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CAYLEY DEFORMATIONS OF COMPACT COMPLEX
SURFACES

KIM MOORE

ABSTRACT. In this article, we consider Cayley deformations of a com-
pact complex surface in a Calabi-Yau four-fold. We will study complex
deformations of compact complex submanifolds of Calabi—Yau manifolds
with a view to explaining why complex and Cayley deformations of a
compact complex surface are the same. We in fact prove that the mod-
uli space of complex deformations of any compact complex embedded
submanifold of a Calabi—Yau manifold is a smooth manifold.

1. INTRODUCTION

Cayley submanifolds are calibrated submanifolds that arise naturally in
manifolds with exceptional holonomy Spin(7). Calibrated submanifolds
are by construction volume minimising, and hence minimal submanifolds.
Cayley submanifolds also have connections to the proposed program of
Donaldson-Thomas [3], and more recently Donaldson-Segal [2], for higher
dimensional gauge theory. In fact, it was proved by Tian [16] that the blow
up loci of Spin(7)-instantons are closed Cayley currents.

The most abundant source of Cayley submanifolds are two-dimensional com-
plex submanifolds IV of Calabi—Yau four-folds M. We can deform N both
as a Cayley and as a complex submanifold, but do there exist Cayley defor-
mations of N that are not complex deformations? When N is compact, the
following result of Harvey and Lawson may be applied.

Proposition 1.1 ([5, I1.4 Thm 4.2]). Let X be a Riemannian manifold with
calibration o and let Y be a compact a-calibrated submanifold. Let Y’ be any
other compact submanifold of X homologous to Y. Then

/ voly < / voly,
Y !

with equality if, and only if, Y' is also a-calibrated.

So if N is a compact complex surface inside a Calabi—Yau four-fold M and
N' is a Cayley deformation of N, then N’ is certainly homologous to N,
and since calibrated submanifolds are volume minimising in their homology

class, we must have that
/ voly = / vol.
N !

But then Proposition [[.1] tells us that N’ must also be a complex submani-

fold.
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This proof is very effective, but does not give any geometric intuition as
to why a Cayley deformation of N must be a complex deformation. We
know from the work of McLean [I4] that if a Cayley submanifold is spin,
then the infinitesimal Cayley deformations of the Cayley submanifold can
be identified with the kernel of the twisted Dirac operator.

If a complex surface N is spin, then we have the following identifications [4]
pg 82]

St = (AN @ A“2N) ® S,
S_ = Ao’lN (9 Sk,

where S}, is a holomorphic line bundle satisfying S, @ S, = AN, and in
this case the Dirac operator is given by

V2(9 + ).
Motivated by this, but without requiring N to be spin, we will show in

Proposition that infinitesimal Cayley deformations of NV in M can be
identified with the kernel of

O+ 0" : C®(v ) (N) @ A%2N @ 1,7 (N)) = CP(A"' N @ v (N)).

We will use this to deduce a result, Theorem B.8, on the moduli space of
Cayley deformations of N in M. We will also give a formula for the expected
dimension of this moduli space in terms of topological invariants of N in

Theorem [3.91

In the second part of this article, motivated by the study of complex defor-
mations of a complex surface inside a Calabi—Yau four-fold, we will prove, in
the style of McLean, a result on the moduli space of complex deformations
of any compact complex submanifold N of a Calabi—Yau manifold M. As
we already know from the seminal work of Kodaira [10, Thm 1], we will see
that the infinitesimal complex deformations of N can be identified with the
kernel of the operator

d:C®w P (N)) = C®(A"' N @ v (N)),

which by Dolbeault’s theorem can be identified, in the language of Kodaira,
with the sheaf cohomology group H°(N, 1/]1\/’[0(N )). However, we can actually
improve on Kodaira’s result in this special case — that is, we can show that
while the obstructions do not necessarily vanish, they do not contribute
to the moduli space. We prove in Theorem [£§] that the moduli space of
complex deformations of a compact complex embedded submanifold in a
Calabi—Yau manifold is a smooth manifold of dimension

2dimcKer 0 = dimgKer 0.

To apply the argument used to prove this result, embeddedness of the sub-
manifold is crucial. From this result, we deduce that in order to be able de-
form a compact complex surface N in a Calabi—Yau four-fold M as a Cayley
submanifold into something not complex, we must find v € C OO(VZI\;IO(N ))s

w € C®(A"2N ® VJI\QO(N)) so that
ov = —0*w.
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However, this can’t happen since IV is compact, and so infinitesimal complex
and Cayley deformations of N in M are the same. In Theorem [£9] we use
this to prove that the moduli space of Cayley deformations of NV in M is a
smooth manifold of dimension

dim Ker (9 + 9*) = 2dim Ker 0.

Layout. The report is organised as follows. We begin by recalling some
definitions and basic facts about Spin(7)-manifolds, Calabi-Yau manifolds
and Cayley submanifolds in Section 2l We will prove a result on the moduli
space of Cayley deformations of a compact complex surface inside a Calabi—
Yau four-fold in Section 3l Finally, we will apply McLean’s method to study
complex deformations of a compact complex submanifolds inside Calabi—
Yau manifolds in Section @l

Notation and conventions. We will take all submanifolds to be embed-
ded. On a complex manifold M we denote APIM = APT*LONM @ AIT*01 M
where T*L0M and T*%'M denote the holomorphic and antiholomorphic
tangent bundles of M. For a complex submanifold N in M, we denote by
v (N), uzl\;[O(N ) and 1/2/’[1 (N) the normal bundle, holomorphic normal bundle
and antiholomorphic normal bundle respectively of N in M.

2. PRELIMINARIES

Before we begin we will state the definitions that we will use throughout
this report. The following definition is based on the one given in Joyce’s
book [9, Defn 11.4.2].

Definition 2.1. Let (z1,...,73) be coordinates on R® with the Euclidean
metric gg = da? + - + da:%. Define a four-form on R® by

D¢ :=dz1934 — dT1256 — dT1278 — dT1357 + dT1368 — dT1458 — dT1467
(2.1)  —dwagss — dwoser + dToas7 — dw2es — dT3as6 — drsars + dTsers,
where dx;;p; = dx; N dxj A dxy A dxg.

Let M be an eight-dimensional oriented manifold. Define for each p € M

the subset A,M C A4T;M to be those four-forms ® for which there exists

an oriented isomorphism 7,M — R® identifying ® and @, given in (2.1,
and define the vector bundle AM to be the vector bundle with fibre A, M.

A four-form ® on M satisfying ®|, € A,M for all p € M defines a metric
g on M, using the fact that each tangent space to M is identified with R®
with the Euclidean metric. We call (®,g) a Spin(7)-structure on M. Let
V denote the Levi-Civita connection of g. Say that (®,g) is a torsion-free
Spin(7)-structure on M if V& = 0.

We say that (M, ®,g) is a Spin(7)-manifold if M is an eight-dimensional

oriented manifold and (®, g) is a torsion-free Spin(7)-structure on M.

By definition, if (M, ®, g) is a Spin(7)-manifold then @ is a calibration on M,
known as the Cayley calibration. An oriented, four-dimensional submanifold
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N of M is said to be Cayley if
(I)‘N = VOlN7
i.e., N is ®-calibrated.

Definition 2.2. Let (M™, J,w’) be a compact Kéhler manifold with trivial
canonical bundle, that is, there exists a nowhere vanishing section «a of
Ky := A"™OM with 0o = 0. Then by Yau’s proof of the Calabi conjecture,
there exists a Ricci-flat Kihler form w € [w']. Choose Q € Q™%(M) so that

(2.2) A <3>m(—1)m(m—1>/29/\§.

m! 2

We call (M, J,w,?) a Calabi—Yau manifold.

Given a four-dimensional Calabi-Yau manifold (M, J,w, $2), we can define a
Cayley form on M by

1
(2.3) <1>:§w/\w—|—Re Q,

and so by the choice of constant in ([2:2)), we can view M as a Spin(7)-
manifold. Moreover, expression (23] allows us to see directly that complex
surfaces and special Lagrangians are Cayley.

We can decompose bundles of forms on Spin(7)-manifolds into irreducible
representations of Spin(7). The vector bundle A% defined below will appear
frequently in this exposition. The following proposition can be found in
Joyce’s book [9, Prop 11.4.4].

Proposition 2.1. Let M be a Spin(7)-manifold. Then the bundle of two-
forms on M admits the following decomposition into irreducible representa-
tions of Spin(7):

AZM = A7 @ Aj,

where Af denotes the irreducible representation of Spin(7) on k-forms of
dimension .

Remark. Given an orthonormal frame for M {ej,...,es} with coframe
{el,... €8}, we can explicitly define A%. The following expression is taken
from [15, Thm 9.8]. We have that

(2.4) A2 ={e"Nel — (eu(eju®)) |1 <i<j<8)

The next result allows us to characterise Cayley submanifolds of a Spin(7)-
manifold (X, ®,¢g) in terms of a four-form that vanishes exactly when re-
stricted to a Cayley submanifold of X.

Proposition 2.2 ([I5] Lem 10.15]). Let X be a real eight-dimensional man-
ifold with Spin(7)-structure (®,g). Let Y be an oriented four-dimensional
submanifold of X. Then Y is a Cayley submanifold of X if, and only if,



CAYLEY DEFORMATIONS OF COMPACT COMPLEX SURFACES 5

Tly = 0, where 7 € C®°(A*X ® A2) is defined by, for any vector fields
z,u,v,w on X

1
T(I’,U,U,’U}) - Z (7-(7(@( : ,U,U,’U}) N xb) - 7'('7(@( : ,U,’U},l’) N ub)

(@ w,m,u) A = mr(@(- ) Aw’) )
where w7 : A2X — A2 is the projection map given by mr(z” ANy’ = %(ml’ A
Y’ + ®(x,y,-,-)) and b denotes the musical isomorphism TX — T*X.
Moreover, if x,u,v,w are orthogonal then

m(z,u,v,w) = 77(D( -, u,v,w) A2).

Given an orthonormal frame {eq,...,es} for X, we can equivalently write
8 . . .
(2.5) 7= (' A(era®) — €' A(e12®)) @ mr(e! Aeh).
=2

3. CAYLEY DEFORMATIONS OF COMPACT COMPLEX SURFACES

3.1. Deformations as normal vector fields. Let X be a manifold with
a submanifold Y. We say that Y’ is a deformation of Y in X if there exists
a smooth family of embeddings ¢; : ¥ — X such that (o(Y) = Y and
L1 (Y) = Y,.

Definition 3.1. Let (X, g, ®) be a Spin(7)-manifold, and let Y be a Cayley
submanifold of X. Define the moduli space of Cayley deformations of Y,
May (Y), to be the set of deformations Y’ of Y that are Cayley submanifolds
of (X,g,9).

We will identify nearby deformations of ¥ with small normal vector fields
on Y. For this we require the tubular neighbourhood theorem. A proof of
this result can be found in [12) IV, Thm 5.1].

Theorem 3.1 (Tubular neighbourhood theorem). Let X be a Riemannian
manifold andY be a closed embedded submanifold of X. Then there exists an
open set V. C vx(Y) containing the zero section and an open setY CT C X
such that the exponential map

exply : V =T,
s a diffeomorphism.

3.2. Identifications of vector bundles. In this section we construct iso-
morphisms of vector bundles on a complex surface N in a Calabi-Yau four-

fold M.

Proposition 3.2. Let N be a two-dimensional complex submanifold of a
Calabi—Yau four-fold M. Then

(3.1) v (N) @ C = vl?(N) @ A% N @ v (N),

where vy (N) denotes the normal bundle of N in M and 1/]1\20(]\7) denotes
the holomorphic normal bundle of N in M.
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Proof. Recall that on a complex submanifold we have the following splitting
of the complexified normal bundle into holomorphic and antiholomorphic
parts
vir(N) @ C = v, P (N) @ vy (N).
Therefore to prove the proposition, it suffices to show that
v (N) = A%2N @ v (N).
Recalling that by the adjunction formula [6, Prop 2.2.17]
Kur|n = AN @ A% (N,
consider the map
Vi (N) = A%2N @ vy (N),
1
v = (vaQ)F,
4
where f denotes the musical isomorphism v*%'(N) — v50(N). Tt is easy to
check that this map is bijective. Its inverse is given by
AP2N @ vy (N) = vy (N),
a®uv— — [xn(aA (vsQ))F,
where *y is the real Hodge star on N and f : I/X/}’O(N) — l/g/’ll(N) is the
musical isomorphism. O

Proposition 3.3. Let N be a two-dimensional complex submanifold of a
Calabi-Yau four-fold M. Denote by E the rank four vector bundle in the
splitting

A=A NoE,
where A% was defined in Proposition [21] and AiN denotes self-dual two-
forms on N. Then we have that

(3.2) E®C= AN v (N),
where V}V’[O(N) denotes the holomorphic normal bundle of N in M.

Proof. Since we have the musical isomorphism b : le‘/’IO(N) — 1/7\/([)’1(]\7), it

suffices to show that

E®C= AN Qv (N).
To see this we will show that the projection map

77t A2M — A2,
given by
(v Aw) = % [v/\w—l—@(vﬁ,wﬁ, Sl

is a bijection

AN @ v (N) —» E®C.
Let w be the Ricci-flat Kéhler metric on M and choose a holomorphic volume

form  so that the Cayley form on M is given by

1
<I>:§w/\w+ReQ.
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Let v@w € AN ® VX/([)’I(N). Then viewing this as a two-form on M, we

have that
1 1
(v Aw) = 3 v/\w+§w/\w(vﬁ,wﬁ, ) F S (Q+ Q) Wt - )]
First note that vf and w! are of type (1,0), and so straight away we can
eliminate the 2 term. Further, since

w(a’ b) = g(‘]a’ b),
for all vector fields a and b on M, we see that
1 17

v Aw@f wh, - ) = 2 {w(@f, wh) Aw+ w A wf,wh)

|
€

(vF, ) Aw(wh, ) +w(w, ) Aw(h, -)|

:% :_g(JUﬁ7 .)/\g(Jwti7 .)_|_g(Jwﬁ’ ')/\g(Jvﬁ, )]
:% :g(vﬁ, .)/\g(wﬁ’ .)_g(wﬁ’ .)/\g(vti, )}
1
Zg[v/\w—w/\v]
=vAw,

since v and w' are of type (1,0) and using the definition of the musical
isomorphism. So we have shown that

1
m7(v A w) :v/\w—i—ZQ(vﬁ,wﬁ, )

where we notice that the second term lies in AV N® VX/}’O(N ) when restricted
to N. It can be shown similarly that for v € AN and w € VX}’O(N) that

1—
(v Aw)=vAw+ ZQ(vﬁ,wﬁ, )

and so we see that if 0 € AN ® VX/}’O(N) or AN ® VX/([)’I(N) then 77 (o) €
ALON@I/E’O(N) @A071N®VX2’1(N). In particular, m7(AY°N ® VX/}’O(N))
m7(AYIN @ viP ().

A similar calculation yields that for all o1 € AN ® yLo’l(N ), 00 € AYIN®
*1,0
var ()
m7(o1) = 0 = m7(02),
and therefore to check that E®C = 7T7(A0’1N®V;([)’1(N)) it suffices to check
that 77(A®2N) + m7(A%ON) + m7(ALIN) = A2 N. But since if v Aw is a
unit element of A®2N, A2ON or ALIN then

1 1
(v Aw)|y = 3 [v/\w—}—iw/\w(vﬁ,wﬁ, i )|N]
1 I
:5 [’U/\’U)‘{‘VOIN(U y Wy )]

1
:g[v/\w—i-*N(v/\w)],
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this is clear. Therefore F ® C = m7(A“»'N ® VX?’I(N)). The inverse map to
77 is given by the projection map

m1:E®C— A N® V;/([)’I(N).
(]

3.3. Constructing an operator. We can use Proposition 22 to construct
a partial differential operator acting on normal vector fields on a compact
complex surface N whose kernel will be precisely the normal vector fields
on N that yield Cayley deformations of N.

Proposition 3.4. Let (M, J,w,Q) be a four-dimensional Calabi—Yau man-
ifold with compact two-dimensional complex submanifold N. Let U be the
image of V' from the tubular neighbourhood theorem [31 under the isomor-
phism in Proposition[32. For a normal vector field v write N, := exp,(N).
The moduli space of Cayley deformations of N in M is locally homeomorphic
to the kernel of the following partial differential operator

F:O®(U) = C®(A"N @ v (N)),
(3.3) v = W (m (s expp(7]n; )
where T is defined in Proposition [2.2,
(3.4 Kly=NNoE,

with w : A%\N — FE the projection map, U denotes the normal vector field
corresponding to v under the isomorphism given in Proposition and ¥
denotes the isomorphism given in Proposition [3.3.

Proof. By Proposition it is clear that a normal vector field v gives a Cay-
ley deformation of N if, and only if, *x exp%(7|n,) = 0. By Propositions
and Proposition B3] it remains to show that m(xy exp?(7|n,)) = 0 implies
that *y exp?(7|n,) = 0. For this we will employ a local argument.

At each point of N, we can write the tangent space of the (small) deformation
Nj as a normal graph over the tangent space of N. So it suffices to prove
this proposition for a normal graph over a Cayley plane in R®. Suppose that
this graph is described by, for j =1,...,4

8
v; =ej + Z )\;ei.
i=5
To prove the proposition we will suppose that

(3.5) T(T(y) (v1,v2,v3,v4)) = 0,

and show that

(3.6) Tf(y) (V1,v2,v3,v4) = 0.
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Equation (3.5]) gives us the following four equations

PYIEDYEED EED ¥ Z Epar AEANE — Z Epar AN

6,7,8 5,7,8
1y244 1y24y3 __
=D e MAINE = 3T  AAZNE = 0,
5,6,8 5,6,7
1 2 3 4 21344 13,4
M= A= D3+ M g AN = D G AN
5,7,8 6,7,8
1y244 1y24y3 __
= @ A Y e A AZNE =0,
5,6,7 5,6,8

A A=A =M= D e A = D g AN

5,6,8 5,6,7
) par AN Y epr AAAY =0,
6,7,8 5,7,8
(3.7) A = A A = A5 D) e MAA = D e NI
5,6,7 5,6,8
) AN = ) e AN = 0,
5,7,8 6,7,8

where €4, is skew-symmetric in p,q,r and €y, = 1 when p < ¢ < r. No-
tice that if A Is a linear term, then there will be cubic terms of the form

Il ymyn . :
ENAGAY, where {I,m,n} € {1,2,3,4}\{i} and {p,q,r} € {5,6,7,8}\{j}.

Using your favourite equation solving software, we can solve for A}, Af, Al
and )\é, which gives us four very complicated expressions which we will not
give here. To show that Equation (B.6]) is satisfied, it remains to show that

eij (A A] + A3 + > eij(MA — A201) =0,

{i,5}={5,7},{6,8} {i,5}={6,7},{5,8}
> eij(MA] + A2NT) — > eij(MAZ + M) =0,
{i,5}={5,6},{7.8} {i,5}={5,8},{6,7}
S GO - Y A o
{i,5}=1{5,6},{7.8} {i,5}=1{5,7},{6,8}
where €;; = —¢j; and €75 = €53 = €56 = €67 = €73 = €53 = 1. Substituting

in the values of A}, A}, A} and A} we found when we solved Equations (3.1,
these three equations vanish. Therefore, T¢(,) (v1,v2,v3,v4) = 0 if, and only
if, 7o T4y (v1,v2,v3,v4) = 0. Since y € N and N’ were arbitrary, it follows
that the kernel of m(xy exp}(7|n,)) and *xy exp?(7|n,) are the same. O

Remark. Proposition [3.4]lincludes a proof of a slightly more general version

of a result of Harvey and Lawson [5, IV.2.C Thm 2.20].

3.4. Properties of the partial differential operator F'. We will now
find the linear part of the operator (3.3]).
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Proposition 3.5. Let (M, J,w,Q) be a four-dimensional Calabi—Yau man-
ifold and let N be a two-dimensional compact complex submanifold of M.
The linearisation of the operator [B3) at zero is given by the elliptic operator

(3.8) 8+ 8" : C®°wy(N) @ A"’N @ v, (N)) = C°(AY'N @ v} P (N)).

Remark. We call the forms in the kernel of & + 0* infinitesimal Cayley
deformations of N in M.

Proof. By Proposition [3.2] we can write

v=10] D Z(’Ugjﬁ)ﬁ, D = v D vy.

To see that (B.8]) is the linearisation of the operator F' in Equation (83]), we
make an explicit computation. By definition, we have that

- d ., .
dF’O(U) = EF(tv)’tzo =V (*Nﬁ@T’N) y

by definition of the Lie derivative. We have that
*NLoT|N = (L57)(e1, €2, €3, €4),
where {e1, ..., e4} is an orthonormal frame for TN with voly(e1, €2, e3,€4) =
1, and so we may apply a formula linking the Lie derivative to the Levi-Civita
connection such as [7, Eqn (4.3.26)] to find that
(Lo7)(e1,e2,e3,e4) = (ViT)(e1, €2, €3, e4) + 7(Ve, U, €2, €3, €4)
—7(Ve, 0,1, €3,€4) + 7(Vey0, €1, €2, €4)
—7(Ve,0,e1,€2,€3).
We can write the Levi-Civita connection on TM|y as V = VT + V1, where
VT is the projection of V onto T*N ® TN and V= is the projection of V
onto T*N ® vp(N). Then
T(VeTif), ej, e, e) =0,
for all {i,7,k,1} = {1,2,3,4} (since N is Cayley), and therefore we have
that
(L5T)(e1, ea, e3,e4) = (VaT)(e1, €2, €3, 1) + T(V ¥, €2, €3, €4)
- T(Vé’ﬁ, €1, €3, 64) + T(velg{}’ €1, €2, 64)
- T(Vé;/ﬁa €1,€2, 63)'
We can calculate that, since voly = e! Ae? A e A e?,
D(-,e1,e9,e3) = —e', B(-,e1,e,e4) = €7,
@(',61,63,64):—62, @(',62,63,64)261.
Therefore by definition of 7 (see Proposition 2.2]) we have that

4

(3.9) (ﬁ@T)(el, €2, €63, 64) = (V{)T)(el, €2, €3, 64) + Z 7T7(6i A (Velif))b).
=1
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It remains to show that since ® is parallel, 7 is parallel. Extending eq,...,e4
to an orthonormal frame eq,...,eg for T M|y and using Equation (2.5))

8
VT = Z Vi le' A (e12®) — e A (e0 @) @ mr(e! Aeh)
i=2
8 . .
+ Z [e" A (e12®@) — el A (e ?)| ® Vimr(e! Ae?).
1=2
We can see that the second sum in the above expression will vanish when
evaluated on eq,eq, e3, e4, SO it remains to compute

\Y% [ei A (e10®) — e A (e ?)],
for i =2,...,8. Since
Vi(el A (e;a®)) = (Ve ) A (0 ®) + et A (Voea®) + el A (6,0 Va®),
we find that
Va(el A (e;a®))(e1, ea,e3,eq) = €2(e;)(Vael)(ea) + €3 (e;)(Vzel) (e3)
+ et (&) (Vael) (es) + ®(Vies, 2, €3, €4)
+ (Vs®)(e;, €2, €3,€4).
Similarly,
V(e A (e12®))(e1,ea,e3,e4) = (Vgeh)(e1) — €'(ea)®(Vger, e1, e3, e4)
+€'(e3)®(Vier, €1, €2, €4)
—el(ey)®(Vger, e, e, e3).
Using the explicit expression for ®, we have that

8
(VaT)(e1,e2,e3,e4) = Z [€'(e2)e*(Vier) — €2(e;)(Vae')(ea)

i=2
+e'(e3)e3(Vier) — e3(e;)(Vgel) (e3) + €' (es)et(Vier) — et(e;)(Viael) (eq)
—el(V@ei) —l—(V@ei)(el) — (V5®)(e4, €2, €3, e4)] ® 7'('7(61 A ei).

Finally, note that since the metric g on X is parallel with respect to the
Levi-Civita connection,

(Vie!)(ex) = =€/ (Vaer) = —g(Vier, ¢j) = glex, Viej) = e (Vie;)
= —(Vie")(e5),

and so we find that
8

(VaT)(e1,e2,e3,€4) = Y —(Vi®)(es, €1, €2, €3,e4) @ mr(e! A€'),
i=5

which vanishes since ® is parallel.

It remains to show that

4
v (; mr(e A (VE(v1 + Uz))b)> = Jv + 5*%@2&)#
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We have that A

Zei A Vévl =: Ovy + Ovy.
i=1
By Proposition B.3] we have that

o mr((901)’ + (Fo1)’) = W o mr((F0n)?) = Ju,

1,0 *0,1

where b : v, (N) = vy, (V). Now since vy is of type (0,1),

and so under an application of ¥, we have that

4
. 1—
v (Z 7'('7(6Z A (Vévz)b)) = ZQ(ei,Vévg, .y )ﬁ,
i=1

where f : V}‘k/(f]’l(N ) — 1/]1‘/’[0(]\7 ) denotes the musical isomorphism. Finally,
since () is parallel and we are using the Levi-Civita connection, we have

that
4

ﬁ(ei,Vévg, )= — Zei_: Ve, (v209)F =: 0" (v21Q)F,
i=1

and so we are done. O

3.5. The moduli space of Cayley deformations. We will now prove
that we can extend the operator (83]) to a smooth map of Banach spaces.
The argument we use to prove Lemma is reasonably standard, and is
based on the arguments in [8, Prop 2.10] and [13, Prop 6.9].

Lemma 3.6. Let (M, J,w,Q) be a four-dimensional Calabi—Yau manifold
and let N be a two-dimensional compact complex submanifold of M. Let F
be the partial differential operator defined in Equation ([B3.3). Then we can
extend F' to a smooth map of Banach spaces

(3.10) F: I (U) = XA N @ v, (N)),

forany 1 < p < oo and k € N satisfying k > 1+4/p. Moreover, the normal
vector fields in the kernel of [BI0) are smooth.

Proof. At each point y of N we have that F(v)(y) relates to the tangent

space of the deformation N := exp;(N) and therefore depends on v and
Vv. We may write
(3.11) F(v)(z) = (0 + 0*)v(z) + Q(z,v(z), Vo(z)),

by Proposition B3] and use Equation (3.I1]) to define @ to be a map
{(z.,y,2) | (x,y) €U,z € TyN @ vy(N)} — A N @ v, (N),
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so that Q(v)(z) := Q(z,v(x), Vu(x)) is a section of AN ® 1/]1\20(]\7). By
definition of F', ) is smooth in z,y and z. Since we can think of Q) as a map
Ve(N)RTIN @ vy (N) — [A N le\/’[O(N)]g;, we can make sense of a Taylor
expansion of Q(z,y, z) around (z,0,0). Since by definition @ has no linear
part at zero we deduce that

|Q('Iayaz)| S Cx(|y| + |Z|)2’

for each x € N. Since N is compact, we may deduce that

1Q()(@)llco < CllvliZs,

where C is independent of x. From this we see that

(fewimp o)™ < (f i sivee i)

1/p
< Clollen ( [ el + 1901y volN>
N

1/p
< Clloflen (/ ol v01N+/ Vol? v01N> ,
N N

by Minkowski’s inequality. So we have Q maps LY (vp(N))NCH (v (N)) —
LP(A"IN ® V}V’IO(N )). We can take the derivative of the Taylor expansion of
@, and apply the chain rule to estimate |VQ| by a polynomial in |v],|Vv|
and |[V2v|. A similar argument to the k = 0 case given above shows that for
each k € N there exists C}, > 0 so that

(3.12) 1Q)llpx < Chllvller[vllp +1-
In particular, when k > 4/p, L} ,(vi(N)) is continuously~embedded in
Cl(vp(N)) by [I, Thm 2.10], and so for k > 4/p there exist Cy, > 0 so that

(3.13) 1Rl < Crllvll} gy1-

Since 0 + 0* is linear, we see that F' takes L}, (va(N)) into L} (A*'N ®
1,0
var (V).
Now we must show that ([B.I0) is a smooth map of Banach spaces. Firstly,
since
v (0+0%)v,
is linear, it is clearly smooth as a map

1,0
L} 1 (U) = LY(A%'N @ vy (N)).
To see that
v (= Q(z,v(x), Vu(x))),
is a smooth map
1,0
LY (U) = LY(AY'N @ v (N)),

we proceed as follows. To see that F' is once differentiable at zero in this
sense, notice that

|F(v) = F(0) = (0 + 0 )vllps _ 1QW)lpk
[[0]lp,-+1 [[0]lp,-+1

— 0,
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as ||v||pk+1 — O by the estimate (B.I3)). Repeating this argument for the
derivatives of (), we can show that we can differentiate () as many times as
we like. We deduce that (3.10) is a smooth map of Banach spaces.

Finally, regularity of the kernel of (B.I0) follows from a nonlinear elliptic
regularity result, such as [Il, Thm 3.56], which we may apply since k > 1+4/p
(which allows us to embed Lj ;(U) in C?(U) by Sobolev embedding [I, Thm
2.10]). 0

We will now deduce the main result of this section. For the reader’s conve-
nience, we will present the Banach space implicit function theorem here in
the form that we will need it. See, for example, [I1, Ch 6 Thm 2.1] for a
proof.

Theorem 3.7 (Implicit function theorem). Let X and Y be Banach spaces
and let U C X be an open neighbourhood of zero. Let F : U —Y be a C*-
map, with k > 1, such that F(0) = 0. Suppose further that dF|y: X — Y
is surjective, with kernel K such that X = K ® X' for some closed subspace
X' of X.

Then there exist open sets Ko C K, X{j C X' both containing zero and a
C*-map g : Ko — X}, such that g(0) =0 and

FH0) N (Ko x X§) = {(2.g(x)) | = € Ko).

Theorem 3.8. Let (M, J,w,Q) be a four-dimensional Calabi—Yau manifold
and let N be a two-dimensional compact complex submanifold of M. Then
there exist a smooth manifold Ky, which is an open neighbourhood of 0 in
Ker (0 + 0%), and a smooth map ga : Ko — Ker (9 + 9*)* with g(0) = 0 so
that an open neighbourhood of N in the moduli space of Cayley deformations
of N in M is homeomorphic to an open neighbourhood of 0 in Ker go.

Moreover, the expected dimension of the moduli space of Cayley deformations
of N in M is given by
ind (0 + 0%) := dim Ker (0 + 0*) — dim Ker (9 + 0*)*,
where
@+ : C®(AY N @ v (V) = C® (1, (N) & A2 N @ vy (N),

is the formal adjoint of 0 + 0*. If Ker (0 + 0*)* = {0} then the moduli
space of Cayley deformations of N in M is a smooth manifold near N of
dimension

dim Ker (0 + 9%).

Proof. By Proposition B.4] we know that the moduli space of Cayley defor-
mations of NV in M is locally homeomorphic to the kernel of F' given in (3.3]).
By Lemma [3.6] without changing the kernel, I’ extends to a smooth map

LY (U) = LA™ N @ v (N)),

for any 1 < p < oo and k € N and the linearisation of F' at zero is the elliptic
operator 0 + 9%, which extends by density to a smooth map

(3.14) 9+ : L (1) (N) @ A"’ N @ 1, (N)) — LY (A™'N @ vy (V).
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Since N is compact and ([B.14)) is elliptic, the map (B.I4) is Fredholm, and
therefore (3.14]) has finite-dimensional kernel and cokernel, and closed image.
As a consequence, we can write

LY (i (N)@ AN v (N) =K & X/,
where K’ is the kernel of 0 + 0* and X’ is closed, and
LAY N @ vy (N)) = (9 + 0" LY, (] (N) @ AN @ vy (N)) @ O,

where O is a finite-dimensional space that we’ll call the obstruction space,
and

O = LYAY'N @ vy (N))/ (0 + 07 L}, (v (N) © A%’ N @ v (N))
=: Coker (0 + 0%).
Notice that if the obstruction space vanishes, i.e., O = {0}, then it follows
immediately from the implicit function theorem [B.7] that the moduli space
of Cayley deformations of N is a smooth manifold near N of dimension
dim Ker (0 + 0*). However, the obstruction space is nontrivial in general,

and so O + 0 is not surjective, thus we are not able to apply the implicit
function theorem B.7 to F'. Instead define

FiLE (U) x O — LE(AY'N @ vy (N)),
(v,w) — F(v) +w.
We see that
dF|0,0)(v,w) = (0+ 0*)v +w,

which surjects, and therefore we may apply the implicit function theorem
B to F. Denoting the kernel of dF] ) by K = K' x {0}, we can write

L} ,(U)xO=Kao (X' x0).

The implicit function theorem B.7] gives us open sets Ky C K, X € X’ and
Op C O and a smooth map g = (g1, 92) : Ko — X{, x Op such that

.7:71(0) N (K(] X X(/] X Oo) = {(m,gl(:ﬂ),gg(:ﬂ)) |$ S K()}
Then for x € Ky we have that

F(z,91(2), g2(x)) = F(x, 91(x)) + ga(x) = 0.
Therefore we can identify the kernel of F' with the kernel of the map gs :
Ky — Oy. These spaces are finite-dimensional since 9 + 0* is Fredholm. By
Sard’s theorem, we may deduce that the expected dimension of the kernel of
go is equal to the difference of the dimensions of Ky and Oy, and therefore
the expected dimension of the moduli space of Cayley deformations of N in
M is
dim Ker (9 + 9*) — dim Coker (9 + 9%),

where 0 + 0* is considered as a map Ly (U) = LP(AYN ® 1/]1‘/’[0(]\7)). We
have that the cokernel 0 + O* is isomorphic to the kernel of the adjoint to
0+ 0%, (0 + 0%)*, since N is compact. Elliptic regularity tells us that the
kernels of 0+ 0* and (0+0*)* acting on LZ_H(le‘/’IO(N)EBAOQN@V}V’IO(N)) and
(LP(A"'N ® 1/11\/’[0(]\7)))* for any 1 < p < oo and k € N are exactly equal to
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the kernels of 9+ 0* and (0+0*)* acting on COO(V}V’[O(N) oA’N® VZI\ZO(N))
and C®(A"IN ® 1/]1\&0(]\7)) respectively. O

3.6. Index theory. We will now compute the expected dimension of the
moduli space from Theorem [B.8 in terms of topological invariants of the
manifold.

Theorem 3.9. Let N be a two-dimensional compact complex submanifold
of a four-dimensional Calabi—Yau manifold M. Consider the operator
+ 0" : C®(w (N) @ A%’M @ v, (N)) — C°(AY'N @ v, (N)).
Then the index of this operator is given by
- 1 1
(3.15) ind 0+ 0" = §sign(N) + §X(N) — [N] - [NV],

where sign(N) is the signature of N, x(N) is the Euler characteristic of N
and [N] - [N] is the self-intersection number of N.

Proof. Since N is compact, we can identify the kernel of 9 + 0* and the
kernel of its adjoint with Dolbeault cohomology groups. That is,
dimcKer (9 + 0%) = dimcHy (N, v, (N)) + dimc Hy* (N, v (N),
dimcKer (0 + 9*)* = dimc Hy'' (N, v, (N)).
By Dolbeault’s theorem, we can then identify the index of the operator with
the dimensions of certain sheaf cohomology groups. We have that
2
ind 9+ 0" =Y _(—1)'dimc H'(N, v, (N)).
1=0
Then by the Hirzebruch—-Riemann—Roch theorem [0, Thm 5.1.1], we have
that

ind 9+ 0* = / ch(vy (N))td(N),
N

where ch(l/zl\/’lo(N)) is the Chern character of 1/]1\20(]\7) and td(N) is the Todd
class of N.

We calculate that

[ AP W) = [ HEW) + i) + 5ati (V)a )
N N
+ (@A) ~ 26 ()))

Since M is a Calabi-Yau manifold, ¢; (M) = 0, and therefore
0= et (THM|n) = et (TN @ vy (N)) = e (TN + 1 (v (V).
which tells us that

/N h(r (N)A(N) = S(A(V) + (W) — ea(wh ()

- %(cf(N) — 26y(N)) + %cQ(N) — e2(1 (V).
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Finally, since ¢;(E) = (—1)'¢;(E),
co(TN @ C) = co(T*"°N @ T N) = co(N) + ¢ (N)ey (T N) + co (T N)
= QCQ(N) — Cl(N)Q,
and so by definition of the Pontryagin class pj(V), we see that
1 1
[ O = §o1(N) + Geal) — sl (V)

and therefore applying the Hirzebruch signature theorem [6, Cor 5.1.4] we

have that . 1
ind 0+ 5" = Lsign(N) + 3x(N) - [N] -[V],

as required. O

4. COMPLEX DEFORMATIONS OF COMPACT COMPLEX SUBMANIFOLDS

Our ultimate goal in this section is to find out when a Cayley deformation
of a compact complex surface IV in a Calabi—Yau four-fold M is a complex
deformation. We will deduce this as a corollary of a result on the com-
plex deformations of any compact complex submanifold of a Calabi—Yau
manifold.

If N’ is a Cayley deformation of N, we see that
1
VOIN/ = 5(,«) /\C«)‘N/ + Re Q‘N’,

where w is the Ricci-flat Kéhler form and 2 is the holomorphic volume form
of M. It is easy to see that N’ is a complex submanifold of M if, and only
if,

Re Q’N’ =0.
It turns out that we can use the holomorphic volume form to define a form
that vanishes exactly when restricted to any complex submanifold of a given
dimension.

4.1. A form that vanishes on complex submanifolds. In this section
will will prove that there exists a differential form on a Calabi—Yau manifold
that vanishes if and only if restricted to a complex submanifold of a given
dimension. We will first require a result which follows from a lemma of
Harvey and Lawson [5], I1.6 Lem 6.13].

Lemma 4.1. Let V' be a 2p-dimensional oriented linear subspace of C™,
with 2p < m. Then there exist a unitary basis e1, Jei, ..., em, Jey for C™
and angles 0 < 61 <@y <--- <61 <7/2, 0,1 <0, <m such that

V = span{ej, Jej cos b + egsinby,es, ..., exp_1, Jegp_1 cos b, + e, sinfy}.
If 2p > m, then we have that
V = span{ey, Jej cos by + egsinby, ... y €2(n—p)—15

J62(nfp)71 o8 Op—p + €2(n—p) sin 0, p, €2(n—p)+1s J62(nfp)+1a ey Jent

Given this result, we can prove the following proposition.
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Proposition 4.2. Let X be an oriented real 2p-dimensional submanifold of
an m-dimensional Calabi—Yau manifold M, with m # p+ 1. Then X is a
complex submanifold of M if, and only if

o(v1,...,0p41) =0,
for all vector fields vy, ...vp41 on X, where
(4.1) o(v1,...,vp41) :=Re Qv1,...,0p41, 5.0, +),
where ) is the holomorphic volume form of M.
If m = p+ 1 then we must have that
Re Q(v1,...,vp41) =0=1Im Q(v1,...,0p4+1),

for all vector fields vy, ...vp41 on X.

Proof. If X is complex, then by the adjunction formula [6, Prop 2.2.17],
KM‘X 2Kx® Am_pVE’O(X),

where K s denotes the canonical bundle of M. Since € is a nowhere vanish-

ing section of Ky, it is easy to see that for any p+1 vector fields vy, ..., vp41
on X
QU1+ Uptdy yeeey ) = QU1 oo Upgdy yeeey o) =0,
and so,
Re Q(v1,...,vp41, +5.ony -) =0,

It remains to show that o|x = 0 implies that X is a complex manifold. We
show the contrapositive, that is, if X is not complex, then we can find vector
fields vy, ..., vp41 on X so that o(v1,...,vpy1) # 0. It suffices to show that
for an arbitrary x € X, we can find nonzero vy,...,vp,41 € T, X so that

oz (v1, ..., vp11) # 0.

First assume that 2p < m. Identifying (T, M, w,) with C™ with the stan-
dard Euclidean Kéhler form, we can view T, X as an oriented 2p-dimensional
linear subspace V of C™. Apply Lemma [£T] to choose a unitary basis
{e1,Je1,...,em, Jey} for C™ so that for some 0 < 6y < --- < 0,1 < 7/2,
prl < Hp <,

V = span{ej, Jej cos b + egsinby,es, ..., exp_1, Jegp_1 cos b, + ey sinfy}.

Since V' is not a complex subspace of C™, let jo € {1,...,p} be so that that
0<6j,<m 0;=0forj=1,...,750 — 1. The holomorphic volume form on
C™ takes the form

Qo= (e —iJe ) A--- A (e™ —iJe™),

where e’ = g(e;,-). Notice that Je' = —g(Je;,-). The holomorphic volume
form on T, M in this choice of basis will take the form Q = €'Qq for some
¢ € [0,2m). Take

V1 = €1,V = €3,... ,Up = egp_l, Up+1 = Jegjo_l COS 6]'0 + egjo sin Hj()'
Then we have that

0'(1}1, e ,Up+1) = siné?jORe (eid’Qo)(el, ce 3 €2p—1,€2505 Ty ey ),
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which doesn’t vanish regardless of the value of ¢ since we assumed that
0 < 8j, <7 — aslong as p+ 1 # m, which can only happen when p = 1,
m = 2. In this case, we find that
o(e1, Jey cos By + egsinfy) = sin 61 cos ¢,
which will vanish if ¢ = 7/2. But in this case,
Im Q(eq, Jeg cos i + egsinfy) = sinfy sin g # 0,

and so regardless of the value of ¢, the proposition holds.

The case 2p > m follows from a similar argument. O

In the style of Proposition B4 we can now identify the moduli space of
complex deformations of a compact complex submanifold in a Calabi—Yau
manifold with the kernel of a partial differential operator.

Proposition 4.3. Let NP be a compact complex submanifold of a Calabi—
Yau manifold M™. Let V be the open set from the tubular neighbourhood
theorem [31, and for v € C*(V) define N, := exp,(N). If p+ 1 # m, then
the moduli space of complex deformations of N in M 1is locally homeomorphic
to the kernel of
G:C®°VQC)— C®ANPIN@ A" P IT* M|y © C),

(4.2) v = x N expy (o] N, ),
where o was defined in Proposition [{.2 If p +1 = m, then the moduli
space of complex deformations of N in M 1is locally homeomorphic to the
intersection of the kernels of

G1:C®(V ®C)— C®(APIN),
(4.3) v — xnexp,(Re Q|n, ),
and

Gy : C®°(V @ C) = C®(AP"IN),
(4.4) v — *y exp,, (Im Q|pn, ),

Proof. The identification of the moduli space with the kernel of these oper-
ators follows immediately from Proposition O

4.2. Properties of the operators G, G; and G2. We will now study the
operators G, G1 and Gbs.

Proposition 4.4. Let NP be a compact complex submanifold of a Calabi—
Yau manifold M™. Let G,G1 and Go be the partial differential operators
defined in Equations (A2]), [@3) and [@4) respectively. Then the linearisa-
tion of these operators at zero is given by
) (p—1) . _ —
v s P (1) P (9 (0L Q)+ (—1)PH 8 (02 1D)),

where v € C®(vpy(N) @ C) and we take j =0 for G and G1 and j =1 for
Gs. Therefore v is an infinitesimal complex deformation of N if, and only

if,

9 (v1Q) =0 = §*(viT)
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Moreover, we have that, if v = vy © vy where vy € 1/]1\20(]\7) and vy € I/]?&I(N)
8*(U1JQ) =0 < 5?}1 =0.

Corollary 4.5. Let N be a two-dimensional compact complex submanifold
of a four-dimensional Calabi—Yau manifold M. Then infinitesimal complex
and Cayley deformations of N are the same.

Proof of Corollary. By Propositions and B0 a complexified normal vec-
tor field v = v1 @ v9 is an infinitesimal Cayley deformation of IV if

vy + ié*(vg_nﬁ) =0.

By Proposition [44] v; & v9 is an infinitesimal complex deformation of N if
Ovy =0 = 0" (v9uQ).

The result follows since N is compact. O

Proof of Proposition [Z1. By definition, we have that

dG‘o(V) = iG(tv)’tzo = *N(ﬁvU‘N)-

dt
Choose an orthonormal frame {ey, ..., ey} for TN and consider
p+1
A N .
(45) (ﬁv()')(ejl, B ejp+1) = Z(—l)H—lO’(VeJ_iU, €1y 3Chiyen- ,ejp+1),
i=1

where €;, means that o is not evaluated on this element, and we have used
that o is parallel and vanishes when evaluated on p + 1 tangent vectors to
N. We notice that

Qleg, Jeg, +yeony ) =0=Q(eg, Jeky yeuey ).

Therefore taking a frame for T'N of the form {e;, Je,...,ep, Je,}, we see
that only terms in (£3]) of the form

(Lyo)(et,. .. ep, Jej) = (—1)];10(ij1), €1y €5y, ep,Je;)

+ (—l)pa(erjv, e1,...,€p),

(Lyo)(Jer, ..., ep e5) = (—1)];10(V§6],v, Jeq, ... ,ﬁj, o Jep,€j)
+ (—1)p0(VeLjv,Jel,...,Jep),

for j € {1,...,p} are nonzero.

We have that ey — iJey is of type (1,0), while ey + iJey is of type (0,1).
Therefore

(ex +iJer)aQ=0= (ex —iJex)a ,
and so we see that
(4.6) e = —iJeraQ,
eraQ =iJe, Q.
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So we have that
1 ~
o(Vev,€e1,...,65,.... €, Jej) =

7 Np— -
5(—1)12 1Q(Veljv,Jel,...,Jej,...,Jep,ej, EEEEE) )

—%ip_lﬁ(veljv,Jel,...,je?,...,Jep,ej, ey ).
Calculating that
J(erjv,el,...,ep) =
—iP P
( 22) Q(Vfiejv,z]el,...,(]ep, . -)—}—%Q(erjv,z]el,...,(]ep, eyt ),
we find that
xNLyo Jel,...,je\»,...,Je =(-1 P -1 Lyo)(el,..., ey Je;
J P psJEj
P _ _ —
= %(—1)p(p2 . (Q+ (—1)pQ)(Vé;v,ej,Jel,...,Jej,...,Jep, ey )
P plp—1) = —
+o (1) (Q+ (1P (Vv Jej, Jer, ..., Jej, oo Jep, ey o).
A similar calculation yields that
(xNLyo)(et,..., €5, ... ep) = (—1)p(p2+1)+j71(ﬁva)(t]el,...,Jep,ej)
P p(p+1) — N
= 5(—1) 2 ((—1)pQ+Q)(erjv,!]ej,el,...,ej,...,ep, ey )
P (p+1) =
+%(—1)”J (1P + Q) (VEv,€,e1, 0 85y p ey o).

Therefore we find that

p
p(p+1) | — —
+(=D)"2 PY UV eg )+ UV Teg )

p(p—1)

= (—1) 2 ipzejJ (Veljlu Q) + JejJ (Vﬁejiu Q)
j=1

p

(p+1) | — —

+ (—1)pp2+ i? E ejJ(VeljvJQ) + JejJ(erjvJQ)
=1

p
= (—1)?(1’—2 1)—ip Z €1 Ve, (v2Q) + Jejo Ve, (v1Q))

=1

p(p+1) | P — —

+(=1)"=2 ¢ Zej_: Ve, (vaQ) + Jejo Ve, (v1Q))
=1

p(

= P(—1) "L (00 Q) + (—1)P8* (v T)).
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The expressions for the linearisations of G; and G follow similarly. It
remains to show that if v, € V}V’IO(N ) then
oy =0 < 9" (v1.02) =0.
Let {e1, Jei,...,ep, Jep} be a unitary frame for TN. Then we have that
vy =0 <= (e' +idJe") AN (VE +iVy, o + ...
+ (eP +iJeP) A (Velp + Z'Vﬁep)vl =0

= (VL +iVi == (Ve +iVy, o =0

= (Vo +iVi )ulaQ=---=[(Vo +iVy, Jr1]aQ =0

= QUVE +iVy, Jvier —ider, ooy )+ ...

—i—Q((Velp —i—z'erp)vl,ep —iJep, -y, ) =0

— QiQ(Vévl,ei, e -)—i—Q(eriv,Jei, ey ) =0
i=1

p
<— 2 Z €; Vei(v“ Q) + Je; o Vjei(vl_l Q) =0
i=1
— —20"(v11Q) =0,
where we have exploited the property that 2 never vanishes, that Vév is of
type (1,0) and Equation (4.6]). O

Similarly to Proposition .4l we may identify the kernels of the operators 0
and 9*. This will be helpful when we compare the results of this section to
Kodaira’s theorem [I0, Theorem 1].

Corollary 4.6. Let NP be a complex submanifold a Calabi—Yau manifold
M™. Consider the operators

d: C®(w ) (N)) = C®(A"' N @ v (N)),
F 1 C°(A"PN @ AP~ 0(N)) — CF(APP~IN @ A™ P~y 0 (N).
Then there is an isomorphism
Vi (N) = AP N @ AmP~10(N),
that induces an isomorphism

Ker 0 — Ker 0*.

Proof. Let Q be a holomorphic volume form on M. Then the isomorphism
vy (N) = APPN @ AP~y 0(N),
is given by
v (02Q)F,
where § : VX/([)’I(N ) — 1/]1\/’[0(]\7 ) is the musical isomorphism. The argument

of Proposition extends to arbitrary dimensions and so this is an isomor-
phism. We proved in Proposition [£4] that

ov=0 < 0 (vaQ) =0.
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Since

5 (15.0) = 7 (029),
the result follows. O

The following lemma allows us to see that the kernel of G defined in Proposi-
tion [£2]is equal to the kernel of the linear part of G computed in Proposition

4.4

Lemma 4.7. Let NP be a complex submanifold of a Calabi—Yau manifold
M™. Let ve C®(vpy(N) @ C) satisfy

0*(viQ) =0=0"(vaQ).
Let G,Gy and Gy be the operators defined in Equations (£2), [@3) and
E4). Then G(v) =0= G1(v) = Ga(v).

Proof. The argument here is similar to the argument of Proposition [3.41

At each point of N, we can write the tangent space of the (small) deformation
Nj as a normal graph over the tangent space of N. So it suffices to prove
this proposition for a normal graph over a p-dimensional complex subspace
of C™. Suppose that this graph is described by

v =ej + Z)\gei,

wj = Jej + Zugei,
where ¢ runs over p + 1 to m and m + p + 1 to 2m with e,,1; = Je;, for
N, ! € R.
We have that
Qra) = (et —iJe YA A (P —iJeP) N (PTL—iJePT YA A (€™ —ide™).
for some ¢ € [0,27), where again Je/ = —g(Je;, ). Write
a= (et —iJe')A---A(eP —ideP), B = (ePTL—iJePTHYA- A(e™—iJe™).

We first find the linear terms of ¢ = 0. We find that the only nonzero linear
terms come from evaluating

o(vi,...,vp,wj) =0=0(wi,..., wp,vg),
if p+1# m and if p+ 1 = m additionally
Im Q(v1,...vp,w;) =0=1Im Q(wy,...,wp,vj).
These terms are
Re (e?a(vi,...,v) A (wjaB))
—Re (ea(vy, ... V-1, Wi, Vg1, - -, Up) A (V51 5)),
and additionally if p+1 = m,
Im (e“a(vy, ..., v,) A (wjaB))
—Im (ea(vy, ... V-1, Wy, Vgl - -, Up) A (053 5)).
We have that

a(vr,...vp) =1, alvr,...,vj-1,W;,Vj41,...Vp) =1,
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and so these linear terms are of the form
(4.7 Re [¢(w;1 B —ivj1B)] =0,
for j =1,...,p. Notice that this implies that
ew(wj_:ﬁ —ivjaf3) = 0;
indeed, if p + 1 = m then this follows immediately. Otherwise note that
(wja B — w0 8) = (18 + Nospn) + 1y, — X B,
and since Re (ex13) # Im (ex1 ), we have that

Re [ (w8 —ivjuB)] =0 < pl+ X, =0=pl, . —X,
— P(wjiB —ivjupB) =0,
Now given any p + 1 of {v1,...,vp,w1,...,wpy}, we must have that there is
some jo so that two of these vectors are vj,, w;,. Notice that
Q(Ujoijm Teveyt) = (_1)p_1(vjoJa) A (wjoJ/B) + (_1)p(wj0JO‘) A (UjoJﬂ)
+ (—1)1)04/\5(1)]‘0,10]‘0, Syeees )
Since

(Vjoa ) A (wjoa ) — (wjpua) A (vjoaB) = (ejoua) A (wj, —ivjya3) =0,
these terms will vanish. Now
ﬁ(vjo,wjo, ey ) = 55(10]'0 — Wiy, Wjo + Wjg, * 5oy ) =0,

and so we see that (£7) vanishing implies that ¢ (and Im Q) vanish on any
p + 1 tangent vectors to N'. O

We can now prove a result on the moduli space of complex deformations of
a complex submanifold of a Calabi—Yau manifold.

Theorem 4.8. Let NP be a compact complex submanifold of a Calabi—Yau
manifold M™. Then the moduli space of complex deformations of N in M
is a smooth manifold of dimension

2dimcKer 0 = dimp,
where B
d: C=® () (N)) = CZ(A"'N @ ;7 (N)).

Proof. By Proposition £.3] we can identify the moduli space with the kernel
of the partial differential operator (£2]), or kernels of the partial differential
operators (43]) and (4.4)). By Lemmal4.7the kernel of each of these operators
is the same as the kernel of the operator

v 0 (viQ) £ 9" (vaQ),

where v € C*®°(vp(N) ® C). By Proposition [£.4] and Corollary [4.6] both the
set of v € C®(vp(N) ® C) so that

0" (vuQ) =0,
and the set of v € C®°(vp(N) ® C) so that
0*(vaQ) =0,
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can be identified with the kernel of
d:C®w P (N)) = C(A"' N @ v (N)).
O

We can now deduce a result about Cayley deformations of a compact com-
plex surface inside a Calabi—Yau four-fold.

Theorem 4.9. Let N be a two-dimensional compact complex submanifold
of a four-dimensional Calabi—Yau manifold M. Then the moduli space of
Cayley deformations of N in M is the moduli space of complex deformations
of N in M, which is a smooth manifold of dimension

dimcKer 0 + dimcKer 0* = 2dimcKer 0,
where
d: C®w P (N)) = C®(A"' N @ v (N)),
9" : C®(A"*N @ 1) (N)) = C®(A™'N @ v, (N)).

Proof. The moduli space of complex deformations of N in M is a smooth
manifold of the claimed dimension by Theorem (.8l

By Theorem B8 the moduli space of Cayley deformations of N, if it is
smooth, has dimension at most equal to the dimension of the kernel of
0 + 0%, which is equal to the sum of the dimensions of the kernel of 9 and
0* since N is compact. Since the moduli space of Cayley deformations of N
contains the moduli space of complex deformations of N, we see that they
must have the same dimension, and therefore are the same. O

With this theorem, we achieve our aim of showing directly that complex and
Cayley deformations of a compact complex surface inside a Calabi—Yau man-
ifold are the same, as can be deduced from Proposition [[L.T. Moreover, we
have matched the result of Kodaira’s theorem [10, Theorem 1] that says that
the infinitesimal complex deformations of IV are isomorphic to the kernel of
0, with the improvement that we do not need to consider any obstructions.
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