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Abstract Working memory performance is thought to depend on both striatal dopamine 2/3

receptors (D2/3Rs) and task-induced functional organisation in key cortical brain networks. Here,

we combine functional magnetic resonance imaging and D2/3R positron emission tomography in 51

healthy volunteers, to investigate the relationship between working memory performance, task-

induced default mode network (DMN) functional connectivity changes, and striatal D2/3R

availability. Increasing working memory load was associated with reduced DMN functional

connectivity, which was itself associated with poorer task performance. Crucially, the magnitude of

the DMN connectivity reduction correlated with striatal D2/3R availability, particularly in the

caudate, and this relationship mediated the relationship between striatal D2/3R availability and task

performance. These results inform our understanding of natural variation in working memory

performance, and have implications for understanding age-related cognitive decline and cognitive

impairments in neuropsychiatric disorders where dopamine signalling is altered.

DOI: https://doi.org/10.7554/eLife.45045.001

Introduction
Working memory is the short-term maintenance, evaluation and manipulation of information ‘online’,

necessary for higher cognitive processing (D’Esposito and Postle, 2015; Millan et al., 2012). Work-

ing memory impairment is an important component of age-related cognitive decline, (Braskie et al.,

2008; Dahlin et al., 2008) and is reliably present in multiple neuropsychiatric disorders, where it pre-

dicts poor functional outcomes (Millan et al., 2012). The neurobiology underlying working memory

variability in health and disease remains unknown, however converging evidence implicates the neu-

romodulator dopamine (Cools and D’Esposito, 2011). Moreover, age-related decline in striatal
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dopamine signalling could contribute to the cognitive decline seen in normal ageing, (Braskie et al.,

2008; Dahlin et al., 2008; Bäckman et al., 2000; Berry et al., 2018a; Berry et al., 2016;

Matuskey et al., 2016) and altered striatal dopamine signalling in schizophrenia and Parkinson’s Dis-

ease could contribute to cognitive impairments in these disorders (Millan et al., 2012;

Simpson et al., 2010; McCutcheon et al., 2018a; Meder et al., 2019).

One influential theory postulates that striatal dopamine 2/3 receptors (D2/3R) gate the flow of

new information into the cortex, setting the balance between working memory stabilisation and

updating (Dahlin et al., 2008; Cools and D’Esposito, 2011; Bäckman et al., 2011; Frank et al.,

2001; Frank and O’Reilly, 2006). Recent animal studies show that striatal D2Rs induce changes in

cortical activity and task-related mesocortical synchrony. Specifically, postsynaptic striatal D2R over-

expression in mice causes a deficit in inhibitory signalling in the prefrontal cortex (PFC),

(Kellendonk et al., 2006; Li et al., 2011) reduced activity in ventral tegmental area (VTA) dopamine

neurons, and reduced VTA-PFC synchrony during working memory (Krabbe et al., 2015;

Duvarci et al., 2018). These changes are accompanied by impairments in cognitive tasks that recruit

the prefrontal cortex, including those that involve working memory (Kellendonk et al., 2006;

Duvarci et al., 2018; Simpson and Kellendonk, 2017). Human and non-human primate studies also

implicate the (dorsal) caudate in working memory function (Dahlin et al., 2008; Rieckmann et al.,

2011; Levy et al., 1997).

In humans, working memory-induced changes to whole-brain functional organisation can be stud-

ied using functional magnetic resonance imaging (fMRI), which allows measurement of the functional

connectivity between cortical brain regions (Shine and Poldrack, 2018; Shine et al., 2016). Func-

tional connectivity in this context refers to the pairwise correlation between the time course of neural

activity in each region, and is a marker of shared information processing (Rubinov and Sporns,

2010). Cortical brain regions can be clustered into ‘networks’ based on their pattern of functional

connectivity during rest (Rubinov and Sporns, 2010). Recent human fMRI studies indicate that work-

ing memory performance is supported by changes in the functional connectivity and organisation of

cortical networks. Specifically, working memory performance induces a decrease in functional con-

nectivity within the default mode network (DMN) (Cole et al., 2014; Finc et al., 2017; Liang et al.,

2016). The DMN is the prototypical ‘task negative network’ that typically shows reductions in activity

during working memory tasks, and includes ventromedial prefrontal cortex and posterior cingulate

cortex (Finc et al., 2017). Moreover, task-induced connectivity changes within the DMN predict per-

formance on working memory tasks such as the n-back (Finc et al., 2017). Working memory perfor-

mance is also accompanied by changes in functional connectivity within ‘task positive networks’

(TPN) such as the dorsal attention network (DAN) and the frontoparietal network (FPN), which typi-

cally show increases in activity during working memory tasks (Shine and Poldrack, 2018).

Together, these findings suggest that striatal D2/3R levels, particularly within the caudate, might

exert an influence on working memory performance by modulating task-induced functional connec-

tivity within task-relevant cortical networks. However, this hypothesis has not been tested in humans.

In this study we address this question directly in a sample of 51 healthy volunteer participants. We

used fMRI to measure functional connectivity within the DMN and TPN during a letter n-back work-

ing memory task that required updating of working memory representations. In the same partici-

pants, we measured baseline striatal D2/3R availability using positron emission tomography (PET).

Our primary hypothesis was that striatal D2/3R availability would directly correlate with the magni-

tude of task-induced connectivity changes within our studied cortical networks, and that this relation-

ship would mediate the influence of striatal D2/3Rs on performance.

Results

Task design, behaviour and task-induced neural activation
All participants completed 18 task blocks of a letter n-back working memory task (six blocks each of

0-, 1- and 2-back conditions, in pseudo-randomised order) during fMRI scanning (Figure 1a). During

the task, participants indicated whether the ‘target’ letter was present or absent on each trial, as

quickly as possible. In the 0-back condition the target letter was specified at the start of the task

block and remained unchanged throughout the block. In the 1-back and 2-back conditions the target
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letter changed on every trial (i.e. target letter for trial t was the letter presented on trial t-1 for the 1-

back condition, and trial t-2 for the 2-back condition).

We used a performance metric that is sensitive to processing speed and response omissions, as

well as false positive responses. One such metric is the penalized reaction time (pRT, where reaction

time set to maximum response time (2s) for incorrect or omitted responses) (Finc et al., 2017). How-

ever, using a fixed penalization of 2s fails to take into account individual- and condition-specific dif-

ferences in mean reaction time. Consequently, we used a modified pRT metric, in which the reaction

time of an incorrect response was replaced by a pRT that was a fixed ratio of the subject- and condi-

tion-specific RT. For clarity, we report behavioural results using the pRT defined with a penalization

ratio of 2.5 (hereafter, pRT 2:5ð Þ), however the statistical significance of all results is unchanged when

using penalization ratios from 2.5 to 4 (hereafter pRT 2:5� 4ð Þ).

We used this proportional pRT measure to derive a single measure of working memory ‘robust-

ness’ to increasing working memory load. This was defined as the negative regression coefficient

relating pRT to memory load (�DpRT). A value of 0 indicates that performance is unaffected by the

increase in task difficulty, and increasingly negative values indicate that performance degrades with

increased cognitive demands.

Performance pRT 2:5ð Þð Þ was negatively related to working memory load, indicating that our per-

formance metric is sensitive to increasing cognitive demands (repeated measures ANOVA indicates

a mean effect of cognitive load: F2,100 = 68.7, P < 0.001. Post-hoc paired t-tests indicate a significant

difference between all pairwise comparison: t-tests: all t50 >5.3 and P < 0.001) (Figure 1b).

As expected, (Owen et al., 2005) in a standard fMRI activation analysis there was activation in a

widespread frontoparietal network that was parametrically related to working memory load, and

deactivation in a network involving the ventromedial prefrontal cortex and posterior cingulate cortex

(at P < 0.05, following whole-brain family wise error correction). Within the striatum, the activation

cluster extended primarily into the dorsal striatum, in line with the postulated role of this region in

updating working memory (Dahlin et al., 2008) (see Figure 2a and Table 1 for activation/deactiva-

tion clusters). There was no significant linear or quadratic relationship between neural activation/

deactivation and behavioural performance (�DpRT (2.5)) when this variable was used as a regressor

in a second-level voxel-wise analysis.
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Figure 1. Task design and behavioural results. (A) Letter n-back task design. The task consisted of 18 task blocks (20s each, interspersed with 10s rest

blocks) that were pseudo-randomised to 0-, 1-, or 2-back conditions (6 blocks of each condition per task session). Participants indicated, as quickly as

possible, whether the target was present or absent at the appearance of each letter, using two buttons of an MR-compatible button box. Each letter

appeared on the screen for 2 s before the next letter was shown. This figure shows the last 4 trials of a 1-back task block, followed by a rest block. (B)

Task behaviour. Penalised reaction time (pRT , using penalization ratio of 2.5) increases (indicating poorer performance) with increasing working memory

load. Plotted as mean ± S.E.M.

DOI: https://doi.org/10.7554/eLife.45045.002
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Task-induced functional connectivity change
To investigate task-induced functional connectivity changes within task-relevant cortical networks,

we first used a data-driven community detection algorithm (Blondel et al., 2008; Lancichinetti and

Fortunato, 2012) to partition the cortex into group-level task positive (TPN, 53 nodes) and default

mode (DMN, 42 nodes) networks, using the fMRI signal time course during the baseline (0-back)

task condition (Figure 2b). The ‘empirical’ TPN and DMN networks derived from this algorithm over-

lapped respectively with the spatial activation and deactivation maps from the standard fMRI activa-

tion analysis, serving to highlight the functional relevance of these networks. Specifically, the set of

voxels defined by the DMN nodes overlapped primarily with the voxels of the cortical deactivation

cluster map (Dice similarity coefficient (DSC) = 0.22), compared to the voxels comprising the cortical

activation clusters (DSC = 0.08). Conversely, the set of voxels defined by the empirical TPN nodes

overlapped with the cortical activation cluster map (DSC = 0.33), but not cortical deactivation cluster

map (DSC <0.001). Moreover, the empirical DMN node assignments overlapped with the a priori

network assignments from the Gordon cortical parcellation for the DMN (DSC = 0.92) but not with

the a priori Gordon assignments for the task-positive networks (‘DAN and FPN’) (DSC = 0.08).
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Figure 2. Task-related neural activation and task-related cortical networks. (A) Significant task-induced activations (red) and deactivations (blue) that

correlate with increasing working memory load, showing increased activation within dorsolateral prefrontal cortex and parietal cortex, and decreased

activation within ventromedial prefrontal cortex, posterior cingulate cortex and medial temporal lobe. Activation and deactivation maps thresholded at

whole-brain cluster threshold (cluster-level family-wise error corrected P < 0.05), and displayed in coronal, sagittal and axial sections overlaid on a

single-subject normalized T1 image in MNI space (see Table 1 for statistical results). (B) Lateral (top) and top-down (bottom) rendering illustrating

nodes of the empirical task-positive (TPN, in red) and default mode (DMN, in blue) networks identified by the community detection algorithm.
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Conversely, the TPN nodes showed the opposite pattern, overlapping with the Gordon ‘DAN and

FPN’ (DSC = 0.94) but not DMN (DSC = 0.04).

For each participant we defined the task-induced functional connectivity change within the DMN,

TPN and the edges connecting the DMN and TPN (DMN-TPN) as the mean regression coefficient

w1ð Þ of a linear model describing functional connectivity strength (Fisher z-transformed r-value) of

each edge (dependent variable) as a function of cognitive load (independent variable). Task-induced

functional connectivity significantly decreased with working memory load in the DMN

(w1 significantly less than zero: t50 = -2.33, P = 0.02, one-sample t-test), and significantly increased

with working memory load in the TPN (w1 significantly more than zero: t50 = 2.70, P = 0.01, one-sam-

ple t-test) (Figure 3a and b).

Relationship between functional connectivity change and striatal D2/
3Rs availability
[11C]-(+)-PHNO binds selectively to both D2 and D3 receptors, and the D3R fraction of this measure

differs between the ventral and dorsal striatum. In the (dorsal) caudate, the D3R fraction of the [11C]-

(+)-PHNO BPND signal is negligible, while in the ventral striatum (including accumbens) the D3R frac-

tion has been estimated at 20–25% (Tziortzi et al., 2011). In addition to molecular differences

between striatal sub-regions, functional differences also exist. Specifically, working memory has

been proposed to be supported by the (dorsal) caudate, with the accumbens being more relevant

for limbic and reward processing (Dahlin et al., 2008; Rieckmann et al., 2011; Levy et al., 1997;

McCutcheon et al., 2019; Haber, 2003). Consequently, we extracted [11C]-(+)-PHNO BPND sepa-

rately for the caudate and accumbens striatal sub-regions, in order to investigate the relationship

between striatal D2/3R availability and task-induced cortical network connectivity in a more fine-

grained manner. For completeness we also report results using D2/3R availability measured from the

whole striatum (caudate, accumbens and putamen).

There was a positive correlation between caudate D2/3R availability and task-induced connectiv-

ity change in the DMN (rho = 0.45 [.18,. 65], d.f. = 46, P = 0.002), and DMN-TPN (rho = 0.33, [0.04,

0.57], d.f. = 46, P = 0.02), but not within the TPN (rho = 0.21, [-0.08, 0.48], d.f. = 46, P = 0.15). How-

ever, the difference between the correlations in the DMN and TPN was not itself significant (z = 1.41

[95% confidence interval for difference between correlations: �0.10,. 65], P = 0.16). D2/3R

Table 1. Whole brain activation/deactivation results for parametric working memory load regressor.

Peak MNI coordinates (mm)

P(FWE-corr) T X Y Z

Activation clusters

Left middle/superior frontal gyrus <0.001 �30 �30 4 56

Right middle/superior frontal gyrus <0.001 26 26 4 57

Left middle frontal gyrus <0.001 �39 �39 6 33

Left precuneus/superior parietal lobule <0.001 -8 -8 �69 51

Right precuneus/superior parietal lobule <0.001 9 9 �63 54

Right superior parietal lobule <0.001 33 33 �48 44

Deactivation clusters

Left central operculum/posterior insula <0.001 10.35 �36 �16 18

Right central operculum/posterior insula <0.001 10.24 40 �16 22

Left central operculum/anterior insula <0.001 9.30 �36 3 15

Left posterior cingulate <0.001 7.79 -4 �48 27

Right posterior cingulate 0.012 5.63 6 �48 21

Right posterior cingulate 0.455 4.26 15 �44 6

Activation/deactivation peaks present in the significant clusters at whole-brain threshold of P < 0.05 (family wise error

(FWE) – corrected), using a cluster defining threshold P < 0.001 (uncorrected) for both contrasts. Anatomical labelling

corresponds to the peak MNI co-ordinate. MNI = Montreal neurological institute.

DOI: https://doi.org/10.7554/eLife.45045.003
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availability in the accumbens was similarly related to task-induced connectivity change in the DMN

(rho = 0.31 [.017,. 55], d.f. = 46, P = 0.03), but not the TPN (rho = 0.003, [�0.29,. 29], d.f. = 46,

P = 0.98) or DMN-TPN (rho = 0.15, [�0.15,. 42], d.f. = 46, P = 0.32). Although the magnitude of the

D2/3R-DMN connectivity relationship was greater in the caudate compared to the accumbens, the

difference between these two correlations was not statistically significant (z = 1.51 [-0.05, 0.37],

P = 0.13).

Taking the striatum as a whole, there was a positive correlation between D2/3R availability in the

whole striatum and the task-induced connectivity change within the DMN (rho = 0.38 [.10,. 60], d.

f. = 46, P = 0.008), but not within the TPN (rho = 0.11 [�0.18,. 39], d.f. = 46, P = 0.44) or DMN-TPN

(rho = 0.17 [�0.12,. 43], d.f. = 46, P = 0.29) (Figure 4a). This indicates that participants who exhib-

ited greater task-induced reduction in DMN connectivity had lower striatal D2/3R availability, partic-

ularly in the caudate.

We investigated the specificity of the relationship between task-induced DMN connectivity

change and striatal D2/3Rs in two additional analyses. First, there was no correlation between striatal

D2/3R availability and functional connectivity averaged over the whole task session (i.e. mean net-

work functional connectivity over all task blocks) in the DMN (Caudate: rho = 0.07 [�0.23,. 36], d.

f. = 46, P = 0.63; Accumbens: rho = 0.05 [�0.25,. 34], d.f. = 46, P = 0.75; Whole Striatum:

rho = 0.16 [�0.14,. 43], d.f. = 46, P = 0.29). Similarly, there was also no significant relationship

between regional D2/3R availability and whole-session connectivity in the TPN or DMN-TPN (all

P > 0.15). Second, there was no relationship between D2/3R availability in the substantia nigra/ven-

tral tegmental area (SN/VTA, where the D3R fraction of the PHNO signal approaches 100%

[Tziortzi et al., 2011]) and cortical network connectivity change (DMN: rho = 0.01 [�0.28,. 30], d.
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Figure 3. Task-induced changes in DMN and TPN functional connectivity. Increasing working memory load is accompanied by decreasing functional

connectivity within the DMN (negative w1 values) and increasing functional connectivity within the TPN (positive w1 values). (A) Mean task-induced

functional connectivity change of each network edge (node-node connection) in the whole sample. Each edge (cell of the matrix) represents the

regression coefficient (w1 value) of connectivity change as a function of working memory load, averaged over the whole group. Arrows and black lines

indicate the boundary separating nodes allocated to the empirical DMN vs TPN. (B) Mean task-induced functional connectivity change within the DMN,

TPN and DMN-TPN across the whole group. Left: Group mean (± S.E.M) functional connectivity strength (Fisher z-transformed r-value) within the DMN,

TPN and DMN-TPN as a function of working memory load. Right: Group mean (± S.E.M) task-induced functional connectivity change w1ð Þ within the

DMN, TPN and DMN-TPN. w1 was significantly different to zero in both the DMN (t50 = -2.33, P = 0.02, one-sample t-test) and TPN (t50 = 2.70, P = 0.01,

one-sample t-test), but not the DMN-TPN (t50 = 0.65, P = 0.52, one-sample t-test). Repeated measures ANOVA indicated that w1 was not equal within

the DMN, TPN and DMN-TPN edges (F2,100 = 11.16 P < 0.001), and post-hoc paired t-tests confirmed that the w1 of the DMN was significantly lower

than both the TPN and DMN-TPN (t50 = -4.56, P < 0.001 and t50 = -3.01, P = 0.004, respectively), but that there was no significant difference between

the w1 of the TPN and DMN-TPN (t50 = 1.62, P = 0.11).
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f. = 46, P = 0.93); TPN: (rho = �0.10 [�0.38,. 20], d.f. = 46, P = 0.50); DMN-TPN: (rho = �0.12

[�0.40,. 18], d.f. = 46, P = 0.42).

Of note, the correlation between DMN connectivity change and D2/3R availability in the SN/VTA

was significantly weaker than the correlation with D2/3R availability in the caudate (z = 2.54 [0.11,

0.83], P = 0.01), and whole striatum (z = 2.29 [0.06, 0.72], P = 0.02), but not the ventral striatum

(z = 1.7 [-0.05, 0.67], P = 0.09).
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Figure 4. The relationship between striatal D2/3R availability, task-induced change in DMN connectivity, and task performance. (A) The significant

positive correlation between striatal D2/3R availability and task-induced change in connectivity within the default mode network (DMN), where negative

values on the y-axis indicate a reduction in connectivity. Lower caudate D2/3R availability is related to a task-induced reduction in DMN connectivity. (B)

The relationship between task-induced functional connectivity change within the DMN and working memory robustness, �DpRT 2:5ð Þ (a value of 0

indicates that performance is unaffected by increasing working memory load, while negative values indicate that performance decreases with increasing

cognitive demands). Negative values on the x-axis indicate a task-induced reduction in DMN connectivity. Task-induced decreases in DMN connectivity

were associated with greater working-memory related behavioural impairment. (C) Mediation analysis. Greater caudate D2/3R availability has a

significant but indirect association with improved task performance, mediated via task-induced connectivity change within the DMN. Pearson’s

correlation coefficients in (C) are reported in the sample of 48 participants (d.f. = 46) who had both PET and fMRI.

DOI: https://doi.org/10.7554/eLife.45045.006
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The relationship between network connectivity changes and
performance
There was a significant positive correlation between the task-induced change in DMN connectivity

and working memory performance (defined as the robustness of performance to increasing cognitive

load, �DpRT 2:5ð Þ) (rho = .45 [.20,.64], d.f. = 49, P < 0.001), indicating that participants who showed

the greatest task-induced reduction of functional connectivity within the DMN also showed the most

marked load-dependent impairment in task performance (Figure 4b). This result was robust to a

wide range of penalization ratios from 2.5 to 4 (all P < 0.001). There was no similar relationship for

connectivity change within the TPN or DMN-TPN (�DpRT 2:5� 4ð Þ; all P > 0.50), and also no relation-

ship between performance and mean functional connectivity averaged over the whole task session in

the DMN or TPN (�DpRT 2:5� 4ð Þ; all P > 0.50).

The relationship between striatal D2/3Rs and performance
There was a positive relationship between D2/3R availability in the caudate and �DpRT 2:5ð Þ

(rho = 0.33 [.04,. 57], d.f. = 46, P = 0.02), which remained significant for penalization ratios from 2.5

to 4 (all P < 0.02). This relationship was not present for D2/3R availability in the accumbens

(�DpRT 2:5ð Þ: rho = 0.10 [�0.20,. 38], d.f. = 46,, P = 0.50. P > 0.4 for �DpRT 2:5� 4ð Þ), and the differ-

ence between these correlation coefficients was itself significant (z = 2.44 [0.05, 0.44], P = 0.01). The

correlation between performance and D2/3R availability in the whole striatum was present at trend

level (�DpRT 2:5ð Þ: rho = 0.27 [�0.02,. 52], d.f. = 46, p=0.06. P < 0.06 for �DpRT 2:5� 4ð Þ). There was

no relationship between D2/3R availability in the SN/VTA and performance (�DpRT 2:5ð Þ rho = 0.13

[�0.17,. 41], d.f. = 46, P = 0.37. P > 0.3 for �DpRT 2:5� 4ð Þ).

Striatal D2Rs are thought to exert an influence on cognitive function through a more direct effect

on the excitability and function of cortical circuits (Cools and D’Esposito, 2011; Frank and O’Reilly,

2006; Salami et al., 2019). Having found a significant relationship between striatal D2/3R availability

and both task-induced DMN connectivity, and a relationship between both measures and task per-

formance, we tested whether the influence of striatal D2/3R availability on performance is mediated

by the effect of the former on task-induced connectivity change within the DMN. A mediation analy-

sis indicated that the effect of caudate D2/3R availability on working memory performance is medi-

ated through the direct effect of D2/3R availability on task-induced DMN connectivity change

(�DpRT 2:5ð Þ: average causal mediation effect (ACME) = 0.03 [0.01, 0.12], P = 0.015. The mediation

effect remains significant at P < 0.015 for �DpRT 2:5� 4ð Þ) (Figure 4c). This analysis was also signifi-

cant using D2/3R availability from the whole striatum (�DpRT 2:5ð Þ: ACME = 0.04 [0.01, 0.14], P =

0.026. P < 0.03 for �DpRT 2:5� 4ð Þ), but was not significant using D2/3R availability from the accum-

bens (�DpRT 2:5ð Þ: ACME = 0.002 [<0.001, 0.12], P = 0.09. P > 0.08 for �DpRT 2:5� 4ð Þ). As

expected, there was no significant mediation effect when the mediator variable was task-induced

connectivity changes within the TPN (all P > 0.6) or DMN-TPN (all P > 0.3). These results suggest

that striatal D2/3Rs, particularly in the caudate, might exert an influence on working memory perfor-

mance through a more direct effect on task-induced functional connectivity changes within the

DMN. Participants with higher striatal D2/3R availability exhibited the least pronounced DMN con-

nectivity decreases with working memory load, which predicted more robust task performance in

the face of increasing working memory load.

Relationship between striatal D2/3R availability and task-related
activation
Our results support the conclusion that striatal D2/3R availability, particularly within caudate, is

related to task-induced changes in DMN connectivity and working memory performance. For com-

pleteness, we conducted two analyses to test for a relationship between D2/3R availability within

this region and inter-individual differences in task-evoked BOLD activation. First, using a standard

mass-univariate analysis we tested whether there was a relationship between the parametric BOLD

response to working memory load and caudate D2/3R availability. We found no evidence for a linear

or quadratic relationship at P < 0.05, whole-brain level. In a second analysis we used partial least

squares (PLS) regression for fMRI, to test for the presence of a multivariate pattern of brain activity

that shows a relationship to inter-individual differences in caudate D2/3R availability. This analysis

again did not detect significant latent variables (LVs) showing a relationship to caudate D2/3R
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availability (1st LV P-value = 0.20). However, consistent with the standard mass univariate fMRI analy-

sis (Figure 2a), a standard PLS analysis found strong evidence for BOLD modulation by working

memory load in a widespread cortical frontoparietal network (1st latent variable significant at

P < 0.001).

Within-subject relationship between DMN strength and performance
The between-subjects analysis so far has considered the relationship between the average task-

induced connectivity change within the DMN and working memory performance, finding that as cog-

nitive load increases, the individuals who showed the greatest DMN connectivity decreases also

showed the greatest working memory performance degradation. We employed a within-subject lin-

ear regression approach to investigate whether block-specific DMN connectivity is a significant pre-

dictor of working memory performance (see Materials and methods). A simple regression analysis

confirmed that block-wise DMN connectivity strength is a significant within-subject predictor of

working-memory performance (using pRT 2:5ð Þ, w1 = -.10 [-.17, -.02], P = 0.01). The results remain sig-

nificant when using pRT 2:5� 4ð Þ). When including block-specific working memory load as an addi-

tional predictor variable in the model, this effect was not statistically significant (using pRT 2:5ð Þ, w2 =

-.04 [-.10,. 01], P = 0.14. P > 0.2 when using pRT 2:5� 4ð Þ). As expected, this analysis confirmed a sig-

nificant effect of working memory load (w1) on performance (all P < 0.001). As increased pRT is indic-

ative of poorer performance, the negative regression coefficients in these analyses indicate that in a

given task block, stronger DMN connectivity is a predictor of improved working memory perfor-

mance within an individual. This is in line with the between-subject finding that poorer performing

participants show the most exaggerated DMN connectivity reductions with increased working mem-

ory load.

Analysis using d-Prime behavioural measure
Finally, for completeness we repeated the analysis using the discriminability index (d’)

(Haatveit et al., 2010) as the measure of working memory performance. As with the pRT metric, for

each individual we regressed mean d’ for each task condition on working memory load, and defined

overall performance as the regression coefficient on working memory load. Using this performance

metric, there was no relationship between task-induced DMN connectivity change and performance

(rho = 0.12 [-.17,. 39], d.f. = 49, P = 0.4), and no relationship between performance and D2/3R avail-

ability in any striatal sub-region (all P > 0.2).

Importantly, compared to pRT, d’ is not sensitive to differences in processing speed (i.e. reaction

time) between task conditions with similar performance accuracy, and also cannot differentiate

between (incorrect) response omissions and (correct) ‘non-target’ responses on non-target trials (the

dominant trial type). Consistent with these theoretical considerations, in our sample d’ was not sig-

nificantly different between the two easiest task conditions (0-back d’ = 3.5, 1-back d’ = 3.6. P =

0.7), but was significantly worse in the 2-back condition (d’ = 2.8) compared to both 0- and 1-back

(both P < 0.001). In light of these results we conducted a series of exploratory analyses focussing on

DMN functional connectivity and performance (d’) changes from 0- to 1-back, and from 1- to 2-back

separately. From the 1-back to 2-back condition there was a significant correlation between DMN

connectivity change (DMN1back – DMN2back) and performance change (d’1back – d’2back) (rho = 0.30

[0.01, 0.54], d.f. = 49, P = 0.03). This relationship was not present for the 0-back minus 1-back con-

trast (rho = 0.19 [-.10,. 45], d.f. =49, P = 0.17). However, there was no relationship between perfor-

mance change, either from 0- to 1-back, or from 1- to 2-back, and D2/3R availability in any striatal

sub-region (all P > 0.29).

Discussion
We measured striatal D2/3R availability and task-related cortical network connectivity in a large sam-

ple of young healthy participants. The novel contribution of the study is the demonstration that

lower striatal D2/3R availability, particularly in the caudate, is associated with greater reduction in

task-induced DMN functional connectivity, and that participants with greater reductions in DMN

connectivity show worse performance with increasing working memory loads. Our findings indicate

that caudate D2/3R availability might affect working memory performance by modulating task-

induced functional connectivity changes within the DMN.
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Regional specificity of the relationship between D2/3R signalling and
working memory
The primate striatum is anatomically organised in a functionally-specific manner, with ventral regions

(e.g. accumbens) contributing to limbic and reward processing, and more dorsal regions (including

dorsal caudate) supporting motor and executive (e.g. working memory) function (Dahlin et al.,

2008; Rieckmann et al., 2011; Levy et al., 1997; McCutcheon et al., 2019; Haber et al., 2000).

Several of our results are in accordance with this hypothesis. First, the correlation between striatal

D2/3R availability and task-induced DMN connectivity change is numerically (but not significantly)

greater in the caudate compared to the accumbens. Second, the positive correlation between stria-

tal D2/3R availability and working memory performance was significantly greater in the caudate,

compared with the accumbens. Third, the mediation analyses indicated a significant effect of cau-

date, but not accumbens, D2/3R availability on performance, mediated through a direct effect on

DMN connectivity change. Furthermore, we report no significant relationships between D2/3R avail-

ability in the SN/VTA and DMN connectivity change or behaviour. Although these results are consis-

tent with a regional functional specificity of D2/3R signalling within the mesostriatal circuit, their

interpretation is complicated by the use of [11C]-(+)-PHNO to measure D2/3R availability. [11C]-(+)-

PHNO is a strongly D3R-preferring agonist tracer, and there are large regional differences in D2R:

D3R contribution to [11C]-(+)-PHNO BPND. Specifically, the D3R fraction of this signal is negligible in

the dorsal caudate, approximately 20–25% in the ventral striatum, and approaches 100% in the SN/

VTA (Tziortzi et al., 2011; Searle et al., 2010). An alternative interpretation of our findings, there-

fore, is that there are significant differences in the manner in which mesostriatal D2R and D3R signal-

ling supports working memory. Indeed, previous work has shown that D2R and D3R may have

different effects on certain cognitive processes (Groman et al., 2016; Groman et al., 2011;

Groman et al., 2014).

The relationship between striatal D2/3R signalling, cognitive
performance and cortical activity
We find a positive correlation between caudate D2R availability and working memory performance.

A recent PET study in older adults (mean age 66.2) reported no relationship between caudate D2R

availability (indexed using the D2R-preferring antagonist tracer [11C]raclopride) and working memory

performance, (Nyberg et al., 2016) suggesting that the relationship between D2/3R signalling and

cognition may differ across the lifespan.

Theoretical and experimental studies implicate striatal dopamine, and particularly D2/3Rs, in the

flexible updating of cortical representations, (D’Esposito and Postle, 2015; Cools and D’Esposito,

2011) possibly mediated via a disinhibition of thalamocortical loops (Frank et al., 2001).

We found a positive correlation between caudate D2/3R availability and task-induced cortical

functional connectivity change within the DMN and the DMN-TPN, and a non-significant positive

correlation with task-induced TPN connectivity. Of note, the difference between dopamine-DMN

and dopamine-TPN correlations was not statistically significant, and we believe it is therefore prema-

ture to claim that the influence of D2/3R signalling on cortical excitability is specific for the DMN.

Recent animal studies shed light on the potential mechanisms through which striatal D2Rs might

influence cortical network activity. Mice that have been genetically engineered to overexpress post-

synaptic D2Rs in the striatum show impaired performance on tasks that require working memory

updating and memory stabilisation in the face of interference (Simpson and Kellendonk, 2017).

These animals also have increased D1R sensitivity and impaired inhibitory neurotransmission within

the prefrontal cortex (PFC), (Kellendonk et al., 2006; Li et al., 2011) and manifest several abnormal-

ities in dopaminergic ventral tegmental area (VTA) neuron function, including reduced mean firing,

(Krabbe et al., 2015) reduced working memory-dependent phase-locking, and reduced working

memory-dependent VTA-PFC synchrony (Duvarci et al., 2018). These changes may be due to an

increase in inhibitory signalling from D2R-expressing striatal medium spiny neurons to the VTA

(Cazorla et al., 2012). Interestingly, the reduction in task-related oscillatory coupling between VTA

(but not substantia nigra) dopamine neurons and PFC is directly related to impaired working mem-

ory performance, (Duvarci et al., 2018) suggesting that our observed relationship between striatal

D2/3R availability, cortical activity and task performance might reflect the influence of striatal D2/3Rs

on mesocortical dopaminergic projections, via an inhibitory connection from the striatum to the
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midbrain (Krabbe et al., 2015). However, it is unclear to what extent the neurophysiological altera-

tions found in the D2R overexpression mouse model accurately mirror the effects of higher D2R

availability in healthy human volunteers. Future animal experiments that employ PET, electrophysio-

logical recordings, and fMRI measures of functional connectivity would help to address this question,

and facilitate interpretation of human imaging results.

We find no evidence for a relationship between striatal D2/3R availability and task-induced BOLD

activation using either mass-univariate or multivariate regression (PLS) approaches. We note with

interest a recent [11C]raclopride PET and fMRI study that used a PLS approach to investigate the

relationship between working memory-induced BOLD activation and D2R availability in older adults

(mean age 66.2) (Salami et al., 2019). The authors find that task-induced BOLD activation in wide-

spread striatal and (largely frontal) cortical regions is related to D2R availability measures in a differ-

ential manner for normal- and low-performing participants. This study differs from the present study

in several key respects. Age differences between the study samples suggest that the influence of

dopamine on fMRI activation patterns may differ across the lifespan. Second, the study by Salami

and colleagues used hierarchical factor modelling to estimate latent factors relating to striatal, neo-

cortical and limbic D2/3R availability, and used these latent factors as the predictor variables in a sin-

gle PLS model. Finally, differences in D2R:D3R binding properties of [11C]raclopride and [11C]-(+)-

PHNO may also contribute to the apparent discrepancy between the results.

Beyond D2/3R signalling – the wider role of dopamine in cognitive
performance and cortical activity
Beyond striatal D2/3R availability, previous human PET-fMRI studies have investigated the relation-

ship between other facets of dopamine function and both cortical activity and performance during

tasks. For example, PET studies investigating striatal dopamine synthesis capacity have reported

positive, (Berry et al., 2018a; Cools et al., 2008; Landau et al., 2009; Vernaleken et al., 2007)

negative, (Braskie et al., 2008; Dang et al., 2012a) and quadratic relationships (Berry et al., 2016)

with performance on tasks requiring working memory and cognitive flexibility. This heterogeneity

likely reflects the fact that optimal performance relies on a task-specific balance between stability

and flexibility of neural representations, with the former supported by cortical D1Rs, and the latter

supported in part by striatal D2Rs (D’Esposito and Postle, 2015; Cools and D’Esposito, 2011;

Frank et al., 2001; O’Reilly, 2006; Bilder et al., 2004). Impaired performance can therefore arise in

contexts of both excess (supra-optimal) and impoverished (sub-optimal) D2/3R signalling,

(Cools and D’Esposito, 2011; Frank and O’Reilly, 2006; Cools et al., 2007; Samanez-Larkin et al.,

2013) which may shed light on the nature of cognitive impairment in conditions of both elevated

and reduced striatal dopamine signalling (Millan et al., 2012; Braskie et al., 2008; Dahlin et al.,

2008; Bäckman et al., 2000; Matuskey et al., 2016; Simpson et al., 2010; McCutcheon et al.,

2018a; Meder et al., 2019). It is therefore conceivable that the impaired working memory perfor-

mance seen in psychiatric conditions such as schizophrenia reflects supra-optimal D2R signalling,

whereas in our healthy volunteer population, non-pathological elevation in D2R availability

was predictive of improved performance.

Neurally, striatal dopamine synthesis capacity has also been reported to have a quadratic relation-

ship with task-induced frontoparietal activation, (Berry et al., 2016) with mixed results relating to its

relationship with DMN deactivations (Dang et al., 2012a; Braskie et al., 2011). Moreover, two stud-

ies report that striatal D1R availability is related to frontoparietal connectivity averaged over an

entire working memory task session, but not task-induced connectivity changes (Rieckmann et al.,

2011; Roffman et al., 2016). However, we find no relationship between D2/3 receptor availability

and whole-session functional connectivity within the DMN or TPN during the task.

Although there is significant covariation between striatal dopamine synthesis capacity and D2R

availability, (Berry et al., 2018b) and between striatal D1R and D2R binding, (Groman et al., 2014)

further dual-tracer human PET studies will be required to fully characterise the relationship between

different facets of dopamine function reported in the discussed studies. It is noteworthy, however,

that both theoretical and empirical studies suggest that different dopamine receptor subtypes have

differential effects on working memory function and learning (Groman et al., 2016; Groman et al.,

2011; Groman et al., 2014; Durstewitz and Seamans, 2008).
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The relationship between task-induced cortical connectivity and
cognition
We report decreased DMN functional connectivity with increased working memory load, which is

related to task performance. These results are consistent with studies that report task-induced

decreases in DMN functional connectivity, and with studies that highlight the importance of cortical

network reorganisation for task performance (Shine and Poldrack, 2018; Shine et al., 2016;

Cole et al., 2014; Finc et al., 2017; Liang et al., 2016; Vatansever et al., 2015; Fornito et al.,

2012). The relationship between task-induced decreases in DMN functional connectivity and

impaired cognitive performance may reflect recent evidence that the DMN, rather than being ‘task-

negative’ as such, is activated by conditions in which large shifts of attention are required during

cognitive operations (Smith et al., 2018; Arsenault et al., 2018; Crittenden et al., 2015). Failure to

recruit the DMN may therefore hamper the cognitively demanding selection and deselection of rep-

resentations with increasing working memory loads.

Limitations and strengths
We interpret our results in light of the prior literature showing that striatal dopamine may influence

cognitive performance and task-induced neuronal activity. However, a key limitation of the present

study is that it is not possible to make strong inferences regarding the direction of causality from

purely observational studies. Related to this, there may be (unmeasured) neuronal variables, in addi-

tion to task-induced DMN connectivity change, which covary with striatal D2/3R availability, and

which may exert a more direct causal influence on working memory performance. These concerns

can only be addressed in fully randomised interventional experimental designs. Secondly, although

our study does not allow us to test whether the reported relationships are specific to the D2/3R (or

whether they additionally extend to the D1R, for example), previous studies have suggested that

D2Rs and D1Rs have different relationships with cognitive performance and cortical connectivity

(Groman et al., 2014; Roffman et al., 2016). Finally, the interpretation of the [11C]-(+)-PHNO BPND

signal is inherently ambiguous, as it reflects both total D2/3R density, and endogenous synaptic

dopamine levels. Future studies employing dopamine depletion interventions are therefore required

to disambiguate which of these variables is more related to cortical connectivity and cognitive per-

formance (Caravaggio et al., 2014). Our study has a number of strengths that extend the current lit-

erature, including the large sample size, measurement of D2/3R and cortical connectivity in the same

participants, and examination of both task-induced and whole-session functional connectivity.

Clinical implications
An improved mechanistic understanding of the relationship between striatal D2/3R signalling and

cognitive performance is highly relevant for understanding the cognitive deficits seen in normal age-

ing (associated with reduced striatal D2R availability [Bäckman et al., 2000; Matuskey et al.,

2016]), and neuropsychiatric conditions associated with dysregulated striatal dopamine such as Par-

kinson’s disease and schizophrenia (Millan et al., 2012; Simpson et al., 2010; McCutcheon et al.,

2018a; Meder et al., 2019). In schizophrenia, for example, there is elevated striatal dopamine sig-

nalling, (McCutcheon et al., 2018a) abnormal DMN resting functional connectivity and task-induced

deactivation, (Landin-Romero et al., 2015; Whitfield-Gabrieli et al., 2009) and a well-replicated

deficit in tasks involving working memory manipulation and resistance to distraction (Simpson et al.,

2010; Simpson and Kellendonk, 2017; Anticevic et al., 2012). Moreover, animal evidence suggests

that supra-optimal striatal D2R signalling may underlie some of these neurophysiological and cogni-

tive abnormalities, providing one rationale for the use of D2/3R antagonists in symptomatic treat-

ment. Our results shed new light on the potential neurophysiological and circuit mechanisms relating

striatal D2/3R signalling to cognitive performance in healthy young adults, where inter-individual dif-

ferences in receptor availability lie within the healthy population distribution. An unanswered ques-

tion is whether the observed relationships between striatal D2/3R availability, task-induced cortical

connectivity and task performance, are qualitatively similar to those seen in conditions such as

schizophrenia or Parkinson’s disease, or whether an inverted-U relationship is revealed when consid-

ering these clinical populations (Cools and D’Esposito, 2011; Meder et al., 2019). Future studies

employing similar multimodal imaging designs in these clinical populations, ideally both on and off

dopaminergic medication, will be crucial in addressing this question.
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Conclusions
We employ a multimodal neuroimaging approach to test the relationship between striatal D2/3R

availability and working memory performance. We find that reduced D2/3R availability, particularly

in the caudate, is directly related to a greater task induced reduction in DMN functional connectivity,

and that greater reductions are associated with worse task performance. In a mediation analysis we

show that D2/3R availability may support working memory performance through its relationship with

task-induced DMN connectivity change. These findings could help explain natural variation in work-

ing memory performance, as well as cognitive decline seen in healthy ageing and cognitive impair-

ments associated with neuropsychiatric disease.

Materials and methods

Participants
The study was approved by the local NHS Research Ethics Committee and the Administration of

Radioactive Substances Advisory Committee, and was conducted at Imanova Centre for Imaging Sci-

ences (Invicro Ltd), London. The initial study sample consisted of 53 participants, who all completed

the n-back fMRI task session. Two participants were excluded from further analysis: one owing to

MR imaging artefact caused by orthodontic braces, and a second owing to non-performance of the

task (‘no response’ rates > 3 SD from the group mean). Fifty-one healthy participants were therefore

included in the final fMRI analysis (mean age 25.8 years [SD 6.5], 30 male), forty-eight of whom had a

[11C]-(+)�4-propyl-9-hydroxy-naphthoxazine ([11C]-(+)-PHNO) PET scan (two participants declined a

PET scan, and a third terminated the scan due to nausea). All participants provided written informed

consent to take part in the study.

Task design and behavioural analysis
Details of the n-back task are shown in Figure 1 and details of performance measurement are

described in main text. The task was coded in PsychoPy version 2 (https://www.psychopy.org).

Details of the proportional penalized reaction time (pRT) performance metric are presented in main

text.

In addition to the pRT, we also present analyses using the discriminability index (d’) performance

metric. d’ is defined as:

d
0

¼ Z hit rateð Þ�Z false alarm rateð Þ

, where ‘hit rate’ is the proportion of targets that the participant correctly identified, ‘false alarm

rate’ is the proportion of non-targets incorrectly identified as targets, and Z(x) denotes the inverse

of the cumulative distribution function of the Gaussian distribution. We adjusted perfect scores at

each working memory load level with the following formulae: 1� 1=2n for ‘hit rate’=1, and 1= 2nð Þ for

‘false alarm rate’=0, where n is the total number of targets (potential hits) or non-targets (potential

false alarms) over the entire task (for ’hit rate’ and ’false alarm rate’, respectively) (Haatveit et al.,

2010).

MR image acquisition
Magnetic resonance (MR) images were acquired using a Siemens MAGNETOM Verio 3 T magnetic

resonance imaging scanner and a 32-channel phased-array head-coil. We acquired a MPRAGE (Mag-

netization Prepared Rapid Gradient Echo) structural MRI scan from each participant at the start of

the MRI scanning session, using parameters based on the Alzheimer’s Disease Research Network

(Jack et al., 2008) (ADNI-GO; 160 slices x 240 � 256, TR = 2300 ms, TE = 2.98 ms, flip angle = 9

degrees, 1 mm isotropic voxels, band-width = 240 Hz/pixel, parallel imaging (PI) factor = 2). We

acquired B0 fieldmaps to unwarp EPI images during pre-processing (Hutton et al., 2002). Functional

images were acquired with a multiband sequence, using a multiband acceleration factor of 2

(Demetriou et al., 2018). We acquired 275 whole-brain volumes per session, consisting of 72 inter-

leaved slices (2 mm thickness), with a repetition time (TR) of 2000 ms, echo time (TE) of 30 ms, an in-

plane resolution of 3 � 3 mm, flip angle of 62˚, and bandwidth of 1906 Hz/pixel.
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fMRI activation analysis
Mass-univariate analysis
We used Statistical Parametric Mapping 12 (SPM12) software (http://www.fil.ion.ucl.ac.uk/spm) for

the event-related analysis. fMRI time series were realigned to the mean image, unwarped using the

B0 fieldmaps generated by the Fieldmap toolbox, (Hutton et al., 2002) co-registered to the struc-

tural image and normalisation to MNI space using the DARTEL toolbox, (Ashburner, 2007) with 8

mm full-width at half-maximum (FWHM) Gaussian kernel smoothing. The first level general linear

model (GLM) included a boxcar regressor for task blocks, accompanied by a parametric modulator

for working memory load (Roffman et al., 2016; Schmidt et al., 2009), in addition to six motion

realignment nuisance parameters. We additionally included temporal derivatives (first-order differen-

ces), applied an AR(1) model (to account for serial correlations in the fMRI time series) and used a

128 s cut-off high pass filter. At the second level we identified voxel clusters where blood-oxygen-

level dependent (BOLD) signal was positively (activation) and negatively (deactivation) correlated

with working memory load using one-sample t-tests on the estimated responses for the first level

analysis. We used a second-level regression analysis to identify voxels that showed an activation/

deactivation pattern that correlated with �DpRT 2:5ð Þ or [11C]-(+)-PHNO BPND. Random field theory

was used to correct for multiple comparisons. We report clusters that survive family-wise error cor-

rection at p<0.05 at the whole-brain cluster level (cluster forming threshold set to p<0.001 (uncor-

rected) to ensure a well behaved family error control) (Eklund et al., 2016).

Spatiotemporal (ST-) Partial Least Squares (PLS) Regression analysis
In addition to the mass-univariate activation analysis, we also analysed the pre-processed functional

images using the (multivariate) PLS approach, using the ST-PLS toolbox for MATLAB (https://www.

rotman-baycrest.on.ca/pls/). First, we conducted a standard PLS analysis (with mean-centering) to

identify brain regions where BOLD activity covaried with working memory load (where blocked con-

ditions were: ‘rest’, ‘0back’, 1-back’ and ‘2back’). Next, we used ‘Regular behavioural PLS’ to investi-

gate whether there were regions where the variation in BOLD in the task conditions was itself

related to caudate D2/3R availability. This method is described in detail in Salami et al. (2019) and

McIntosh et al. (2004). In brief, the analysis conducts a singular value decomposition on the cross-

block correlation matrix (correlation between BOLD activity across experimental conditions and

dopamine measures) to identify orthogonal latent variables (LVs) that best represent the relation-

ships between the BOLD activity and the task condition or dopamine measure (Salami et al., 2019).

The statistical significance of each LV was assessed using permutation tests (n = 1000). LVs were con-

sidered statistically significant only if the proportion of permuted singular values that exceeded the

original singular value was < 0.05.

fMRI functional connectivity analysis
Our primary analysis focussed on the task-induced functional connectivity changes between cortical

brain regions within task-positive and task-negative cortical networks. We define the functional con-

nectivity between two brain regions (the strength of the ‘edge’ connecting two regions in a network,

in the terminology of Graph Theory [Rubinov and Sporns, 2010]) as the Fisher z-transformed Pear-

son’s correlation coefficient between the BOLD time-series in each region. Brain regions themselves

(the ‘nodes’ of a network) are taken from the Gordon cortical parcellation, a network parcellation

based on fMRI functional connectivity patterns observed in a sample of 120 healthy young adults

(Gordon et al., 2016). The functional connectivity analysis pipeline consisted of (1) spatial and tem-

poral pre-processing, (2) data-driven detection of empirical task-positive (TPN) and default mode

(DMN) cortical networks, and (3) definition of mean load-dependent functional connectivity change

within the TPN and DMN, similar to previous studies (McCutcheon et al., 2018b).

Pre-processing
We employed a standard fMRI pre-processing pipeline implemented in the CONN toolbox (Whit-

field-Gabrieli and Nieto-Castanon, 2012) (version 17 .f) (https://www.nitrc.org/projects/conn) within

MATLAB. fMRI pre-processing included (1) slice timing correction, (2) realignment of functional

scans, (3) normalisation to MNI space and (4) spatial smoothing (Gaussian kernel of 8 mm FWHM). In

the denoising step we used linear regression to remove the influence of the following confounding
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effects on the fMRI time course: (1) BOLD signal from the white matter and CSF voxels (five compo-

nents each, derived using the anatomical component-based correction (aCompCor) implemented

using the ART toolbox), (2) six residual head motion parameters and their first order temporal deriv-

atives, (3) scrubbing of artefact/outlier scans (average intensity deviated more than five standard

deviations from the mean intensity in the session, or composite head movement exceeded 0.9 mm

from the previous image), and (4) effect of task-condition using separate block regressors (for 0-, 1-,

and 2-back conditions) convolved with the haemodynamic response function. Thus, we performed

the connectivity analysis on the residuals of the BOLD time series after removing condition-related

activation/deactivation effects (Finc et al., 2017; Whitfield-Gabrieli and Nieto-Castanon, 2012;

Fair et al., 2007). Finally, the denoising step included temporal bandpass filtering (0.008–0.09 Hz),

and linear detrending of the functional time course. We did not included global signal regression of

the grey matter voxels in the de-noising process as this is known to introduce spurious anti-correla-

tions between large networks (Murphy and Fox, 2017). Following pre-processing, we performed

condition-dependent functional connectivity analysis on the mean BOLD time course (Whitfield-

Gabrieli and Nieto-Castanon, 2012) extracted from cortical nodes defined by the Gordon parcella-

tion (Gordon et al., 2016).

Task-positive and task-negative network detection
We used the functional connectivity measures for each working memory condition to generate an

undirected weighted covariance matrix, C, for each cognitive load, where cij represents the Fisher

z-transformed Pearson’s correlation coefficient between region i and j (i.e. edge strength between

nodes).

We used the Louvain algorithm (implemented in the MATLAB Brain Connectivity Toolbox,

Rubinov and Sporns, 2010; https://sites.google.com/site/bctnet/) to define group level default

mode (DMN) and task-positive (TPN) networks, on the basis of the functional connectivity covariance

matrix of each individual participant during the ‘0-back’ condition (the implicit motor- and sustained

attention-control condition), setting negative weights to 0 (Cohen and D’Esposito, 2016).

This Louvain algorithm partitions the nodes of the covariance matrix into a community structure

that maximises the modularity of the network, where modularity (Q) is a measure of network segre-

gation, and describes the degree to which a network may be subdivided into non-overlapping com-

munities, with maximal number of within-community connections, and a minimum number of

between-community connections (Shine et al., 2016; Rubinov and Sporns, 2010; Finc et al., 2017;

Rubinov and Sporns, 2011). For positive weighted networks it is defined as:

Q¼
1

v

X

ij

wij �
sisj

v

� �

dMiMj
;

where v is the total strength of the network (v¼
P

ijwijÞ, wij is the strength of the edge connecting

node i to j, si is the strength of node i (si ¼
P

jwijÞ), and d is set to 1 when node i and j are in the

same module, and 0 otherwise (Finc et al., 2017; Rubinov and Sporns, 2011; Schultz and Cole,

2016).

We restricted the community detection analysis a priori to the 97 nodes allocated to the default

mode network (DMN), dorsal attention network (DAN) and frontoparietal network (FPN), as defined

by the Gordon atlas, (Gordon et al., 2016) as these networks have been extensively studied in work-

ing memory paradigms and show a relationship to dopamine function (Rieckmann et al., 2011;

Liang et al., 2016; Roffman et al., 2016; Dang et al., 2012b; Spreng et al., 2010; Cassidy et al.,

2016).

Given the stochastic nature of the Louvain algorithm we used a consensus clustering approach to

ensure the robustness of the final community structure (Lancichinetti and Fortunato, 2012;

Cohen and D’Esposito, 2016; Hearne et al., 2017). Specifically, for each subject we iteratively

applied the algorithm 1000 times with different initial random seeds. This generated 1000 separate

partitions, which were then combined to a single agreement matrix, D, where entry dij represents

the proportion of partitions in which nodes i and j were assigned to the same community. Following

a thresholding step (in which all entries <50% agreement were set to zero), (Cohen and D’Esposito,

2016) the agreement matrix was then subjected to another 1000 iterations of the Louvain algorithm.

This procedure was repeated until each of the resulting 1000 partitions was equal, resulting in a
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binary agreement community matrix (i.e. a consensus partition) for each participant. Finally, a mean

group agreement matrix was created by averaging the consensus partition agreement matrices of

each participant. This group matrix was then itself subjected to the consensus clustering procedure,

until a final group community partition was produced. We used the default resolution parameter

(g ¼ 1).

We used the Sørensen-Dice similarity coefficient (DSC) (Dice, 1945) to quantify the overlap

between cortical voxels of the empirically-derived DMN and task positive network (TPN) nodes, and

the voxels of the deactivation and activation clusters from our event related analysis,

DSC¼
2j X \Yj

Xj jþ jY j
;

where X and Y are the two sets of cortical voxels to be compared and |X| and |Y| are the number of

voxels in each set. We restricted the number of voxels in the activation/deactivation sets to those

lying within a cortical grey matter mask (i.e. the intersection of a cerebral hemisphere mask from

SPM12 PickAtlas and the voxels with grey matter tissue probability value of >50% from the SPM12

tissue probability map). We used a similar analysis to evaluate the overlap between cortical nodes

assigned to the empirical (Louvain algorithm) and a priori (Gordon atlas) task-relevant networks.

Load-dependent functional connectivity definition
For each participant and each edge (connection between nodes of the cortical covariance matrix),

we fitted a simple linear regression model of functional connectivity (Fisher z-transformed r-value) as

a function of working memory load, zFC ¼ w0 þ w1�WMload, and used the w1 regression coefficient

as a measure of load-dependent connectivity change for that edge. For each individual a summary

statistic for task-induced connectivity change within the TPN and DMN was defined as the mean w1

value of all edges within the network. We contrast this task-induced functional connectivity change

with a measure of functional connectivity averaged over the whole task session (both analyses

include identical pre-processing steps) (Whitfield-Gabrieli and Nieto-Castanon, 2012).

Within-subject analysis of relationship between DMN connectivity and
performance
To investigate the influence of cortical network connectivity on working memory performance within

individuals, for each individual we first regressed block-specific performance (pRTi) against block-

specific DMN strength:

pRTi 2:5ð Þ ¼ w0 þ w1 �DMN strengthi

(where i2 {1:18} designate the 18 task blocks). We also repeated this analysis using a model that

contained block-specific working memory load as an additional independent variable:

pRTi 2:5ð Þ ¼ w0 þ w1 �WM loadiþw2 �DMN strengthi

To evaluate the significance of the effect of block-specific DMN connectivity on pRTi 2:5ð Þ at the

group level we used a one-sample t-test on the regression coefficient weighting the DMN_strength

term.

PET image acquisition and analysis
[11C]-(+)-PHNO positron emission tomography (PET) images were acquired using a Siemens Biog-

raph HiRez XVI PET scanner. Each subject first received a low-dose computed tomography scan for

attenuation and model-based scatter correction before the injection of a single intravenous bolus of

0.020–0.029 micrograms/kg [11C]-(+)-PHNO (a high affinity D2/3R agonist ligand) (Narendran et al.,

2006). The mean [11C]-(+)-PHNO mass administered was 1.5 micrograms (SD 0.31) and mean

injected activity was 177.5 MBq (SD 50.0). Dynamic emission data were acquired continuously for 90

min.

Dynamic PET images were reconstructed using a filtered back-projection algorithm into 31 frames

(8 � 15 s, 3 � 60 s, 5 � 120 s, 15 � 300 s) with a 128 matrix, a zoom of 2.6 and a transaxial Gaussian

filter of 5 mm. For PET image analysis we employed an automatic pipeline to obtain an individual
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parcellation of the brain, implemented in MIAKAT (release 4.2.6, http://www.miakat.org),

(Gunn et al., 2016) SPM12 and FSL (version 5.0.9, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki).

Structural MR images were segmented using SPM12 functions to obtain grey matter masks used

for the definition of the reference region during the kinetic analysis. The ICBM152 structural brain

template was non-linearly warped to each subject’s structural MR image, and the derived deforma-

tion parameters were applied to our neuroanatomical atlas to obtain a parcellation of each subject’s

brain into the studied anatomical regions of interest (bilateral whole striatum (caudate, putamen and

accumbens), accumbens, and caudate, as defined by the CIC atlas, [Tziortzi et al., 2011] and sub-

stantia nigra/ventral tegmental area [Nour et al., 2018]). The MRI, associated individual parcellation

and associated grey matter masks were then down-sampled to the PET resolution (2 mm). Dynamic

PET images were corrected for motion using a frame-by-frame registration process with a mutual

information cost function. For each subject the averaged PET image from the entire scan duration

was registered to the down-sampled structural MRI scan with rigid-body registration. The rigid body

matrix was subsequently applied to the motion corrected dynamic PET. Regional time activity curves

(TAC) were obtained by applying the down-sampled individual anatomical parcellations to the

motion-corrected dynamic PET image.

The non-displaceable binding potential (BPND) of [
11C]-(+)-PHNO is defined as follows:

BPND ¼
fNDBavail

KD

where fND is the non-displaceable free fraction of PHNO in the brain, Bavail is the number of D2/3Rs

available to be bound by the radioligand, and 1/KD is the affinity of radioligand for the target. The

simplified reference tissue model (SRTM) was used to derive BPND from the regional time activity

curves (Gunn et al., 1997; Lammertsma and Hume, 1996). We used cerebellar grey matter as the

reference region, defined as the intersection of the warped cerebellum atlas (Tziortzi et al., 2011)

and individual subject grey matter mask.

Statistical Analysis
Statistical analysis was performed using MATLAB (R2017a) and R (version 3.3.1). P < 0.05 (two tailed)

was considered statistically significant for the primary analyses. We hypothesised that the DMN and

TPN would show opposite task-induced connectivity changes with increasing working memory load,

and tested this hypothesis using repeated measures ANOVA and post hoc t-tests. Subsequently, we

used Spearman’s rank correlation coefficient to test for (direct) monotonic relationships between

task-induced connectivity changes within cortical networks and both striatal D2/3R availability ([11C]-

(+)-PHNO BPND) and task performance (where, for each participant, task-induced connectivity

change within a network was defined as the mean w1 value for all edges in the network). Spearman’s

rank coefficient was used as we did not assume that the monotonic relationship between variables

would be linear. We tested the hypothesis that striatal D2/3R availability influences working memory

task performance by modulating cortical network connectivity with a mediation analysis using the

‘mediation’ package in R, implementing a nonparametric bootstrap method with bias-corrected and

accelerated confidence intervals and 10,000 simulation draws. We used the cocor package in R

(http://comparingcorrelations.org/) to compare overlapping, dependent, correlation (Spearman’s

rank) coefficients at P < 0.05 (2-tailed), using Meng et al.’s method for comparing correlation coeffi-

cients (including 95% confidence intervals for difference between correlation coefficients)

(Diedenhofen and Musch, 2015; Meng et al., 1992).
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Salami A, Garrett DD, Wåhlin A, Rieckmann A, Papenberg G, Karalija N, Jonasson L, Andersson M, Axelsson J,
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