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Abstract. The ability to perform large-scale ultrasound simulations us-
ing Fourier pseudospectral methods has generated significant interest in
medical ultrasonics, including for treatment planning in therapeutic ul-
trasound and image reconstruction in photoacoustic tomography. How-
ever, the routine execution of such simulations is computationally very
challenging. Nowadays, the trend in parallel computing is towards the
use of accelerated clusters where computationally intensive parts are of-
floaded from processors to accelerators. During last five years, Intel has
released two generations of Xeon Phi accelerators. The goal of this paper
is to investigate the performance on both architectures with respect to
current processors, and evaluate the suitability of accelerated clusters for
the distributed simulation of ultrasound propagation using Fourier-based
methods. The paper reveals that the former version of Xeon Phis, the
Knight’s Corner architecture, suffers from several flaws that reduce the
performance far below the Haswell processors. On the other hand, the
second generation called Knight’s Landing shows very promising perfor-
mance comparable with current processors.

Keywords: Ultrasound simulations, Pseudospectral methods, k-Wave
toolbox, Intel Xeon Phi, KNC, KNL, MPI, OpenMP, performance eval-
uation, scaling.

1 Introduction

There are many medical applications of ultrasound ranging from ultrasound and
photoacoustic imaging [2] through to neurostimulation and neuromodulation [23]
to direct treatment using high intensity focused ultrasound (HIFU) [5], [14]. The
common characteristic of all these applications is the reliance on fast, accurate
and versatile ultrasound propagation models in biological tissue [17]. A typical
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scenario consists of modeling a nonlinear ultrasound wave propagating from one
or more ultrasound sources through a heterogeneous medium with a power law
absorption and eventually recorded by one or more ultrasound sensors or within
a given region of interest.

Computational speed is still a concern even though supercomputing facili-
ties are used. The fundamental issue is the size of the computational domain
compared to the highest wavelength modeled. This challenge has raised a lot
of interest across the ultrasound, mathematics and high performance computing
communities. As a consequence, several ultrasound modeling packages have been
released, see [8] for a recent review.

One promising approach to discretizing the acoustic governing equations
is the pseudospectral time-domain (PSTD) and k-space pseudospectral time-
domain (KSTD) methods [21]. The main benefit is the exponential convergence
with increasing spatial resolution which can significantly reduce memory require-
ments for large 3D simulations. The KSTD method is considered more accurate
than the PSTD method because it uses a semi-analytical time-stepping schemes
[20], whereas the pseudospectral method uses a finite-difference approximation.
Consequently, the KSTD method allows for a larger time step.

Unfortunately, the relaxation in the required discretization for the PSTD and
KSTD schemes compared to conventional finite-difference schemes is somewhat
counteracted by the introduction of a global trigonometric basis and the use
of the fast Fourier transform (FFT) to compute spatial gradients. For PSTD
schemes, the FFTs are one-dimensional (in the direction of the required gradi-
ent). However, for the KSTD scheme, the introduction of the k-space correction
means the FFTs are performed in three-dimensions. The scaling on parallel sys-
tems is then inherently limited by the necessity of performing distributed matrix
transpositions over all subdomains [11] as part of the 3D FFT. Although a lot
of work on efficient distributed FFTs has been carried out (FFTW [6], P3DFFT
[16], PFFT [18], AccFFT [7] or multi-GPU CUDA FFT [15]), the computation
time is still often determined by the communication between subdomains, which
in many cases prevents the use of accelerators such as GPUs or Intel Xeon Phis.

A promising direction in joining the advantages of FDTD and PSTD methods
is the decomposition of the global Fourier basis into a set of local ones [10]. This
composition inherits the simplicity of the FDTD nearest neighbor halo exchange
while maintaining the spectral accuracy of PSTD and KSTD methods [22].

This paper investigates the suitability of domain decomposition, implemented
as part of the k-Wave toolbox [12], for deployment on cluster of Intel Xeon Phi
accelerators based on both Knight’s Corner (KNC) and Knight’s Landing (KNL)
architectures. First, the principle of local Fourier basis domain decomposition
vital for the distributed computation is explained in Sec 2. Second, the archi-
tecture of two accelerated clusters is described in Sec 3. After that, the main
components of the benchmark implementation are outlined in Sec 4. Section 5
presents the experimental results collected on both clusters and compares the
performance scaling with a CPU cluster. Finally, the most important conclusions
are drawn.
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2 Efficient Local Fourier Basis Domain Decomposition

The local Fourier basis domain decomposition (LFB for short) of PSTD and
KSTD methods splits the 3D domain into a number of cuboid subdomains, each
of which is supported by its own local Fourier basis [10]. The required global
communication is consequently reduced into local direct neighbor exchange of
the overlap regions. However, the split of the Fourier basis breaks the periodicity
condition on local domains. To restore it, Fourier extension methods can be used
[3]. The subdomains are coupled by overlap exchanges and the local subdomain
periodicity is restored by multiplying with a bell function [12], see Fig. 1.

The restriction of the Fourier basis to the local subdomain has naturally a
negative impact on the accuracy of the LFB method. The amount of accuracy
loss depends on the overlap size and the properties of the bell function used [4].
While the overlap size can be chosen by the user as a compromise between the
accuracy and the performance for any particular problem, the shape of the bell
function has be optimized in advance for the whole set of overlap sizes by means
of numerical optimization.

Figure 2 shows the relationship between the accuracy, the size of the overlap,
and the bell function used. Figure 2a shows the dependency of the numerical error
in terms of the L∞ norm on the size of the overlap for the domain split into two
subdomains (a single cut). The figure also compares two different bell functions,
the well known Error (Erf) function [1] and a numerically optimized one. Figure
2b indicates the minimum overlap size required to keep the error below 10−3

or 10−4 for a given number of subdomain interfaces the wave has to cross in a
single Cartesian direction. The conclusion drawn from this figure suggests that
an overlap size of 8 or 20 should be chosen to keep the overall accuracy of 10−3

and 10−4 for decompositions with the total number of subdomains below 512 (8
in every Cartesian direction), respectively.

The numerical model of the nonlinear wave propagation in heterogeneous
absorption medium investigated in this paper is based on the governing equations

Subdomain 1 Subdomain 2 Subdomain 3

(a) Overlap exchange
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Nonlinear Ultrasound Wave Propagation in Tissue 

The governing equations must account for the nonlinear propagation 

of ultrasound waves in tissue, which is a heterogeneous and 

absorbing medium. Accurately accounting for acoustic absorption is 

critical for predicting ultrasound dose under different conditions. The 

required acoustic equations can be written as: 

These equations are discretised using the k-space pseudo-spectral 

method and solved iteratively. This reduces the number of required 

grid points per wavelength by an order of magnitude compared to 

finite element or finite difference methods. For uniform Cartesian 

grids, the gradients can be calculated using the fast Fourier transform. 

Local Fourier Basis Accuracy 

Since the gradient is not calculated on the whole data, numeric error 

is introduced. Its level can be tuned by the thickness of the halo 

region.  

Performance Investigation 

The strong scaling and simulation time breakdown were investigated 

on Emerald and Anselm clusters with up to 128 GPUs. 
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Local Fourier Basis Decomposition 

Local domain decomposition reduces the communication burden by 

partitioning the domain into a grid of local subdomains where 

gradients are calculated locally and the global communication is 

replaced by the nearest-neighbor halo exchange. 

The gradient calculation with the hallo on an i-th subdomain reads as 

follows (b is a bell function smoothening the subdomain interface): 

𝜕𝑝𝑖
𝜕𝑡

= 𝔽−1 𝑖𝑘𝑖𝔽(𝑏 ∙ 𝑝𝑖)  

subdomain 1 subdomain 2 subdomain 3 
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Realistic Simulations and Their Costs 

Pressure field from a prostate ultrasound transducer simulated using 

a domain size of 1536 x 1024 x 2048 (45mm x 30mm x 60mm) with 

48,000 time steps (60μs). 
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(b) Periodicity restoration

Fig. 1: The principle of local Fourier basis domain decomposition shown for one
spatial dimension. (a) The local subdomain is padded with an overlap from both
neighboring subdomains. These overlaps are periodically exchanged. (b) After
the exchange, each local subdomain is multiplied by a bell function.
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Fig. 2: The accuracy of the local Fourier basis domain decomposition determined
by the size of the overlap, the number of subdomain interfaces and the shape of
the bell function.

derived by Treeby [21] written as three-coupled first-order partial differential
equations:

∂u

∂t
= − 1

ρ0
∇p+ F , (momentum conservation)

∂ρ

∂t
= −ρ0∇ · u− u · ∇ρ0 − 2ρ∇ · u + M , (mass conservation)

p = c20

(
ρ+ d · ∇ρ0 +

B

2A

ρ2

ρ0
− Lρ

)
. (equation of state) (1)

Here u is the acoustic particle velocity, d is the acoustic particle displacement,
p is the acoustic pressure, ρ is the acoustic density, ρ0 is the ambient (or equi-
librium) density, c0 is the isentropic sound speed, and B/A is the nonlinearity
parameter. Two linear source terms (force F and mass M) are also included.

The computation itself consists of an iterative algorithm running over a given
number of time steps (a detailed description is given in [11], [12]). Each time
step is composed of a sequence of element-wise operations, overlap exchanges
and local 3D FFTs, see Fig. 3 [12]. The majority of the computation time is
usually spent on 3D FFTs or overlap exchanges.

Fig. 3: Simplified computation loop governed by Eq. (1). The blue blocks denote
element-wise operations, yellow 3D FFTs, and orange the overlap exchanges.
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3 Target Architecture

The target architectures of interest are represented by two clusters of Intel Xeon
Phi accelerators. Salomon is an accelerated cluster based on the first generation
of Knight’s Corner architecture operated by the IT4Innovations national super-
computing center Ostrava, Czech Republic3. CoolMUC3 is a newer cluster based
on the second generation of the Knight’s Landing architecture operated by the
Leibniz Rechenzentrum in Garching, Germany4.

3.1 Architecture of Knight’s Corners cluster

Salomon consists of 1008 compute nodes, 432 of which are accelerated by Intel
Xeon Phi 7120P accelerators. The architecture of Salomon’s accelerated part is
shown in Fig. 4. Every node consists of a dual socket motherboard populated
with two Intel Xeon E5-2680v3 (Haswell) processors accompanied with 128 GB
of RAM. The nodes also integrate a pair of accelerators connected to individual
processor sockets via the PCI-Express 2.0 x16 interface. The communication
between processor sockets and accelerators is handled by the Intel QPI interface.

The nodes are interconnected by a 7D enhanced hypercube running on the
56 Gbit/s FDR Infiniband technology. The accelerated nodes occupy a subset of
the topology constituting a 6D hypercube. Every node contains a single Infini-
band network interface (NIC) connected via PCI-Express 3.0 to the first socket
and a service 1 Gbit/s Ethernet interface connected to the same socket. Both
accelerators are capable of directly accessing the Infiniband NIC by means of
Remote Direct Memory Access (RDMA).

A single Intel Xeon Phi 7120P accelerator packs 61 P54C in-order cores ex-
tended by 4-wide simultaneous multithreading (SMT) and a 512-bit wide vector
processing unit (VPU). The KNC cores are supported by 30.5 MB of L2 cache
distributed over individual cores and interconnected via a ring bus. The memory

3 https://docs.it4i.cz/salomon/hardware-overview/
4 https://www.lrz.de/services/compute/linux-cluster/coolmuc3/overview_en/
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subsystem consists of 4 memory controllers managing in total 16 GB of GDDR5
[13]. The theoretical performance and memory bandwidth of a single accelerator
is over 2 TFLOP/s in single precision and 352 GB/s, respectively. A single accel-
erator is theoretically supposed to provide a speedup of 4× for compute bound
and 5× for memory bandwidth bound applications over a single twelve core
Haswell processor. The total compute power of the accelerated part of Salomon
reaches one PFLOP/s.

3.2 Architecture of Knight’s Landing cluster

CoolMUC3 consists of 148 nodes equipped with Intel Xeon Phi 7210-F accelera-
tors. The architecture of CoolMUC3 is shown in Fig. 5. The Xeon Phi generation
installed in this system is the first from Intel to be stand-alone. Since a classic
CPU is thus not required to control the computation node, the cluster is com-
posed of single socket nodes populated with the KNL processors only.

The nodes are interconnected by an Intel Omnipath network forming a fat
tree topology. A single node has two independent NICs connected via PCI-
Express 3.0 x16 interfaces offering aggregated throughput of 25 GB/s per node.

Every KNL chip consists of 32 tiles placed in a 2D grid providing a bisec-
tion bandwidth of 700 GB/s. Each tile integrates two out-of-order 4-wide SMT
cores, four 512-bit wide vector processing units and 1 MB of shared L2 cache.
The theoretical performance of a single KNL chip exceeds 5 TFLOP/s in single
precision. The main memory of each node is split between 16 GB of High Band-
width Memory (HBM) and 96 GB of DDR4 providing bandwidth of 460 GB/s
and 80 GB/s, respectively. Since the KSTD and PSTD solvers are proven to be
memory bound, only HBM memory is used in this study. The expected speedup
over a Haswell CPU should attain a factor of 10 for compute bound and 6 for
memory bound applications.
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Fig. 5: The architecture of the CoolMUC3 accelerated nodes and interconnection.
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4 Implementation

The PSTD and KSTD methods (e.g., as implemented in k-Wave) are typical
examples of memory bound problems with a relatively low arithmetic inten-
sity, usually on the order of O(log n) (due to FFTs). Furthermore, the LFB
domain decomposition relies on communication stages which are latency sensi-
tive because very little communication can be overlapped. Such a combination of
algorithm properties suggests the use of parallel architectures with high memory
bandwidth and, ideally, a direct access to NICs. The Intel Xeon Phi accelerators
look very favorable from this point of view.

The proposed implementation can be executed on both CPUs and accel-
erators. Although, it is possible to use any combinations of CPUs and Xeon
Phis concurrently, this is not tested in this paper because no load balancing has
been implemented yet (only uniform decompositions are supported). The code is
logically structured into MPI processes handling single subdomains running on
particular accelerators or CPUs. The work distribution within the subdomain
is implemented by means of OpenMP threads and OpenMP SIMD constructs.
Since realistic simulations do not require double precision, only single precision
floating point operations are used in the critical path. This yields higher perfor-
mance and saves valuable memory bandwidth.

Logically, the simulation code of k-Wave code boils down to a mix of element-
wise operations on 3D real or complex matrices, 3D Fourier transforms and
overlap exchanges. These are further explained in following subsections.

4.1 Element-wise operations

The element-wise operations can easily take the full advantage of the accelerator
memory bandwidth and compute power because of their locality. Listing 1 shows
a typical example of an element-wise computation kernel.

1 const float norm = 1.0f / (Nx * Ny * Nz);
2

3 #pragma omp parallel for collapse(2)
4 for(size_t z = 0; z < Nz; z++) {
5 for(size_t y = 0; y < Ny; y++) {
6 const float ePmlY = pmlY[y];
7

8 #pragma omp simd
9 for(size_t x = 0; x < Nx; x++) {

10 const size_t i = z * Ny * Nx + y * Nx + x;
11 uy[i] = ((uy[i] * ePmlY) - (norm * fftPressure[i])) * ePmlY;
12 }
13 }
14 }

Listing 1: Update of the acoustic velocity field in the y-axis direction with an
application of the perfectly matched layer (PML) optimized for Intel Xeon Phi.
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The kernel runs over three spatial dimensions starting from the most signifi-
cant one to comply with the row-major array ordering. The two outermost loops
are collapsed into a single one and parallelised over multiple OpenMP threads.
Although the loop collapsing introduces some overhead into the calculation of
z and y indices, it is vital for even distribution of the work among many paral-
lel threads. Let us note that up to 256 threads can be executed simultaneously
on the Xeon Phi while the maximum subdomain size which can fit within the
accelerator memory is on the order of 4003 grid points. The innermost loop is
vectorised by means of an OpenMP SIMD pragma to ensure the full utilization
of the vector units.

4.2 Fourier transforms

The most computationally expensive part of the simulation loop consists of 14
3D fast Fourier transforms calculated over the local subdomains. Their actual
implementation relies on third party libraries compatible with the FFTW in-
terface [6], in this case the Intel MKL5 library [9] which is believed to be well
optimized for the Intel Xeon Phi architecture [24].

The algorithms to perform forward and inverse FFTs typically assume com-
plex input and output data. However, the solutions of the wave equation require
only real-valued data in the time domain. This makes the use of real-to-complex
(R2C) and complex-to-real (C2R) transforms possible and reduces the temporal
and spatial complexity of the FFT by a factor of two [19].

The simulation code naturally uses out-of-place transforms to preserve the
input fields needed later in the simulation loop and calculates derivatives in
reusable temporary matrices. Unfortunately, the implementation of the out-of-
place C2R transforms in the MKL library has proved to be very inefficient on
KNC, showing an almost 12× performance drop for bigger subdomains. Hence,
the C2R transforms are performed in-place using a temporary matrix and the
results consequently copied to the destination matrix.

4.3 Overlap exchanges

Before every gradient calculation, it is necessary to synchronize all subdomains
by exchanging the overlap regions, see the orange bars in Fig. 3. Depending on
the rank of the decomposition, up to 26 mutual exchanges are performed per
subdomain. The amount of data being transferred is proportional to the size of
the overlap region, and also dependent on the mutual position of subdomains in
the simulated space. If two subdomains only touch at the corner, only a small
number of grid points is transferred (Nd

3, where d is the size of the overlap). In
contrast, if two subdomains sit side by side, a large block of Nx ×Ny ×Nd grid
points must be transferred.

Since the overlaps have to contain the most recent data, it is difficult to hide
the communication by overlapping it with useful computation. Fortunately, it

5 Intel 2017b and 2018a suite were used on Salomon and CoolMUC3 respectively.
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is possible to decouple the calculation of velocity gradients for each spatial di-
mension and overlap the data exchange with gradient calculations. This enables
two out of three communications to be hidden. The same approach is applied to
the medium absorption calculation where two gradients are calculated indepen-
dently. In total, up to 50 % of the communication time may be hidden.

Practically speaking, the communication overlapping is achieved by a com-
bination of persistent communications and non-blocking calls provided by MPI.
Listing 2 shows the principle of the communication hiding during the velocity
gradient calculation. The calculation of partial derivative of the velocity along a
given axis starts as soon as the overlaps arrive while the other communication
can still be in flight.

1 // Initialization stage
2 for (auto &m: /* Velocity matrices U_x, U_y, U_z */ ) {
3 for(auto &n: m.getNeighbors()) {
4 MPI_Send_init(n.data, n.size, n.otherRank, /* ... */ );
5 MPI_Recv_init(n.data, n.size, n.otherRank, /* ... */ );
6 }
7 }
8

9 // Main simulation loop stage
10 for (auto &m: /* Velocity matrices U_x, U_y, U_z */ )
11 MPI_Startall(m.getRequests().size(), m.getRequests().data());
12

13 for (auto &m: /* Velocity matrices U_x, U_y, U_z */ ) {
14 // Partially overlapped communication
15 MPI_Waitall(m.getRequests().size(), m.getRequests().data(),
16 /* ... */ );
17 Compute_Forward_FFT_3D(m);
18 }

Listing 2: The principle of communication hiding during velocity gradient cal-
culation. Persistent communications are created in the initialization stage (lines
1–7). The exchange on multiple matrices is started at a given place in the simula-
tion loop (lines 9–11). As soon as the communication for a given matrix finishes,
the computation starts. The other transfers can be still in flight (lines 13–17).

5 Experimental Results

Numerical experiments were conduced on a various number of accelerators rang-
ing from 1 to 16. The number of accelerators was limited by our preparatory
allocations enabling the maximum use of 16 nodes on CoolMUC3 and the ca-
pacity of the the express queue on Salomon (8 nodes, 2 accelerators each).

Benchmark runs of the same type were packed into single larger jobs to main-
tain the same MPI rank placement over the cluster between particular bench-
mark runs. Therefore, only a tiny variation, considered insignificant from the
perspective of the overall scaling trends and even the absolute performance,
may be observed between different benchmark runs. Every benchmark run con-
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sists of 100 time steps of the simulation loop summarized in Fig. 3. This number
is deemed sufficient to hide any cache and communication warm-up effects.

The simulation domain was progressively expanded from 256×256×256 (224)
to 1024×1024×512 (229) grid points by sequentially doubling the dimension sizes
starting from the least significant one. The global domains were partitioned into
a number of subdomains growing from 1 to 16. The numbers of subdomains for
particular domain sizes were further restricted by the size of the smallest mean-
ingful subdomain (643) and the largest possible subdomain (256 × 256 × 512)
that can fit within the memory, excluding the overlaps. Particular subdomains
were assigned either to a single accelerator or a single CPU sockets. The reason
for this kind of comparison is twofold. First, the amount of communication over-
head is kept the same and IT4I’s allocation, and second, pricing policies take
only CPU cores into account (and not the accelerator usage).

On the OpenMP level, each subdomain was processed by the optimal number
of threads on a given architecture. For Haswell CPUs we used one thread per core
(12 threads per CPU) whereas the optimal number of threads for a single KNC
accelerator was found to be 120 (2 threads per core). Finally, KNL performed
best using all 256 threads per accelerator.

5.1 Strong scaling evaluation

Figure 6 shows the strong scaling for investigated architectures. Although the
whole range of the overlap sizes between 2 to 32 grid points was investigated,
only one overlap size of 16 is presented for the sake of brevity. Scaling with small
overlap sizes generally runs faster due to a higher degree of communication over-
lapping. For bigger overlap sizes, the absolute execution time is more influenced
by the communication time and the strong scaling curves appear flatter.

Looking at Fig. 6a and 6b, a significant disproportion in the performance
between CPUs and KNC accelerators can be observed. The execution time on
KNC is between 2.2× and 4.3× longer than on CPUs. This behavior was further
investigated by analyzing flat performance profiles. First, the overlap exchange
among accelerators is on average 2× slower than among CPUs. This substantial
overhead can be attributed to a combined effect of the additional PCI-Express
communication and much slower compute cores on the accelerators responsible
for packing the overlaps into MPI messages and their management. The maxi-
mum measured core-to-core bandwidth only reaches 2.65 GB/s, which is about a
half of the theoretical Infiniband bandwidth. Second, the performance of the 3D
FFTs very low. For the subdomain sizes examined in this section, the speedup of
KNC with respect to CPU was between 0.03 for domain sizes of 643 and 0.4 for
domain sizes of 2563. For small domains, this is most certainly due to expected
thread congestion and cache coherence effects such as false sharing. Since the
Intel MKL is a closed software, it was impossible to further investigate this issue.

Apart from the poor absolute performance of KNC, the scaling factors look
favorable. For the three biggest domains, the scaling factor reaches a value of
1.52 every time the number of accelerators is doubled. This yields a parallel
efficiency of 76 %, which is comparable to the CPU cluster.
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(b) Knight’s Corner
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Fig. 6: Strong scaling with overlap size of 16 grid points.

The strong scaling achieved by the KNL cluster is significantly better, see
Fig. 6c. The KNL accelerators are significantly faster than the previous genera-
tion KNC. When only a single accelerator is used, the benchmarks are completed
in an order of magnitude shorter time. When communication comes into play,
the Omnipath interconnection shows its strengths. The average scaling factors
reaches 1.62. This amounts to 4.16× speedup compared to KNCs with the In-
finiband interconnect on Salomon. The comparison against the Haswell CPUs
with 12 cores yields an average speedup of 1.7 in favor of the new Intel Xeon
Phi accelerators.

5.2 Weak scaling evaluation

Figure 7 shows the weak scaling achieved on the CPUs and accelerators. Each of
the plotted series corresponds to a constant subdomain size from the investigated
range between 128 × 128 × 64 and 256 × 256 × 512 grid points. At first glance,
poor weak scaling is observed for CPUs and KNLs when the simulation domain
is split into fewer than 8 subdomains. This is due to the growing rank of the
domain decomposition and the number of neighbors. Since the computation on
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Fig. 7: Weak scaling with overlap size of 16 grid points.

KNC is much slower, there is better possibility for communication overlapping
and the initial growth in the execution time is not observed.

Once a full 3D decomposition is reached, the scaling curves remain almost
flat being a sight of almost perfect scaling. However, to support this statement,
benchmark results using a much higher number of accelerators are needed.

6 Conclusion

The goal of this paper was to investigate the performance scaling and suitability
of two Xeon Phi accelerated clusters for large simulations of ultrasound wave
propagation using Fourier pseudospectral methods and compare the computa-
tional performance against a common CPU cluster.

Starting with the former Knight’s Corner architecture of Intel Xeon Phi, we
conclude that the cluster of KNCs did not come up to expectations when running
the pseudospectral time domain solver of the k-Wave toolbox [12]. The biggest
obstacle was the performance of the 3D fast Fourier transforms, which for the
domain sizes of interest reaches only a fraction of the performance provided by
CPU. This may be caused by a too many active threads when small domains are
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computed, and relatively small L2 caches resulting in many accesses to the main
memory if the domain sizes are bigger. In future work, we would like to examine
other FFT libraries such as FFTW [6] and confirm that the poor performance is
caused by a bug in the Intel MKL library. Considering that this issue might be
fixed in the future, the strong and weak scaling achieved on KNC promises easy
deployment on all of the 432 Salomon’s accelerators. Since the allocation policy
in terms of core hours charged is very favorable for accelerators, the cluster of
KNC can decrease the computational costs for running large scale simulations.

The performance of the Knight’s landing cluster was (after the experience
with its predecessor) a pleasant surprise. The performance of a single KNL ac-
celerator is 4× higher than KNC and almost 1.7× higher than a single twelve
core Haswell CPU. The strong scaling is also better with a parallel efficiency
of 81 %. This shows that Intel has achieved a significant improvement on the
interconnection part as well. In the future work, we would like to use much
higher number of the KNL accelerators to extend the scaling study and run full
production simulations on CoolMUC3.
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