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Abstract

Background

Efforts are underway to eliminate trachoma as a public health problem by 2020. Program-

matic guidelines are based on clinical signs that correlate poorly with Chlamydia trachomatis

(Ct) infection in post-treatment and low-endemicity settings. Age-specific seroprevalence

of anti Ct Pgp3 antibodies has been proposed as an alternative indicator of the need for

intervention. To standardise the use of these tools, it is necessary to develop an analytical

approach that performs reproducibly both within and between studies.

Methodology

Dried blood spots were collected in 2014 from children aged 1–9 years in Laos (n = 952) and

Uganda (n = 2700) and from people aged 1–90 years in The Gambia (n = 1868). Anti-Pgp3

antibodies were detected by ELISA. A number of visual and statistical analytical approaches

for defining serological status were compared.

Principal Findings

Seroprevalence was estimated at 11.3% (Laos), 13.4% (Uganda) and 29.3% (The Gambia)

by visual inspection of the inflection point. The expectation-maximisation algorithm esti-

mated seroprevalence at 10.4% (Laos), 24.3% (Uganda) and 29.3% (The Gambia). Finite

mixture model estimates were 15.6% (Laos), 17.1% (Uganda) and 26.2% (The Gambia).

Receiver operating characteristic (ROC) curve analysis using a threshold calibrated against
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external reference specimens estimated the seroprevalence at 6.7% (Laos), 6.8% (Uganda)

and 20.9% (The Gambia) when the threshold was set to optimise Youden’s J index. The

ROC curve analysis was found to estimate seroprevalence at lower levels than estimates

based on thresholds established using internal reference data. Thresholds defined

using internal reference threshold methods did not vary substantially between population

samples.

Conclusions

Internally calibrated approaches to threshold specification are reproducible and consistent

and thus have advantages over methods that require external calibrators. We propose that

future serological analyses in trachoma use a finite mixture model or expectation-maximisa-

tion algorithm as a means of setting the threshold for ELISA data. This will facilitate standar-

disation and harmonisation between studies and eliminate the need to establish and

maintain a global calibration standard.

Author Summary

Trachoma is caused by the bacterium Chlamydia trachomatis (Ct). Individuals who have

previously been infected with Ct carry specific antibodies in their blood. Recent studies

have suggested that these antibodies may be a good way to estimate the intensity of trans-

mission of this bacterium in a population. Among people who do have antibodies (seropo-

sitives) there is variation in the amount that is detectable in their blood. Some people have

such low levels that differentiating them from those who don’t have antibodies (seronega-

tives) is challenging. We used a new test for Ct antibodies on blood specimens from three

countries. Our test worked extremely well, giving reproducible results when we tested the

same samples multiple times. We compared four different methods for setting the posi-

tion of the threshold line between seronegatives and seropositives. The estimated trans-

mission intensity in each country varied depending on the threshold method used, but

two methods that used statistical modelling algorithms to define the two groups per-

formed consistently across all three countries’ samples. We recommend that future studies

should consider adopting the statistical modelling approaches, as they are objective tests

that require no reference material and allow for standardisation between studies.

Introduction

Trachoma is caused by ocular infection with the bacterium Chlamydia trachomatis (Ct) [1]. It

is the leading infectious cause of blindness worldwide [2]. The World Health Organization

(WHO) estimates that over 200 million people in 42 countries are at risk from trachoma blind-

ness [3], that 1.4 million people experience moderate to severe visual impairment because of

the disease and that of these, around 450,000 have been irreversibly blinded [4].

The most commonly used system for estimating the prevalence of trachoma uses the WHO

simplified grading system [5] of clinical signs of trachoma. These include trachomatous

inflammation—follicular (TF), trachomatous inflammation—intense (TI) and trachomatous

trichiasis (TT), which is the rubbing of the eyelashes against the globe of the eye. WHO guide-

lines recommend the SAFE strategy to combat trachoma: Surgery to treat trichiasis, annual
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mass-drug administration (MDA) of Antibiotics to treat Ct infection and Facial cleanliness

and Environmental improvement to reduce transmission. Implementation of the SAFE strat-

egy and cessation of MDA depends on the prevalence of TF in children aged 1–9 years. Con-

cerns have been raised about the appropriateness of having treatment guidelines based on

clinical signs such as TF and TI. In some low endemicity [6,7] and post-MDA settings [8,9],

both TF and TI correlate poorly with the prevalence of Ct infection and both clinical signs are

sometimes associated with bacteria other than Ct [10,11].

Tests for infection have been suggested as possible tools for trachoma control programmes.

Numerous nucleic acid-amplification tests (NAATs) have been developed, including the

adapted use of commercial kits originally designed for diagnosing genitourinary Ct infections

[12–16]. NAATs have been shown to be cost-effective in some settings [17] but concerns have

been raised that the per-sample cost of NAATs can be too much for national eye health pro-

grammes in countries where trachoma remains a problem [18]. The cost of specialist devices

and platforms for deploying NAATs can also be prohibitive.

Serology has been suggested as a possible alternative to clinical signs and infection testing,

as it indicates the cumulative exposure to Ct [19,20], with the potential to assess the impact of

intervention efforts [21]. By monitoring the exposure to Ct of the youngest age groups, born

after implementation of MDA, serology may prove useful for confirming that transmission

has been interrupted [22].

Serology has recently been used in several studies [19,20,22–24], three of which have taken

place in districts that have completed three or more rounds of MDA [22–24]. These studies

have used the multiplex bead array platform (Bio-rad, Hercules, California) to detect antibod-

ies against Pgp3 and CT694, antigens thought to be highly immunogenic [25]. Because this

platform is costly, technically complex and unlikely to be found in most laboratories in

resource-limited regions, alternative, simpler methods of antibody detection have been pro-

posed [22,26].

To make serological testing more widely accessible, the Pgp3/CT694 assay used in previous

studies [19,20,22–24] has been adapted for use in a simple Pgp3-specific enzyme-linked immu-

nosorbent assay (ELISA). Pgp3 is a Ct-specific 84kDa heterotrimeric protein [27] and is recog-

nised by specific IgG [28]. It is thought to be the most immunodominant of the proteins

encoded by the Ct plasmid that is unique to Ct [29].

ELISAs are routinely used to detect specific IgG in dried blood spots [30–34]. ELISA data,

measured as optical density (OD) is quantitative and continuous. It is desirable to be able to

assign a classification (seronegative, seropositive) to each sample, but this can be challenging

because the distributions of OD values in the negative and positive populations may overlap to

a greater or lesser extent [34]. The aim of this study was to determine the most appropriate

method for setting the threshold for positivity as well as to determine the usefulness of an anti-

Pgp3-specific ELISA for identifying communities in which the transmission of ocular Ct has

been interrupted. We tested dried blood spots collected as part of trachoma surveys in three

countries: Laos, Uganda and The Gambia. We evaluated the age-specific seroprevalence using

four methods and compared the resulting estimates of prevalence of seropositivity based on

six possible thresholds. We discuss the merits of the different methods in the context of pro-

grammes seeking to monitor the elimination of trachoma as a public health problem.

Methods and Materials

Ethics statement

This study was conducted in accordance with the Declaration of Helsinki. This study received

approval from the Ethics Committee of the London School of Hygiene & Tropical Medicine
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(LSHTM; references 6319, 6514, 8355, 8918), UK; the Ministry of Health of the Lao People’s

Democratic Republic (No:48 NIOPH/NECHR), Ugandan Ministry of Health (VCD-IRC/053)

and The Gambia government/Medical Research Council (MRC) Joint Ethics Committee

(SCC1408v2). In all countries, a local health official explained the study to each head of house-

hold, answered any questions and explained the written consent form before requesting their

agreement and signature. Written (thumbprint or signature) consent was obtained from each

participant or the parent or guardian of each child under 18 who participated; assent was

sought from children aged 12–17.

Clinical assessment

Trachoma graders were trained according to the Global Trachoma Mapping Project (GTMP)

protocols and were required to score a minimum kappa of 0.7 for the diagnosis of TF in an

inter-grader agreement test with 50 eyes of 50 children [35,36]. The samples in Laos were col-

lected in November 2014 as part of a follow-up study to the GTMP work completed there.

Three districts in three regions were selected based on baseline trachoma survey findings

that indicated potential ‘hot spots’ [37]. From these three regions, all children aged 1–9 in

selected villages were invited to participate. Trachoma elimination programmes have never

been undertaken in Laos. In Uganda, samples were collected as part of a trachoma impact sur-

vey in May 2014, following three years (2010–2012) of implementation of the A, F and E com-

ponents of the SAFE strategy in two regions (Pader and Agogo). Prior to MDA, trachoma was

considered highly endemic in these regions, although no data is publicly available. This study

was a population based prevalence survey, which used a two stage sampling strategy; villages

were selected with probability proportional to size, and households were randomly selected

within each selected village based on a household list produced by the village chief and local

health officials. All children aged 1–9 years in the selected households were invited to partici-

pate. In The Gambia, a population based prevalence survey using a two stage sampling strategy

was undertaken in February-March 2014; villages were selected with probability proportional

to size, and households were randomly selected within each selected village based on a house-

hold list produced by the village chief and local health officials. One region, Lower River

Region (LRR) had undergone three rounds of annual (2007–2009) MDA for trachoma, while

the other, Upper River Region (URR), has never had trachoma elimination activities because

trachoma has not been of a sufficiently high prevalence to justify implementation. All mem-

bers of randomly selected households were invited to participate, regardless of age.

After informed consent was obtained, a trachoma grader examined both eyes for signs of

trachoma using a binocular loupe (2.5×) and a torch. The grader changed gloves between each

participant to minimise the risk of carry-over contamination. Antibiotics were provided to

individuals with evidence of active trachoma and/or the affected household, according to each

country’s national policy.

Blood collection

Each participant had a finger-prick blood sample collected onto filter paper (Trop-Bio Pty,

Townsville, Australia), using a sterile single-use lancet (BD Microtrainer, Dublin, Ireland).

Each filter paper had six extensions, calibrated to absorb 10 μL of blood. Samples were air-

dried for approximately five hours and then stored in individual Whirl-Pak plastic bags

(Nasco, Modesto, California) with desiccant sachets (Whatman, Little Chalfont, UK) before

being stored at -20˚C.

All samples were shipped to LSHTM for testing.

Seropositivity Thresholds in Trachoma Studies
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ELISA analysis of anti-Ct-Pgp3 antibodies

Dried blood spots (DBS) were tested for antibodies against Pgp3. One whole filter paper exten-

sion per sample was eluted in 250 μL PBS + 0.3% v/v Tween-20 (PBSTw) (Sigma-Aldrich, Dor-

set, UK)+ 5% w/v non-fat milk powder (PBSTw-milk) (AppliChem, Maryland Heights, USA)

overnight at 4˚C. Immulon 2HB 96-well plates (VWR International, Lutterworth, UK) were

coated with recombinant Pgp3 protein [19] overnight at 4˚C (25ng per well in 0.1M sodium

carbonate buffer, pH 9.6). Plates were washed with PBSTw to remove unbound protein,

blocked with 100 μL PBSTw for 1 hour at 4˚C and washed two times. Control sera with known

ratios of Pgp3 antibodies (1000 units, 500 units, 200 units, 50 units and negative control

serum) and a blank consisting of PBSTw-milk were run on every plate. All samples and con-

trols were tested in triplicate at a 1:50 dilution in PBSTw-milk. After 2 hours incubation on an

orbital shaker at room temperature, wells were washed 5 times and 50 μL of an HRP-labelled

mouse anti-human IgG(Fc)-HRP (Southern Biotech, Birmingham, USA) diluted 1:32,000 was

added. Plates were incubated for 1 hour on an orbital plate shaker at room temperature then

washed 5 times to remove unbound antibody. Fifty microliters of TMB (KPL, Gaithersburg,

USA) was added and the mixture was incubated in the dark for 9 minutes at room tempera-

ture. The reaction was stopped with 50 μL 1N H2SO4 and optical density was read at 450 nm

(OD450) on a Spectramax M3 plate reader (Molecular Devices, Wokingham UK). Readings

were corrected for background by subtracting the average absorbance of three blank wells con-

taining no serum, using Softmax Pro5 software (Molecular Devices, Wokingham UK).

Data analysis

Blanked OD450 values for samples and controls were normalised by dividing the mean of the

three wells against the mean of 200 unit control included on each plate. This was done for each

plate.

Data analysis for ELISA was performed separately and masked to the results of demo-

graphic and clinical information. Statistical analysis was carried out using R [38].

Defining seropositivity

We used four different methods for establishing a threshold for seropositivity: visual inspec-

tion of the inflection point (VIP), a finite mixture model (FMM) [39], the expectation-maximi-

sation algorithm (EM) [40] and an receiver operating characteristic (ROC) curve based on

previously-assayed dried blood spots from children in Tanzania [19]. There are as yet no

accepted guidelines as to what level of sensitivity or specificity is required of a serological test;

thus we referred to a previously published template [18] and established three possible thresh-

olds from the ROC curve: one maximising specificity, one with a sensitivity greater than 80%

[18] and one optimising the balance between sensitivity and specificity, by maximising You-

den’s J-index [41].

Visual inflection point (VIP)

We asked 12 arbitrarily selected non-laboratory staff and students at LSHTM to visually exam-

ine a simple plot of the sorted OD450 data curves and determine the inflection point for each

sample set. For this exercise, we defined the inflection point as the point on the data curve

where the curve changes from predominantly horizontal to predominantly vertical. The 12

values were then averaged to determine the threshold and standard deviations (SDs) were

calculated.

Seropositivity Thresholds in Trachoma Studies
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Finite mixture model (FMM)

A finite mixture model [42] was used to classify the samples as seropositive or seronegative

based on normalised OD450 values. The data were fitted using maximum likelihood methods,

estimating the distribution parameters for each classification group (seropositive or seronega-

tive) as well as the proportion of samples in each category to fit the overall distribution of

results [34,43,44]. The threshold for seropositivity was then defined as the mean of the Gauss-

ian distribution of the seronegative population plus three SDs of the seronegative population

[44,45]. FMM was performed on each set of samples, based on country of origin.

Expectation-maximisation algorithm (EM)

The expectation-maximisation algorithm is similar to FMM in that it classifies samples based

on population parameters. It relies on the Bayesian information criterion to select an appropri-

ate model. EM is an iterative optimization method to estimate some unknown parameter [40],

in this case the threshold between seropositive and seronegative, given the number of clusters

and the normalised OD450 values. EM estimates where to set the threshold while maximising

the likelihood of each sample parameter [40]. Using the ‘mclust’ package in R, parameters

were set to specify a univariate model with equal variance between 2 clusters [46].

Receiver operating characteristics (ROC) Curve

Serum samples from 122 children from the United States and blood spots from 11 Ct-specific

PCR-positive children from Tanzania were used to make the original ROC curve [19]. A second

set of 124 Tanzanian dried blood spots were assayed using the multiplex bead array and dichot-

omised based on the original threshold. These samples were then re-tested with the ELISA and

the data from this assay were used to generate the ROC curve used in this manuscript. The R

package ‘Epi’ [47] was used to generate three different thresholds: the first of which maximises

Youden’s J-index to balance sensitivity and specificity [41], the second and third were set for

high sensitivity (minimum 80%) and high specificity (minimum 98%), respectively.

Statistical analysis

The prevalence of signs of trachoma and the exact binomial confidence intervals were calcu-

lated using the R ‘Stats’ package [38]. Due to the low prevalence of clinical signs, Fisher’s exact

test was used to test for association [48].

Seroprevalence in each population was calculated using each of six thresholds. We also

examined the relationship between the clinical data and serological data. Due to the low preva-

lence of clinical signs, data for clinical signs were pooled across all three studies.

Results

Clinical assessment

We recruited 978 Laotian children aged 1–9 years from the provinces of Attapu (n = 406),

Houaphan (n = 307) and Phôngsali (n = 239). Twenty-six participants had incomplete clinical

records and were excluded from further study. The proportions of the sample populations

who were male were 52.9%, 60.3% and 54.0% in Attapu, Houaphan and Phôngsali, respec-

tively. The median age was five years in all three provinces. Fifteen cases of TF were diagnosed

(1.6%, exact binomial CI = 0.9%-2.6%), 11 of which were bilateral cases (Table 1). No cases of

TI were observed. There was a higher prevalence of TF in Attapu (2.7%, 11/406) than in either

Houaphan (1.0%, 3/307) or Phôngsali (0.4%, 1/239), (p = 0.02) using Fisher’s exact test [49]

with the Simes-Bonferroni correction for multiple tests [50].

Seropositivity Thresholds in Trachoma Studies
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2738 children aged 1–9 years were recruited in the Ugandan districts of Agogo (n = 1388,

49.7% male) and Pader (n = 1377, 50.4% male). 38 participants were missing complete clinical

data and were excluded from further study. The median age was five years in both districts. 93

cases of TF were diagnosed (3.4%, exact binomial CI = 2.8%-4.2%), 44 of which were bilateral.

Eight cases of TI were diagnosed (0.3%, exact binomial CI = 0.1%-0.6%) (Table 1). No other

clinical signs were assessed. The prevalence of TF was 3.2% in Agogo and 3.7% in Pader. There

was no significant difference between the estimated prevalence of TF in the two districts (TF:

Χ2 = 0.429, p = 0.5125; TI: Χ2 = 3.1566, p = 0.07562).

In the Gambia we recruited participants of all ages from the Lower River Region (LRR,

n = 1028, 41.9% male) and Upper River Region (URR, n = 840, 42.5% male). Ten participants

were excluded from the study because they either declined to provide a blood sample (n = 1)

or had incomplete clinical data (n = 9). The median age in LRR was 13 years (range: 1–88) and

11 years in URR (range: 1–90). Overall, 30 cases of TF were diagnosed (1.6%, exact binomial

CI = 1.1%-2.3%), 19 of which were bilateral (Table 1). There were 25 cases of TF in children

aged 1–9 years. Four cases of TI were observed (0.2%, exact binomial CI = 0.06%-0.6%), two of

which were in children aged 1–9 years. Examiners found 78 cases of TS (4.2%, exact binomial

CI = 3.3%-5.2%), eight cases of TT (0.4%, exact binomial CI = 0.2%-0.8%) and one case of CO

(0.05%, exact binomial CI = 0.001%-0.3%). There was a significant difference in TS prevalence

between the URR and LRR (Χ2 = 7.2435, p = 0.007116); the difference in TF prevalence was

non-significant (Χ2 = 0.1343, p = 0.714). The prevalence of TI, TT and CO in this population

was too low for meaningful statistical analysis.

Observed frequencies of clinical signs of trachoma in the various samples are summarised

in Table 1. A more detailed description, including prevalence by age and gender, is presented

in Supplementary S1, S2 and S3 Tables.

Serological analysis

The five serum controls were tested in triplicate and the mean values for each plate were

tracked across each sample set. The coefficient of variation was less than 10% in each of the

Table 1. Distribution of participants in three trachoma studies, including clinical signs.

Country Province N TF TI TS TT CO

Laos* 952 15 (1.6%) - - - -

Attapu 406 (42.6%) 11 (2.7%) - - - -

Houaphan 307 (32.2%) 3 (1.0%) - - - -

Phôngsali 239 (25.1%) 1 (0.4%) - - - -

Uganda* 2700 93 (3.4%) 8 (0.3%) - - -

Agogo 1353 (50.1%) 43 (3.2%) 1 (0.1%) - - -

Pader 1347 (49.9%) 50 (3.7%) 7 (0.5%) - - -

The Gambia* 1868 30 (1.6%) 4 (0.2%) 78 (4.2%) 8 (0.4%) 1 (0.1%)

All LRR 1028 (55.0%) 18 (1.8%) 4 (0.4%) 55 (5.4%) 7 (0.7%) 1 (0.1%)

URR 840 (45.0%) 12 (1.4%) 0 (0.0%) 23 (2.7%) 1 (0.1%) 0 (0.0%)

1–9 year olds LRR 383 (20.5%) 14 (3.7%) 2 (0.5%) 1 (0.3%) 0 (0.0%) 0 (0.0%)

URR 359 (19.2%) 11 (3.1%) 0 (0.0%) 6 (1.7%) 0 (0.0%) 0 (0.0%)

�10 year olds LRR 645 (34.5%) 4 (0.6%) 2 (0.3%) 54 (8.45) 7 (1.1%) 1 (0.2%)

URR 481 (25.7%) 1 (0.2%) 0 (0.0%) 17 (2.6%) 1 (0.2%) 0 (0.0%)

‘*’ Age range in Laotian and Ugandan participants was 1–9 years; age range in all Gambian participants was 1–90 years; ‘-’ not assessed.

N = Normal; F = trachomatous inflammation, follicular; TI = trachomatous inflammation-intense; TS = trachomatous scarring; TT = trachomatous trichiasis;

CO = corneal opacity.LRR = Lower River Region; URR = Upper River Region.

doi:10.1371/journal.pntd.0005230.t001
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three replicates of each control specimen. Inter-plate variation of controls was less than 15%

across all plates in each sample set as shown in Table 2. A plate was permitted to have no more

than one control with>15% variation from the sample set mean for that control; if a plate had

two or more controls with values more than 15% greater or lesser than the sample set mean,

the plate was re-run. Less than 5% of plates were re-run due to this. Table 2 shows the mean

values and the accepted 15% range for the five controls.

The sample set for each country was tested separately. Each plate showed a large but nar-

rowly distributed proportion of low-OD specimens, with a smaller proportion of higher-OD

specimens. Fig 1 shows typical results from an ELISA plate. In all three sample sets, density

data peak around 0.25 OD450; this can be seen in centre panels B in Figs 2, 3 and 4.

Visual inflection point (VIP)

The leftmost panels of Figs 2A, 3A and 4A were shown to 12 people, each of whom was asked

to determine each graph’s point of inflection. The mean of the inflection points was calculated

for each sample set and the SD and range were calculated. For Laos, the mean threshold was

calculated to be 0.619 OD450 (SD = 8.2%, range 0.485–0.750); for Uganda the threshold was

calculated to be 0.641 OD450 (SD = 14.4%, range 0.410–0.795) and for The Gambia the thresh-

old was calculated to be 0.579 OD450 (SD = 7.3%, range 0.402–0.673). The sorted normalised

OD450 values are shown in Figs 2A, 3A and 4A (leftmost panels), alongside marginal density

distribution plots of the same values (centre panels) and boxplots (rightmost panels) showing

the range of the 12 threshold values that were selected by the volunteers.

Table 2. The mean OD450 value for the five controls sera used on the ELISA plates. Mean, SD and coefficient of variation for the five serum standards

run alongside the Ugandan samples across 24 plates. Data were similar for the standards run alongside the Laotian and Gambian samples.

Control serum Mean SD Coefficient of variation Upper limit (mean+15%) Lower limit (mean-15%)

1000u 2.01 OD450 0.13 OD450 6.47% 2.26 OD450 1.75 OD450

500u 1.74 OD450 0.13 OD450 7.38% 2.00 OD450 1.49 OD450

200u 1.11 OD450 0.10 OD450 9.46% 1.31 OD450 0.90 OD450

50u 0.63 OD450 0.06 OD450 9.45% 0.74 OD450 0.51 OD450

Negative control serum 0.28 OD450 0.02 OD450 8.51% 0.32 OD450 0.23 OD450

doi:10.1371/journal.pntd.0005230.t002

Fig 1. Typical results from an ELISA plate. Specimens are sorted by increasing OD values and are each

represented by a separate diamond. The mean values of the controls tested in triplicate are represented by

coloured horizontal lines.

doi:10.1371/journal.pntd.0005230.g001
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Finite mixture model (FMM)

A finite mixture model was tested on all three sample sets, setting the threshold at the mean of

the seronegative population plus three SDs [44,45]. The thresholds were set at 0.6963 OD450,

0.5537 OD450 and 0.6725 OD450 for Laos, Uganda and The Gambia, respectively. The FMMs

are shown in Figs 2B, 3B and 4B.

Fig 2. Threshold values for Laos (1–9 year olds) data. Panel A shows the threshold as determined by visual inflection point analysis by 12 volunteer

individuals. Volunteers had access only to the data presented in the leftmost panels, which shows sorted OD450 values. The second panel in A shows the

density of data points for the sample while the third panel in A shows a box and whisker plots with the range of threshold values that were selected by the

12 volunteers. The box shows the inter-quartile range for the values, with the thick horizontal line marking the median value. Whiskers show the upper

quartile plus 1.5x the range between the 1st and 3rd quartiles. Outliers are shown by an open circle. Panel B shows the thresholds set by the finite mixture

model and expectation-maximisation algorithm. Density plots of normalised OD values and thresholds, showing the FMM estimated distribution functions

of ‘seronegative’ specimens in red and ‘seropositive’ specimens in green. Vertical lines show the threshold values determined by the finite mixture model

(right-most line) and the expectation-maximisation algorithm (left-most lines). Panel C compares the threshold specifications by four different methods.

Scatterplots show the normalised and sorted OD450 values with horizontal lines marking the thresholds specified by VIP (OD450 = 0.619), EM (OD450 =

0.650), FMM (OD450 = 0.696), ROC curve maximising Youden’s J-index (OD450 = 0.870), ROC curve with sensitivity >80% (OD450 = 0.968) and ROC

curve with specificity>98% (OD450 = 1.951).

doi:10.1371/journal.pntd.0005230.g002

Fig 3. Threshold values for Uganda (1–9 year olds) data. Panel A shows the threshold as determined by visual inflection point analysis by 12

volunteer individuals, as detailed in Fig 2. Panel B shows the thresholds set by the finite mixture model and expectation-maximisation algorithm, as

described in Fig 2. Panel C compares the threshold specifications by four different methods. Scatterplots show the normalised and sorted OD450 values

with horizontal lines marking the thresholds specified by VIP (OD450 = 0.641), EM (OD450 = 0.450), FMM (OD450 = 0.554), ROC curve maximising

Youden’s J-index (OD450 = 0.870), ROC curve with sensitivity >80% (OD450 = 0.968) and ROC curve with specificity>98% (OD450 = 1.951).

doi:10.1371/journal.pntd.0005230.g003
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Expectation-maximisation algorithm (EM)

An EM model was fitted to all three sample sets, specifying parameters for a univariate model

with equal variance between 2 clusters [45]. The thresholds were set at 0.65 OD450, 0.45 OD450

and 0.57 OD450 for Laos, Uganda and The Gambia, respectively. The EM-derived threshold

selections are shown in Figs 2B, 3B and 4B.

ROC curve

Using the ROC curve to set a threshold optimising Youden’s J-index to balance specificity and

sensitivity resulted in a threshold at 0.870 OD450 (specificity 93.9%, sensitivity 91.4%). Setting

the threshold to ensure a minimum sensitivity of 80% resulted in a threshold at 0.965 OD450

(specificity 94.8%, sensitivity 89.4%). Setting the threshold for a minimum specificity of 98%

resulted in a threshold at 1.951 OD450 (specificity 98.28%, sensitivity 43.94%). Fig 5 shows the

ROC curve with the three thresholds identified.

Panels 2C, 3C and 4C show all six thresholds in relation to the normalised OD450 data in

each of the three populations. The internally calibrated methods (i.e., VIP, FMM and EM)

were reasonably conformant and appeared to favour threshold placements that were substan-

tially lower than those set by the ROC, which is calibrated with Tanzanian specimens, even

when a higher sensitivity (i.e., lower threshold value) test was specified in the ROC analysis. As

a consequence of this, the seroprevalence estimates that were determined by VIP, EM and

FMM were similar to one another, while the seroprevalence estimates set by any of the ROC

curve thresholds were much lower in all three populations (Table 3).

Seroprevalence for each sample set, using the six different thresholds were calculated, along

with 95% confidence intervals. As the threshold increases in value, fewer specimens are classi-

fied as being seropositive, decreasing the seroprevalence. The seroprevalence for each sample

set at each threshold is presented in Table 3. Seroprevalence for each country by sex, region

and age is provided in Supplementary S4, S5 and S6 Tables.

Table 4 presents the proportion of seropositive samples by clinical grade, as estimated by

each threshold specification. Due to the relatively low prevalence of all clinical signs, preva-

lence values for have been pooled.

Fig 4. Threshold values for Gambian (all ages) data. Panel A shows the threshold as determined by visual inflection point analysis by 12 volunteer

individuals, as detailed above in Fig 2. Panel B shows the thresholds set by the finite mixture model and expectation-maximisation algorithm, as

described in Fig 2. Panel C compares the threshold specifications by four different methods. Scatterplots show the normalised and sorted OD450 values

with horizontal lines marking the thresholds specified by VIP (OD450 = 0.570), EM (OD450 = 0.570), FMM (OD450 = 0.672), ROC curve maximising

Youden’s J-index (OD450 = 0.870), ROC curve with sensitivity >80% (OD450 = 0.968) and ROC curve with specificity>98% (OD450 = 1.951). Note that the

thresholds set by VIP and EM are identical (0.570 OD450) and overlap on the graph.

doi:10.1371/journal.pntd.0005230.g004
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Discussion

Several previous studies have used anti-Pgp3-specific ELISAs to test for genital chlamydial

infection [21,51–54] but only one [55] has used the method for the detection of antibodies

against ocular chlamydial infection. In this study, we used an ELISA test to detect IgG antibod-

ies specific to the Ct protein Pgp3 in studies with large sample sizes from three countries. To

Table 3. Seroprevalence by Country, as estimated using alternate threshold specification methods.

Threshold % (95% Confidence Interval)

VIP EM FMM ROC Youden’s

J-index

ROC Sensitivity

>80%

ROC

Specificity > 98%

N OD = 0.619 OD = 0.65 OD = 0.696 OD = 0.870 OD = 0.965 OD = 1.951

Laos (1–9 year olds) 952 11.3% (9.4–13.6) 10.4% (8.6–12.6) 15.6% (13.3–18.0) 6.7% (5.3–8.6) 6.3% (4.9–8.1) 1.1% (0.5–2.0)

OD = 0.641 OD = 0.45 OD = 0.5537

Uganda (1–9 year olds) 2700 13.4% (12.1–14.7) 24.3% (22.7–26.0) 17.1% (16.0–18.9) 6.8% (5.9–7.8) 5.3% (4.5–6.2) 0.3% (0.1–0.8)

OD = 0.57 OD = 0.57 OD = 0.672

The Gambia (all ages) 1868 29.3% (27.3–31.5) 29.3% (27.3–31.5) 26.2% (24.2–28.2) 20.9% (19.1–22.9) 18.9% (17.2–20.8) 3.3% (2.6–4.3)

Seroprevalence by Gender, Region and Age is provided in Supplementary S2 Table.

VIP = visual inflection point; EM = expectation-maximisation algorithm; FMM = finite mixture model; ROC = receiver-operating characteristic curve.

OD = optical density, measured at 450 nm.

doi:10.1371/journal.pntd.0005230.t003

Fig 5. Receiver Operating Characteristic (ROC) curve showing the relationship between sensitivity,

specificity and threshold values. Three different thresholds were specified to meet the requirements of: (A)

an assay (threshold = 0.870 OD450, specificity = 93.9%, sensitivity = 91.4%, PPV = 89.8%, NPV = 92.4%) with

balanced sensitivity and specificity (maximal Youden’s J value); (B) an assay (threshold = 0.965 OD450,

specificity 94.8%, sensitivity = 89.4%) with at least 80% sensitivity and (C) an assay (threshold = 1.951 OD450,

specificity = 98.3%, sensitivity = 43.9%, PPV = 66.7%, NPV = 95.0%) with at least 98% specificity.

doi:10.1371/journal.pntd.0005230.g005
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date, this is the largest study to measure antibodies to Ct in trachoma-endemic populations

and the first to look at populations from more than one country, including East Africa, West

Africa and Southeast Asia. We have shown that within and between runs there is a low coeffi-

cient of variation in the assay and that the bimodal data distribution of normalised OD450 val-

ues in those samples reflects that which would be expected in populations where a minority of

individuals are seropositive and where there is a broad range of antibody titres in the seroposi-

tive sub-population. This is best observed in the data from the Gambia (Fig 4), where we

included adults in the sample and where the more substantial seropositive sub-population can

be accounted for by both sexually transmitted Ct infection and the formerly high level of

endemicity of trachoma in the Gambia.

Clinical specimens without any Ct-specific IgG still have some degree of baseline reactivity

in ELISA tests because of non-specific binding of irrelevant antibodies. There is also sub-

stantial between-specimen variation in seropositives, which reflects natural variation in the

antibody titre. The potential for there being substantial overlap between the seronegative speci-

mens with high baselines and the seropositives with low anti-Pgp3 antibody titres means that

it can be difficult to differentiate between the two groups.

There is very little published information on the prevalence of trachoma in Laos and

Uganda [56], but on the evidence of our analysis, clinical signs of disease are rare and the levels

of seropositivity appear to be comparable to those in The Gambia, where elimination has been

declared. We have no data on the prevalence of Ct infection in the communities in Laos and

Uganda, nor is there any longitudinal data to monitor changes in antibody levels following

documented infection. Numerous studies have looked at the prevalence of ocular Ct infection

in The Gambia and shown it to be negligible [7,57,58]. All the populations we studied have

received MDA and we did not screen a population with higher prevalence levels. Further

research in meso- and hyper-endemic populations will be needed in order to assess the utility

of this method in other settings.

We have shown how the method that is selected for the statistical interpretation of ELISA

data (with particular regard to the method of threshold specification) can greatly change the

population prevalence estimates that are derived. Methods that indicate the use of a higher

threshold value are likely to be more specific and have a higher positive predictive value

Table 4. Proportion of participants with different phenotypes considered seropositive by each threshold.

No sign of trachoma according to the WHO simplified

system

Active trachoma Scarring trachoma

% (95% confidence interval) (TF and/or TI) (TS and/or TT and/or CO)

1–9 year-olds 10+ year-olds % (95%CI) % (95%CI)

N across all studies 4268 964 150 87

VIP* 11.1 (10.2–12.1) 42.8 (39.7–46.0) 9.3 (5.4–15.5) 70.1 (59.2–79.2)

EM* 17.1 (16.0–18.2) 42.8 (39.7–46.0) 12 (7.5–18.6) 70.1 (59.2–79.2)

FMM* 12.7 (11.8–13.8) 38.5 (35.4–41.6) 16.7 (11.3–23.8) 69 (58.0–78.2)

J-index 5.8 (5.1–6.5) 31.8 (28.9–34.9) 4 (1.6–8.9) 55.2 (44.2–65.7)

Sensitivity >80% 4.7 (4.1–5.4) 28.8 (26.0–31.8) 3.3 (1.2–8.0) 49.4 (38.6–60.2)

Specificity >98% 0.4 (0.2–0.7) 4.8 (3.6–6.4) 0 (0–3.1) 16.1 (9.4–25.9)

*Note that country-specific thresholds were used for VIP, EM and FMM.

TF = trachomatous inflammation, follicular; TI = trachomatous inflammation-intense; TS = trachomatous scarring; TT = trachomatous trichiasis;

CO = corneal opacity.

VIP = visual inflection point; EM = expectation-maximisation algorithm; FMM = finite mixture model.

doi:10.1371/journal.pntd.0005230.t004
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(PPV), but they do incur a penalty in the form of reduced sensitivity. In the context of post-

MDA trachoma control, a test with high PPV is more desirable as over-diagnosis might lead to

the inappropriate continuation of MDA interventions. Meanwhile a lower sensitivity test,

applied in a low prevalence setting such as the post-MDA population of the Gambia, is likely

to have a high negative predictive value (NPV) and the clinical impact of the false negative rate

is likely to be modest as long as the sensitivity does not fall too far. In our hands, the ROC anal-

ysis supported the use of higher thresholds than did the other methods. Unfortunately the ref-

erence material was not sampled from any natural population and so the estimated sensitivity

and specificity of the test based on ROC were unlikely to reflect the true performance in the

populations that were sampled in this study [59].

We explored three internally calibrated thresholding methods (i.e. using only data gener-

ated during the study), all of which specified thresholds at approximately the same OD450

value. This was true across sample sets from all three countries. It is perhaps unsurprising that

similar estimates emerged from FMM and EM, as there are methodological similarities in the

two approaches. At face value the VIP method might seem arbitrary and crude, but the human

brain can outperform computers in some aspects of pattern recognition and by obtaining a

threshold estimate that closely matches that of EM and FMM, our data indicate that the results of

a conditionally independent method (VIP) correlate closely with the computational approaches

and are able to successfully determine where the most obvious bimodal split in the data occurs.

What gives FMM and EM the edge over VIP is that they are more replicable and that the differ-

ent requirements for higher or lower specificity and sensitivity in different clinical settings can be

controlled by changing the number of SDs that the algorithm uses to determine the cut point.

For instance, an increasingly specific test could be implemented by setting the threshold at four,

five or six SDs of the negative population, rather than three SDs we used here. None of the popu-

lations that we surveyed would be expected (based on clinical signs) to have a high level of Ct

seropositivity and it may be that the data in Tables 3 and 4 (and Supplementary Data S4, S5 and

S6 Tables) reflect a high false positive rate, low positive predictive value. By adjusting the parame-

ters of the algorithms we might achieve a prevalence estimate that is more accurate, but without

any gold standard we can never truly assess how accurate our estimates are. In the Gambian data,

using respectively 4 or 5 SDs would have led to cut points at respectively OD = 0.81 and

OD = 0.95, values much closer to the cut-points recommended by the ROC analysis.

For programmatic purposes, the absolute value and accuracy of the prevalence estimate is

actually somewhat less important than the precision of that estimate and the longitudinal

change in repeat measures from the same population across the lifetime of the intervention

and monitoring programme. This is because the absolute estimate is clearly highly variable

given quite arbitrary choices made during data analysis, whilst percentage changes in popula-

tion seroprevalence across time (regardless of the actual number values) can be indicative of

the effectiveness of MDA. As long as the method is fixed and replicable, then both longitudinal

and between–population comparisons are appropriate and will have a fixed level of error, even

though the absolute accuracy will remain unknown. The real value of using an internally con-

trolled method such as FMM or EM is that it is possible to use an algorithmic approach that is

simple to apply to any data set and which requires no additional testing of external specimens

or controls. In this study, we generated a ROC curve based on specimens that had previously

been calibrated against the original reference standards described by Goodhew et al [19].

There is no gold standard for serological testing of chlamydia, and mis-classification in the ref-

erence standards is likely to have introduced error in the reference panel. Goodhew described

how one PCR-positive DBS tested negative for antibodies against Pgp3, while three samples

that were in the negative reference group tested positive for antibodies against Pgp3 [19]. As

these original reference standards were no longer available, we have had to rely on a second set

Seropositivity Thresholds in Trachoma Studies

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005230 January 18, 2017 13 / 19



of standards that were tested against the original standards. Problems relating to the ROC ref-

erence specimens could be solved by the establishment of a fully maintained and quality con-

trolled international standard, but this is unlikely to happen as it is would be very difficult to

identify a reliable source of large volumes of seropositive plasma.

FMM has been used in numerous serological studies [34,39,43,45,60–66] and we propose

that it, or the closely related EM, should be considered as the method of choice when perform-

ing data analysis for trachoma serology data. In trachoma control programmes, the SD param-

eter should be adjusted to favour high specificity and a larger number of SDs than used here

would seem appropriate. One attractive option would be to use data from a post-elimination

country (i.e. the Gambia) to subtract out the background positivity and by doing so calibrate

or normalise the test for use in populations where elimination has not yet been reached and

prevalence is unknown.

Variability and error are inherent to any diagnostic test and with every change in reference

standard and assay technique, variability and error increase over and above any variation that

may be inherent in a test due to inter- or intra- centre and user variation. Thus, we believe that

an alternate approach to assay design, reference selection and threshold specification should

be considered.

For all the sample sets included in this study, the density data peak around 0.25 OD450 (Figs

2A, 3A and 4A), suggesting that a comparison of seroprevalence levels between populations is

possible. Compared to ROC curves, internally-referenced thresholds inherently account for

differing background levels in each population. If not accounted for using the ROC curve, this

may result in an under- or over-estimation of seroprevalence. This will facilitate the program-

matic usage of seroprevalence levels set by the finite mixture model or expectation-maximisa-

tion algorithm if serology is to be adopted as an alternative monitoring method.

Conclusion

The ELISA assay presented in this paper is easy-to-use, affordable in terms of both reagents and

equipment required, and can potentially be deployed in low- and middle-income countries.

The unit cost per sample was less than £4.00; this includes all materials required for sample

collection and DBS testing, including reagents, ELISA plates and sterile gloves. Our results

show that the technological aspects of the assay are robust and that there is low variation both

between replicate samples and plates and between populations, making it possible to compare

seroprevalence levels between countries. Internally calibrated thresholding methods, such as the

finite mixture model or the expectation-maximisation algorithm are more appropriate than

thresholds set by a ROC curve, but for programmatic surveillance, they may require calibration

using data from countries where trachoma has been declared as having been eliminated.
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