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Abstract: Aim
To determine local departmental adherence to our paediatric post-mortem MRI
imaging protocols, using a customised automated computational approach.

Materials and Methods
A retrospective review of 460 whole body post-mortem MRI performed at our institution
over a 5 ½ year period was assessed for adherence to a full or abbreviated imaging
sequence protocol. We developed a simple computer program to batch process
DICOM files, extracting imaging sequence details, followed by natural language
processing (NLP) of authorised reports to automate information extraction of diagnostic
image quality.

Results
Our program was able to extract study parameters from the entire dataset
(approximately 80GB of data) in a few hours, and retrieve information on diagnostic
image quality using NLP with an overall diagnostic accuracy for data extraction of
96.7% (445/460 , 95% CI: 94.7 – 98.0%). The full imaging protocol was adhered to in
305/460 (66.3%) cases, and an abbreviated protocol in 140/460 (30.4%) cases.
Overall, 423/460 (91.9%) of studies were of diagnostic quality. These included 298/
305 (97.7%) of the full protocol, 111/140 (79.3%) of the abbreviated protocol. In only 5
cases were the examinations non-diagnostic for all body systems, all of whom weighed
<100g (24.7 – 72g) and imaged using the abbreviated protocol.

Conclusion
We have demonstrated a successful application of an automated approach for data
collection for audit and quality assessment purposes using paediatric post mortem
imaging as a specific example. Re-audit of this data following change implementation
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will be straightforward now that we have clearly established the automated workflow.
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 2 April 2019 

Deputy Editor, Clinical Radiology 

 

Dear Dr Julie Cox, 

 

Thank you to you and your reviewers for your invaluable feedback regarding our manuscript entitled 

“Automated data extraction and report analysis in computer-aided radiology audit; practice 

implications from post mortem paediatric imaging”; Manuscript ID: CRAD-D-19-00063. 

 

In this second revision, we have made the following amendments to our article as suggested below 

(responses in bold font). Since the only changes relate to figures and not to text in the main 

manuscript, the manuscript document has not been tampered with and the previously submitted 

‘revised clean’ version has been carried forward in this submission.  

 

Advisory Editorial Comments: 

 

1. The MR images will be limited by the acquisition matrix (and size of the specimens) - normal 

production process will confirm they are adequate but despite one of the reviewers' comments 

I think this is likely and would not suggest further revision of these images. 

Thank you for your understanding – this has been left untouched. 

 

2. Fig 1 is difficult to read as the text is not clear no matter what resolution the image is set to: 

please revise. 

Figure 1 has been reworked to make the font larger and the text boxes bigger to allow 

for better readability. This has been uploaded and the previous figure 1 removed. 

 

I can confirm that co-authors have read and agree to the changes in the manuscript above.  

 

 

Anonymous list of revisions



Abstract 

 

Aim 

To determine local departmental adherence to our paediatric post-mortem MRI imaging protocols, 

using a customised automated computational approach. 

 

Materials and Methods 

A retrospective review of 460 whole body post-mortem MRI performed at our institution over a 5 ½ 

year period was assessed for adherence to a full or abbreviated imaging sequence protocol. We 

developed a simple computer program to batch process DICOM files, extracting imaging sequence 

details, followed by natural language processing (NLP) of authorised reports to automate information 

extraction of diagnostic image quality. 

 

Results 

Our program was able to extract study parameters from the entire dataset (approximately 80GB of 

data) in a few hours, and retrieve information on diagnostic image quality using NLP with an overall 

diagnostic accuracy for data extraction of 96.7% (445/460 , 95% CI: 94.7 – 98.0%). The full imaging 

protocol was adhered to in 305/460 (66.3%) cases, and an abbreviated protocol in 140/460 (30.4%) 

cases. Overall, 423/460 (91.9%) of studies were of diagnostic quality. These included 298/ 305 

(97.7%) of the full protocol, 111/140 (79.3%) of the abbreviated protocol. In only 5 cases were the 

examinations non-diagnostic for all body systems, all of whom weighed <100g (24.7 – 72g) and 

imaged using the abbreviated protocol.  

 

Conclusion 

We have demonstrated a successful application of an automated approach for data collection for 

audit and quality assessment purposes using paediatric post mortem imaging as a specific example. 

Re-audit of this data following change implementation will be straightforward now that we have clearly 

established the automated workflow. 
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 2 

Introduction 3 

The persistent decline in consent rates for paediatric autopsy has facilitated development of non-4 

invasive alternatives, based on imaging 1-4. Post-mortem MRI (PMMR) provides high diagnostic 5 

accuracy rates for perinatal and infant deaths (similar to conventional autopsy) with high concordance 6 

rates in detecting major pathological lesions5. PMMR performs better than post-mortem computed 7 

tomography (PMCT)4, and is also acceptable to healthcare professionals and parents6,7. 8 

Consequently, use of paediatric PMMR has grown rapidly. Established working groups are embedded 9 

within several imaging societies8-10 and it is endorsed by the Royal College of Pathologists, with 10 

inclusion in paediatric autopsy guidelines11-13. 11 

 12 

Despite these advancements, an agreed standardised national or international paediatric PMMR 13 

protocol has not been clearly defined according to age, gestation or body weight resulting in the use 14 

of at least 15 different imaging protocols worldwide 14. This inconsistency makes it difficult to 15 

guarantee uniformity of image quality and technique, and hinders comparison between different 16 

patient groups in multicentre studies. As one of the largest paediatric post mortem imaging centres 17 

worldwide, we published our PMMR protocols in 201514. However, our full PMMR protocol, whilst 18 

designed to be comprehensive, can be time-consuming and for both clinical and timetabling reasons 19 

may be curtailed or abandoned when potentially non-diagnostic. 20 

 21 

The purpose of this study was to assess our own adherence to our PMMR protocols, and understand 22 

the reasons for any variation. In order to do this efficiently, we designed a custom computer program 23 

to extract the relevant information from Digital Imaging in Communications in Medicine (DICOM) 24 

metadata. We also applied basic natural language processing (NLP) to analyse the study reports 15. 25 

With this computational approach we hope to increase the speed, accuracy and consistency of data 26 

collection, to extract insights that may inform modifications to future protocols and refine PMMR 27 

guidelines. Furthermore we provide the code used in our study as an example of how automated data 28 

collection and NLP might be applied to in other imaging contexts. 29 

 30 
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Materials and Methods 31 

Study Cohort 32 

A retrospective review of the radiology information system (RIS) at our institution was conducted for 33 

all PMMR studies performed over a 5½ year period (January 2013 – July 2018). All studies were 34 

included for analysis without exclusion criteria. Written informed consent was obtained from all 35 

parents for clinical pre-autopsy PMMR, which included parental consent for use of data for audit, 36 

research and education as part of our post mortem imaging protocol. Ethical approval was not 37 

required for this study as it was part of a retrospective audit of imaging data, approved by our local 38 

research and development (R&D) office. 39 

 40 

Demographic data for each patient was also collected including the age at time of death, time 41 

between death and imaging (i.e. post mortem interval), post mortem weight (in grams), and gender. 42 

For perinatal deaths, additional information included the gestational age, maceration score at clinical 43 

autopsy (0 to 3; 0 representing none and 3 representing late/established maceration) and mode of 44 

death (e.g. termination of pregnancy, stillbirth, and miscarriage) from the clinical notes or autopsy 45 

report. 46 

 47 

Imaging Protocol: Current Practice 48 

All PMMR imaging was performed on a 1.5T MR scanner (Avanto, Siemens Medical Solutions, 49 

Erlangen, Germany), by one of two experienced MR radiographers. Our local PMMR protocols, which 50 

we took as our standard, has been previously published and are included in Table 114. 51 

 52 

In brief, our radiographers perform either a ‘full protocol’ or ‘abbreviated protocol’. The full protocol 53 

involves three-dimensional isovolumetric T1, T2 weighted and diffusion weighted imaging (DWI) of the 54 

brain, spine and torso. In addition, a susceptibility weighted imaging (SWI) sequence of the brain and 55 

a three-dimensional high resolution T2 weighted constructive interference steady state (CISS) 56 

sequence covering the thorax is performed. Where a fetus is small and at the limits of image 57 

resolution, an abbreviated version of this protocol can be performed. This involves only two key 58 

sequences: three-dimensional isovolumetric T1 and T2 weighted sequence of the whole body in one 59 



acquisition (as opposed to imaging body parts separately). The cut-off for this size limitation is 60 

frequently a subjective measure, decided upon by the radiographer at time of performing the study. 61 

 62 

Our protocol does not specify the type of coil to be used, allowing operator choice. Ideally this should 63 

be a phased-array coil with multiple elements within close proximity to the region of interest. 64 

Ordinarily, a head coil is used for neuroimaging and phase array matrix body coil for body imaging, 65 

although these may be adjusted according to the size of the fetus or child (e.g. in smaller fetuses, the 66 

head coil alone may be sufficient to cover the head and body). 67 

 68 

Referrals are generated for PMMR imaging via the lead pathologist responsible for the clinical case. 69 

At present we have no restrictions for referral indication, although we usually do not recommend 70 

imaging in cases less than 200g (unless there is no other imaging alternative) given the increased 71 

likelihood of non-diagnostic imaging 16. 72 

 73 

Data Collection and Analysis 74 

We queried our local RIS using a DICOM viewer (OsiriX, Pixmeo SARL, Switzerland). Examinations 75 

were reviewed for number and name of MR sequences, operator name and type of coil utilised. This 76 

information was encoded in the metadata of the image files (i.e. DICOM headers) as specific data 77 

elements. We designed a small computer program for automated data extraction using the free, open-78 

source “Pydicom” package17 (https://pypi.org/project/pydicom/) (see Supplementary Material, 79 

Appendix S1). Pydicom allows manipulation of DICOM data elements using the Python programming 80 

language (Python Software Foundation, https://www.python.org/). All examinations were batch 81 

processed using our program, and the resulting data was tabulated using the “pandas” data analysis 82 

library18.  83 

 84 

We performed natural language processing (NLP) on the examination reports to partially automate 85 

extraction of some measure of diagnostic outcome, given that a comment regarding diagnostic image 86 

quality is required per body system using our standardised reporting template for PMMR studies. We 87 

used Natural Language Toolkit (NLTK 19) and “spaCy” - both free, open-source python packages—to 88 

create a rule-based binary classifier (i.e. diagnostic or non-diagnostic) (see Supplementary Material, 89 

https://pypi.org/project/pydicom/


Appendix S2). Feature extraction involved identification of word boundaries (“tokenization”) and 90 

formation of a list of words used in each report. This list was subsequently “normalized” by converting 91 

all words to lower case. Finally, we searched the resulting word list for specific terms that suggested 92 

non-diagnostic examinations, using regular expression pattern matching. The terms used were “non-93 

diagnostic”, “uninterpretable”, “quality” and “resolution”.  94 

 95 

All reports and image sequences were manually checked by one of the authors (SCS) for having the 96 

same sequences as stated in the DICOM headers, and also whether the reports were correctly 97 

classified as being either diagnostic or non-diagnostic quality for each of five body systems 98 

(neurological, thoracic, cardiac, abdominal and musculoskeletal system). Where at least one body 99 

system was deemed to be non-diagnostic, then the study as a whole was labelled as ‘suboptimal’ in 100 

quality.  Figure 1 outlines our workflow for both extraction of imaging parameters and NLP of 101 

diagnostic image quality. Figure 2 demonstrates an example of what a radiologist would classify and 102 

report as a ‘diagnostic quality’ versus ‘non-diagnostic’ quality study for two different cases in different 103 

body areas. 104 

 105 

Prior to data analysis, our predefined local adherence rate was set at 100% for performing all PMMR 106 

sequences as stated in local protocols. Demographic differences between cases who received the full 107 

or abbreviated protocol were compared. All data were exported to a spreadsheet (Excel, Microsoft 108 

Corporation, USA) for collation and further analysis. 109 

 110 

  111 



Results 112 

Demographics 113 

Over the 5 ½ year study period we reviewed 460 PMMR examinations performed from 460 individual 114 

cases. Of these, 402 (87.4%) were perinatal deaths (fetal and early neonatal deaths up to 7 days old), 115 

35 (7.6%) were neonatal and infant deaths (7 days to 1 year old) and the remaining 23 (5%) were 116 

aged >1 year.  117 

 118 

There were 270 males (58.7%), median age at death was 0 days (mean: 110 days, range: 0 days – 119 

15 years), imaged at a median post mortem interval of 8 days (mean: 9 days, range: 0 – 35 days) and 120 

overall median post mortem weight of 680g (mean: 2.8kg, range: 13g – 87kg). For perinatal deaths, 121 

the median gestational age was 24 weeks (mean: 27 weeks, range: 13 – 42 weeks) with median 122 

maceration score of 1 (mean: 1, range: 0-3). 123 

 124 

Data Extraction 125 

Our program was able to extract study parameters from the entire dataset (approximately 80GB of 126 

data) in less than three hours. Study reports were extracted and analysed separately before being 127 

collated. 128 

 129 

Protocol Adherence 130 

The full PMMR protocol was adhered to in 305/460 (66.3%) cases, and the abbreviated PMMR 131 

protocol in 140/ 460 (30.4%) cases. The median post-mortem weight of the cases that underwent a 132 

full protocol was 2051g (average 3314g; 165g – 87,000g), and for those having the abbreviated 133 

protocol the median weight was 225g (average 264g; 12.6 – 1050g). 134 

 135 

Fifteen cases (15/460, 3.3%) did not have the standard abbreviated or full protocol for PMMR 136 

examination. Of these 7/15 (46.7%) cases had an incomplete full protocol (i.e. some but not all of the 137 

sequences were performed, commonly the diffusion weighted sequences). There were no clinical or 138 

radiological reporting system notes to state why this was the case or why the study was abandoned 139 

before all sequences were performed. In the other 8/15 (53.3%) cases, a customised protocol was 140 

conducted either due to the parental wishes or pathologist request. The imaging was mainly targeted 141 



to answer a specific clinical question pertaining to one or more body parts. Of these, 3 cases included 142 

imaging of only the head, 1 case of only the neck, 2 cases of only the thorax and 2 cases where there 143 

was imaging of the thorax and abdomen, but not the head (in one case the child already had a recent 144 

antemortem MRI study of their brain, in the other case the child had a normal post-mortem CT of their 145 

head, and the referring clinical team did not deem further MRI necessary). 146 

 147 

Diagnostic Imaging Quality 148 

Overall, 423/460 (91.9%) of all studies were of diagnostic quality for all body systems imaged. 298/ 149 

305 (97.7%) of the full protocol were diagnostic (i.e. suboptimal diagnostic rate of 2.3%) and 111/140 150 

(79.3%) of the abbreviated protocol which were diagnostic (i.e. suboptimal-diagnostic rate of 20.7%). 151 

In only 5 cases were the PMMR examinations entirely non-diagnostic for all body parts examined. In 152 

all cases these were fetuses weighing <100g (24.7 – 72g) and had undergone an abbreviated 153 

protocol.   154 

 155 

Of the 7 suboptimal studies adhering to the full protocol, only one body part was deemed to be of non-156 

diagnostic quality. Of the 29 suboptimal PMMR studies in the abbreviated protocol cohort, 5/29 were 157 

non-diagnostic for all body parts imaged. Of the remaining 24 cases, 14 were non-diagnostic for one 158 

body system, 6 for two body systems, 1 for three body system and 2 for four body systems. The 159 

breakdown of which body systems were non-diagnostic are shown in Table 2. 160 

 161 

There were 61/460 (13.2%) PMMR examinations performed in cases weighing <200g (4 full, 56 162 

abbreviated, 1 incomplete full protocol). Of these cases 37/61 (60.7%) were deemed as diagnostic in 163 

all body systems. These included all cases where a full protocol and the single case where the 164 

incomplete full protocol was adhered to.  165 

 166 

We did not scan any cases with the full protocol below 150g body weight. The full protocol was 167 

adhered to in 89.2% (248/278) cases weighing 450g or more, with 98.8% (245/248) diagnostic image 168 

quality for all body systems. Between 150 – 449g, the full protocol was adhered to in 28.4% (56/197), 169 

with 94.6% (53/56) diagnostic image quality for all body systems. See Figure 3 for a graph depicting 170 

the results of our study for cases weighing up to 1000g in body weight. 171 



 172 

Classification Model Performance 173 

Our customised NLP model had the following performance metrics compared with manual review of 174 

reports and images (labelled as ‘diagnostic’ and ‘non-diagnostic/suboptimal’ quality): sensitivity 99.3% 175 

(419/422, 95% confidence interval CI 97.9 – 99.8%), specificity 68.4% (26/38, 52.5 – 80.9%), positive 176 

predictive value 97.2% (419/431, 95.4 – 98.4%), negative predictive value 89.7% (26/29, 73.6 – 177 

96.4%), with overall diagnostic accuracy 96.7% (94.7 – 98.0%). Given the imbalance between the 178 

numbers of diagnostic and non-diagnostic studies, we computed a Matthews correlation coefficient of 179 

0.78 to better define accuracy of the model. 180 

 181 

Discussion 182 

This study has two main findings for discussion. The first is regarding PMMR protocol adherence and 183 

the second concerns our methodology, i.e. using a computational approach to extract key data in 184 

order to perform a semi-automated audit of radiological data. 185 

 186 

Regarding paediatric PMMR imaging, our study shows that we achieved 66.3% adherence with the 187 

full protocol overall, and our radiographers were preferentially using a limited ‘abbreviated’ protocol in 188 

all cases weighing <150g. Whilst we do not have any standards regarding the cut-off size for using 189 

the abbreviated protocol, this appears to be a reasonable weight limit and in line with our previous 190 

study showing that more than half of all cases imaged with PMMR will be non-diagnostic where the 191 

body weight measures less than 122g16.  192 

 193 

We achieved an almost 100% diagnostic image quality rate with imaging above 450g body weight 194 

suggesting that in order to maximise the ‘clinical usefulness’ of our post-mortem MRI imaging 195 

services, we should preferentially accept cases above this weight threshold. Nevertheless, we did 196 

achieve diagnostic image quality in approximately half of cases weighing <200g, although we 197 

recognise that there may be a selection bias as we are dependent upon our referral pattern and 198 

parental consent for post mortem imaging.  199 

 200 



We also recognise that the decision to use the full or abbreviated protocol was subjective, usually 201 

reached in discussion between mortuary staff, radiographers and radiologists (although some imaging 202 

performed outside clinical hours may not have had this benefit). We did not have data available on 203 

studies that may have been abandoned or not performed due to small body size. Nevertheless, this 204 

data reflects the clinical activity in a busy tertiary referral centre and thus may be used as a reference 205 

point for other centres engaged in similar activity. 206 

 207 

This study re-iterates the challenges of imaging small fetuses at PMMR. Field strength of 1.5T is often 208 

inadequate below 200g body weight and therefore another imaging technique (e.g. micro-focus 209 

computed tomography (micro-CT)20,21) or higher magnetic field strength is needed 22,23. Diagnostic 210 

imaging at 3T PMMR has been shown to be better particularly below 20 weeks gestation, although 211 

these effects were relatively minor (non-diagnostic rates of 54% at 1.5% and 30% at 3T 22), and 212 

micro-CT imaging may be the better overall imaging modality for small fetal cases in this setting 213 

20,24,25. Our audit now highlights the limitations of current PMMR use, and raises local issues including 214 

deciding whether an abbreviated protocol is necessary or whether it should only be employed below 215 

150g body weight, or whether to insist on a full protocol for low gestation / body weight.  216 

 217 

The second major discussion point is our computational methodology. Manual data collection for large 218 

study cohorts is both laborious and error-prone. The presence of structured metadata in DICOM 219 

headers offers a potentially rich source of information for quality assessment of radiologic practice 220 

(e.g. patient demographics, radiation doses, modality specific parameters, etc). We have shown that a 221 

basic knowledge of computer programming can facilitate this process of “data mining”, using a freely 222 

available software package (pydicom) that enables extraction of data according to DICOM tags. 223 

Python is a relatively simple and versatile cross-platform programming language that is rapidly 224 

gaining in popularity (including specific medical imaging applications e.g. radiomics analysis with 225 

“PyRadiomics”). Our in-house program not only considerably accelerated the process of data 226 

collection, but also ensured accurate and consistent recording of the information of interest. 227 

Moreover, this approach is easily reproducible as the explicit methodology is outlined in the source 228 

code of the program, and can be repeated without any further input. 229 

 230 



Although our local radiology post mortem reports are written according to a suggested template (with 231 

some standardisation of report wording) they are still written as free-form text. Natural language 232 

processing (NLP) is a technique that computational analysis of text - an approach that has found 233 

numerous applications in radiology 15. We used a limited NLP workflow using specific keywords to 234 

identify non-diagnostic cases using search terms that captured the common words used to describe 235 

such investigations. This “rule-based” approach incorporates knowledge of standardised reporting 236 

templates as well as clinical details to generate classification models. All reports were manually 237 

checked before definitive classification as diagnostic or non-diagnostic. That said, NLP is capable of 238 

far more advanced semantic analysis (potentially incorporating radiology-specific lexicons e.g. 239 

RadLex 26), to extract greater meaning from reports that we anticipate will ultimately allow automatic 240 

classification without verification. More sophisticated approaches using machine learning have been 241 

applied recently to automated analysis of various study reports (CT head, lumbar spine MR), with 242 

impressive results, although this requires much greater technical expertise)27,28. 243 

 244 

Whilst our program was written specifically for the purpose of this particular study, the automated 245 

methodology is clearly generalisable and may be equally applicable to other studies and audits where 246 

specific terminologies on patient presenting factors, outcomes, imaging sequences and radiological 247 

findings may need to be retrieved. Although there are isolated reports of a similar approach 29,30, and 248 

we are unaware of previous studies that have used this combination of automated DICOM metadata 249 

extraction and report analysis to establish patterns of clinical practice. By making this program 250 

publicly available, similar audits may now be facilitated in other radiology contexts. 251 

 252 

Strengths of our study include a large series of similar examinations which lend themselves easily to 253 

automated audit, particularly as we use template reporting. Our clinical activity in a busy tertiary 254 

centre is likely to reflect pragmatic practice in other departments, depending on their referral pattern. 255 

Clearly this type of approach is easily transferrable to other centres, or multi-site data, and will help to 256 

feed into on-going work from international taskforces (e.g. European Society for Paediatric Radiology 257 

(ESPR) post-mortem imaging taskforce 8,10) to create standardised imaging protocols and reporting 258 

templates. Highlighting inconsistent or incorrectly recorded metadata (e.g. clinical indication, operator 259 

or coil types will help improve data recording for future studies).  260 



 261 

The success of our (and other) automated approaches relies on accurate information recording at the 262 

time of data acquisition. Constructing a simple NLP workflow has highlighted the need for consistent 263 

recording of diagnostic status of studies. Clearly the low specificity of our classification model (0.68) 264 

indicates the need for further refinement of the model rules. More extensive labelling of the reports for 265 

findings of interest might increase the utility of this NLP approach for more granular assessment. 266 

Implementing machine learning based NLP is a natural extension of this work, but will require more 267 

data to train a statistical model, as well as greater technical expertise. The simplicity of our rule-based 268 

approach has the benefit of a broader appeal to practising radiologists. This proof of principle study 269 

necessitated the manual checking of reports from the NLP workflow, in order to be able to assess the 270 

performance of the algorithm, however we are only beginning to understand the potential applications 271 

of this technique and hope to better use it in future audit cycles. 272 

 273 

We conclude that we have demonstrated a successful application of an automated approach to data 274 

collection for audit and quality assessment/improvement, using post mortem perinatal imaging as a 275 

specific example. Re-audit of this data following change implementation will be straightforward now 276 

that we have clearly established the automated workflow.  277 

 278 

  279 



Figure legends 280 

 281 

Figure 1 282 

Workflow diagram for automated data collection utilised in our methodology. RIS =  Radiology 283 

Information System; NLTK = Natural Language ToolKit, DICOM = Digital Imaging & Communication in 284 

Medicine 285 

 286 

Figure 2 287 

Diagnostic and non-diagnostic quality post-mortem MRI imaging in two different fetuses of 15 weeks 288 

gestational age, obtained 4 days after death. (a) The top row shows diagnostic quality axial T2-289 

weighted images of the brain (top left), thorax (top middle) and abdomen, at the level of the renal hila 290 

(top right). (b) The bottom row demonstrates a ‘non-diagnostic’ quality study for the same 291 

corresponding body parts respectively. 292 

 293 

Figure 3 294 

Bar chart demonstrating the numbers of diagnostic studies versus studies of suboptimal image quality 295 

(i.e. at least one of the body parts imaged being non-diagnostic) for fetuses at varying body weights 296 

up to 1000g. Both the full and abbreviated post-mortem MRI imaging protocol figures are given. White 297 

bars denote abbreviated protocol, solid black bars denote diagnostic quality images. Those with grey 298 

stripes and black stripe patterns denote suboptimal quality imaging for the abbreviated and full 299 

protocols respectively.  300 

  301 



Table 1. Sequence parameters for full post-mortem MRI protocol in infant and perinatal deaths (adapted with permission from BLINDED) are given below. 
The two sequences followed by ‘*’ denote the imaging performed in our abbreviated PMMR protocol, with the only difference being that the coverage for both 
is from the head to pelvis (not neck to pelvis as stated below for full protocol). 
 

Sequence FOV 
(mm) 

Slice 
thickness 

(mm) 

Matrix Voxel size 
(mm) 

TR (ms) TE (ms) Averages 
(NEX/NSA) 

Number 
slices and 

gap 

Approximate 
length of 
sequence 

(min) 

BRAIN IMAGING 

3D FLASH T1-w (sag) 

Perinatal 256 1 256/256 1.0 x 1.0 x 1.0 11 4.9 3 60 per slab 5.44 

Child 256 1 224/256 1.0 x 1.0 x 1.0 11 4.9 1 160 per slab 4.20 

2D DESTIR T2-w (axial and coronal) 

Perinatal 100 2 172/256 0.4 x 0.4 x 2.0 5460 16 and 115 6 18 (1mm) 13.46 

Child 200 4 216/320 0.7 x 0.6 x 4.0 6180 14 and 115 1 22 (1mm) 3.19 

2D GRE T1 HEME (axial) 

Perinatal 100 4 120/256 0.5 x 0.4 x 4.0 800 26 4 18 (0mm) 6.26 

Child 200 5 144/256 1.0 x 0.8 x 5.0 800 26 2 18 (0mm) 3.52 

DWI (b-values 0, 500, 1000) 

Perinatal 230 5 128/128 1.8 x 1.8 x 5.0 2700 96 3 19 (0mm) 1.06 

Child 230 5 128/128 1.8 x 1.8 x 5.0 2700 96 3 19 (0mm) 1.06 

SPINE IMAGING          

2D T2-w TSE (sag) 

Perinatal 150 1.5 128/256 0.6 x 0.6 x 1.5 9.1 4.5 8 12 per slab 4.24 

Child 300 3 272/320 1.1 x 0.9 x 3.0 3050 109 3 11 per slab 5.43 

3D FLASH T1-w (sag) 

Perinatal 150 1.25 128/256 0.6 x 0.6 x 1.3 11 5.3 10 16 per slab 3.19 

Child 350 1.40 144/256 1.4 x 1.4 x 1.4 11 4.9 6 32 per slab 5.06 

BODY IMAGING (NECK TO PELVIS) 

3D T2-w TSE (cor)* 

Perinatal 200 0.8 160/256 0.8 x 0.8 x 0.8 3500 275 2 72 per slab 6.20 

Child 360 1.4 226/256 1.4 x 1.4 x 1.4 3500 173 1 96 per slab 3.42 

3D T1-w VIBE (cor)* 

Perinatal 200 0.8 160/256 0.8 x 0.8 x 0.8 5.9 2.4 8 72 per slab 5.52 

Child 360 1.4 224/256 1.4 x 1.4 x 1.4 5.9 2.4 5 72 per slab 6.33 

3D CISS T2-w (axial) (thoracic coverage for cardiac assessment) 

Perinatal 150 0.6 192/256 0.6 x 0.6 x 0.6 5.6 2.5 10 Cover heart 
and lungs 

29.26 

Child 150 0.6 192/256 0.6 x 0.6 x 0.6 5.6 2.5 10 29.26 

2D T2-w tirm (axial) (Ti = 150) 

Perinatal 180 5 160/256 0.7 x 0.7 x 5.0 5080 109 5 Cover body 
and pelvis 

6.58 

Child 300 5 168/256 1.2 x 1.2 x 5.0 8390 108 4 4.47 

DWI As for head with greater number of slices to cover chest, abdomen and pelvis 1.06 



 

Table 2. Suboptimal PMMR studies, divided by protocol adherence, showing which body system was deemed as non-diagnostic in each subgroup. 
 

PMMR Protocol 
Total No. 

Suboptimal 
Studies  

Non-diagnostic Body Systems Total non-
diagnostic body 

systems Brain Cardiac Thoracic Abdomen Musculoskeletal 

Full 7 4 3 0 0 0 7 

Abbreviated 29 17 24 10 9 7 67 

Total Studies 36 21 27 10 9 7 74 
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Electronic Supplementary Material 
 
Appendix S1. Pydicom Code 
 

import pandas as pd 

import numpy as np 

from collections import OrderedDict 

import glob 

import pydicom 

 

def sequence_extractor(source, sequences): 

  rows_list = [] 

  for file in glob.glob(source): 

      ds = pydicom.dcmread(file, force=True, specific_tags=['PatientID', 

'SeriesDescription', 'TransmitCoilName', 'OperatorsName']) 

      coil = getattr(ds, 'TransmitCoilName', None) 

      opname = getattr(ds, 'OperatorsName', None) 

      newrow = OrderedDict([ 

          ('id', ds.PatientID), 

          ('seq', ds.SeriesDescription), 

          ('coil', coil), 

          ('opname', opname) 

          ]) 

      rows_list.append(newrow) 

 

  df = pd.DataFrame.from_dict(rows_list) 

  df2 = df.groupby(['id','seq']).size().unstack('seq') 

  seq_pmmr = df2[sequences] 

  seq_other = df2.drop(sequences, axis=1) 

 

#Specify path to DICOM files 

source = '/Path/to/folder/*/*/*/*.dcm' 

 

#Specify precise list of sequence names (as recorded in metadata) 

sequences = [ 

    'fl3D_t1_sag', 

    't2_destir_tra', 

    't2_destir_cor', 

    't2_fl2d_tra_haem', 

    'ep2d_dwi_tra', 

    'ep2d_dwi_tra_ADC', 

    't2_tse_rst_sag', 

    'fl3D_t1_sag spine', 

    'fl3D_t1_sag_spine', 

    't2_tse3d_vfl_ns_cor', 

    'VIBE fs cor', 

    't2_tirm_tra_dark-fl_pat2', 

    't2_ci3d_iso Heart' 

] 

 

#Run function 

sequence_extractor(source, sequences) 

 
Appendix S2. Natural Language Programming Code 
 

import spacy 

import pandas as pd 

import numpy as np 
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import nltk 

from nltk.tokenize.toktok import ToktokTokenizer 

import re 

import unicodedata 

from spacy import displacy 

from spacy.matcher import Matcher 

from spacy.matcher import PhraseMatcher 

import os 

import glob 

from pathlib import Path 

 

def pmmr_nlp(source, terms): 

    nlp = spacy.load('en', disable = ['ner']) 

    tokenizer = ToktokTokenizer() 

    stopword_list = nltk.corpus.stopwords.words('english') 

    stopword_list.remove('no') 

    stopword_list.remove('not') 

    stopword_list.remove('both') 

 

    def remove_stopwords(text): 

        tokens = tokenizer.tokenize(text) 

        tokens = [token.strip() for token in tokens] 

        filtered_tokens = [token for token in tokens if token not in 

stopword_list] 

        filtered_text = ' '.join(filtered_tokens) 

        return filtered_text 

 

    def remove_special_characters(text, remove_digits=False): 

        pattern = r'[^a-zA-z0-9\s]' if not remove_digits else r'[^a-zA-

z\s]' 

        text = re.sub(pattern, '', text) 

        return text 

 

    def normalize(report, remove_digits = False): 

            #make lowercase 

            report = report.lower() 

            #remove extra newlines 

            report = re.sub(r'[\r|\n|\r\n]+', ' ',report) 

            #remove extra whitespace 

            report = re.sub(' +', ' ', report) 

            #remove special characters 

            special_char_pattern = re.compile(r'([{.(-)!}])') 

            report = special_char_pattern.sub(" \\1 ", report) 

            report = remove_special_characters(report, 

remove_digits=remove_digits) 

            #remove stopwords 

            report = remove_stopwords(report) 

            return report 

 

    nlp.vocab.strings.add('DIAGNOSTIC-YIELD') 

    diag = nlp.vocab.strings['DIAGNOSTIC-YIELD'] 

 

    def add_ent(matcher, doc, i, matches): 

        # Get the current match and create tuple of entity label, start 

and end. 

        # Append entity to the doc's entity 

        match_id, start, end = matches[i] 

        doc.ents += ((diag, start, end),) 



 

    pm = PhraseMatcher(nlp.vocab) 

    terminology_list = terms 

    patterns = [nlp(text) for text in terminology_list] 

    pm.add('TerminologyList', add_ent, *patterns) 

 

    dict = [] 

    for file in sorted(glob.glob(source)): 

        report=open(file).read() 

        doc = nlp(normalize(report)) 

        pm_matches = pm(doc) 

        ent_diag = len([ent.label_ for ent in doc.ents if 

ent.label_=='DIAGNOSTIC-YIELD']) 

        fn = Path(file).stem 

        data = {"filename": fn, "diag": ent_diag} 

        dict.append(data) 

    output = pd.DataFrame(dict) 

    return(output) 

 

#Specify path to folder containing all reports as txt files 

source = '/path/to/reports/*.txt' 

 

#Specify search terms in list 

terms = ['non diagnostic', 'not diagnostic', 'nondiagnostic'] 

 

#Run function 

pmmr_nlp(source, terms) 
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Highlights 

 

1. Automated data extraction allows rapid DICOM metadata and report keyword 

compilation. 

2. Our PMMR protocol gave diagnostic image quality in 98.8% cases weighing 

>450g  

3. PMMR in fetuses weighing <200g, were more likely to be non-diagnostic. 
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