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Abstract

Background

Iron is integral to many physiological processes, and variations in its levels, even within the

normal range, can have implications for health. The objective of this study was to explore

the broad clinical effects of varying iron status.

Methods and findings

Genome-wide association study (GWAS) summary data obtained from 48,972 European

individuals (55% female) across 19 cohorts in the Genetics of Iron Status Consortium were

used to identify 3 genetic variants (rs1800562 and rs1799945 in the hemochromatosis gene

[HFE] and rs855791 in the transmembrane protease serine 6 gene [TMPRSS6]) that associ-

ate with increased serum iron, ferritin, and transferrin saturation and decreased transferrin

levels, thus serving as instruments for systemic iron status. Phenome-wide association

study (PheWAS) of these instruments was performed on 424,439 European individuals

(54% female) in the UK Biobank who were aged 40–69 years when recruited from 2006 to

2010, with their genetic data linked to Hospital Episode Statistics (HES) from April, 1995 to

March, 2016. Two-sample summary data mendelian randomization (MR) analysis was
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performed to investigate the effect of varying iron status on outcomes across the human

phenome. MR–PheWAS analysis for the 3 iron status genetic instruments was performed

separately and then pooled by meta-analysis. Correction was made for testing of multiple

correlated phenotypes using a 5% false discovery rate (FDR) threshold. Heterogeneity

between MR estimates for different instruments was used to indicate possible bias due to

effects of the genetic variants through pathways unrelated to iron status. There were 904

distinct phenotypes included in the MR–PheWAS analyses. After correcting for multiple test-

ing, the 3 genetic instruments for systemic iron status demonstrated consistent evidence of

a causal effect of higher iron status on decreasing risk of traits related to anemia (iron defi-

ciency anemia: odds ratio [OR] scaled to a standard deviation [SD] increase in genetically

determined serum iron levels 0.72, 95% confidence interval [CI] 0.64–0.81, P = 4 × 10−8)

and hypercholesterolemia (hypercholesterolemia: OR 0.88, 95% CI 0.83–0.93, P = 2 ×
10−5) and increasing risk of traits related to infection of the skin and related structures (cellu-

litis and abscess of the leg: OR 1.25, 95% CI 1.10–1.42, P = 6 × 10−4). The main limitations

of this study relate to possible bias from pleiotropic effects of the considered genetic variants

and misclassification of diagnoses in the HES data. Furthermore, this work only investigated

participants with European ancestry, and the findings may not be applicable to other ethnic

groups.

Conclusions

Our findings offer novel, to our knowledge, insight into previously unreported effects of iron

status, highlighting a potential protective effect of higher iron status on hypercholesterolemia

and a detrimental role on risk of skin and skin structure infections. Given the modifiable and

variable nature of iron status, these findings warrant further investigation.

Author summary

Why was this study done?

• Iron has many vital physiological roles, and variations in its levels can have health

implications.

• In this study, we explored the broad clinical effects of varying iron status.

What did the researchers do and find?

• We used randomly allocated genetic variants related to iron status to study its effects on

a broad range of medical outcomes.

• Genetic variants related to higher iron status were associated with a lower risk of anemia

and hypercholesterolemia and a higher risk of skin and skin structure infections.

Phenome-wide associations of iron status: Mendelian randomization study
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What do these findings mean?

• Given that iron status can be modified, the novel, to our knowledge, associations with

hypercholesterolemia and skin and skin structure infections could have clinical

implications.

• Further research is required to confirm these associations and explore how they can be

incorporated towards improving clinical practice.

Introduction

Iron is a vital nutrient integral to various physiological processes, including metabolism, eryth-

ropoiesis, immune function, and cognitive development [1]. Systemic iron status varies con-

siderably, with serum iron having a coefficient of variation of 30.2% in men (mean 21.2 μmol/

L, standard deviation [SD] 6.4 μmol/L) and 36.2% in women (18.5 μmol/L, 6.7 μmol/L) [2].

Given the crucial role of iron, deviations in its levels can have notable health implications

[1,2]. At the extremes of iron status are iron deficiency and iron overload. Iron deficiency ane-

mia affects 1.2 billion people worldwide and is responsible for 34.7 million years lived with dis-

ability per annum [3]. The etiology of iron deficiency includes inadequate dietary iron intake,

impaired absorption, increased losses, and increased requirements such as that due to preg-

nancy [4]. At the other end of the spectrum, iron overload is most commonly attributed to

hemochromatosis and iatrogenic iron overload related to blood transfusions, such as in the

treatment of refractory anemia or thalassemia [5]. The modifiable nature and wide variation of

iron status, both in the healthy population and among individuals with pathologically low or

high levels, make the clinical implications of iron status a research priority.

Observational studies into the effects of iron status can be hindered by confounding from

unmeasured and unknown environmental factors and reverse causation bias from outcomes

that affect iron status. The use of genetic variants related to systemic iron status to study its

effects can overcome these limitations because their random allocation during conception

minimizes confounding, and their presence from birth prevents reverse causation [6,7]. By

studying the effect on iron status related to randomly allocated alleles, such a mendelian ran-

domization (MR) approach has previously been used in targeted analyses to investigate the

effect of iron status on risk of Parkinson’s disease, coronary artery disease, and stroke [8–10].

MR can also be applied to traits across the human phenome, in an agnostic exploration termed

MR–phenome-wide association study (MR–PheWAS) [11]. Such analysis allows for the rapid

and efficient investigation of potential health implications attributable to varying an exposure

of interest (such as systemic iron status in this case) and provides direction for further targeted

study [12].

In this work, we performed an MR–PheWAS of iron status using data from the UK Bio-

bank. As instruments to study the effect of varying systemic iron status, we used genetic vari-

ants concordantly related to serum iron, ferritin, transferrin, and transferrin saturation in a

pattern consistent with an effect on overall iron status [8–10,13]. Given the pivotal role of iron

across various fundamental physiological processes [1,14] and the opportunity to therapeuti-

cally modify systemic levels, the aim of this analysis was to identify a set of health outcomes

potentially causally related to iron status. This should guide further clinical research directed

towards preventing and treating iron-associated disease.

Phenome-wide associations of iron status: Mendelian randomization study
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Methods

This study is reported as per the Strengthening the Reporting of Observational Studies in Epi-

demiology (STROBE) guideline (S1 Checklist). Appropriate patient consent and ethical

approval were obtained in the original studies from which data for this work were obtained.

Although no formal protocol or prospectively documented analysis plan was used in this

study, all the main analyses were decided a priori. At the request of the reviewers, only post

hoc sensitivity analyses were performed, as described below.

Genetic instruments for systemic iron status

The exposure phenotype of interest was systemic iron status, which can be measured clinically

using the serum iron, ferritin, transferrin, and transferrin saturation biomarkers [15]. We

selected genetic instruments for systemic iron status that had relations to these 4 biomarkers

in a pattern consistent with an effect on overall iron status, increasing serum iron, ferritin, and

transferrin saturation and decreasing transferrin levels [8,10,13,15]. A genome-wide associa-

tion study (GWAS) performed by the Genetics of Iron Status Consortium on 48,972 European

subjects (combined Discovery [N = 23,986] and Replication [N = 24,986] cohorts, 55% female)

identified 3 such single-nucleotide polymorphisms (SNPs): rs1800562 and rs1799945 in the

hemochromatosis (HFE) gene and rs855791 in the transmembrane protease serine 6

(TMPRSS6) gene [2,8,10]. Both the HFE and TMPRSS6 proteins have established roles in

maintaining iron homeostasis (S1 Text), and therefore variants in their respective genes make

viable instruments for systemic iron status [16]. The two SNPs in the HFE gene were in low

linkage disequilibrium (LD r2 < 0.01) when considering combined European populations

with the LDlink resource [2,17]. All three of these SNPs have previously been shown to be

strong instruments for MR analysis as measured by F-statistics > 10 [8,18] and collectively

explain approximately 3.8% of the variation in serum iron [2,8]. Genetic association estimates

for the 3 iron status instrument SNPs with the 4 biomarkers of iron status (serum iron, ferritin,

transferrin, and transferrin saturation), respectively, are provided in S1 Table.

PheWAS

The PheWAS was performed in the UK Biobank, a prospective cohort study comprising

503,317 individuals aged 40–69 years recruited between 2006 and 2010 [19]. Participants pro-

vided blood samples used for genotyping, and their data were linked to Hospital Episode Sta-

tistics (HES) from April, 1995 to March, 2016 [19]. PheWAS analysis was restricted to

participants of self-reported European descent in order to maintain consistency with the Euro-

pean population used to obtain instruments for systemic iron status. To avoid bias from

related individuals, one participant from each pair of relatives was randomly excluded based

on a kinship coefficient of>0.0884. We used the International Classification of Diseases (ICD)

versions 9 and 10 to identify cases in the HES data, with both incident and prevalent cases

included. Self-reported diagnoses were not considered. Diagnoses were aligned to the phecode

grouping system in order to optimize identification of clinically relevant phenotypes [20].

Cases were identified as individuals having at least one documented event and controls as indi-

viduals with no record of that outcome or its related phecodes [21]. A series of case-control

groups were generated for each phecode, and logistic regression analysis was performed for

each instrument SNP separately across all phecodes, adjusting for age, sex, genotyping array,

and the first 4 genetic principal components. Analysis was limited to phecodes that had 200 or

more cases in order to generate improved statistical power for consequent MR analyses (S1

Text) [22,23].

Phenome-wide associations of iron status: Mendelian randomization study
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MR

There is no single biomarker for overall iron status [2], and serum iron levels were used to

quantify the genetic associations of the instruments with systemic iron status. PheWAS associ-

ation estimates for each instrument SNP represent the association of 1 copy of the effect allele

with the outcome under consideration. MR estimates for each SNP were calculated as the ratio

of this with the corresponding association of the same SNP with serum iron levels (i.e., con-

ventional two-sample ratio method MR) to provide an estimate of the risk of that outcome

scaled to a 1 SD increase in serum iron [24]. The SD of serum iron across all individuals

included in the Genetics of Iron Status Consortium’s GWAS was 6.1 μmol/L [2]. Standard

errors were generated using second-order weights (S1 Text) [24]. Inverse-variance weighted

(IVW) meta-analysis of MR estimates for all 3 instrument SNPs was performed to derive the

overall MR estimate for the effect of iron status on risk of each considered outcome [18,25].

Statistical significance of MR effect estimates across the considered phenotypes was ascer-

tained using the false discovery rate (FDR) method with a 5% threshold to correct for multiple

testing of correlated phenotypes [26].

Sensitivity analyses

Pleiotropy in the context of MR refers to the phenomenon in which genetic instruments affect

the outcome of interest through pathways that are at least partly independent of the exposure

under consideration and is a source of potential bias [7,27]. Heterogeneity in the MR estimates

generated by different instrument SNPs beyond that expected by chance can be used to indi-

cate the presence of such pleiotropy [28], and we assess for this in our MR–PheWAS analysis

using the Cochran Q test (interpreting P< 0.05 as evidence of heterogeneity and thus pleiot-

ropy). Only outcomes for which there was no evidence of pleiotropy were taken forward. For

such outcomes, sex-stratified IVW MR estimates were also obtained using PheWAS results

obtained exclusively from genetically male and female individuals, respectively. Furthermore,

MR estimates were also scaled to effects on the ferritin, transferrin, and transferrin saturation

biomarkers of iron status.

To further investigate the robustness of the findings to possible pleiotropy, the weighted

median MR sensitivity analysis was performed. This orders the MR estimates produced by

each instrument SNP by their magnitude weighted for their precision and produces an overall

MR estimate based on the median value, with standard error estimated by bootstrapping [29].

It is a robust approach when more than half of the information for the analysis is derived from

valid instruments [29].

Statistical analysis was undertaken by DG, BB, GM, and AZ using the software R (version

3.4.2; The R Foundation for Statistical Computing, Vienna, Austria). The TwoSampleMR

package was used to facilitate the weighted median MR analysis [30].

Results

Descriptive characteristics of the UK Biobank participants included in PheWAS analyses,

along with the number of phenotypes and cases considered in each disease category, are pro-

vided in Tables 1 and 2. Results of the PheWAS and MR–PheWAS for each instrument SNP

are provided in S2–S4 Tables, together with the number of cases and controls available for

each outcome. After performing exclusions for related and non-European participants,

424,439 individuals were included in the PheWAS analyses, with genetic association estimates

for all 3 instrument SNPs available for 904 distinct phecodes. The IVW meta-analysis pooled

MR estimates are given in S5 Table, with results of the Cochran Q test for heterogeneity across

the 3 SNPs.

Phenome-wide associations of iron status: Mendelian randomization study
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For the 19 outcomes reaching statistical significance at the 5% FDR threshold (P<
1.1 × 10−3), scatter plots representing the SNP–serum iron and SNP–outcome association

estimates are shown in S1–S5 Figs. Table 3 details the 14 traits for which there was consistent

MR evidence (without suggestion of heterogeneity) across the 3 genetic instruments for a

causal effect of higher iron status. Consistent results for these traits were obtained when per-

forming the weighted median MR sensitivity analysis (Table 3) or scaling MR estimates to

effects on the different biomarkers of iron status (S6 Table). S7 Table provides the MR odds

ratio (OR) per 1 SD increase in genetically determined serum iron level, along with results

stratified by sex. Similar estimates were obtained when considering males and females sepa-

rately, with 95% confidence intervals (CIs) overlapping throughout, although there was some

possible suggestion that the association with cellulitis outcomes was stronger for men (S7

Table).

Higher iron status was most negatively associated with risk of acute posthemorrhagic ane-

mia (OR per 1 SD increase in serum iron 0.35, 95% CI 0.19–0.65, P = 1 × 10−3). In the other

direction, higher iron status was most positively associated with glossitis (OR 2.64, 95% CI

Table 1. Descriptive characteristics of the UK Biobank participants (N = 424,439) included in PheWAS analyses.

Characteristics Mean/N (SD/%)

Age, years (SD) 56.8 (8.0)

Sex, female (%) 229,239 (54.0%)

BMI (SD) 27.4 (4.8)

SBP, mmHG (SD) 138.1 (18.6)

DBP, mmHG (SD) 82.2 (10.13)

Current smoker (%) 43,928 (10.4%)

Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; PheWAS, phenome-wide association study;

SBP, systolic blood pressure; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1002833.t001

Table 2. The number of phenotypes and cases considered in each disease category.

Disease Category Phenotypes (N) Cases (N)

Minimum Median Mean Maximum

Circulatory system 98 202 1,048 6,308 133,749

Congenital anomalies 19 211 442 557 1,823

Dermatologic 43 218 799 4,765 82,669

Digestive 116 228 1,455 4,817 79,488

Endocrine/metabolic 49 208 773 4,076 45,303

Genitourinary 106 203 1,376 4,153 103,829

Hematopoietic 22 201 569 2,690 12,759

Infectious diseases 25 219 1,012 2,237 10,752

Injuries and poisonings 59 222 536 1,513 16,683

Mental disorders 36 202 710 3,280 29,405

Musculoskeletal 57 213 925 4,164 53,823

Neoplasms 82 215 1,124 4,261 90,826

Neurological 44 204 567 2,286 40,703

Pregnancy complications 17 208 1,113 1,854 9,534

Respiratory 56 200 1,124 3,837 62,168

Sense organs 64 210 774 2,443 39,998

Symptoms 16 304 2,341 7,036 42,311

https://doi.org/10.1371/journal.pmed.1002833.t002
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1.56–4.46, P = 3 × 10−4), followed by cellulitis and abscess of the leg, arm/hand, and foot or

toe, which all produced similar estimates, OR 1.25 (95% CI 1.10–1.42, P = 6 × 10−4).

The identified effects broadly fall into three categories in relation to higher iron status—

outcomes related to decreased risk of anemia (Fig 1), decreased risk of hypercholesterolemia

(Fig 2), and increased risk of skin and soft tissue infections (Fig 3). Additionally, there was an

association of higher genetically determined iron status with increased risk of glossitis and

lower risk of poisoning by antibiotics, which were more difficult to categorize (S7 Table).

Discussion

In performing what we believe to be the first MR–PheWAS of systemic iron status, we derived

evidence of a protective effect of higher iron levels on risk of traits related to anemia, including

aplastic anemia, iron deficiency anemia, anemia from other deficiencies, and acute posthemor-

rhagic anemia. We additionally found evidence of a protective effect of higher iron levels on

risk of hypercholesterolemia and cholesterolosis of the gallbladder. In contrast, our MR–Phe-

WAS provided evidence of a detrimental effect of higher iron status on risk of skin and soft tis-

sue infections, including at the hands, arms, toes, feet, and legs.

Consistent with our findings for infection, iron scavenging systems are common among

bacteria that infect the skin, such as Staphylococcus aureus [31] and Streptococcus pyogenes
[32]. For these organisms, there is a proposed association between iron metabolism and viru-

lence in human disease [31]. As such, host defense mechanisms act to sequester free iron away

from invading pathogens [33]. In the context of abnormalities of iron metabolism such as in

hemochromatosis, there is evidence of increased susceptibility to bacterial infections [34], with

particular bacterial species showing markedly elevated growth in human serum collected fol-

lowing iron supplementation [35]. Therefore, our finding that higher iron status increases risk

of skin and skin structure infections is biologically plausible and consistent with previous evi-

dence. Globally, cellulitis accounted for approximately 598,000 disability adjusted life years

across all ages in 2017 [36]. Identifying and modifying potential contributory factors for cellu-

litis is a global health priority and would potentially serve to decrease antimicrobial use and

consequent resistance.

Our findings for higher iron status reducing risk of hypercholesterolemia are also of consid-

erable clinical relevance, with over a third of adult US citizens estimated in 2005–2012 to have

cholesterol levels that fall above recommended levels [37], increasing risk of morbidity and

mortality related to cardiovascular disease. Similarly, we find evidence that higher iron status

decreases risk of gallbladder cholesterolosis, a condition related to the buildup of cholesteryl

esters [38]. The HFE rs1800562 variant that we use as an instrument for systemic iron status

has previously been associated with low-density lipoprotein cholesterol in GWAS meta-analy-

sis [39]. The mechanism underlying this relationship may include effects related to the HFE

protein, other variants in close proximity to rs1800562, or systemic iron status. The consistent

evidence we identify across two genetic variants of HFE (rs1800562 and rs1799945) and one

variant of TMPRSS6 (rs855791) for a causal effect of higher iron status on lowering risk of

both hypercholesterolemia and gallbladder cholesterolosis implicates a mechanism in which

high iron status more generally affects cholesterol synthesis. In keeping with this, iron status

has previously been suggested to affect lipid metabolism in both rats and humans [40,41]. Fur-

ther work is required to unravel the mechanistic details of any such effect, and the MR tech-

nique may be used to investigate the effect of systemic iron status on different lipid fractions,

for example.

Previous work has taken an MR approach to investigate the association of genetic variants

related to hereditary hemochromatosis with risk of 11 outcomes that are implicated in iron

Phenome-wide associations of iron status: Mendelian randomization study
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overload [42]. However, the new, to our knowledge, contribution of our current study is that it

performed a hypothesis-free investigation into the causal effects of iron status more widely

across the human phenome and thus allowed for the identification of novel, to our knowledge,

associations, namely potential effects on risk of cellulitis and hypercholesterolemia. Further-

more, our study pooled MR estimates obtained using all available genetic instruments for iron

status, rather than focusing on those related to hereditary hemochromatosis [42], and thus bet-

ter allowed us to investigate the effects of variation in iron status through any cause. The MR

methodology used is less vulnerable to environmental confounding and reverse causation than

traditional observational research strategies [6,7]. Using genetic variants that are randomly

allocated at conception to instrument the effect of modifying systemic iron status [6], we esti-

mated the cumulative lifetime effects of genetically determined variation across over 900 dis-

ease outcomes. Our results for higher iron status protecting against iron deficiency anemia

and acute posthemorrhagic anemia support the validity of our methodological approach

because the role of iron in generating hemoglobin is well-established and associations of our

genetic instruments for systemic iron status with red blood cell traits have previously been

described [2,8]. A major challenge to such an MR approach is deciphering effects that are

attributable to bias related to pleiotropic variants, which we addressed by considering the het-

erogeneity in the MR estimates produced by our different instrument SNPs [27,43] and in sta-

tistical sensitivity analysis using the weighted median MR approach, which is more robust to

Table 3. IVW MR and weighted median MR estimates for the outcomes reaching 5% FDR significance where there was no evidence of heterogeneity as determined

by the Cochran Q test.

Phecode Description Cases Controls IVW

MR

IVW MR

lower

95% CI

IVW MR

upper

95% CI

IVW MR P Weighted

median MR

Weighted

median MR

lower 95% CI

Weighted

median MR

upper 95% CI

Weighted

Median MR P

284 Aplastic anemia 12,485 302,401 0.68 0.62 0.74 3.90 × 10−17 0.67 0.61 0.74 7.46 × 10−17

285 Other anemias 11,586 302,401 0.67 0.61 0.74 9.14 × 10−16 0.66 0.60 0.72 3.19 × 10−20

280.1 Iron deficiency anemias,

unspecified or not due to

blood loss

7,340 302,401 0.72 0.64 0.81 3.57 × 10−8 0.72 0.64 0.82 7.82 × 10−7

281 Other deficiency anemia 8,605 302,401 0.75 0.67 0.83 1.76 × 10−7 0.73 0.65 0.82 3.17 × 10−7

272.11 Hypercholesterolemia 33,268 285,396 0.88 0.83 0.93 2.07 × 10−5 0.89 0.83 0.95 1.01 × 10−3

686 Other local infections of

skin and subcutaneous

tissue

10,784 309,738 1.22 1.11 1.34 5.06 × 10−5 1.23 1.13 1.34 9.15 × 10−6

689 Disorder of skin and

subcutaneous tissue NOS

41,334 280,000 1.10 1.05 1.15 1.11 × 10−4 1.11 1.06 1.16 2.78 × 10−5

529.1 Glossitis 298 315,742 2.64 1.56 4.46 2.92 × 10−4 2.76 1.64 4.66 2.86 × 10−4

960 Poisoning by antibiotics 3,446 293,867 0.74 0.62 0.87 4.18 × 10−4 0.76 0.65 0.88 5.89 × 10−4

681.3 Cellulitis and abscess of

arm/hand

5,671 309,738 1.25 1.10 1.42 5.56 × 10−4 1.28 1.11 1.47 8.73 × 10−4

681.6 Cellulitis and abscess of

foot, toe

5,635 309,738 1.25 1.10 1.42 5.56 × 10−4 1.28 1.11 1.47 8.73 × 10−4

681.5 Cellulitis and abscess of leg,

except foot

5,679 309,738 1.25 1.10 1.42 5.79 × 10−4 1.28 1.11 1.47 8.73 × 10−4

575.6 Cholesterolosis of

gallbladder

459 299,761 0.45 0.28 0.72 9.06 × 10−4 0.50 0.31 0.81 7.21 × 10−3

285.1 Acute posthemorrhagic

anemia

262 302,401 0.35 0.19 0.65 9.89 × 10−4 0.39 0.20 0.77 1.07 × 10−2

The minimum number of cases and controls for any of the 3 genetics instruments are given. Abbreviations: CI, confidence interval; FDR, false discovery rate; IVW,

inverse-variance weighted; MR, mendelian randomization; NOS, not otherwise specified.

https://doi.org/10.1371/journal.pmed.1002833.t003

Phenome-wide associations of iron status: Mendelian randomization study

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002833 June 20, 2019 8 / 16

https://doi.org/10.1371/journal.pmed.1002833.t003
https://doi.org/10.1371/journal.pmed.1002833


the inclusion of pleiotropic variants [29]. Furthermore, by using strong instruments associated

with serum iron, ferritin, transferrin, and transferrin saturation in a pattern consistent with

their effect on systemic iron status, our analysis aims to reflect the effects of varying iron expo-

sure per se rather than that of some other associated traits [8,10].

Limitations of our approach include the use of HES data, which offered a rich source of

clinical outcomes that were linked to the genetic data of UK Biobank participants but possibly

also introduced misclassification bias [44]. For example, it is unclear whether the observed

protective effect of higher iron status on risk of aplastic anemia is attributable to a misclassifi-

cation of iron deficiency anemia. Similarly, in a scenario in which iron status may not be a

cause of aplastic anemia, it may still contribute to diagnosis by shifting borderline cases beyond

the requisite threshold for disease label allocation. Our finding of an increased risk of glossitis

Fig 1. Forest plot of results for traits related to anemia for which there was evidence across the 3 genetic instruments for a causal effect of higher iron

status. The ORs are reported as MR estimates corresponding to 1 SD increase in serum iron. MR, mendelian randomization; OR, odds ratio; SD, standard

deviation.

https://doi.org/10.1371/journal.pmed.1002833.g001

Fig 2. Forest plot of results for traits related to hypercholesterolemia for which there was evidence across the 3 genetic instruments for a causal

effect of higher iron status. The ORs are reported as MR estimates corresponding to 1 SD increase in serum iron. MR, mendelian randomization;

OR, odds ratio; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1002833.g002
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with higher iron status contradicts the established protective effect of iron on atrophic glossitis,

and it is uncertain whether the diagnosis in this context is related to atrophy [45] or superim-

posed infection, as would be in keeping with our findings for the effect of iron status on risk of

superficial infections. For the observed protective effect of higher iron status on risk of hyper-

cholesterolemia (as defined in HES data), the lack of serum cholesterol measures in UK Bio-

bank meant that it was not possible to quantify the magnitude of effect on actual cholesterol

levels nor the particular lipid fractions to which this related. Furthermore, ascertainment bias

may be responsible for our finding related to poisoning from antibiotics because individuals

with higher iron status appear to be more likely to develop particular types of infection (such

as those related to the skin and soft tissue), thus potentially also affecting the spectrum of anti-

biotics to which they are exposed. Finally, inadequate statistical power may have also resulted

in false negative results in our MR–PheWAS. The previously described MR effects of iron sta-

tus on risk of Parkinson’s disease and coronary artery disease (coronary atherosclerosis) were

not statistically significant after correcting for multiple testing in our current analysis, although

the directions of effect were consistent with previous work (S5 Table) [8,9]. Similarly, type II

error and false negative results may have also arisen because of exclusion of all results that evi-

denced heterogeneity in the MR estimates from different instrument SNPs when attempting to

avoid bias from pleiotropy.

Interventions are available to manipulate systemic iron status. The efficacy of oral iron

replacement is limited by low gastrointestinal absorption [46], alongside side effects such as

abdominal pain, nausea, and constipation that affect around a third of patients and reduce

compliance [46,47]. At a population level, fortification of foods with iron-containing

micronutrient powders has been efficacious for treating iron deficiency anemia [48, 49].

Anemia refractory to oral supplementation or severe anemia may be managed with intrave-

nous iron infusion [46]. In contrast, iron overload is primarily treated with venesection in

Fig 3. Forest plot of results for traits related to skin and skin structure infections for which there was evidence across the 3 genetic instruments

for a causal effect of higher iron status. The ORs are reported as MR estimates corresponding to 1 SD increase in serum iron. MR, mendelian

randomization; OR, odds ratio; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1002833.g003
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hemochromatosis patients [50], with use of iron chelation to enhance iron excretion an addi-

tional option [51]. Clinical trials and guidance on the manipulation of iron status have most

often related to treatment of anemia [46], such as in the context of menstruation [52], preg-

nancy [53], and chronic kidney disease [54]. Weaker and more limited evidence exists on the

titration of iron status as a treatment for other clinical outcomes, including acute stroke [55],

malaria [56], and restless leg syndrome [57]. However, no trial has so far addressed the effect

of manipulating iron status to prevent or treat skin and skin structure infections. Similarly, the

possibility of targeting iron status to optimize lipid metabolism has not been explored. Given

the findings of our study, further research might focus on the degree to which iron status can

be titrated in both the prevention and treatment of disease. However, caution must be taken

when extrapolating the findings of such MR analyses, particularly because their estimates

relate to small variations in iron status within the normal range rather than at extremes of iron

deficiency or overload.

In conclusion, this study used MR to explore the effect of iron status across the human phe-

nome and identified a number of novel, to our knowledge, clinically relevant results. Cellulitis

and hypercholesterolemia are widespread and of notable significance. Given that iron status is

a modifiable trait, further work is warranted to validate our findings, investigate possible

underlying mechanisms, and explore whether directed manipulation of iron levels can be used

to optimize health outcomes.
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