-resolu-

tion features. Classes 4 and 9 yielded 3.9 Å resolution maps (states 1 and 4 respectively). Class 9 (state 4) had the 2nd AAA domain of

protomer F (AAA2F) partly poorly resolved. Further classification was carried on with 3 classes, no alignment and a soft mask

including only AAA2F. Class 9_2 yielded a 4.1 Å resolution map with a better resolved AAA2F. Class 10 yielded a 3.2 Å resolution

map where AAA2F was still poorly resolved. Further classification was carried on with 6 classes, no alignment and a soft mask

including AAA2F only. Two out of six classes showed different conformations for AAA2F with high resolution features. Classes

10_5 and 10_3 yielded 3.8 and 3.9Å resolution maps respectively (states 2 and 3 respectively). See also Figure S4A for details on

data processing. A similar 3D classification scheme was applied to ClpB WT and 3 states were obtained (Figure S4B).

Model building and refinement
Because we obtained several maps with a variety of resolutions from 3.2 to 4.1 Å resolution, we first built a model for the highest

resolution map and used it as a starting model for building into the other maps.

The crystal structure of ClpB (PDB: 4CIU), used as an initial model, was segmented into small and large sub-domains of AAA1 and

AAA2 and middle domain. These segments were rigid body fitted into the density of class 10 protomer D using the Fit in map tool of

Chimera (Pettersen et al., 2004). Missing loops and connecting regions were built in COOT (Emsley et al., 2010) and the model was

further refined using COOT and Phenix (Adams et al., 2010). This subunit was copied and rigid body fitted into the densities for pro-

tomers B, C and E, which adopt a similar conformation to protomer D, with little difference between the 4 states. Further refinement of

this tetramer was carried out in COOT and Phenix. For protomers A and F, sub-domains of the refinedmodels were rigid body fitted in

the density in Chimera. Connecting regions were built in COOT and the model was further refined using COOT and Phenix. The

models of all other states were built from the model of state 2 as a starting point. For protomers displaying large conformational

changes, sub-domains were rigid body fitted in the density in chimera before further refined using COOT and Phenix.

QUANTIFICATION AND STATISTICAL ANALYSIS

ATPase activities were determined by calculating the linear decrease of NADH absorbance using Excel. The corresponding standard

deviations were calculated by Excel. Hill coefficients of ATPase activities and their respective standard deviations were determined

by Origin software. Binding affinities of ClpB to FITC-casein and their respective standard deviations were determined by Prism soft-

ware. MDH disaggregation activities were determined by calculating the linear increase in MDH activity using Excel. Corresponding

standard deviations were calculated by Excel. Quantification, statistical analysis and validation related to cryo-EM image processing

are implemented in the software described in the image processing section of themethods details. The global resolution estimates of

refined cryo-EM maps are based on the 0.143 cutoffs of the FSC between two half maps refined independently.

Data Availability
The cryo-EMmaps and associated coordinates have been deposited in the EMDB and on the PDB: KC-1 (EMDB: 4624, PDB: 6QS6),

KC-2 before AAA2F classification (EMDB: 4625), KC-2A (EMDB: 4626, PDB: 6QS7), KC-2B (EMDB: 4627, PDB: 6QS8), KC-3 (EMDB:

4621, PDB: 6QS4), KC M-domain conformation 1 MD-1 (EMDB: 4622), KC M-domain conformation 2 MD-2 (EMDB: 4623) WT-1

(EMDB: 4940, PDB: 6RN2), WT-2A (EMDB: 4941, PDB: 6RN3), WT-2B (EMDB: 4942, PDB: 6RN4).
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