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We report first-principles variational simulation of the non-resonant Raman spectrum for the methyl
radical ('?CHs) in the electronic ground state. Calculations are based on a high level ab initio potential
energy and dipole moment surfaces of CH; and employ the accurate variational treatment of the
ro-vibrational dynamics implemented in the general code TROVE [S. N. Yurchenko, W. Thiel, and
P. Jensen, J. Mol. Spectrosc. 245, 126-140 (2007); A. Yachmenev and S. N. Yurchenko, J. Chem. Phys.
143, 014105 (2015)]. TROVE can be applied to arbitrary molecules of moderate size and we extend here
its capabilities towards simulations of Raman spectra. The simulations for CH; are found to be in a good
agreement with the available experimental data.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

In a recent publication [1] we reported the computation, by
variational methods, of a so-called line list, i.e., a catalogue of
absorption lines, valid up to temperatures of 1500 K for the methyl
radical CHs in the electronic ground state. The computations were
based on high level ab initio potential energy and dipole moment
surfaces. In addition, we have previously studied theoretically
the hyperfine coupling constant (HFCC) of CHs isotopologues [2],
confirming previous results that for this radical, vibrational motion
must be considered in order that accurate HFCC values be
obtained.

As explained in Ref. [1] (to which the reader is referred for
details and references), the methyl radical is important in combus-
tion processes and as an intermediate in many chemical reactions
of industrial and/or environmental interest. Also, it has been
observed in interstellar space and in planetary atmospheres.

Experimental observations of CHs are most often done in
absorption or emission. Owing to the importance of CHs in diverse
areas it is of interest to use observed spectra to determine its con-
centrations or column densities in remote environments such as
interstellar space. For obtaining concentrations or column densi-
ties from observed intensities, however, the transition moments
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of the observed transitions must be known (see, for example, Ref.
[3]). In order to measure the transition moments in the laboratory,
one must prepare a sample of molecules at a known concentration.
This is in itself difficult in the case of unstable, short-lived mole-
cules such as CHs (and it is also difficult to reach concentrations
large enough for detection), and so the concentration determina-
tions often rely on theoretical predictions of the transition
moments [4,5]. The ExoMol project by Yurchenko, Tennyson and
co-workers [6,7] aims at providing theoretically computed transi-
tion moments and simulated spectra for (small to medium-sized)
general polyatomic molecules of astrophysical and/or -chemical
interest.

The remote-sensing tools used for probing environments such
as interstellar space, atmospheres of the Earth and exoplanets,
the outer layers of cool stars, etc., are absorption or emission spec-
tra with intensities generated by the molecular electric dipole
moment operator. Thus, work aimed at facilitating the interpreta-
tion of remote-sensing spectra, such as that carried out in the Exo-
Mol project [6,7], is focused on absorption and emission
spectroscopy. However, the corresponding molecular transitions
are subject to fairly restrictive selection rules (see, for example,
Chapter 14 of Ref. [8]). To obtain spectra with a larger selection
of transitions, one can change the experimental method. Raman
spectroscopy (see, for example, Section 14.3 of Ref. [8]) is an exam-
ple of a spectroscopic technique with selection rules less restrictive
than those of absorption and emission spectroscopy [9]. It is
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illusory, however, to imagine the observation of remote-sensing
Raman spectra of, say, interstellar space; the Raman spectra are
much too weak for that. The theoretical prediction of transition
probabilities for Raman transitions, analogous to the theoretical
calculations of transition moments for absorption and emission,
assists the determination of molecular concentrations from Raman
spectra recorded in the laboratory. An example of astrophysically
interesting molecules being characterized by Raman spectra is
the recent work on dimethyl ether by Fernandez et al. [10].

The development of electronic-structure and nuclear-motion
methods for computing Raman intensities is an active area of
research, not only for gas phase spectra [11], but also for investi-
gating new phenomena like hyper-Raman scattering [12,13], char-
acterizing new crystalline materials [14] and understanding
surface-enhanced Raman scattering [15].

In 1928, the Raman effect was discovered in liquids by Raman
and his student Krishnan [16] and, independently, in crystals by
Landsberg and Mandelstam [17]. The effect had been predicted
theoretically by Smekal in 1923 [18]. A more recent development
of ‘standard’ Raman spectroscopy (also called nonresonant Raman
spectroscopy) is the resonance Raman (RR) technique [19-23]. An
RR experiment makes use of a frequency-tunable laser for produc-
ing the incident radiation, whose frequency is selected to coincide
with an electronic transition of the molecule. This leads to a dra-
matic increase of the Raman intensity and a corresponding
decrease in the molecular concentrations detectable in Raman
experiments. Another advantage of RR experiments is that it is pos-
sible to select to enhance the intensity of transitions to a particular
vibrational level of the molecule.

The existing computational procedures for simulating nonreso-
nant Raman spectra, in particular those implemented in electronic-
structure (ab initio) programs, neglect rotational motion and treat
the vibronic motion in the so-called double-harmonic approxima-
tion. In this approximation, the potential energy function is har-
monic, i.e., it is represented as a second-order Taylor expansion
in the vibrational coordinates, and the analogous expansions of
the polarizability tensor elements are truncated after the linear
terms. Present-day simulations of absorption and emission spectra,
however, are made in an approximation highly superior to the
double-harmonic one, taking into account rotation and employing
‘fully coupled’, variationally determined rovibronic wavefunctions,
and the corresponding rovibronic energies, for computing the
spectra. For example, in much of the absorption/emission simula-
tion work carried out within the ExoMol project, high-level, varia-
tionally computed rovibronic wavefunctions from the TROVE
[24,25] program are used. In the present work, we develop a theo-
retical approach to simulate nonresonant Raman spectra in terms
of rovibronic wavefunctions from TROVE [24,25]. With the result-
ing computational procedure, we are able to simulate nonresonant
Raman spectra in the same high-level approximation currently
routinely employed for absorption and emission spectra. Develop-
ments of the traditional, nonresonant Raman-spectroscopy tech-
nique, such as the resonance Raman [19-23] and hyper-Raman
scattering [12,13] techniques mentioned above, together with
coherent anti-Stokes Raman (CARS) spectroscopy [26], and coher-
ent Raman photofragment spectroscopy [27], have higher sensitiv-
ity than the traditional Raman method, and the present work can
be seen as a first step towards the development of theoretical
methods to simulate the corresponding spectra.

We have employed the newly developed theoretical approach
for simulating the nonresonant Raman spectrum of CHs. For this
radical, the three fundamental bands vy, v3, and v4 are observable
by Raman spectroscopy; v, is only observable as Raman transition,
whereas v3 and v, are also observable in absorption and emission.
The calculations of the present work are based on high-level ab ini-
tio potential energy and polarizability surfaces.

2. Theory and computational details
2.1. Potential energy surface

For this work we employ a high level ab initio potential energy
surface (PES) of CHs from Ref. [2], computed using the partially
spin-restricted open-shell explicitly correlated coupled cluster the-
ory RCCSD(T)-F12b [28] in conjunction with the F12-optimized
correlation consistent valence basis set cc-pVQZ-F12 [29]. The
PES is represented by a Taylor series expansion around equilibrium
geometry in terms of the symmetry-adapted combinations of
valence bond coordinates [30].

2.2. Polarizability surfaces

The electronically averaged polarizability surfaces for CHs were
computed using the MOLPRO [31] program package. Frozen-core
calculations were carried out for 19361 symmetry-unique geome-
tries using the spin-restricted open-shell coupled cluster theory
RCCSD(T) [32] and the augmented correlation consistent valence
basis set aug-cc-pVTZ [33,34], employing the three-point stencil
finite difference formula for the second derivative with the electric
field strength of 0.002 a.u.

To represent the electronically averaged polarizability surfaces
analytically, we use a representation analogous to the so-called
symmetry-adapted molecular bond (SMB) representation
described for the dipole moment in Ref. [35]. For a molecule with
D>, (M) (see Table A-10 of Ref. [8]) symmetry, the SMB dipole
moment is described in terms of symmetrized projections of the
dipole moment vector onto the normalized molecular bond vectors

Ij— T4

:W,]:LZB, (1)

€
where 1; is the position vector of proton j in the molecule-fixed axis
system xyz, and r4 is the position vector of the C nucleus. The vec-
tors e; are understood as row (1 x 3) matrices.

For the components of the polarizability tensor, we introduce
analogous, analytical SMB functions by following the procedure
presented in Refs. [35-38]. The polarizability tensor for a molecule
with D;,(M) symmetry spans the reducible representation
2A) ® E'  E" and functions generating the individual irreducible
representations are given as
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(with a superscript T denoting transposition) are projections of the
3 x 3 electronically averaged polarizability tensor & onto the molec-
ular bond vectors e;, j=1,2,3, and a normalized “threefold symme-
try axis vector” obtained as the “trisector” [38]
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with
qy = (€1 x ;) + (e; x e3) + (e3 x eq). (10)

Since the E, and E, components of an E pair are connected by a

(2a) )

rotation, a total of four symmetry-adapted functions &;1,), o v oc(3
1

and ac(E‘,l," are required to describe the electronically averaged polar—
izability tensor of CHs. These four functions are represented by

polynomial expansions
p)+ Z o k
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in terms of the coordinates
Joc =Arcexp [-(An)’], (k=1,2,3), (12)
Lo =200 — ot — 013)/V/6, (13)
A5 =02 — 013)/V2, (14)

where r, denotes the C-Hy bond length and oy, o, and o3 are three
inter-bond angles /(H,-C-Hs), Z(H;-C-H3), and Z(H;-C-H,),
respectively. The expansion coefficients oc r’” (p) are polynomials
of the out-of-plane vibrational coordinate p (with the equilibrium
value of 90°)

F l( I'(ks)
Z%

where the maximal order of the polynomial is N = 6.

The expansion coefficients were determined in least-squares
fittings to the 19361 ab initio data points with root-mean-square
deviations of 0.003 a.u. for all four components. The polarizability
surface is given as supplementary data to this paper in the form of
a Fortran 90 program and can be also accessed at www.zenodo.org,
see Ref. [39].

— sinp)’, (15)

2.3. Raman transitions

In the Placzek approximation [40], non-resonant Raman transi-
tion probabilities for a freely rotating molecule are obtained in
terms of transition matrix elements of the polarizability tensor
between the ro-vibrational wave functions of the initial and final
transition states [8]. The Raman intensity for a gas-phase molecule
in thermal equilibrium at the absolute temperature T can be
expressed as the differential scattering cross section

exp(—E”/I(T)

9 (o) — ()" x (v - v x
o "0 Stokes  \% 0 k Q@

xS (D o | D7y )

FF'

(16)

Here, Fand F' (=X, Y, Z) signify axes of the space-fixed axis system[8],
€o is the vacuum permittivity, vy is the frequency of the incident laser
beam, v, is the frequency of the Raman-scattered radiation, Q , is the
vibrational partition function, (®;, |0 |®},) is a transition matrix ele-
ment of the electronically averaged polarizability tensor component
o between the two rovibrational wavefunctions @}, and @}, of the
initial and final states, respectively. Further, E” is the energy of the ini-
tial state, k is the Boltzmann constant, and Q is the solid angle within
which the Raman-scattered light is detected.

It is well known that for absorption and emission, the ‘readi-
ness’ of the molecule to undertake a transition from the initial state

i (with ro-vibrational wavefunction @, ) to the final state f(with ro-
vibrational wavefunction ®),) is governed by the line strength
[8,41,42]

S(fel):gnsz Z ‘<(Drv‘ﬂF|(D >|

m'.m"F=X)YZ

where g, is the nuclear spin statistical weight factor [8,42] and [ir
is the electronically averaged component of the molecular dipole
moment along the space-fixed axis F = X, Y, or Z. The quantum num-
bers m’ and m” are the projections of the total angular momentum,
in units of h, on the Z axis in the initial and final states, respectively.

In the expression for the line strength Eq. (17) we sum the
squares of the i matrix elements over all degeneracies of the ini-
tial and final states. Similarly, we sum the matrix element square
in Eq. (16) to obtain a quantity measuring the readiness of the
molecule to carry out a (nonresonant) Raman transition from state
i to state f

%(f — 1) = gy Z

m.m"F=XYZF=XYZ

(DL, |atg | D ) (18)

Eq. (18) is converted to a form useful for the simulation of
Raman spectra in a procedure very similar to that used for the line
strength in Refs. [8,35,41,42] (see also Refs. [9,43,44]). The first
step in this procedure is to transform the space-fixed polarizability
components oy to irreducible tensor [44] form

o = —% [Oxx + Olyy + Ozz], (19)
al = \Lfe [20z — Oixx — Byy], (20)
A% = 1 (Pl +8m) — 1 (@ + 8, (21)
1% = 2 [ - a1 @ + 3w 22)

The molecule-fixed irreducible tensor components ™ [w =0
or2; 0'=-w,—-w+1, ..., o], defined in terms of the molecule-
fixed axes xyz, are given by expressions obtained from Egs. (19)-
(22) by replacing (X,Y,Z) by (x,y,z). The space-fixed &’ compo-

(,m)

nents are related to their molecule-fixed counterparts oc as
[8,44]
Z a(/)m (l) 0 ¢ 7) (23)
g'=—w
where D\ (0 ¢, x) is an element of a Wigner rotation matrix [44]

and (0, ¢, )() are the standard Euler angles [8,42,44] defining the
orientation of the molecule-fixed axes xyz axes relative to the
space-fixed axes XYZ axes.

In the TROVE approach [24,25], the wavefunctions @}, and @,
are expressed as linear combinations of basis functions, i.e.,

[ @) = Y Clmgrey 1K M T30) V") (24)

1 et
VK" T,

with an analogous expression for ®@;,. In Eq. (24), the Cyuyn
expansion coefficients, | J"K"m”t/,) is a symmetrized rotational
basis function, 7J,, (=0 or 1) determines the rotational parity as
(=1)%, and | V") is a vibrational basis function. The TROVE basis
functlons [J'K"m"ti.) | V") are explained in detail in Refs.
[24,25,45].

In order to compute values of #(f — i) in Eq. (18) we require
the matrix elements (@, |dg |®y, ). We can express these in terms

S| 2| @) by

dare

7
Trot

of the irreducible-tensor matrix elements <

means of Egs. (19)-(22). We further obtain
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by inserting Eqs. (23) and (24) (and the analogous expression for

(,

@) in the expression for < el | @ > and making use of the

fact that | JK'm't,,,),D"> and | J"K"m"t.,) depend solely on the

Euler angles (0, ¢, %), whereas | V'), 5™ and [V") depend on the
vibrational coordinates only.

Eq. (25) is finally inserted in the expression for 2(f < i)
[Eq. (18)] with the Euler-angle-dependent matrix element

(JK'm' Ty, DL (0,0, %) | J'K'm" ) obtained analytically from
Eq. (14-23) of Ref. [8], and the summations over m’ and m” carried
out analytically by means of Eq. (14-32) of Ref. [8]. In this manner,
we determine a detailed expression for 2(f « i) that is highly
analogous to the expression for S(f «— i) given, for example, in
Eq. (21) of Ref. [41].

Whereas the expression for the absorption and emission line
strength in Eq. (17) is obtained in terms of irreducible tensor ele-
ments with w =1 only, that is with one w-value, the expression
for (f < i) involves two w-values, =0 and 2. We denote the
corresponding contributions to 2(f i) as Ro(f — i) and
R, (f — i), respectively, by analogy to the quantities Ro(f « i)
and R,(f « i) defined in Eqgs. (14-132) and (14-133) of Ref. [8].
In conventional Raman-spectroscopy parlance, Z,(f « i) accounts
for the intensity resulting from isotropic Raman scattering, while
R, (f « i) is the contribution from anisotropic Raman scattering.

The quantities 2o(f < i) and 2,(f < i) depend on the vibra-

rot

tional matrix elements <V’|5c(‘°‘"‘)|v”>. These are calculated by first

(w,m)

expressing the molecule-fixed irreducible tensor operator oc in
terms of Cartesian components o, (o, § = X, ¥, Z), see Egs. (19) (22)
where the X, Y, and Z are replaced by x,y, and z. The functions 0
are obtained in the electronic structure calculations and repre-
sented by polynomials of internal molecular coordinates, as
explained above in the Section 2.2, and the vibrational matrix ele-
ments are calculated similarly to those of the vibrational Hamilto-
nian and the dipole moment.

The contributions to 2(f «— i) from 2o (f — i) and Z,(f — i)
depend on the experimental set-up (see, for example,
Eqs. (14-134) and (14-135) of Ref. [8]). We consider here the case
of perpendicular Raman scattering assuming the laser light is
polarized in the Y direction and the exciting laser beam is propa-
gating in the X direction. In this situation, the differential Raman
scattering cross section for a rovibrational transition is

doy _ (=) ) RCEAT)
{dé (Vo)] Stokes o <EU> % (VO vk) x Qv
% (1@ o [0, 4 (@] Jol @)

It can be shown that in terms of 2o (f « i) and 2, (f « i), Eq.
(26) yields

(26)

o (2\? exp(~E"/KT)
[ddg ( :|St0kes o <E_> X Yo - V : RN (27)
x5 (10 (f — i) + 7y (f — i).

Our complete Raman line list for CH3 can be accessed via the
Zenodo repository www.zenodo.org, see Ref. [39].

3. Results, summary, and discussion
3.1. Results

The methyl radical has four vibrational normal modes: the sym-
metric stretch, v; (4} ), the out-of-plane bending, v, (A3), the degen-
erate asymmetric stretch, vs(E'), and the degenerate in-plane
bending, v4(E’). For each normal mode, we give in parentheses
its symmetry in the molecular symmetry group Ds;,(M) (see
Table A-10 of Ref. [8]). The fundamental band associated with
the v; mode, of A} symmetry, is detectable as Raman transition
only; it is forbidden in absorption and emission. The v, fundamen-
tal transition is neither infrared nor Raman active. The fundamen-
tal transitions involving the E'-symmetry modes vs; and v, are
allowed both as IR and Raman transitions. We study here the sym-
metric C-H stretch mode, v, (A’l) of CHs in the electronic ground
state. The experimental value of the v;-band origin has been deter-
mined as 3002.4 cm~' from resonance-Raman spectra [46] and as
3004.8 and 3004.4 cm™!, respectively, in two CARS experiments
[26,27]. Further CARS studies [47,48] have produced similar values.
From harmonic force-field analysis an estimation of 3044 cm™! has
been reported [49] for the v, fundamental term value; this value is
corrected to 2992.6 cm~! when anharmonic corrections are taken
into account [50]. Several calculations of the v; term value have
been reported using ab initio methods [51-54] and methods con-
sidering vibrational nuclear motion only [55,56]. The best predic-
tion was 3002.0 cm™! from a vibrational many-body method, the
vibrational configuration interaction (VCI) method [54]. Our com-
putational work has produced [1] a value of 3002.8cm™ . In
Table 1, we compare the available, experimentally derived term
values for '2CH; with the calculated values from Ref. [1]; the calcu-
lations of the present work involve the same calculated values. It is
seen that our calculations reproduce the experimental results to
better than 1%. Predicted term values for other vibrational states
are given in Table 1 of Ref. [1].

To simulate the nonresonant Raman spectrum for the methyl
radical, we have computed the differential Raman scattering cross
sections [Eq. (26)] for the CH3; Raman transitions between 0 and
6000 cm ! allowed by the selection rules given in Section 14.3 of
Ref. [8]: |J -] |<w, J +]">w, and T}, =T}, where T';, and I,
are the molecular-symmetry-group symmetries of the initial and
final states, respectively. The top display of Fig. 1 presents an over-
view of the computed Raman spectrum as cross-sections (in units
of m?/sr) of CH; at room temperature. In the figure, this spectrum
is compared to the experimental resonance Raman spectrum’ from
Ref. [46]. Fig. 2 shows a similar comparison to the CARS spectrum of
the v; Q branch? from Ref. [26]. In this figure we show the individual
contributions from %, and %, from Eq. (27), before averaging with
the Placzek coefficients 10/30 and 7/10. Consistently with the band
center theory-experimental deviation in Table 1, the theoretical
spectrum is shifted by about 1.5 cm™' relative to the experimental
one.

3.2. Summary and discussion

In the present work, we have extended the TROVE [24,25] pro-
gram so as to allow the simulation of nonresonant Raman spectra.
The corresponding simulations take into account the complete

! Reprinted from Chemical Physics Letters, Vol. 151, P.B. Kelly and Sjon G. Westre,
Resonance Raman Spectroscopy of the Methyl Radical, pp. 253-257, Copyright 1968,
with permission from Elsevier.

2 Reprinted from the Journal of Chemical Physics, Vol. 81, P. L. Holt, K. E. McCurdy,
R. B. Weisman, J. S. Adams, P. S. Engel, Transient CARS spectroscopy of the v; band of
methyl radical, pp. 3349-3350, Copyright 1984, with permission from AIP Publishing.
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Table 1
Comparison of experimental and theoretical term values (cm™") for selected '2CHs
levels.

State re Obs.” Ref.c Calc.!

V1 A’1 3004.42 [27] 3002.76
Vo Al 606.45 [57] 602.43
2v; A, 1288.1 [57] 128124
V3 E 3160.8 (58] 3158.83
Va E 1397.0 [59] 1387.26

2 D3, (M) symmetry of the vibrational state.

b Experimental term value.

¢ Reference for experimental term value.

9 Variationally computed value from Ref. [1]; TROVE calculation with basis set
Pmax =32 [1 ]

Simulated nonresonant
- 1 Raman spectrum of CH3
o
R ) 2v, v
€ 20 — x1
o
5 ] — x10
c
s x100
s i
3 i
2 1.0
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<} il 4
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4 2v | v, M 2y
0.0 Laoa_
Experimental vy CHgy
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P Raman spectrum
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>
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= —
2
RY
>
=
2]
g
- v; CH.
£ | Vi +2v, CHy 2\—|1 o
—_ —

0 1000 2000 3000 4000 5000 6000
Wavenumber/cm’™

Fig. 1. A comparison between the simulated nonresonant (at T=300K) and an
observed resonance Raman spectrum of CHs (see text). In the simulated nonres-
onant Raman spectrum of CHs (top display), the ordinate is multiplied by 1, 10, and
100, respectively, in the red, blue, and green parts of the curve. The assignments of
the bands given are those suggested by analysis of the TROVE wavefunctions. The
experimental resonance Raman spectrum (bottom display) contains transitions of
CHs and CHsl; it is reproduced from Fig. 1 of Ref. [46] by permission from Elsevier.
The assignments of the bands given are from Ref. [46]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

rovibrational nuclear motion, using the fully-coupled TROVE
[24,25] rovibrational wavefunctions. We have applied the new pro-
gram module for simulating the nonresonant Raman spectrum of
the methyl radical CHs; the simulations are based on potential
energy and polarizability surfaces calculated ab initio for the elec-
tronic ground state of CHs with the MOLPRO [31] program package
at the ROHF-RCCSD(T)/aug-cc-pVTZ level of theory.

Fig. 1 includes the nonresonant Raman spectrum simulated in
the present work. Comparing the simulated spectrum to an exper-
imental counterpart is not currently possible because to the best of
our knowledge, no such spectrum is available in the literature.
However, a resonance Raman spectrum of CH3 has been published
[46] and we include also this spectrum in Fig. 1 with the band
assignments from Ref. [46].

The difference between nonresonant Raman spectra and their
RR counterparts is explained above; in the RR case the intensities

2999 3000 3001 3002 3003 3004 3005 3006 3007

1 1 1 1 1 1 1
Experiment
_-og’ T T T T T T T
% 60 1 1 1 1
g
5 40- Ry |
g 2
S 7] i
8
® 2998 3000 3002 3004
[
(%]
o
g 31 R,
c 2 -
£
g [
o T T T
2997.5 3000 3002 3004 30055

wavenumber, cm™’

Fig. 2. A comparison between the simulated nonresonant Raman spectrum (at
T=300K) and an observed CARS spectrum of the v; band Q branch of CHs (top
display). It is reproduced from Fig. 1 of Ref. [26] by permission from AIP Publishing.
We show the simulated, individual contributions from %, and #,, before applying
the Placzek coefficients of 10/30 and 7/10. The simulated spectra were convolved
with a Gaussian line profile with a half-width-at-half-maximum of 0.2 cm~'. Note
that the theoretical spectra are shifted by about 1.5 cm™! relative to the exper-
imental CARS spectrum to account for the obs-calc difference for the v; band center
(Table 1).

of some Raman transitions are greatly enhanced. The comparison
of the simulated non-resonant Raman spectrum to the published
RR one [46] is, of course, somewhat problematic. However, both
spectra contain the same Raman transitions, just with different
(absolute and relative) intensities. So we recognize that the stron-
gest vibrational Raman transition, the v; fundamental band
observed experimentally at 3004.4 cm ™, is clearly present in both
spectra. So is the first overtone band 2v, (predicted at
1288.09 cm™!). For the v; and 2v, bands, rotational structure is
recognizable in both experimental and simulated spectra. Simi-
larly, the nonresonant Raman spectrum contains the same transi-
tions as the CARS one, and we see in Fig. 2 that our simulation of
the linear, nonresonant Raman spectrum of the Q branch in the
vy band of CH3 reproduces rather well the salient features of the
experimental, nonlinear CARS spectrum.

The two fundamental modes v; (at 3160.8 cm ') and v, (at
1397.0cm™') are Raman active but they are not assigned in the
resonance Raman experiment. However, around both wavenumber
values there is weak, but visible rotational structure in the exper-
imental resonance Raman spectrum, possibly caused by these
bands. Above 3160.8 cm™!, the position of the v; band, there are
two bands noticeable in the experimental resonance Raman of
Fig. 1, whereas three bands are present in the simulated spectrum.
The two bands in the experimental spectrum are assigned as
V1 + 2v, and 2v4, respectively, while TROVE suggests the labelling
v, + v3,4v4, and 2v, for the three bands visible in the simulation. It
is conceivable, however, that the resonance Raman technique
favors other vibrational transitions than nonresonant Raman, so
possibly the significant bands must be assigned differently in the
two spectra.

As mentioned above, CH; belongs to the Ds,(M) molecular sym-
metry group and its equilibrium structure has Ds;, point group
symmetry [8]. Consequently, the absorption/emission transitions
in the pure rotational spectrum and in the v; fundamental band
involve intensity borrowing [8] so that their observation is extre-
mely difficult and probably impossible at the present time. It is
nevertheless important to obtain experimental information on
the v, band, for example in connection with studies of the energy
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distribution in methyl halide photodissociation dynamics. Such
information can be obtained from Raman spectroscopy which in
many cases complements absorption/emission. With the extension
of the TROVE [24,25] program reported in the present work, we can
simulate nonresonant Raman spectra and thus assist the recording
and interpretation of laboratory Raman spectra.
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