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Early prediction of deterioration could play an important role in supporting healthcare pro-21

fessionals as an estimated 11% of in-hospital deaths follow a failure to promptly recognise and22

1



2

treat deteriorating patients [1]. To achieve this goal requires predictions of patient risk that are23

continuously-updated and accurate, and which are delivered at an individual level with sufficient24

context, and with enough time to act. Building upon recent work modelling adverse events from25

electronic health records (EHR) [2–18], and taking the common and potentially life-threatening26

condition of Acute Kidney Injury (AKI) [19] as an exemplar, we have developed a novel deep27

learning approach for continuous risk prediction of future AKI. The model was developed on28

a large, longitudinal EHR dataset covering diverse clinical environments, comprising 703,78229

adult patients across 172 inpatient and 1,062 outpatient sites. Our model predicts 55.8% of all30

inpatient AKI episodes, and 90.2% of all AKI that requires subsequent administration of dial-31

ysis, with a lead time of up to 48 hours and a ratio of two false alerts for every true alert. In32

addition to predicting future AKI, our model provides confidence assessments and a list of clin-33

ical features most salient to each prediction, alongside predicted future trajectories for clinically34

relevant blood tests [9]. While the recognition and prompt treatment of AKI are known to be35

challenging, our approach may offer new opportunities to identify patients at risk within a time36

window that allows early treatment.37

Adverse events and clinical complications are a major cause of mortality and poor patient38

outcomes, and substantial effort has been made to improve their recognition [19, 20]. Few pre-39

dictors have found their way into routine clinical practice, either because they lack effective40

sensitivity and specificity, or because they report already existing damage [21]. One example re-41

lates to AKI, a potentially life threatening condition affecting approximately 1 in 5 US inpatient42

admissions [22]. Although a significant proportion of cases are thought to be preventable with43

early treatment [23], current AKI detection algorithms depend on changes in serum creatinine44

as a marker of acute decline in renal function. Elevation of serum creatinine lags significantly45

behind renal injury, resulting in delayed access to treatment [24]. This supports a case for pre-46

ventative ‘screening’ type alerts, but there is no evidence that current rule based alerts improve47

outcomes [25, 26]. For predictive alerts to be effective they must empower clinicians to act48

before major clinical decline has occurred by: (i) delivering actionable insights on preventable49
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conditions; (ii) being personalised for specific patients; (iii) offering sufficient contextual infor-50

mation to inform clinical decision-making; and (iv) being generally applicable across patient51

populations [27].52

Promising recent work on modelling adverse events from EHR [2–18] suggests that the in-53

corporation of machine learning may enable early prediction of AKI. Existing examples of se-54

quential AKI risk models have either not demonstrated a clinically-applicable level of predictive55

performance [28] or have focused on predictions across a short time horizon, leaving little time56

for clinical assessment and intervention [29].57

Our proposed system is a recurrent neural network (RNN) that operates sequentially over the58

EHR, processing the data one step at a time and building an internal memory that keeps track of59

relevant information seen up to that point. At each time point the model outputs a probability60

of AKI occurring at any stage of severity within the next 48 hours, although our approach can61

be extended to other time windows or AKI severities (see Extended Data Tables 2, 3 and 4).62

When the predicted probability exceeds a specified operating point threshold, the prediction is63

considered positive. This model was trained using data curated from a multisite retrospective64

dataset of 703,782 adult patients from all available sites at the US Department of Veterans Affairs65

(VA)—the largest integrated health care system in the United States. The dataset consisted of66

information available from the hospital EHR in digital format. The total number of independent67

entries in the dataset was approximately 6 billion, including 620,000 features. Patients were68

randomised across training (80%), validation (5%), calibration (5%) or test (10%) sets. A ground69

truth label for the presence of AKI at any given point in time was added using the internationally70

accepted "Kidney Disease: Improving Global Outcomes (KDIGO)" criteria [19]; the incidence71

of KDIGO AKI was 13.4% of admissions. (Detailed descriptions of the model and dataset are72

provided in the Methods.)73

Figure 1 shows the use of our model. At every point throughout an admission the model74

provides updated estimates of future AKI risk, along with an associated degree of uncertainty.75

Demonstrating prediction uncertainty may help clinicians distinguish ambiguous cases from76
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predictions fully supported by the available data. Identifying an increased risk of future AKI77

sufficiently in advance is critical, as longer lead times may allow preventative action to be taken.78

This is possible even when clinicians may not be actively intervening with, or monitoring a79

patient.80

Figure 1 Illustrative example of risk prediction, uncertainty and predicted future laboratory val-
ues. A visual representation of an 11 day admission for a 65 year old male patient with a history of chronic
obstructive pulmonary disease. (a) The creatinine measurements throughout the admission, showing an
AKI event occurring on the 5th day of admission. (b) The model’s continuous risk predictions, where the
model predicted an increase in risk of AKI onset 48 hours before it was detected according to the KDIGO
criteria. A risk above 0.2, corresponding to precision of 33%, was taken as the threshold for which an AKI
is predicted to occur. The lighter green borders on the risk curve indicate uncertainty, taken as the range
of 100 ensemble predictions once trimmed for the highest and lowest 5 values. (c) Predictions made in the
4th day of admission of the maximum future observed values of serum creatinine, serum urea nitrogen,
and serum potassium up to 72 hours ahead of time.

With our approach, 55.8% of inpatient AKI events of any severity were predicted early within81

a window of up to 48 hours in advance, with a ratio of two false predictions for every true82

positive. This corresponds to an area under the receiver operating characteristic curve (ROC83
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AUC) of 92.1% and an area under the precision-recall curve (PR AUC) of 29.7%. Set at this84

threshold our predictive model would, if operationalised, trigger a daily clinical assessment in85

2.7% of hospitalised patients in this cohort (Extended Data 7). Sensitivity was particularly86

high in patients who went on to develop lasting complications as a result of AKI. The model87

provided early predictions correctly in 84.3% of episodes where administration of in-hospital or88

outpatient dialysis was required within 30 days of the onset of AKI of any stage, and 90.2% of89

cases where regular outpatient administration of dialysis was scheduled within 90 days of the90

onset of AKI (Extended Data 12). Figure 2 shows the corresponding ROC and PR curves, as91

well as a spectrum of different operating points of the model. An operating point can be chosen92

to either further increase the proportion of AKI predicted early, or reduce the percentage of93

false predictions at each step, according to clinical priority (Figure 3). Applied to stage 3 AKI,94

84.1% of inpatient events were predicted up to 48 hours in advance, with a ratio of two false95

predictions for every true positive (Extended Data Table 6). To respond to these alerts on a daily96

basis, clinicians would need to attend to approximately 0.8% of in-hospital patients (Extended97

Data 7).98

The model correctly identifies substantial future increases in seven auxiliary biochemical tests99

in 88.5% of cases (Supplementary Table 3), and provides information about the factors that are100

most salient to the computation of each risk prediction. The greatest saliency was identified for101

laboratory tests known to be relevant to renal function (see Supplementary Table 1). The predic-102

tive performance of our model was maintained across time and hospital sites, demonstrated by103

additional experiments that show generalisability to data acquired at time points after the model104

was trained (Extended Data Tables 8, 9 and 10).105

Our approach significantly outperformed (p < 0.001) established state-of-the-art baseline106

models (Supplement H). For example, a baseline model was created with gradient boosted trees107

(GBT) using manually-curated features known to be relevant for modelling kidney function and108

in routine care delivery (Supplements K and E.1), plus aggregate statistical information on trends109

observed in recent patient history. This yielded 3599 clinically relevant features provided to the110
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baselines at each step (see Methods). For the same level of precision the baseline model was111

able to detect 36.0% of all inpatient AKI episodes up to 48 hours ahead of time, compared to112

55.8% for our model.113
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(a) (b)

Operating points

Operating Precision TP : Sensitivity Sensitivity Specificity
Point FP (AKI episode) (step) (step)

A 20.0% 1:4 76.7% [75.6, 77.8] 58.3% [56.9, 59.8] 94.8% [94.6, 95.1]
B 25.0% 1:3 68.2% [66.9, 69.7] 47.7% [46.1, 49.4] 96.8% [96.6, 97.0]
C 33.0% 1:2 55.8% [53.9, 57.7] 35.0% [33.3, 36.7] 98.4% [98.3, 98.5]
D 40.0% 2:3 46.6% [44.5, 49.0] 27.1% [25.2, 28.9] 99.1% [99.0, 99.2]
E 50.0% 1:1 34.7% [32.0, 37.2] 18.5% [16.7, 20.3] 99.6% [99.5, 99.6]
F 60.0% 3:2 24.7% [21.8, 27.3] 12.4% [10.5, 13.9] 99.8% [99.8, 99.8]
G 75.0% 3:1 12.0% [9.3, 14.6] 5.5% [3.9, 7.0] 100.0% [99.9, 100.0]
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Figure 2 Model performance illustrated by Receiver Operating Characteristic (ROC) and Preci-
sion/Recall (PR) curves. (a) ROC and (b) PR curves for the primary outcome of predicting the risk that an
AKI of any severity will occur within the next 48 hours. Blue dots correspond to operating points from (c).
The grey hatched area covers the portions of ROC and PR curves that correspond to operating points
with greater than four false positives for each true positive. The blue area captures the performance in the
more clinically applicable part of the operating space; illustrating the higher applicability of PR Area Under
Curve (AUC) for reporting model performance. The model significantly (p-value of <0.001) outperformed
the gradient boosted trees baseline, shown in (b) for operating point C using two-sided Mann–Whitney U
test on 200 samples per model (see Evaluation). (c) Different model operating points given as a fraction of
AKI episodes successfully detected for different precision levels (or equivalently the TP:FP ratio) in terms
of individual predictions made at each step. (d) Resulting calibration curve after isotonic regression for 48
hours ahead any-AKI severity predictions. Model predictions are grouped into twenty buckets, with a mean
model risk prediction plotted against the percentage of positive labels in that bucket. The diagonal dotted
line demonstrates the ideal calibration.
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Figure 3 The time between model prediction and actual AKI event. The models predict the risk of
certain stages of AKI occurring within a particular time window. Within this window the actual time in hours
between prediction and AKI event can vary. The error bars in all panels indicate 95% confidence intervals.
(a) For the main time window studied (48 hours ahead of time) a greater proportion were correctly predicted
as impending AKI events get closer to the time step immediately prior to the AKI. As AKI events often occur
shortly after admission, and there is not the opportunity to predict an episode until the patient presents
to hospital, the available time window in which to predict is shortened. While 100% of inpatient AKIs of
each stage are possible to predict at the point of admission, fewer than 60% of all AKI events occurred
more than 48 hours into an admission. (b-d) Model extensibility. When predicting more severe AKI stages
(blue, all AKI stages; yellow, AKI stages 2 & 3; red, AKI stage 3), the model achieved higher sensitivity for
the same precision. Different operating points (shown here as bars of different texture) can be configured
such that more AKIs are detected early; this is demonstrated at three different precision operating points,
from 20% to 50%.

Of the false positive alerts made by our model, 24.9% were positive predictions made even114

earlier than the 48 hour window in patients where AKI subsequently occurred (Extended Data115

Figure 3). 57.1% of these occurred in patients with pre-existing chronic kidney disease (CKD),116

who are at a higher risk of developing AKI. Of the remaining false positive alerts, 24.1% were117

trailing predictions that occurred after an AKI episode had already begun; such alerts can be118

filtered out in clinical practice. For positive risk predictions where no AKI was subsequently119

observed in this retrospective dataset, it is probable that many occurred in patients at risk of120
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AKI where appropriate preventative treatment was administered which averted subsequent AKI.121

In addition to these early and trailing predictions, 88% of the remaining false positive alerts122

occurred in patients with severe renal impairment, known renal pathology, or evidence in the123

EHR that the patient required clinical review (Extended Data Table 11).124

Our aim is to provide risk predictions that enable personalised preventative action to be deliv-125

ered at scale. The way these predictions are used may vary by clinical setting: a trainee doctor126

could be alerted in real time to each patient under their care, while a specialist nephrologist or127

rapid response teams [30] can identify high risk patients to prioritise their response. This is pos-128

sible because performance was consistent across multiple clinically important groups, notably129

those at an elevated risk of AKI (Supplementary Table 4). Our model is designed to complement130

existing routine care, as it is trained specifically to predict AKI that happened in this retrospec-131

tive dataset despite existing best practices.132

Although we demonstrate a model trained and evaluated on a clinically representative set of133

patients from the entire VA health care system, the demographic is not representative of the134

global population. Female patients comprised 6.38% of patients in the dataset, and model per-135

formance was lower for this demographic (Extended Data Table 1). Validating the predictive136

performance of the proposed system on a general population would require training and eval-137

uating the model on additional representative datasets. Future work will need to address the138

under-representation of sub-populations in the training data [31] and overcome the impact of139

potential confounding factors related to hospital processes [32]. KDIGO is an indicator of AKI140

that lags long after the initial renal impairment, and model performance could be enhanced by141

improvements in ground-truth AKI definition and data quality. [33].142

Despite state-of-the-art retrospective performance compared to existing literature, to establish143

clinical utility and effect on patient outcomes future work should now prospectively evaluate144

and independently validate the proposed model, alongside exploring its role in research into145

new strategies towards delivering preventative care for AKI.146

In summary, we demonstrate a deep learning approach for the continuous prediction of AKI147
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within a clinically-actionable window of up to 48 hours in advance. We report performance on148

a clinically diverse population and across a large number of sites to show that our approach may149

allow for the delivery of potentially preventative treatment, prior to the physiological insult itself150

in a large number of the cases. Our results open up the possibility for deep learning to guide the151

prevention of clinically important adverse events. With the possibility of risk predictions deliv-152

ered in clinically-actionable windows alongside the increasing size and scope of EHR datasets,153

we now shift to a regime where the role for machine learning in clinical care can grow rapidly,154

supplying new tools to enhance the patient and clinician experience, and potentially becoming a155

ubiquitous and integral part of routine clinical pathways.156

Acknowledgements157

We thank the Veterans and their families under the care of the US Department of Veterans Af-158

fairs. We would also like to thank A. Graves, O. Vinyals, K. Kavukcuoglu, S. Chiappa, T. Lil-159

licrap, R. Raine, P. Keane, A. Schlosberg, O. Ronneberger, J. De Fauw, K. Ruark, M. Jones,160

J. Quinn, D. Chou, C. Meaden, G. Screen, W. West, R. West, P. Sundberg and the Google AI161

team, J. Besley, M. Bawn, K. Ayoub and R. Ahmed. Finally, we thank the many VA physicians,162

administrators and researchers who worked on the data collection, and the rest of the DeepMind163

team for their support, ideas and encouragement.164

G.R. & H.M. were supported by University College London and the National Institute for165

Health Research (NIHR) University College London Hospitals Biomedical Research Centre.166

The views expressed are those of these author(s) and not necessarily those of the NHS, the167

NIHR or the Department of Health.168

Author contributions169

M.S., T.B., J.C., J.L., N.T., C.N., D.H. & R.R. initiated the project.170

N.T., X.G., H.A., J.L., C.N., C.B. & K.P. created the dataset.171



11

N.T., X.G., A.S., H.A., J.R., M.Z., A.M., I.P. & S.M. contributed to software engineering.172

N.T., X.G., A.M., J.R., M.Z., A.S., S.M., X.G., J.L., C.N. & C.B. analysed the results.173

N.T., X.G., A.M., J.R., M.Z., S.R. & S.M. designed the model architectures.174

J.L., G.R., H.M., C.L., A.C., A.K., C.H., D.K. & C.N. contributed clinical expertise.175

C.M., J.L., T.B., S.M. & C.N. managed the project.176

N.T., J.L., J.R., M.Z., A.M., H.M., C.B., S.M. & G.R. wrote the paper.177

Competing financial interests178

G.R., H.M. and C.L. are paid contractors of DeepMind. The authors have no other competing179

interests to disclose.180



12

Methods181

Data Description182

The clinical data used in this study was collected by the US Department of Veterans Affairs and183

transferred to DeepMind in de-identified format. No personal information was included in the184

dataset, which met HIPAA “Safe Harbor” criteria for de-identification.185

The Veterans Affairs (VA) serves a population of over nine million veterans and their families186

across the entire United States of America. The VA is composed of 1,243 health care facilities187

(sites), including 172 VA Medical Centers and 1,062 outpatient facilities [34]. Data from these188

sites is aggregated into 130 data centres, of which 114 had data of inpatient admissions that we189

used in this study. Four sites were excluded since they had fewer than 250 admissions during190

the five year time period. No other patients were excluded based on location.191

The data comprised all patients aged between 18 and 90 admitted for secondary care to med-192

ical or surgical services from the beginning of October 2011 to the end of September 2015,193

including laboratory data, and where there was at least one year of EHR data prior to admission.194

The data included medical records with entries up to 10 years prior to each admission date and195

up to two years afterwards, where available. Where available in the VA database, data included196

outpatient visits, admissions, diagnoses as International Statistical Classification of Diseases and197

Related Health Problems (ICD9) codes, procedures as Current Procedural Terminology (CPT)198

codes, laboratory results (including but not limited to biochemistry, haematology, cytology, tox-199

icology, microbiology and histopathology), medications and prescriptions, orders, vital signs,200

health factors and note titles. Free text, and diagnoses that were rare (fewer than 12 distinct201

patients with at least one occurrence in the VA database), were excluded to ensure all potential202

privacy concerns were addressed. In addition, conditions that were considered sensitive were203

excluded prior to transfer, such as patients with HIV/AIDS, sexually transmitted diseases, sub-204

stance abuse, and those admitted to mental health services.205

Following this set of inclusion criteria, the final dataset comprised 703,782 patients, providing206
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6, 352, 945, 637 clinical event entries. Each clinical entry denoted a singular procedure, labora-207

tory test result, prescription, diagnosis etc, with 3, 958, 637, 494 coming from outpatient events208

and the remaining 2, 394, 308, 143 events from admissions. Extended Data Table 1 contains an209

overview of patient demographics in the data as well as prevalence of conditions associated with210

acute kidney injury across the data splits. The final dataset was randomly divided into training211

(80% of observations), validation (5%), calibration (5%) and testing (10%) sets. All data for a212

single patient was assigned to exactly one of these splits.213

Data Preprocessing214

Feature Representation215

Every patient in the dataset was represented by a sequence of events, with each event provid-216

ing the patient information that was recorded within a 6 hour period, i.e. each day was broken217

into four 6 hour periods and all records occurring within the same 6 hour period were grouped218

together. The available data within these 6 hour windows, along with additional summary statis-219

tics and augmentations, formed a feature set that formed the input to our predictive models.220

Extended Data Figure 1 provides a diagrammatic view of a patient sequence and its temporal221

structure.222

We did not perform any imputation of missing numerical values, since explicit missing value223

imputation in EHR predictive models does not always provide consistent improvements [35].224

Instead, we associated each numerical feature with one or more discrete presence features to225

enable our models to distinguish between the absence of a numerical value and an actual value226

of zero. Additionally, these presence features encoded whether a particular numerical value is227

considered to be normal, low, high, very low or very high. For some data points, the explicit228

numerical values were not recorded, usually when the values were considered normal, and pro-229

viding this encoding of the numerical data allowed our models to process these measurements230

even in their absence. Discrete features like diagnostics or procedural codes were also encoded231
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as binary presence features.232

All numerical features were normalised to the [0, 1] range after capping the extreme values at233

the 1st and 99th percentile. This prevents the normalisation from being dominated by potentially234

large data entry errors while preserving most of the signal.235

Each clinical feature was mapped onto a corresponding high-level concept, such as procedure,236

diagnosis, prescription, lab test, vital sign, admission, transfer etc. A total of 29 such high-level237

concepts were present in the data. At each step, a histogram of frequencies of these concepts238

among the clinical entries that take place at that step was provided to the models along with the239

numerical and binary presence features.240

The approximate age of each patient in days, as well as which 6 hour period in the day the data241

is associated with, were provided as explicit features to the models. In addition, we provided242

some simple features that make it easier for the models to predict the risk of developing AKI.243

In particular, we provided the median yearly creatinine baseline and the minimum 48 hours244

creatinine baseline as additional numerical features. These are the baseline values that are used245

in the KDIGO criteria and help give important context to the models on how to interpret new246

serum creatinine measurements as they become available.247

We additionally computed three historical aggregate feature representations at each step: one248

for the past 48 hours, one for the past 6 months, and one for the past 5 years. All histories were249

optionally provided to the models and the decision on which combination of historical data to250

include was based on the model performance on the validation set. We did this historical aggre-251

gation for discrete features by including whether they were observed in the historical interval or252

not. For numerical features we included the count, mean, median, standard deviation, minimum253

and maximum value observed in the interval, as well as simple trend features like the difference254

between the last observed value and the minimum/maximum and the average difference between255

subsequent steps that measures the temporal short-term variability of the measurement.256

Because patient measurements are made irregularly, not all 6-hour time periods in a day will257

have new data associated with them. Our models still operate at regular time intervals, and all258



15

time periods without new measurements include only the available metadata, and optionally the259

historical aggregate features. This approach makes continuous risk predictions possible, and260

allows our models to utilise the patterns of missingness in the data during the training process.261

For about 35% of all entries, the day on which they occurred was known, but not the specific262

time during the day. For each day in the sequence of events, we aggregated these unknown-263

time entries into a specific bucket that was appended to the end of the day. This ensured that264

our models could iterate over this information without potentially leaking information from the265

future. Our models were not allowed to make predictions from these surrogate points and they266

were not factored into the evaluation. The models can utilise the information contained within267

the surrogate points on the next time step, corresponding to the first interval of the following268

day.269

Diagnoses in the data are sometimes known to be recorded in the EHR prior to the time when270

an actual diagnosis was made clinically. To avoid leaking future information to the models, we271

shifted all of the diagnoses within each admission to the very end of that admission and only272

provided them to the models at that point, where they can be factored in for future admissions.273

This discards potentially useful information, so the performance obtained in this way is conser-274

vative by design and it is possible that in reality the models would be able to perform better with275

this information provided in a consistent way.276

Ground Truth Labels using KDIGO277

The patient AKI states were computed at each time step based on the KDIGO [19] criteria, the278

recommendations of which are based on systematic reviews of relevant trials. KDIGO accepts279

three definitions of AKI: an increase in serum creatinine of 0.3mg/dl (26.5µmol/l) within 48280

hours; an increase in serum creatinine of 1.5 times a patient’s baseline creatinine level, known281

or presumed to have occurred within the prior 7 days; or a urine output of <0.5 ml/kg/h over 6282

hours [19]. The first two definitions were used to provide ground truth labels for the onset of283

an AKI; the third definition could not be used as urine output was not recorded digitally in the284
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majority of sites that formed part of this work. A baseline of median annualised creatinine was285

used where previous measurements where available; where these were not present the Modifi-286

cation of Diet in Renal Disease (MDRD) formula was applied to estimate a baseline creatinine.287

Using the KDIGO criteria based on serum creatinine and its corresponding definitions for AKI288

severity, three AKI categories were obtained: ‘all AKI’ (KDIGO stages 1, 2 & 3), ‘moderate289

and severe AKI’ (KDIGO stages 2 & 3), and ‘severe AKI’ (KDIGO stage 3).290

The AKI stages were computed at times when there was a serum creatinine measurement291

present in the sequence and then copied forward in time until the next creatinine measurement,292

at which time the ground truth AKI state was updated accordingly. In order to avoid basing293

the current estimate of the KDIGO AKI stage on an old measurement that may no longer be294

reliable, the AKI states were propagated for at most 4 days forward in case no new creatinine295

measurements were observed. From that point onwards they were marked as unknown. Patients296

experiencing acute kidney injury tend to be closely monitored and their levels of serum creatinine297

are measured regularly, so an absence of a measurement for multiple days in such cases is quite298

uncommon. A gap of 4 days between subsequent creatinine measurements represents the 95th299

percentile in the distribution of time between two consecutive creatinine measurements.300

The prediction target at each point in time is a binary variable that is positive if the AKI301

category of interest (e.g., all AKI) occurs within a chosen future time horizon. If no AKI state302

was recorded within the chosen horizon, this was interpreted as a negative. We use eight future303

time horizons, 6h, 12h, 18h, 24h, 36h, 48h, 60h, and 72h ahead, which are all available at each304

time point.305

Event sequences of patients undergoing renal replacement therapy (RRT) were excluded from306

the target labels heuristically based on the data entries of RRT procedures being performed in307

the EHR, for the duration of dialysis administration. We have excluded entire subsequences of308

events between RRT procedure entries that occur within a week of each other. The edges of the309

subsequence were also appropriately excluded from label computations.310
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Predictive Models of AKI311

Our predictive system operates sequentially over the electronic health record. At each time point,312

input features, which we described above, were provided to a statistical model whose output is313

a probability of any-severity stage of AKI occurring in the next 48 hours. If this probability314

exceeds a chosen operating threshold, we make a positive prediction that can then trigger an315

alert. This is a general framework within which existing approaches also fit, and we describe the316

baseline methods in the next section. The novelty of this work is in the design of the particular317

model that is used and its training procedure, and the demonstration of its effectiveness—on318

a large-scale EHR dataset and across many different regimes—in making useful predictions of319

future AKI.320

Extended Data Figure 2 gives a schematic view of our model, which makes predictions by first321

transforming the input features using an embedding module. This embedding is fed into a multi-322

layer recurrent neural network, the output of which at every time point is fed into a prediction323

module that provides the probability of future AKI at the time horizon for which the model will324

be trained. The entire model can be trained end-to-end, i.e. the parameters can be learned jointly325

without pretraining any parts of the model. To provide useful predictions, we train an ensemble326

of predictors to estimate the model’s confidence, and the resulting ensemble predictions are then327

calibrated using isotonic regression to reflect the frequency of observed outcomes [36].328

Embedding modules. The embedding layers transform the high-dimensional and sparse in-329

put features into a lower-dimensional continuous representation that makes subsequent predic-330

tion easier. We use a deep multilayer perceptron with residual connections and rectified-linear331

(ReLU) activations. We use L1 regularisation on the embedding parameters to prevent overfit-332

ting and to ensure that our model focuses on the most salient features. We compared simpler333

linear transformations, which did not perform as well as the multi-layer version we used. We334

also compared unsupervised approaches such as factor analysis, standard auto-encoders and335

variational auto-encoders, but did not find any significant advantages in using these methods.336

RNN core. Recurrent neural networks (RNNs) run sequentially over the EHR entries and are337
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able to implicitly model the historical context of a patient by modifying an internal representa-338

tion (or state) through time. We use a stacked multiple-layer recurrent network with highway339

connections between each layer [37], which at each time step takes the embedding vector as an340

input. We use the Simple Recurrent Unit (SRU) network as the RNN architecture, with tanh341

activations. We chose this from a broad range of alternative RNN architectures, specifically the342

long short-term memory (LSTM) [38], update gate RNN (UGRNN) and Intersection RNN [39],343

simple recurrent units (SRU) [40, 41], gated recurrent units (GRU) [42], the Neural Turing Ma-344

chine (NTM) [43], memory-augmented neural network (MANN) [44], the Differentiable Neural345

Computer (DNC) [45], and the Relational Memory Core (RMC) [46]. These alternatives did not346

provide significant performance improvements over the SRU architecture (see Supplement H).347

Prediction targets and training objectives. The output of the RNN is fed to a final linear348

prediction layer that makes predictions over all 8 future prediction windows (6 hour windows349

from 6 hours ahead to 72 hours ahead). We use a cumulative distribution function layer (CDF)350

across different time windows to encourage monotonicity, since the presence of AKI within351

a shorter time window implies a presence of AKI within a longer time window. Each of the352

resulting eight outputs provides a binary prediction for AKI severity at a specific time window353

and is compared to the ground truth label using the cross-entropy loss function (Bernoulli log-354

likelihood).355

We also make a set of auxiliary numerical predictions, where at each step we also predict the356

maximum future observed value of a set of laboratory tests over the same set of time intervals357

as used to make the future AKI predictions. The laboratory tests predicted are ones known to358

be relevant to kidney function, specifically: creatinine, urea nitrogen, sodium, potassium, chlo-359

ride, calcium and phosphate. This multitask approach results in better generalisation and more360

robust representations, especially under class imbalance [47–49]. The overall improvement we361

observed from including the auxiliary task was around 3% PR AUC in most cases (see Supple-362

mentary Table 10 for more details).363

Our overall loss function is the weighted sum of the cross-entropy loss from the AKI-364
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predictions and the squared loss for each of the seven laboratory test predictions. We inves-365

tigated the use of oversampling and overweighting of the positive labels to account for class366

imbalance. For oversampling, each mini-batch contains a larger percentage of positive samples367

than average in the entire dataset. For overweighting, prediction for positive labels contributes368

proportionally more to the total loss.369

Training and hyperparameters. We selected our proposed model architecture among sev-370

eral alternatives based on the validation set performance (see Supplement G) and have subse-371

quently performed an ablation analysis of the design choices (see Supplement I). All variables372

are initialised via normalised (Xavier) initialisation [50] and trained using the Adam optimisa-373

tion scheme [51]. We employ exponential learning rate decay during training. The best valida-374

tion results were achieved using an initial learning rate of 0.001 decayed every 12,000 training375

steps by a factor of 0.85, with a batch size of 128 and a backpropagation through time win-376

dow of 128. The embedding layer is of size 400 for each of the numerical and presence input377

features (800 in total when concatenated) and uses 2 layers. The best performing RNN archi-378

tecture used a cell size of 200 units per layer and 3 layers. A detailed overview of different379

hyperparameter combinations evaluated in the experiments is available in Supplementary Ta-380

ble 8. We conducted extensive hyperparameter explorations of dropout rates for different kinds381

of dropout to determine the best model regularisation. We have considered input dropout, output382

dropout, embedding dropout, cell state dropout and variational dropout. None of these had led383

to improvements, so dropout is not included in our model.384

Competitive Baseline Methods385

Established models for future AKI prediction make use of L1-regularised logistic regression386

or gradient boosted trees (GBTs), trained on a clinically relevant set of features known to be387

important either for routine clinical practice or the modelling of kidney function. A curated set388

of clinically-relevant features was chosen using existing AKI literature (see Supplement E.1)389

and the consensus opinion of six clinicians: three senior attending physicians with over twenty390
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years expertise, one nephrologist and two intensive care specialists; and three clinical residents391

with expertise in nephrology, internal medicine and surgery. This set was further extended to392

include 36 of the most salient features discovered by our deep learning model that were not393

in the original list, to give further predictive signal to the baseline. The final curated dataset394

contained 315 base features of demographics, admission information, vital sign measurements,395

select laboratory tests and medications, and diagnoses of chronic conditions directly associated396

with an increased risk of AKI. The full feature set is listed in Supplement K. We additionally397

computed a set of manually-engineered features (creatinine yearly and 48-hourly baselines in398

line with KDIGO guidelines, ratio of blood urea nitrogen to serum creatinine, grouped severely399

reduced GFR corresponding to stages 3a - 5, flagging diabetic patients by combining ICD9400

codes and values of measured haemoglobin A1c) and a representation of the patient’s short-401

term and long-term history (see Section Feature Representation). These features were provided402

explicitly, since the interaction terms and historical trends might not have been recovered by403

simpler models. This resulted in a total of 3599 possible features for the baseline model. We404

provide a table with a full set of baseline comparison in supplement H.405

Evaluation406

The data was split into training, validation, calibration and test sets in such a way that informa-407

tion from a given patient is present only in one split. The training split was used to train the408

proposed models. The validation set was used to iteratively improve the models by selecting the409

best model architectures and hyperparameters.410

The models selected on the validation set were recalibrated on the calibration set in order to411

further improve the quality of the risk predictions. Deep learning models with softmax/sigmoid412

output trained with cross-entropy loss are prone to miscalibration, and recalibration ensures that413

consistent probabilistic interpretations of the model predictions can be made [52]. For calibra-414

tion we considered Platt scaling [53] and Isotonic Regression [36]. To compare uncalibrated415

predictions to recalibrated ones we used the Brier score [54] and reliability plots [55]. The416
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best models were finally evaluated on the independent test set that was held out during model417

development.418

The main metrics used in model selection and the final report are: the AKI episode sensitiv-419

ity, the area under the precision-recall curve (PR AUC), the area under the receiver-operating420

curve (ROC AUC), and the per-step precision, per-step sensitivity and per-step specificity. The421

AKI episode sensitivity corresponds to the percentage of all AKI episodes that were correctly422

predicted ahead of time within the corresponding time windows of up to 48 hours. In contrast,423

the precision is computed per-step since the predictions are made at each step, to account for the424

rate of false alerts over time.425

Due to the sequential nature of making predictions, the total number of positive steps does not426

directly correspond to the total number of distinct AKI episodes. Multiple positive alerting op-427

portunities may be associated with a single AKI episode and different AKI episodes may offer a428

different number of such early alerting steps depending on how late they occur within the admis-429

sion. AKIs occurring later during in-hospital stay can be predicted earlier than those that occur430

immediately upon admission. To better assess the clinical applicability of the proposed model431

we explicitly compute the AKI episode sensitivity for different levels of step-wise precision.432

Given that the models were designed for continuous monitoring and risk prediction, they were433

evaluated at each 6-hour time step within all of the admissions for each patient except for the434

steps within AKI episodes which were ignored. The models were not evaluated on outpatient435

events. All steps where there was no record of AKI occurring in the relevant future time window436

were considered as negative examples.437

Approximately 2% of individual time steps presented to the models sequentially were asso-438

ciated with a positive AKI label, so the AKI prediction task is class-imbalanced. For per-step439

performance metrics, we report both the area under the receiver operating characteristic curve440

(ROC AUC) as well as the area under the precision-recall curve (PR AUC). PR AUC is known to441

be more informative for class-imbalanced predictive tasks [56], as it is more sensitive to changes442

in the number of false positive predictions.443
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To gauge uncertainty on a trained model’s performance we calculated 95% confidence inter-444

vals with the pivot bootstrap estimator [57]. This was done by sampling the entire validation445

and test dataset with replacement 200 times. Because bootstrapping assumes the resampling of446

independent events, we resample entire patients instead of resampling individual admissions or447

time steps. Where appropriate we also compute a Mann–Whitney U test (two-sided) [58] on the448

samples for the respective models.449

To quantify the uncertainty on model predictions (versus overall performance) we trained an450

ensemble of 100 models with a fixed set of hyperparameters but different initial seeds. This451

follows similar uncertainty approaches in supervised learning [59] and medical imaging pre-452

dictions [60]. The prediction confidence was assessed by inspecting the variance over the 100453

model predictions from the ensemble. This confidence reflected the accuracy of a prediction: the454

mean standard deviation of false positive predictions was higher than the mean standard devia-455

tion of true positive predictions and similarly for false negative versus true negative predictions456

(p-value < 0.01, see Supplement B).457

Reporting Summary458

Further information on experimental design is available in the Nature Research Reporting Sum-459

mary linked to this article.460

Ethics and Information Governance461

This work, and the collection of data on implied consent, received Tennessee Valley Healthcare462

System Institutional Review Board (IRB) approval from the US Department of Veterans Affairs.463

De-identification was performed in line with the Health Insurance Portability and Accountability464

Act (HIPAA), and validated by the US Department of Veterans Affairs Central Database and In-465

formation Governance departments. Only de-identified retrospective data was used for research,466

without the active involvement of patients.467
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Code Availability468

We make use of several open-source libraries to conduct our experiments, namely the machine469

learning framework TensorFlow1 along with the TensorFlow library Sonnet2 which provides470

implementations of individual model components [61]. Our experimental framework makes use471

of proprietary libraries and we are unable to publicly release this code. We detail the experiments472

and implementation details in the methods section and in the supplementary figures to allow for473

independent replication.474

Data Availability475

The clinical data used for the training, validation and test sets was collected at the US Depart-476

ment of Veterans Affairs and transferred to a secure data centre with strict access controls in477

de-identified format. Data was used with both local and national permissions. It is not pub-478

licly available and restrictions apply to its use. The de-identified dataset, or a test subset, may479

be available from the US Department of Veterans Affairs subject to local and national ethical480

approvals.481

1https://github.com/tensorflow/tensorflow
2https://github.com/deepmind/sonnet

https://github.com/tensorflow/tensorflow
https://github.com/deepmind/sonnet
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Abbreviations482

Abbreviation Description

AE Autoencoder
AKI Acute Kidney Injury
AKIN Acute Kidney Injury Network
AUC Area Under Curve
BIDMC Beth Israel Deaconess Medical Center
CDF Cumulative Distribution Function
CKD Chronic Kidney Disease
CNN Convolutional Neural Network
COPD Chronic Obstructive Pulmonary Disease
CPT Current Procedural Terminology
DNC Differentiable Neural Computer
ED Emergency Department
EHR Electronic Health Record
ER Emergency Room
GAM Generalised Additive Model
GBT Gradient Boosted Trees
GFR Glomerular Filtration Rate
GRU Gated Recurrent Unit
GP Gaussian Processes
HIPAA Health Insurance Portability and Accountability Act
ICD-9 International Statistical Classification of Diseases and Related Health Problems
ICU Intensive Care Unit
IRB Institutional Review Board
ITU Intensive Treatment Unit
IV Intravenous Therapy
KDIGO Kidney Disease: Improving Global Outcomes guidelines
LOINC Logical Observation Identifiers Names and Codes
LR Logistic Regression
LSTM Long Short-Term Memory Network
MANN Memory-Augmented Neural Network
MDP Markov Decision Process
MLP Multilayer Perceptron
NHSE National Health Service England
NPV Negative Predictive Value
NTM Neural Turing Machine
PPV Positive Predictive Value
PR Precision/Recall
ReLU Rectified Linear Unit
RF Random Forest
RIFLE Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease
RNN Recurrent Neural Network
RMC Relational Memory Core
ROC Receiver Operating Characteristic
RRT Renal Replacement Therapy
SMC Stanford Medical Centre
SRU Simple Recurrent Unit
TRIPOD Transparent Reporting of a multivariable prediction model for Individual Prognosis

Or Diagnosis
UGRNN Update Gate Recurrent Neural Network
VA US Department of Veterans Affairs
VAE Variational Autoencoder
WCC White Cell Count
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Extended data legends483

Extended Data Figure 1 | The sequential representation of EHR data. All EHR data484

available for each patient was structured into a sequential history for both inpatient and485

outpatient events in six hourly blocks, shown here as circles. In each 24 hour period events486

without a recorded time were included in a fifth block. Apart from the data present at the current487

time step, the models optionally receive an embedding of the previous 48 hours and the longer488

history of 6 months or 5 years.489

490

Extended Data Figure 2 | The proposed model architecture. The best performance was491

achieved by a multitask deep recurrent highway network architecture on top of an L1-regularised492

deep residual embedding component that learns the best data representation end-to-end without493

pre-training.494

495

Extended Data Figure 3 | Early and trailing positive predictions. For the prediction of496

AKI within 48 hours, nearly half of all predictions are made either (a) after the AKI has already497

occurred, or (b) more than 48 hours prior to the AKI. The histogram shows the full distribution498

of these trailing and early false positive predictions, for prediction of any AKI within 48 hours499

at 33% precision. Incorrect predictions above the set alerting threshold are mapped to their500

closest preceding/following AKI episode (whichever is closer) if there is one in an admission.501

For ±1 day 15.2% of false positives correspond to observed AKI events within 1 day after the502

prediction (model reacted too early) and 2.9% correspond to observed AKI events within 1 day503

prior to the prediction (model reacted too late).504

505

Extended Data Table 1 | Summary statistics for the data. A breakdown of training (80%),506

validation (5%), calibration (5%) and test (10%) datasets by both unique patients and individual507

admissions. Where appropriate, percent of total dataset size is reported in parentheses. The508
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dataset was representative of the overall VA population for clinically relevant demographics and509

diagnostic groups associated with renal pathology.510

511

Extended Data Table 2 | Model performance for predicting any severity of AKI within512

the full range of possible prediction windows from 6-72 hours. On shorter time windows,513

closer to the actual onset of AKI, the model achieves a higher ROC AUC but lower PR AUC.514

This difference in the metrics stems from the different number of positive steps within the515

windows of different length. For longer windows, there are more time steps where AKI occurs516

within the time window. These differences affect both the model precision and the false positive517

rate. When making predictions across shorter time windows there is more uncertainty in the518

exact time of the AKI onset due to minor physiological fluctuations and this results in a lower519

precision being needed in order to achieve high sensitivity.520

521

Extended Data Table 3 | Model ROC AUC performance. ROC AUC performance when522

predicting the risk of future AKI, for all AKI severities across different time windows.523

524

Extended Data Table 4 | Model PR AUC performance. PR AUC performance when525

predicting the risk of future AKI, for all AKI severities across different time windows.526

527

Extended Data Table 5 | Example operating points for predicting AKI stages 2 and 3528

up to 48 hours ahead of time. The model correctly identifies 71.4% of all AKI stage 2 or 3529

episodes early if allowing for two false positives for every true positive, and 56.2% if allowing530

for one false positive for every true positive. For more severe AKI stages it is possible to achieve531

a higher sensitivity for any fixed level of precision.532

533

Extended Data Table 6 | Operating points for predicting AKI stage 3 up to 48 hours534

ahead of time. The model identifies 84.1% of all AKI stage 3 episodes early if allowing for535
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two false positives for every true positive, and 71.3% when allowing for one false positive for536

every true positive.537

538

Extended Data Table 7 | Daily frequency of true and false positive alerts when predicting539

different stages of AKI. The frequency of alerts and its standard deviation are shown for a time540

window of 48 hours an operating point corresponding to a 1:2 TP:FP ratio (N=5101 days). On541

an average day, clinicians would receive true positive alerts of AKI predicted to occur within a542

window of 48 hours ahead in 0.85% of all in-hospital patients, and a false positive prediction of543

a future AKI in 1.89% of patients, when predicting the future AKI of any severity. Assuming544

none of the false positives can be filtered out and immediately discarded, clinicians would need545

to attend to approximately 2.7% of all in-hospital patients. For the most severe stages of AKI,546

the model alerts on an average day in 0.8% of all patients. Of those, 0.27% are true positives and547

0.56% are false positives. Note that there are multiple time steps at which the predictions are548

made within each day, so the TP:FP ratio of the daily alerts differs slightly from the step-wise549

ratio.550

551

Extended Data Table 8 | Generalisability to future data. Model performance when trained552

before the time point tP and tested after tP , both on the entirety of the future patient population553

as well as subgroups of patients for which the model has or hasn’t seen historical information554

during training. The model maintains a comparable level of performance on unseen future data,555

with a higher level of sensitivity of 59% for a time window of 48 hours ahead of time and a556

precision of two false positives per step for each true positive. Note that this experiment is not a557

replacement for a prospective evaluation of the model.558

559

Extended Data Table 9 | Cohort statistics for Extended Data Table 8. Dataset statistics560

are shown for both before and after the temporal split tP that was used to simulate model561

performance on future data.562
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563

Extended Data Table 10 | Cross-site generalisability. Comparison of mode performance564

when applied to data from previously unseen hospital sites. Data was split across sites so that565

80% of the data was in group A and 20% in group B. No site from group B was present in group566

A and vice versa. The data was split into training, validation, calibration and test in the same567

way as in the other experiments. The table reports model performance when trained on site568

group A when evaluating on the test set within site group A versus the test set within site group569

B for predicting all AKI severities up to 48 hours ahead of time. No statistically significant570

difference in performance was seen across most of the key metrics. Note that the model would571

still need to be retrained to generalise outside of the VA population to a different demographic572

and a different set of clinical pathways and hospital processes elsewhere.573

574

Extended Data Table 11 | Subgroup analysis for all false positive alerts. In addition to575

the 49% made in admissions during which there was at least one AKI episode many of the576

remaining false positive alerts were made in patients with evidence of clinical risk factors577

present in the EHR data available. These risk factors are shown here for the proposed model578

predicting any stage of AKI within the next 48 hours.579

580

Extended Data Table 12 | Model performance on patients requiring subsequent dialysis.581

Model performance only in AKI cases where either in-hospital or outpatient administration of582

dialysis is required within 30 days of the onset of AKI, or where regular outpatient administra-583

tion of dialysis is scheduled within 90 days. The model successfully predicts a large proportion584

of these AKI cases early, 84.3% of AKI cases where there is any dialysis administration585

occurring within 30 days and 90.2% of cases where regular outpatient administration of dialysis586

occurs within 90 days.587

588
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Extended data589

Extended data figures590

6h

Outpatient events Admission

Model

24h

Data used by the model

48h history New entry

24h    48h    72h
AKI predicted

 

Time 
unknown

Optional longer history

Extended Data Figure 1 The sequential representation of EHR data. All EHR data available for each
patient was structured into a sequential history for both inpatient and outpatient events in six hourly blocks,
shown here as circles. In each 24 hour period events without a recorded time were included in a fifth block.
Apart from the data present at the current time step, the models optionally receive an embedding of the
previous 48 hours and the longer history of 6 months or 5 years.
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Extended Data Figure 2 The proposed model architecture. The best performance was achieved
by a multitask deep recurrent highway network architecture on top of an L1-regularised deep residual
embedding component that learns the best data representation end-to-end without pre-training.
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Extended Data Figure 3 Early and trailing positive predictions. For the prediction of AKI within 48
hours, nearly half of all predictions are made either (a) after the AKI has already occurred, or (b) more than
48 hours prior to the AKI. The histogram shows the full distribution of these trailing and early false positive
predictions, for prediction of any AKI within 48 hours at 33% precision. Incorrect predictions above the
set alerting threshold are mapped to their closest preceding/following AKI episode (whichever is closer)
if there is one in an admission. For ±1 day 15.2% of false positives correspond to observed AKI events
within 1 day after the prediction (model reacted too early) and 2.9% correspond to observed AKI events
within 1 day prior to the prediction (model reacted too late).
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Extended data tables591

Extended Data Table 1 Summary statistics for the data. A breakdown of training (80%), validation
(5%), calibration (5%) and test (10%) data splits by both unique patients and individual admissions. Where
appropriate, percent of total data size is reported in parentheses. The total dataset was representative of
the overall VA population for clinically relevant demographics and diagnostic groups associated with renal
pathology.

Training Validation Calibration Test

Patients

Unique patients 562,507 35,277 35,317 70,681
Average age* 62.4 62.5 62.4 62.3
Ethnicity Black 106,299 (18.9%) 6,544 (18.6%) 6,675 (18.6%) 13,183 (18.7%)

Other 456,208 (81.1%) 28,733 (81.4%) 28,642 (81.4%) 57,498 (81.3%)
Gender Female 35,855 (6.4%) 2,300 (6.5%) 2,252 (6.4%) 4,519 (6.4%)

Male 526,652 (93.6%) 32,977 (93.5%) 33,065 (93.6%) 66,162 (93.6%)
Diabetes 56,958 (10.1%) 3,599 (10.2%) 3,702 (10.5%) 7,093 (10.0%)

Admissions within a five year period

Data center sites 130*** 130*** 130*** 130***
Unique admissions 2,004,217 124,255 125,928 252,492
- per patient Average 3.6 3.5 3.6 3.6

Median 2 2 2 2
Duration (days) Average 9.6 9.6 9.6 9.6

Median 3.2 3.2 3.2 3.2
ICU admissions 214,644 (10.7%) 13,161 (10.6%) 13,411 (10.6%) 26,739 (10.6%)
Medical admissions 971,527 (48.5%) 60,762 (48.9%) 61,281 (48.7%) 121,675 (48.2%)
Surgical admissions 354,008 (17.7%) 21,857 (17.6%) 22,093 (17.5%) 44,766 (17.7%)
Renal replacement 22,284 (1.1%) 1,367 (1.1%) 1,384 (1.1%) 2,784 (1.1%)
therapy
No creatinine measured 408,927 (20.4%) 25,162 (20.3%) 25,503 (20.3%) 51,484 (20.4%)
Chronic Kidney Disease Any 746,692 (37.3%) 46,677 (37.5%) 46,622 (37.0%) 94,105 (37.3%)

Stage 1** 8,409 (0.4%) 515 (0.4%) 576 (0.5%) 1,103 (0.4%)
Stage 2 429,990 (21.5%) 27,162 (21.9%) 26,927 (21.4%) 54,476 (21.6%)
Stage 3A 156,720 (7.8%) 9,837 (7.9%) 9,803 (7.8%) 19,548 (7.7%)
Stage 3B 77,801 (3.9%) 4,675 (3.8%) 4,823 (3.7%) 9,760 (3.9%)
Stage 4 50,535 (2.5%) 3,004 (2.5%) 3,066 (2.5%) 6,223 (2.5%)
Stage 5 31,646 (1.6%) 1,999 (1.6%) 2,003 (1.6%) 4,098 (1.6%)

AKI present Any AKI 267,396 (13.3%) 16,671 (13.4%) 16,760 (13.3%) 33,759 (13.4%)
Stage 1 207,441 (10.4%) 12,794 (10.3%) 12,951 (10.3%) 26,215 (10.4%)
Stage 2 43,446 (2.2%) 2,780 (2.2%) 2,783 (2.2%) 5,575 (2.2%)
Stage 3 66,734 (3.3%) 4,267 (3.4%) 4,162 (3.3%) 8,453 (3.3%)

*Average age after taking into account exclusion criteria and statistical noise added to meet HIPAA Safe Harbor criteria **CKD stage 1 is evidence of renal
parenchymal damage with a normal glomerular filtration rate (GFR). This is rarely recorded in our dataset; instead the numbers for stage 1 CKD have been
estimated from admissions that carried an ICD-9 code for CKD, but where GFR was normal. For this reason these numbers may under-represent the true

prevalence in the population.
***172 VA inpatient sites and 1,062 outpatient sites were eligible for inclusion. 130 data centres aggregate data from one or more of these facilities, of which
114 such data centres had data for inpatient admissions used in this study. While the exact number of sites included was not provided in the dataset for this

work, no patients were excluded based on location.
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Extended Data Table 2 Model performance for predicting any severity of AKI within the full range
of possible prediction windows from 6-72 hours. On shorter time windows, closer to the actual onset of
AKI, the model achieves a higher ROC AUC but lower PR AUC. This difference in the metrics stems from
the different number of positive steps within the windows of different length. For longer windows, there
are more time steps where AKI occurs within the time window. These differences affect both the model
precision and the false positive rate. When making predictions across shorter time windows there is more
uncertainty in the exact time of the AKI onset due to minor physiological fluctuations and this results in a
lower precision being needed in order to achieve high sensitivity.

Prediction window ROC AUC [95% CI] PR AUC [95% CI]

6 hours 95.9% [95.8, 96.0] 13.8% [13.0, 14.5]
12 hours 94.9% [94.8, 95.1] 20.5% [19.5, 21.5]
18 hours 94.1% [94.0, 94.3] 23.8% [22.7, 24.9]
24 hours 93.4% [93.3, 93.6] 25.9% [24.6, 27.0]
36 hours 92.8% [92.6, 92.9] 28.5% [27.3, 29.6]
48 hours 92.1% [91.9, 92.3] 29.7% [28.5, 30.8]
60 hours 91.7% [91.5, 91.9] 30.9% [29.8, 32.0]
72 hours 91.4% [91.1, 91.6] 31.7% [30.6, 32.8]

Extended Data Table 3 Model ROC AUC performance. ROC AUC performance when predicting the
risk of future AKI, for all AKI severities across different time windows.

ROC AUC [95% CI]

Time windows Any AKI AKI stages 2 and 3 AKI stage 3

24h 93.4% [93.3, 93.6] 97.1% [96.9, 97.3] 98.8% [98.7, 98.9]
48h 92.1% [91.9, 92.3] 95.7% [95.5, 96.0] 98.0% [97.8, 98.2]
72h 91.4% [91.1, 91.6] 94.7% [94.4, 95.0] 97.3% [97.2, 97.6]

Extended Data Table 4 Model PR AUC performance. PR AUC performance when predicting the risk
of future AKI, for all AKI severities across different time windows.

PR AUC [95% CI]

Time windows Any AKI AKI stages 2 and 3 AKI stage 3

24h 25.9% [24.6, 27.0] 36.8% [35.1, 38.7] 47.6% [45.1, 49.7]
48h 29.7% [28.5, 30.8] 37.8% [36.1, 39.6] 48.7% [46.4, 51.1]
72h 31.7% [30.6, 32.8] 37.4% [35.6, 39.1] 48.0% [46.1, 49.9]
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Extended Data Table 5 Example operating points for predicting AKI stages 2 and 3 up to 48 hours
ahead of time. The model correctly identifies 71.4% of all AKI stage 2 or 3 episodes early if allowing for
two false positives for every true positive, and 56.2% if allowing for one false positive for every true positive.
For more severe AKI stages it is possible to achieve a higher sensitivity for any fixed level of precision.

Operating points

Precision True positive / Sensitivity [95% CI] Sensitivity [95% CI] Specificity [95% CI]
False positive (AKI episode) (step) (step)

20.0% 1:4 82.0% [80.6, 83.5] 65.8% [64.0, 67.9] 98.5% [98.4, 98.6]
25.0% 1:3 77.8% [76.3, 79.7] 60.4% [58.3, 62.8] 99.0% [98.9, 99.1]
33.0% 1:2 71.4% [69.6, 73.7] 51.8% [49.6, 54.8] 99.4% [99.4, 99.5]
40.0% 2:3 65.2% [63.0, 67.7] 44.6% [42.1, 47.3] 99.6% [99.6, 99.7]
50.0% 1:1 56.2% [54.0, 59.2] 35.8% [33.5, 38.9] 99.8% [99.8, 99.8]
60.0% 3:2 45.1% [42.2, 48.6] 26.3% [23.8, 29.4] 99.9% [99.9, 99.9]
75.0% 3:1 27.5% [24.2, 31.5] 13.8% [11.7, 16.3] 100.0% [100.0, 100.0]

Extended Data Table 6 Operating points for predicting AKI stage 3 up to 48 hours ahead of time.
The model identifies 84.1% of all AKI stage 3 episodes early if allowing for two false positives for every
true positive, and 71.3% when allowing for one false positive for every true positive.

Operating points

Precision True positive / Sensitivity [95% CI] Sensitivity [95% CI] Specificity [95% CI]
False positive (AKI episode) (step) (step)

20.0% 1:4 91.2% [90.4, 92.3] 80.3% [78.4, 82.4] 98.8% [98.7, 98.9]
25.0% 1:3 88.8% [87.7, 90.1] 75.8% [73.7, 78.3] 99.1% [99.0, 99.2]
33.0% 1:2 84.1% [82.4, 85.9] 68.3% [65.7, 71.0] 99.5% [99.4, 99.5]
40.0% 2:3 79.5% [77.4, 81.8] 61.1% [57.9, 64.5] 99.7% [99.6, 99.7]
50.0% 1:1 71.3% [68.3, 74.4] 50.2% [46.4, 53.8] 99.8% [99.8, 99.8]
60.0% 3:2 61.2% [57.6, 64.9] 39.9% [35.7, 43.8] 99.9% [99.9, 99.9]
75.0% 3:1 40.5% [36.5, 46.1] 23.2% [19.6, 27.2] 100.0% [100.0, 100.0]
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Extended Data Table 7 Daily frequency of true and false positive alerts when predicting different
stages of AKI. The frequency of alerts and its standard deviation are shown for a time window of 48 hours
an operating point corresponding to a 1:2 TP:FP ratio (N=5101 days). On an average day, clinicians would
receive true positive alerts of AKI predicted to occur within a window of 48 hours ahead in 0.85% of all
in-hospital patients, and a false positive prediction of a future AKI in 1.89% of patients, when predicting
the future AKI of any severity. Assuming none of the false positives can be filtered out and immediately
discarded, clinicians would need to attend to approximately 2.7% of all in-hospital patients. For the most
severe stages of AKI, the model alerts on an average day in 0.8% of all patients. Of those, 0.27% are true
positives and 0.56% are false positives. Note that there are multiple time steps at which the predictions
are made within each day, so the TP:FP ratio of the daily alerts differs slightly from the step-wise ratio.

(a) Daily frequency of true and false positive
alerts when predicting any stage of AKI

Alert type Frequency

True positive alerts 0.85% ± 0.71
False positive alerts 1.89% ± 1.20
No alerts 97.26% ± 1.63

(b) Daily frequency of true and false positive
alerts when predicting KDIGO AKI stages two
and above

Alert type Frequency

True positive alerts 0.30% ± 0.35
False positive alerts 0.64% ± 0.55
No alerts 99.06% ± 0.75

(c) Daily frequency of true and false positive
alerts when predicting the most severe stage of
AKI - KDIGO AKI stage 3

Alert type Frequency

True positive alerts 0.27% ± 0.33
False positive alerts 0.56% ± 0.85
No alerts 99.17% ± 0.96

Extended Data Table 8 Generalisability to future data. Model performance when trained before
the time point tP and tested after tP , both on the entirety of the future patient population as well as
subgroups of patients for which the model has or hasn’t seen historical information during training. The
model maintains a comparable level of performance on unseen future data, with a higher level of sensitivity
of 59% for a time window of 48 hours ahead of time and a precision of two false positives per step for each
true positive. Note that this experiment is not a replacement for a prospective evaluation of the model.

Patient cohorts

Metric [95% CI] Before tP (test) New admissions Subsequent admissions All patients
after tP (test) after tP after tP

Sensitivity (AKI episode) 55.09 [54.01, 56.06] 59 [57.11, 60.71] 59.04 [58.38, 59.63] 58.97 [58.33, 59.52]
ROC AUC 92.25 [92.01, 92.42] 90.19 [89.76, 90.77] 89.98 [89.83, 90.17] 89.98 [89.81, 90.14]
PR AUC 29.97 [28.61, 31.15] 30.75 [28.65, 32.81] 31.54 [30.87, 32.30] 31.28 [30.44, 32.02]
Sensitivity (step) 34.26 [33.17, 35.28] 36.87 [35.2, 38.85] 37.23 [36.67, 37.88] 37.08 [36.40, 37.65]
Specificity (step) 98.55 [98.50, 98.60] 97.66 [97.54, 97.76] 97.63 [97.58, 97.68] 97.64 [97.59, 97.68]
Precision 32.51 [31.44, 33.21] 32.66 [31.2, 34.03] 32.97 [32.52, 33.47] 32.84 [32.28, 33.33]
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Extended Data Table 9 Cohort statistics for Extended Data Table 8. Dataset statistics are shown for
both before and after the temporal split tP that was used to simulate model performance on future data.

Before tP After tP

Patients

Number of patients 599,871 246,406
Average age* 61.3 64.2

Admissions within a given period

Unique admissions 2,134,544 364,778
ICU admissions 226,585 (10.62%) 40,102 (10.99%)
Medical admissions 1,040,923 (48.77%) 170,383 (46.71%)
Surgical admissions 373,823 (17.51%) 67,617 (18.54%)
No creatinine measured 458,486 (21.48%) 52,115 (14.29%)
Chronic Kidney Disease Any 774,883 (36.30%) 156,181 (42.82%)
AKI present Any AKI 282,398 (13.23%) 41,950 (14.59%)

*Average age after taking into account exclusion criteria and statistical noise added to meet HIPAA Safe Harbor criteria

Extended Data Table 10 Cross-site generalisability. Comparison of model performance when applied
to data from previously unseen hospital sites. Data was split across sites so that 80% of the data was in
group A and 20% in group B. No site from group B was present in group A and vice versa. The data was
split into training, validation, calibration and test in the same way as in the other experiments. The table
reports model performance when trained on site group A when evaluating on the test set within site group
A versus the test set within site group B for predicting all AKI severities up to 48 hours ahead of time. No
statistically significant difference in performance was seen across most of the key metrics. Note that the
model would still need to be retrained to generalise outside of the VA population to a different demographic
and a different set of clinical pathways and hospital processes elsewhere.

Metric [95% CI] Site group A Site group B

Sensitivity (AKI episode) 55.6% [54.5, 56.6] 54.6% [52.8, 56.3]
ROC AUC 91.8% [91.6, 92.1] 91.3% [90.8, 91.7]
PR AUC 30.0% [28.6, 31.2] 30.6% [28.3, 32.7]
Sensitivity (step) 34.3% [33.1, 35.2] 34.7% [32.6, 36.2]
Specificity (step) 98.5% [98.4, 98.5] 98.3% [98.2, 98.4]

Extended Data Table 11 Subgroup analysis for all false positive alerts. In addition to the 49% made
in admissions during which there was at least one AKI episode many of the remaining false positive alerts
were made in patients with evidence of clinical risk factors present in the EHR data available. These risk
factors are shown here for the proposed model predicting any stage of AKI within the next 48 hours.

Reason Percent of all false positive alerts

Patients who experience AKI during admission in which the model alerts
Model alerts >48 hours before AKI event 25%
Model alerts after AKI event 24%

Patients who do not experience AKI during admission in which model alerts
Known renal pathology 28 %
EHR evidence of clinical risk 17%
No clear risk factors from EHR 6%

Total 100%
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Extended Data Table 12 Model performance on patients requiring subsequent dialysis. Model
performance only in AKI cases where either in-hospital or outpatient administration of dialysis is required
within 30 days of the onset of AKI, or where regular outpatient administration of dialysis is scheduled within
90 days. The model successfully predicts a large proportion of these AKI cases early, 84.3% of AKI cases
where there is any dialysis administration occurring within 30 days and 90.2% of cases where regular
outpatient administration of dialysis occurs within 90 days.

Subgroup name Sensitivity PR AUC ROC AUC Sensitivity Specificity
(AKI episode) (step) (step)

In-hospital/outpatient dialysis within 30 days 84.3% 70.5% 83.5% 67.7% 83.3%
Outpatient dialysis within 90 days 90.2% 71.9% 83.8% 76.5% 76.3%
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Further Supplementary Information592

A Clinically Applicable Approach to the Continuous Prediction of593

Future Acute Kidney Injury594

595

The aim of this supplementary information is to provide further information to support596

the claims made in the letter "A Clinically Applicable Approach to Continuous Prediction of597

Future Acute Kidney Injury. It is the hope of the authors that by providing these supplementary598

results and associated discussion that the conclusions of the letter are strengthened, along with599

the reproducibility of the work.600

In addition to the Extended Data we present the following supplementary material:601

• Supplements A - C provide an analysis of the additional information provided by our602

proposed model to aid interpretation of the AKI predictions.603

• Supplement D shows model performance across multiple clinically important groups.604

• Supplement E provides and an extensive review of the literature into AKI risk models and605

machine learning and deep learning for electronic health records.606

• Supplement F shows systematically selected case examples for both correct and incorrect607

model predictions.608

• Supplements G-K provide additional technical information of interest to those wishing609

to reproduce the findings reported in not suitable for inclusion in the letter "A Clinically610

Applicable Approach to Continuous Prediction of Future Acute Kidney Injury. These611

supplements are included only for editorial review, and will be removed to feature only612

in an accompanying protocol paper, alongside further discussion of parts of the Extended613

Data.614
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A. Feature saliency615

Knowing that the predictions of future AKI risk are derived from clinical entries that can be616

meaningfully associated with future acute kidney injury increases confidence in the correctness617

of the predictive models and their robustness to potential confounders in the data.618

We have investigated the significance of individual features in our trained models based on619

occlusion analysis [62]. Masking out individual features can lead to either an increase or a620

decrease in the predicted risk of future AKI. The results are shown in Supplementary Table 1.621

There exist other ways of looking at feature saliency and prior studies had often approached this622

problem by looking at the magnitudes of model parameters relating to features, or looking at the623

gradient of the model’s risk output with respect to the input features [63]. These approaches are624

not well defined when comparing across both numerical and categorical features, which is why625

we have opted for the occlusion approach instead, as it is a more principled way of handling626

such data as present in our EHR feature representation at each step.627

Supplementary Table 1 The significance of individual features in our proposed model. The ten
most salient features across all predictions are shown as determined by occlusion analysis. Many salient
features come from laboratory tests associated with renal function, vital signs, as well as procedures
associated with an increased risk of renal complications. As could be expected when predicting future
AKI, changes in creatinine were the most salient amongst the frequently sampled features.

Feature name Feature type Correlation direction

Serum creatinine yearly baseline numerical negative
Serum creatinine 48h baseline numerical negative
Low serum calcium presence positive
Lab results available aggregate count negative
Malignant neoplasm of kidney presence positive
Emergency department visit presence negative
Procedure: rechanneling of artery presence positive
Serum creatinine numerical negative
pH (arterial blood gas) numerical positive
Total knee arthroplasty presence positive

Many salient features come from laboratory tests associated with renal function, vital signs,628

as well as procedures associated with an increased risk of renal complications. As could be629

expected when predicting future AKI, changes in creatinine were the most salient amongst the630

frequently sampled features. The negative correlation of an increase in values of serum crea-631
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tinine baselines shown in Supplementary Table 1 is indicative of the fact that KDIGO is less632

likely to interpret a given increase in creatinine as an AKI if the baselines are higher, as it is633

based on relative increases over the baselines. Concentrations of serum calcium that are either634

substantially higher or lower than normal are known to be associated with kidney disease. The635

number of laboratory tests being taken is negatively correlated with AKI risk, which may indi-636

cate that closer patient monitoring is more likely to identify issues early and provide treatment637

that reduces the risk of AKI.638

Higher concentrations of serum creatinine are indicative of an increased risk of future AKI in639

cases when the models are making positive predictions. It is therefore interesting to observe the640

negative average correlation reported in Supplementary Table 1. Higher baseline levels of serum641

creatinine may be associated with a lower risk of KDIGO AKI in patients that do not go on to642

develop AKI within the admission.643

B. Prediction uncertainty644

The ability to provide a measure of confidence in model predictions has important practical645

consequences. This additional information can help clinicians interpret the individual model646

predictions and the variance contained within them. Here we demonstrate that the predictions647

the model is more confident in are more likely to be correct.648

Supplementary Figure 1 illustrates the relationship between model confidence and prediction649

accuracy. The model is generally less confident when it makes mistakes: the confidence is lower650

(p-value < 0.01) in false positive predictions than true positive predictions and false negative pre-651

dictions than true negative predictions, as measured by the mean standard deviation of ensemble652

risk.653
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Supplementary Figure 1 The relationship between model confidence and prediction accuracy.
The two histograms demonstrate the standard deviation in predictions from an ensemble for different
outcomes, shown here for an ensemble of models predicting the occurrence of an AKI of any severity
within the next 48 hours. Figure a shows that for true positive predictions (N=67,546), the mean standard
deviation (95% confidence interval: [0.880, 0.882]) is significantly lower than the mean standard deviation
(95% confidence interval: [0.966, 0.968]) for false positives (N=128,292) as evidenced by a 2-sided T-test
(p-value < 0.01). Figure b shows that for true negative predictions (N=8,907,932), the mean standard
deviation (95% confidence interval: [0.005, 0.005]) is significantly lower than the mean standard deviation
(95% confidence interval: [0.026, 0.026]) for false negatives (N=127,062) as evidenced by a 2-sided T-test
(p-value < 0.01).

C. Performance on auxiliary tasks654

In our experiment we used a set of auxiliary numerical prediction tasks along with the main task655

of predicting KDIGO AKI ahead of time. In particular, at each step the models were also asked656

to predict the maximum future observed values of seven biochemical tests of renal function657

for the same set of time intervals as used to make future AKI predictions. For these lab tests,658
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an increase in value usually signifies a worsening of kidney function, and is why predicting the659

maximum future values becomes relevant in understanding the evolution of kidney function over660

time.661

Supplementary Table 2 shows the prediction performance as the relative and absolute L1662

error for model predictions of the selected laboratory values 48 hours ahead of time. The mean663

absolute error is substantially lower than the standard deviation of the measurements for all664

laboratory values being predicted. The performance of the proposed recurrent neural network665

architecture is substantially higher than the performance of the logistic regression baseline in666

predicting these future lab values.667

Supplementary Table 3 shows the accuracy of the model in predicting the trajectory of the668

selected laboratory values 48 hours ahead of time. Supplementary Figure 2 shows an example669

of these predictions for a given admission.670
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Supplementary Table 2 Model performance for the auxiliary task of predicting the maximum future
observed values of a set of seven laboratory values within 48 hours. A comparison is made between the
relative prediction error for a logistic regression baseline model and a chosen recurrent neural network
(SRU). Ranges indicate the 95% confidence interval.

Laboratory Units Subgroup Number Subgroup Subgroup Absolute Relative Relative
test samples mean standard error error (%) error (%)

(000s) deviation (SRU) (SRU) (LR)

Serum mg/dL Population 2912.4 21.6 14.5 3.4 18.7 89.7
urea [18.6, 18.7] [69.0, 101.6]
nitrogen AKI in 48 hours 188.9 36.4 19.8 7.6 21.3

>25mg/dL 796.0 40.0 15.2 5.5 14.0
in 48 hours
>25mg/dL and 124.7 46.2 13.1 9.6 21.3
AKI in 48 hours

Serum µmol/L Population 2795.3 103.3 56.7 10.9 10.4 73.7
creatinine [10.4, 10.5] [68.2, 78.9]

AKI in 48 hours 194.4 113.2 40.5 21.0
>132.6 µmol/L 479.0 78.0 23.6 11.4
in 48 hours
>132.6 µmol/L 129.1 116.5 50.0 21.3
and AKI in
48 hours

Serum mEq/L Population 2993.4 4.2 0.5 0.3 6.6 62.8
potassium [6.6, 6.6] [56.0, 68.5]

AKI in 48 hours 191.1 4.4 0.6 0.4 7.9
>5mEq/dL in 191.6 5.3 0.2 0.6 6.3
48 hours
>5mEq/dL and 34.7 5.4 0.8 0.7 13.3
AKI in 48 hours

Serum mEq/L Population 2995.2 138.2 3.7 1.7 1.2 58.9
sodium [1.2, 1.2] [41.4, 71.0]

Serum mEq/L Population 2939.0 103.6 4.9 2.0 1.9 64.4
chloride [1.9, 1.9] [16.0, 96.2]

Serum mEq/L Population 2576.4 8.8 0.6 0.3 3.0 44.8
calcium [2.9, 3.0] [39.1, 49.7]

Serum mg/dL Population 1282.6 3.6 0.9 0.5 14.1 62.3
P04 [14.0, 14.2] [54.3, 68.7]
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Supplementary Table 3 Model accuracy in predicting whether a laboratory value will increase in the
next 48 hours for a set of seven laboratory test values. When the laboratory test value is substantially
increasing (by an amount more than the median increase for that test), the model correctly predicts that
the value will increase in 48 hours in 88.5% of cases.

% predictions correctly predicting an increase in value in 48 hours

Laboratory test Cases where the value
is increasing

Cases where the value
is increasing
by an amount more than
the median

Serum urea nitrogen 83.7% 90.8%
Serum creatinine 83.6% 86.3%
Serum potassium 85.2% 90.5%
Serum sodium 79.4% 88.5%
Serum chloride 76.9% 86.5%
Serum calcium 84.8% 90.8%
Serum P04 85.2% 91.1%
Weighted average 82.5% 88.5%
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(a) Serum creatinine (b) Serum urea nitrogen

(c) Serum calcium (d) Serum sodium

(e) Serum chloride (f) Serum potassium

(g) Serum phosphate

Supplementary Figure 2 Examples of predictions from the auxiliary task. Each figure shows model
predictions for the maximum future observed values of a laboratory test value from 6-72 hours in the
future from the same fixed point in time, 5 days into a patient admission. The lighter green borders on the
prediction curve indicate uncertainty, taken as the range of 100 ensemble predictions once trimmed for the
highest and lowest 5 values.
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D. Subgroup analysis671

The performance of predictive models is not uniform across the entire patient population and672

understanding how it differs across different clinical subpopulations can help inform choices673

around future practical deployments.674

Supplementary Table 4 outlines differences in PR AUC, ROC AUC, sensitivity and specificity675

for different subgroups of the VA patient population. PR and ROC AUC do not always increase676

or decrease at the same time, which is largely due to the differences in the underlying AKI677

prevalence in different clinical subgroups.678

To better understand model performance across different subgroups regardless of the under-679

lying AKI prevalence, we employ error regression. For every observation we computed the680

expected error given by the logarithmic loss, and fitted a linear regression of the error as an681

endogenous variable and population subgroups as exogenous variables. A positive computed682

coefficient points towards a larger model error due to the loss being non-negative. Supplemen-683

tary Table 5 presents the results of the regression on a subset of predictions with positive primary684

outcome (AKI of any severity within 48 hours).685

In error regression the subgroup performance is modelled jointly, unlike the independent com-686

putations of performance presented in Supplementary Table 4. To avoid collinearity in the re-687

gression model we removed a set of subgroups corresponding to the most common cases in the688

data (e.g. age group 50 to 60, unknown ethnicity, male gender, new incoming information in the689

model, unknown GFR). As the default risk can be taken as constant, the coefficients computed690

represent a ceteris paribus deviation from a default risk for a given subgroup.691

The effect of subgroups on the magnitude of errors is jointly significant, as evidenced by692

F-test (p-value <0.001), as are most of the individual variables corresponding to subgroups.693

For each such variable this indicates that the magnitude of error is ceteris paribus statistically694

larger/smaller based on the sign than in the default population. For example for admissions with695

ICU transfers, in the presence of AKI the errors in the model are on average smaller compared696
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to other admissions. This may suggest either a higher percentage of correct predictions, a higher697

confidence in making correct predictions, or a lower confidence in making incorrect predictions.698

This conclusion is supported by the higher PR AUC performance of the models on the ICU699

transfer patient subpopulation in Supplementary Table 4.700
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Supplementary Table 4 Model performance across different clinical subgroups. Performance
across multiple clinically important groups when predicting AKI of any severity up to 48 hours ahead of
time. Operating points for sensitivity/specificity calculations have been chosen to allow for precision of
33%, which translates to having two false positives for each true positive.

Subgroup name PR AUC ROC AUC Sensitivity Sensitivity Specificity Positives
(AKI episode) (step) (step) ratio (step)

Patient Age group 20-30 11.0% 93.4% 27.5% 18.2% 99.7% 0.39%
demographics Age group 30-40 20.7% 94.4% 36.7% 22.3% 99.7% 0.58%

Age group 40-50 18.0% 95.1% 40.8% 24.2% 99.6% 0.62%
Age group 50-60 26.8% 93.6% 52.6% 33.1% 99.0% 1.35%
Age group 60-70 31.8% 90.4% 57.6% 36.7% 97.9% 2.75%
Age group 70-80 31.6% 89.3% 58.2% 36.6% 97.5% 3.15%
Age group 80-90 28.4% 89.5% 55.7% 32.6% 98.0% 2.76%
Ethnicity: Black 34.9% 93.9% 60.4% 39.7% 98.5% 1.99%
Ethnicity: Unknown 28.0% 91.5% 54.1% 33.3% 98.4% 2.09%
Gender: Female 24.1% 93.1% 44.8% 28.5% 99.2% 1.29%
Gender: Male 29.9% 92.0% 56.0% 35.1% 98.4% 2.16%

Admissions Medical admissions 31.1% 88.6% 57.2% 35.7% 97.5% 3.24%
Surgery admissions 33.2% 88.5% 58.5% 36.5% 97.6% 3.42%
ICU transfers 36.3% 87.8% 64.3% 40.4% 96.4% 4.68%
ER visits 30.4% 92.1% 56.7% 34.9% 98.5% 2.00%
Adm. duration > 7 days 32.4% 93.6% 58.6% 36.0% 98.7% 1.89%

Patients with All CKD 42.6% 89.3% 70.8% 48.8% 95.1% 5.34%
CKD CKD stage 1* 18.3% 90.0% 42.8% 22.0% 99.0% 1.52%

CKD stage 2 24.5% 90.9% 49.3% 29.4% 98.4% 2.19%
CKD stage 3A 29.3% 86.2% 57.8% 36.4% 95.7% 4.88%
CKD stage 3B 48.1% 86.1% 73.1% 54.2% 91.4% 8.68%
CKD stage 4 60.1% 85.8% 83.9% 68.5% 84.1% 13.9%
CKD stage 5 69.4% 89.2% 85.6% 70.0% 90.4% 13.75%

Other at risk Diabetic patients 32.2% 91.1% 60.3% 39.1% 97.6% 2.88%
groups Death within 30 days of adm. 41.8% 90.4% 69.9% 45.3% 96.3% 4.94%

Death within 7 days of adm. 44.0% 91.1% 71.7% 46.4% 96.3% 5.21%
Haemoglobin <80g/L 42.3% 88.0% 67.8% 44.2% 96.2% 5.31%
Haemoglobin <80g/L
in the first 2 days 42.0% 87.9% 69.3% 46.4% 95.8% 5.31%
WCC >12 or <3.5 x109/L 33.5% 89.2% 58.9% 36.4% 97.6% 3.44%
WCC >12 or <3.5 x109/L
in the first 2 days 32.4% 87.8% 58.0% 36.3% 97.1% 3.82%
Post IV Contrast
administration 33.5% 90.0% 57.0% 34.5% 98.3% 2.68%

*CKD stage 1 is evidence of renal parenchymal damage with a normal glomerular filtration rate (GFR). This is rarely recorded in our dataset; instead the
numbers for stage 1 CKD have been estimated from admissions that carried an ICD-9 code for CKD, but where GFR was normal. For this reason these

numbers may under-represent the true prevalence in the population.
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Supplementary Table 5 Regression of model errors on population subgroups for N=194,922 positive
primary outcomes. The R-squared is 22.9%, and the F-statistic (p-value <0.001) is evidence towards joint
significance of the set of 31 covariates.

Variable Coefficient Standard deviation p-value 95% confidence intervals

Default (constant) 3.98 0.02 <0.001 [3.93, 4.03]
Age group 20 to 30 0.64 0.05 <0.001 [0.54, 0.75]
Age group 30 to 40 0.30 0.03 <0.001 [0.24, 0.36]
Age group 40 to 50 0.26 0.02 <0.001 [0.23, 0.30]
Age group 60 to 70 -0.06 0.01 <0.001 [-0.07, -0.04]
Age group 70 to 80 0.01 0.01 0.20 [-0.01, 0.03]
Age group 80 to 90 0.19 0.01 <0.001 [0.17, 0.22]
Ethnicity: Black -0.14 0.01 <0.001 [-0.15, -0.13]
Gender: Female 0.15 0.02 <0.001 [0.12, 0.19]
Patients with CKD -0.62 0.01 <0.001 [-0.64, -0.61]
CKD stage 1 0.16 0.01 <0.001 [0.14, 0.18]
CKD stage 2 -0.08 0.01 <0.001 [-0.11, -0.06]
CKD stage 3a -0.23 0.01 <0.001 [-0.25, -0.21]
CKD stage 3b -0.56 0.01 <0.001 [-0.59, -0.54]
CKD stage 4 -0.95 0.01 <0.001 [-0.98, -0.93]
CKD stage 5 -1.09 0.03 <0.001 [-1.14, -1.05]
Medical admissions -0.16 0.01 <0.001 [-0.17, -0.15]
Surgery admissions -0.19 0.01 <0.001 [-0.20, -0.17]
ICU transfers -0.31 0.01 <0.001 [-0.33, -0.30]
ER visits 0.09 0.01 <0.001 [0.08, 0.11]
Diabetic patients -0.11 0.01 <0.001 [-0.12, -0.09]
Death within 30 days of admission -0.17 0.02 <0.001 [-0.20, -0.14]
Death within 7 days of admission -0.14 0.02 <0.001 [-0.17, -0.10]
Haemoglobin <80g/L -0.23 0.01 <0.001 [-0.25, -0.22]
Haemoglobin <80g/L in first 2 days 0.02 0.01 0.11 [-0.00, 0.04]
WCC >12 or <3.5 x109/L -0.01 0.01 0.30 [-0.03, 0.01]
WCC >12 or <3.5 x109/L in first 2 days -0.15 0.01 <0.001 [-0.17, -0.14]
Admission duration > 7 days 0.11 0.01 <0.001 [0.10, 0.13]
Post IV contrast administration -0.04 0.01 <0.001 [-0.05, -0.03]
Post IV saline administration -0.23 0.02 <0.001 [-0.27, -0.20]
Old information aggregation only 0.30 0.01 <0.001 [0.29, 0.31]
Admission with at least 1 AKI -0.93 0.02 <0.001 [-0.97, -0.89]
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E. Literature review701

E.1. AKI risk models702

Supplementary Table 6 Results from a literature review of papers investigating the risk prediction of AKI

Author/Year Country Num. sites Patient subgroup Num.
patients

Num.
admissions

AKI definition Time of predic-
tion

Independent
test set

Best performing model ar-
chitecture(s)

ROC AUC Other perf. measures

Drawz 2008 [64] U.S. 3 Adults admitted
to medicine,
surgery or ob-
stetrics

540 - AKIN criteria AKI during ad-
mission

Point of admis-
sion

Y Logistic Regression 66% -

Matheny 2010 [65] U.S. 1 Adults with ad-
missions of ≥2
days duration

21,074 26,107 RIFLE criteria Risk or Injury
between days 2 and 30 of ad-
mission

Point of admis-
sion

N Logistic Regression Risk: 75%
Injury: 78%

-

Forni 2013 [66] U.K. 1 Patients admitted
to Acute Admis-
sions Unit

1,314 - KDIGO criteria AKI within 7
days of admission

Point of admis-
sion to Acute Ad-
missions Unit

Y Logistic Regression 72% -

Cronin 2015 [67] U.S. 116 Admissions 2-30
days in length

1,620,898 - KDIGO criteria AKI between
days 2 and 9 of admission

48 hours after ad-
mission

N Logistic Regression AKI Stages 1-3: 76%
AKI Stages 2-3: 72%

-

Bedford 2016 [68] U.K. 3 All admissions - 775 to
91572

New KDIGO criteria AKI at (i)
admission, (ii) 72 hours after
admission, (iii) worsening of
KDIGO AKI stage for patients
with stage 1 or 2 at presenta-
tion, 72 hours after admission

(i) Point of ad-
mission, (ii) 24
hours after ad-
mission, (iii) Point
of admission

Y Logistic Regression AKI Stages 1-3: 75%
AKI Stages 2-3: 75%

-

Kate 2016 [69] U.S. 15 Patients ≥60
years old

17,044 - New AKIN AKI between
24 hours after hospital
discharge5

24 hours after ad-
mission

N Logistic Regression,
Ensemble

LR: 66%
Ensemble: 66%

-

Koyner 2016 [4] U.S. 5 All adult inpa-
tients

- 202,961 KDIGO AKI within 24 hours6 Every 12 hours Y Logistic Regression AKI 1+: 74%
AKI 2+: 76%
AKI 3: 83%

-

Thottakkara 2016 [70] U.S. 1 Patients undergo-
ing surgical pro-
cedures

50,318 - KDIGO AKI within 7 days of
procedure

Point of proce-
dure

Y Logistic Regression,
Generalised
Additive Model

LR: 82%
GAM: 83%

LR PPV: 73%
GAM PPV: 72%

Cheng 2017 [5] U.S. 1 Patients aged 18-
64 years old

33,703 48,955 KDIGO AKI within 24 hours Various time
points

N Random Forest,
Logistic Regression

RF: 76.5%
LR: 76.3%

RF Precision: 69.2%
RF Recall: 0.711%
LR Precision: 70.4%
LR Recall: 71.1%

Davis 2017 [71] U.S. All VA hospitals All admissions 2-
30 days in length

- 1,841,951 New KDIGO AKI between 48
hours and 9 days of admis-
sion

48 hours after ad-
mission

Y Random Forest 73% -

Hodgson 2017 [72] U.K. 1 Adult medical
and general sur-
gical admissions

- 12,554 KDIGO AKI within 7 days7 Point of hospital
admission

N/A3 Logistic Regression Medical patients:
Baseline: 64%
No baseline: 71%
Surgical patients:
Baseline: 66%
No baseline: 67%

-

Mohamadlou 2017 [28] U.S. 21 All patients - 68,319 NHSE algorithm AKI at vari-
ous time points before onset

12, 24, 48 and 72
hours before on-
set

Y Gradient Boosted Trees BIDMC (ITU only):
12h: 74.9%
24h: 75.8%
48h: 70.7%
72h: 67.4%
SMC (inpatients):
12h: 80%
24h: 79.5%
48h: 76.1%
72h: 72.8%

BIDMC (ITU only):
Sens 77%-83%
Spec 45%-75%
SMC (inpatients):
Sens 75%-85%
Spec 51%-82%

Weisenthal 2017 [73] U.S.. 1 Readmissions 12,491 - ICD-9 code OR KDIGO AKI
during admission

Point of hospital
readmission

Y MLP 92% PR AUC: 70%

Adhikari 2018 [74] U.S. 1 Patients undergo-
ing surgery

2,911 - KDIGO AKI within (i) 3 post-
operative days, (ii) 7 postop-
erative days, and (iii) up to the
point of hospital discharge

Before and after
index surgery

Y Random Forest Pre-operative models:
3 day: 83.37%
1 day 84.4%
admission: 83.7%
Post-operative models:
3 day: 84.57%
1 day: 86.0%
Admission: 85.4%

Pre-operative model:
3 day:
Sens: 82.4%
Spec: 63.8%
PPV: 55.1%
NPV: 87%

Bihorac 2018 [18] U.S. 1 Patients undergo-
ing surgery

51,457 - RIFLE AKI during admission Before index
surgery

N6 Generalised
Additive Model

88% Sens 80%
Spec 79%
PPV 72%
NPV 85%
Accuracy 80%

Koyner 2018 [6] U,S. 1 All patients - 121,158 KDIGO AKI within 48 hours First creatinine
measurement
after admission

Y Random Forest AKI Stages 1-3: 73%
AKI Stages 2-3: 87%
AKI Stage 3: 93%

NPV and PPV presented
for a variety of predicted
probability cut-offs

Park 2018 [75] Korea 1 Cancer patients 21,022 - Adjusted baseline KDIGO
AKI within 14 days

Inpatient creati-
nine measure-
ment

Y Random Forest - Precision: 78.9%
Recall: 75.1%
F-measure: 75.8%

Weisenthal 2018 [76] U.S. 1 Re-admissions 34,505 - ICD-9 code OR KDIGO dur-
ing admission

Point of hospital
re-entry

Y Gradient Boosted
Trees

86.7% PR AUC: 32.6%

Li 2018 [77] U.S. 1 ICU patients ∼40,000 - KDIGO 24h after admis-
sion

Y Convolutional
Neural Network

77.9% Precision: 40.7%
Recall: 65.4%

Pan 2019 [29] U.S. 1 ICU patients 40,000 58,000 RIFLE AKI during admission Inpatient Various
time points

Y Recurrent neural network - ROC AUC: 88.9% and
83.7%

1 ITU only (BIDMC) and Inpatients (SMC); 2 Model dependent; 3 External validation of Forni 2013; 4 TRIPOD 1b; 5 Excluded those with diagnosis of AKI within 24 hours of admission and those with CKD stage 3-5

6 Discrete time survival model. Excluded patients with initial SCr >3mg/dl or who developed AKI prior to ward admission; 7 Excluded patients admitted to ITU from ED



51

E.2. Literature: Machine Learning Models for EHR703

There has been significant recent progress in applications of machine learning to modelling clin-704

ical data based on electronic health records [78]. We provide a systematic overview of these705

achievements in Supplementary Table 7. Machine learning models have shown promise when706

used for predicting mortality [3, 9, 79], sepsis [10, 70, 80], post-operative complications [18, 81],707

readmission risk [11], for providing treatment recommendations [82], modelling treatment re-708

sponse [15, 32], detecting early signs of heart failure [83–85] and in planning for palliative709

care [8]. Most of the deep learning approaches involve improvements in representation learn-710

ing [12] or apply recurrent neural networks (RNN) [9, 10, 13, 83, 86, 87] or convolutional711

models [11, 14, 35, 88].712

Despite these recent advances, building robust clinically applicable risk models from routinely713

collected EHR data remains a challenge [89]. Clinically applicable models need to be able to714

reliably deliver personalised insights on preventable conditions, early enough to enable clinical715

intervention and providing enough information to inform decision making. Models need to716

be evaluated on large representative datasets and be capable of integrating all of the available717

relevant medical information. The evaluation needs to be performed with the application in718

mind, and good levels of sensitivity need to be achieved under clinically applicable levels of719

precision. These challenges provide a barrier to implementation.720
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Supplementary Table 7 Results from a literature review of papers proposing machine learning models for modelling electronic health records

Author/Year
Num.
patients

Num.
admissions

Num.
features

Clinical
tasks

Model
architecture

Lim 2018 [9] 10,980 - 87
Mortality, cystic fibrosis,
comorbidities LSTM + additional layers

Rajkomar 2018 [3] 114,003 216,221
all available
data

Mortality, readmission,
long length of stay, discharge diagnosis

LSTM, TANN,
boosted decision stumps

Futoma 2017 [10] - 49,312 77 Sepsis GP + LSTM

Nguyen 2016 [11] ∼300,000 590,546
diagnoses,
procedures Readmission CNN

Wang 2018 [82] ∼43,000 22,865 - Treatment optimisation SRL-RNN
Avati 2017 [8] 221,284 - 13,654 (3-12 month) Mortality MLP
Miotto 2016 [12] ∼700,000 - 41,072 Disease prediction stacked denoising AEs
Lipton 2017 [13] 10,401 13 Diagnosis classification LSTM

Choi 2016 [86] 263,706 - 1,778
Predicting properties of
subsequent visits GRU

Choi 2016 [83] 32,787 -
diagnoses,
procedures,
medication

Heart failure detection GRU

Che 2016 [87] - 58,000 99 Mortality, diagnosis category GRU-D
Razavian 2016 [88] ∼298,000 - 44 CKD progression CNN, LSTM

Cheng 2016 [14] 319,650 - diagnoses
Congestive heart failure,
chronic obstructive pulmonary syndrome CNN

Komorowski 2018 [7] 96,156 - 48 Sepsis treatment MDP

Henao 2016 [79] 240,000 4,400,000 24,567 Mortality and morbidity
Deep Poisson
factor models

Soleimani 2017 [15] 67 - 5 Dialysis treatment response Gaussian processes
Schulam 2017 [32] 428 - 4 Dialysis treatment response Gaussian processes

Alaa 2016 [16] 6,313 - 12 Risk of adverse events
Hierarchical latent class model
and Gaussian processes

Thottakkara 2016 [70] 50,318 - 285 Post-operative AKI and sepsis Naive Bayes and SVM
Bihorac 2018 [18] 51,457 - - Post-operative complications Generalised additive model

Perotte 2015 [17] 2,908 - 106 CKD progression
Kalman filter and
Cox proportional hazards

Hu 2015 [81] 6,258 -

demographics,
diagnoses,
orders,
labs, vitals,
medications

Surgical site infections Logistic regression

Sideris 2015 [84] 3,041 -
demographics,
diagnoses,
labs

Heart failure SVM + clustering

Goldstein 2014 [85] 1,718 - 72 Sudden cardiac death Random forests

Mani 2014 [80] 299 1826 811 Neonatal sepsis

Random forests
SVM
CART
Logistic regression

Henry 2015 [2] 16,234 - 54 Sepsis Cox proportional hazards model
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F. Success and failure cases721

To demonstrate examples of how the model perceives the risk of AKI during an admission we722

provide a visual representation in Figure 1 in the main text that this supplementary material723

accompanies.724

To avoid demonstrating the performance of the model by ‘cherry picking’ a single exam-725

ple, we present an additional set of five systematically selected success and failure cases of the726

predictive model. In each of these examples, the first plot shows the creatinine measurements727

throughout the admission from the EHR, and the second plot shows the model’s continuous risk728

predictions from an ensemble of 100 predictive models. In each case the risk curve represents729

the mean prediction across the ensemble and the lighter green borders on the risk curve indicate730

uncertainty, taken as the range of 100 ensemble predictions once trimmed for the highest and731

lowest 5 values.732

These cases were selected systematically as the ‘best’ success cases, maximising first for the733

number of correct positive predictions and then for correct negative predictions while allowing at734

most one incorrect prediction, and the ‘worst’ failure cases, maximising for the number of false735

positive or false negative predictions during an admission. They were selected after filtering out736

examples where renal replacement therapy had occurred prior to an AKI, or where severe CKD737

had been recognised prior to an AKI.738
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F.1. Success case examples739

Supplementary Figure 3 Visual representation of a 15 day surgical admission for a 77 year old male
patient with a history of congestive heart failure. The patient developed AKI 3 days after admission, with
accompanying evidence of sepsis. The model correctly predicts the patient is at risk 48 hours before the
AKI is detected according to KDIGO criteria.

Supplementary Figure 4 Visual representation of a 9 day intensive care admission for a 57 year old
male with a history of diabetes. The first onset of AKI occurs during the second day of admission; from the
beginning of the admission the model predicts the risk at above the 0.2 threshold. Ultimately the patient
went on to develop chronic kidney disease after discharge.
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Supplementary Figure 5 A 19 day section of an 8 week admission of a 59 year old male with past
history of diabetes. Despite normal renal function, the model correctly predicts an impending AKI, 48
hours before the event occurs on the 36th day of admission. The AKI progressed to require an intensive
care admission and haemofiltration; the patient passed away at the end of admission.

Supplementary Figure 6 Visual representation of an admission under the medical team of a 64 year old
male with a history of CKD and congestive heart failure. After a long period without blood measurements,
the patient developed an AKI on the 22nd day of admission, which was correctly anticipated by the model.
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Supplementary Figure 7 A visual representation of a 10 day medical admission of a 60 year old male
with a history of congestive heart failure. The model correctly predicts the gradual increase of creatinine
being labelled as AKI by KDIGO criteria.

F.2. Failure case examples740

Supplementary Figure 8 A 59 year old male with a history of CKD, admitted under the medical team with
evidence of sepsis and transferred to the intensive care unit 2 days after admission. Despite infrequent
creatinine measurements in the patient records, e-GFR is consistently measured, suggesting information
is missing in the records. The model incorrectly suggests a raised risk of AKI during the admission which
was not followed by an AKI event, though later on in the admission the creatinine rises well above the
patients pre-admission baseline levels. Due to the longer period over which the creatinine has increased,
the KDIGO calculated baseline has adjusted and this event is no longer labelled as an AKI event in the
dataset.
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Supplementary Figure 9 A 57 year old male with multiple previous AKI episodes in previous admis-
sions, admitted here with evidence of infection. Despite a long 35 day admission with frequently raised
inflammatory markers the patients renal function remained stable; the model provides raised risk scores
throughout this admission.

Supplementary Figure 10 A lengthy 27 week admission of a 45 year old male with a history of dia-
betes, admitted directly admitted into the intensive care unit. The patient has a consistently low creatinine,
possibly due to low muscle mass, which results in a rise from 26 to 44 µmol/L over several weeks being
categorised by KDIGO criteria as an AKI. While cases such as this are reported in our results as false
negative predictions, the clinical relevance of such a failure is negligible.
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Supplementary Figure 11 A 64 year old male with a history of chronic obstructive pulmonary disease
(COPD) and diabetes, admitted directly to intensive care with evidence of an infective exacerbation of
COPD. The patient was transferred to intensive care two further times during the six week admission. The
model incorrectly provides a raised risk of AKI during the early stages of the admission; however the first
AKI event occurs much later on day 28 which is then correctly predicted by the model, 18 hours ahead
of time. Though this resolves a more severe AKI occurs later in the admission. The patient ultimately
deteriorates and passes away during this inpatient stay.

Supplementary Figure 12 The first 100 days of another lengthy admission, this time lasting 7 months.
A 73 year old male with a history of diabetes is admitted directly to the intensive care unit. The model
raises the risk of AKI early on in the admission, and though this is accompanied by an increase from 60 to
111 µmol/L of creatinine, the duration over which it increases does not meet KDIGO criteria. Much later
on in the admission, similar rises occur where the model does not provide a proactive increase in risk. The
second of these meets KDIGO criteria.
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G. Hyperparameter sweeps741

Finding the best AKI risk model architecture was an iterative process that involved trying dif-742

ferent design choices and model parameters and evaluating the model performance on the val-743

idation set. This resulted in the final set of parameters reported in Methods. The full range of744

hyperparameter options considered in our experiments during the model development process is745

displayed in Supplementary Table 8.746

Supplementary Table 8 Hyperparameter combinations evaluated in the experiments

Hyperparameter Values considered

RNN cell type LSTM, GRU, UGRNN, SRU, Intersection RNN,
MANN, NTM, DNC, RMC

RNN cell size 100, 150, 200, 250, 300, 400, 500
RNN num. layers 1, 2, 3
Embedding num. layers 1, 2, 3
Embedding dim. per feature type 200, 250, 300, 400, 500
Embedding combination concatenate, sum
Embedding architecture type MLP, AE, VAE
Embedding reconstruction loss weight 1e-2, 1e-3, 1e-4
Embedding reconstruction sampling ratio 1, 2, 5, 10
Optimise directly for PR AUC on, off
Highway connections on, off
Residual embedding connections on, off
Input dropout 0, 0.1, 0.2, 0.3
Output dropout 0, 0.1, 0.2, 0.3
Embedding dropout 0, 0.1, 0.2, 0.3
Variational dropout 0, 0.1, 0.2, 0.3
Input regularisation type None, L1, L2
Input regularisation term weight 1e-3, 1e-4, 1e-5
BPTT Window 32, 64, 128, 256, 512
Embedding activation functions Tanh, ReLU [90], Leaky ReLu [91], Swish [92],

ELU [93], SELU [94], ELiSH [95],
Hard ELiSH [95], Sigmoid, Hard Sigmoid

Auxiliary task loss weight 0., 0.1, 0.5, 1, 5, 10
Learning rate 1e-2, 1e-3, 1e-4, 1e-5
Learning rate decay scheduling on, off
Learning rate decay num. steps 6000, 8000, 12000, 15000, 20000
Learning rate decay base 0.7, 0.8, 0.85, 0.9, 0.95
Batch size 32, 64, 128, 256, 512
NTM/DNC memory capacity 64, 128, 256
NTM/DNC memory word size 16, 32, 64
NTM/DNC memory num. reads 6, 10
NTM/DNC memory num. writes 1, 2, 3
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H. Model comparison747

We have conducted a broad comparison of available models on the AKI prediction task. We748

considered three broad classes of models and found that:749

• Recurrent neural networks (SRU, NTM, LSTM, MANN, DNC, UGRNN, GRU, Intersec-750

tion RNN, RMC) achieve the highest performance for both PR AUC and ROC AUC, with751

minimal difference between each other. They also require the fewest training features:752

they are able to achieve the same performance only with sequential information and the753

last 48 hours of patient history and can aggregate the patient information while traversing754

the sequence.755

• Feed-forward models (deep MLP, shallow MLP, Logistic Regression, Random Forest,756

Gradient Boosted Trees) do not have the capacity to aggregate the information about a pa-757

tient over time, which necessitates manual collection and engineering of patient historical758

features. In these models we have experimented with using either 6 months of 5 years of759

historical information and we are reporting the better performing of the two for each.760

• Gradient Boosted Trees (GBTs) benefited from heavy overweighting of observations761

with positive-labels while equivalent oversampling for random forest and neural-network-762

based models did not bring a similar improvement.763

• Since tree-based methods are batch methods that cannot fit all data in memory – and764

online variants typically underperform standard ones – they were trained on one-third of765

the patient data. To establish whether training these baselines on a third of the training766

data had an adverse impact on performance, we conducted experiments to assess how the767

model performance changes upon further reduction. A further reduction in the number of768

patients in the training data of 40% resulted in only minor changes in ROC AUC and PR769

AUC which degraded by 0.2% and 0.8% respectively. This suggests that potential minor770

improvements in the tree baseline performance could have been obtained if it had been771
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possible to provide the entirety of the data, but that these would have still fallen short of772

the RNN performance by a large margin.773
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Supplementary Table 9 Comparison of different predictive models and RNN cells. *SRU significantly
outperforms the Logistic Regression, Gradient Boosted Trees and Random Forest baselines in terms of PR
AUC for the main task of predicting any AKI up to 48 hours ahead of time; using two-sided Mann–Whitney
U test on 200 samples per model (see Evaluation) SRU is significantly better with a p-value of <0.001.

AKI task Model PR AUC (%) [95% CI] ROC AUC (%) [95% CI]

Any AKI SRU 29.7 [28.5, 30.8] 92.1 [91.9, 92.3]
up to 48 hours early Intersection RNN 29.6 [28.5, 30.7] 91.9 [91.7, 92.1]

NTM 29.0 [27.6, 30.0] 91.9 [91.5, 91.9]
MANN 28.9 [27.8, 30.0] 92.0 [91.8, 92.2]
LSTM 28.8 [27.7, 30.0] 92.1 [91.8, 92.2]
UGRNN 28.3 [27.2, 29.5] 91.9 [91.7, 92.1]
GRU 27.8 [26.7, 28.8] 92.0 [91.8, 92.2]
RMC 26.2 [25.0, 27.3] 91.3 [91.1, 91.5]
DNC 26.5 [25.4, 27.4] 91.9 [91.7, 92.1]
Deep MLP 25.1 [23.9, 26.1] 90.3 [90.0, 90.6]
CNN 23.8 [22.8, 24.8] 90.1 [89.9, 90.4]
Shallow MLP 22.3 [21.1, 23.2] 89.9 [89.6, 90.1]
Gradient Boosted Trees* 22.0 [21.0, 22.9] 88.9 [88.6, 89.2]
Random Forest* 19.8 [18.8, 20.9] 87.1 [86.7, 87.4]
Logistic Regression* 17.3 [16.2, 18.2] 86.3 [86.0, 86.7]

AKI Intersection RNN 37.8 [35.7, 40.0] 95.7 [95.5, 96.0]
stages 2 and 3 UGRNN 37.3 [35.1, 39.2] 95.6 [95.3, 95.9]
up to 48 hours early LSTM 37.1 [35.4, 39.1] 95.5 [95.2, 95.8]

NTM 36.9 [35.1, 39.0] 95.5 [95.2, 95.7]
GRU 36.2 [34.2, 38.1] 95.5 [95.2, 95.8]
MANN 36.2 [34.6, 38.1] 95.4 [95.1, 95.7]
DNC 35.7 [33.6, 37.5] 95.5 [95.2, 95.8]
Deep MLP 32.2 [30.2, 33.9] 94.9 [94.5, 95.2]
SRU 29.0 [27.1, 30.6] 94.7 [94.4, 95.0]
CNN 27.2 [25.3, 28.9] 94.3 [93.9, 94.6]
Shallow MLP 25.3 [23.9, 26.8] 93.7 [93.4, 94.1]
Gradient Boosted Trees 25.1 [23.3, 26.8] 92.5 [92.2, 92.9]
Random Forest 25.1 [22.9, 26.6] 91.1 [90.6, 91.5]
RMC 21.9 [20.5, 23.2] 91.1 [90.6, 91.6]
Logistic Regression 16.7 [15.2, 18.1] 87.0 [86.3, 87.6]

AKI NTM 48.7 [46.4, 51.1] 98.0 [97.8, 98.2]
stage 3 MANN 47.9 [45.8, 50.0] 98.0 [97.7, 98.1]
up to 48 hours early Intersection RNN 47.8 [45.3, 50.2] 98.0 [97.8, 98.2]

GRU 47.5 [45.6, 49.9] 98.0 [97.8, 98.2]
UGRNN 47.1 [45.1, 49.1] 98.1 [97.9, 98.2]
LSTM 46.8 [44.7, 49.3] 98.0 [97.8, 98.2]
SRU 46.6 [44.4, 48.9] 98.0 [97.8, 98.2]
DNC 45.0 [42.0, 47.5] 97.8 [97.6, 98.0]
Deep MLP 40.9 [38.8, 42.9] 97.5 [97.3, 97.8]
CNN 38.8 [36.8, 41.0] 97.3 [97.1, 97.5]
Random Forest 34.6 [31.9, 37.2] 95.5 [95.2, 95.9]
Gradient Boosted Trees 32.9 [30.9, 35.0] 96.2 [95.9, 96.5]
Shallow MLP 32.7 [30.8, 34.6] 96.7 [96.4, 96.9]
RMC 24.7 [22.2, 26.4] 93.8 [93.3, 94.3]
Logistic Regression 24.5 [23.1, 25.9] 93.0 [92.5, 93.6]
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I. Ablation study774

We analyse the contribution of the aspects of our model’s design to its overall performance,775

conducting an ablation study that removes specific components of the model, training it fully, and776

then comparing the simplified model’s PR AUC on the validation set. We show the result of this777

analysis in Supplementary Table 10. We investigate the effect of making the input embeddings778

shallow, i.e. only using one neural network layer instead of several. We also inspect the effect of779

removing embedding regularisation. In all cases we see a non-trivial reduction in performance780

when each of these components are removed. The removal of the auxiliary prediction loss and781

the removal of regularisation resulted in some of the largest drops in model performance.782

We also compare models trained on only the sequential information to models augmented with783

historical features over short-term (last 48 hours) and long-term (last 6 months) time frames. The784

results are presented in Supplementary Table 11. The RNN model is able to aggregate informa-785

tion across time and there is a smaller difference in performance than for logistic regression786

which benefits heavily from hand-crafted historical features.787

Supplementary Table 10 Model performance with ablations. Performance is expressed in PR AUC.
We compare the performance for a recurrent model (SRU) and feed-forward model (MLP) on predicting
any AKI within 48 hours. 95% confidence intervals are calculated from an un-paired z-test, with 50 models
trained from random initialisation per configuration.

PR AUC SRU MLP

Full model 29.7± 1.2 25.1± 1.1

Shallow model 23.1± 0.7 22.9± 0.1

Without regularisation 22.5± 1.3 23.3± 0.1

Without auxiliary regression 26.6± 1.4 24.3± 0.1

Without numerical features 20.6± 0.6 16.7± 0.5

Without presence features 22.4± 0.9 18.6± 0.2

Supplementary Table 11 Model PR AUC performance for models using sequential and short-term
information and optionally being augmented with long-term history aggregation.

PR AUC [95% CI] Intersection RNN Logistic Regression

Sequential information only 28.5 [27.3, 29.4] 14.7 [13.9, 15.4]
Sequential + historical aggregations 28.7 [27.5, 29.7] 17.3 [16.3, 18.1]
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J. Influence of data recency on model performance788

Making correct predictions of the risk of future AKI is not always possible based on the routinely789

available data and there will be cases where the models do not have access to the information790

that is needed to make reliable predictions.791

For the models to be able to correctly identify developing AKI, the relevant physiological792

markers need to be available at the critical point when the predictions are being made. If the793

signal is absent from the EHR, the model can potentially miss cases of AKI that could have794

otherwise been detected had the relevant blood tests been taken.795

To quantify this effect in our experiments, we compare the average volume and recency of796

data in cases when the model was correctly predicting future AKI to cases in which it missed797

predicting future AKI episodes (Supplementary Table 12). We compare the availability of the798

data in 12 and 24 hours prior to the true positive and false negative predictions. The results799

strongly suggest that the model errors occur more often when there is less data available to800

inform the model. This implies that one way of further improving the performance of the current801

predictive models would be to improve the frequency of measurements for the most relevant802

biochemical tests in those patients that are known to be at a generally higher risk of developing803

AKI in the future.804

Supplementary Table 12 Influence of data recency on model performance. Comparison of per-
formance for the mean number of EHR entries and the mean number of creatinine measurements in the
clinical data available to the model at prediction time for true positive (N=7,140) versus false negative
(N=12,391) predictions made prior to the first AKI in an admission. The mean number of entries in the
24 hours prior to prediction is lower for false negative predictions than for true positive predictions using a
2-sided T-test. The mean number of creatinine measurements in the prior 24 hours is also lower for false
negative predictions than for true positive predictions using a 2-sided T-test. The results suggest that the
model errors occur more often when there is less data available to inform the model.

True positives False negatives

Entry type Time before Mean number 95% Confidence Mean number 95% Confidence p-value
prediction of entries interval of entries interval

All entries ≤ 12 hours 135.0 [134.5, 136.2] 105.5 [105.3, 106.0] < 0.01
All entries ≤ 24 hours 206.3 [205.2, 207.5] 168.8 [168.3, 169.3] < 0.01
Serum creatinine ≤ 12 hours 0.83 [0.82, 0.84] 0.64 [0.64, 0.65] < 0.01
Serum creatinine ≤ 24 hours 1.25 [1.24, 1.26] 1.00 [1.00, 1.01] < 0.01
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K. Clinically relevant feature set for the baselines805

We compared our performance to baseline models trained on features that have been chosen by806

clinicians as being relevant for modelling kidney function. The initial set of clinically relevant807

features was chosen on the consensus opinion of six clinicians: three senior attending physicians808

with over twenty years expertise, one from nephrology and two from intensive care; and three809

clinical residents with expertise in nephrology, internal medicine and surgery. This set of features810

was further extended by 36 additional features that were discovered as relevant by our deep811

learning model, in order to further improve the predictive power of the baseline model.812

The following features form the final clinically relevant feature set:813

• Demographic information (age, gender, ethnicity);814

• Admission information (admission from the Emergency Room, medical or surgical ad-815

mission, transfer to ICU);816

• Vital sign measurements (pulse, systolic and diastolic blood pressure, respiratory rate,817

oxygen saturation);818

• Logical Observation Identifiers Names and Codes (LOINC) for specific laboratory tests819

(serum creatinine, urea nitrogen, estimated GFR, serum potassium, serum sodium, serum820

phosphate, serum chloride, serum calcium, haemoglobin, haematocrit, haemoglobin A1C,821

white cell count, Westergren (ESR), C-reactive protein, total serum protein, serum albu-822

min, serum alkaline phosphatase, serum glutamic pyruvic transaminase, serum glutamic-823

oxaloacetic transaminase, serum direct bilirubin, serum total bilirubin, serum glucose,824

serum CO2, serum anion gap, serum vancomycin level, arterial blood gas pH, creatine825

kinase, 24hr urinary protein);826

• ICD-9 subcodes for acute and chronic conditions directly associated with an increased827

risk of AKI (sepsis, dehydration/hypovolaemia, haemorrhage, liver disease, renal tract828

obstruction, prior AKI, hypertension, chronic or end-stage renal disease, renal cancer, re-829

nal transplant, myocardial infarction, diabetes, vascular disease, gout, congestive cardiac830
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failure, cardiac arrest, Chronic Obstructive Pulmonary Disease);831

• Selected medications (intravenous contrast, intravenous saline, non-steroidal anti-832

inflammatories, diuretics, angiotensin-converting enzyme (ACE) inhibitors, angiotensin833

receptor blockers (ARB), aminoglycoside antibiotics, beta lactam antibiotics, glycopep-834

tide antibiotics, quinolone antibiotics, cephalosporin antibiotics, certain chemotherapeu-835

tic agents, calcineurin inhibitors, proton pump inhibitors, H2 receptor antagonists, se-836

lected antivirals, cyanocobalamin, calcitriol, bisphosphonates, phosphate binders, cal-837

cium, methotrexate, sulfonamides, paracetamol, acetylcysteine);838

• CPT codes associated with haemodialysis/haemofiltration.839

In contrast, the entire feature set available in the EHR totals 366 856 distinct features corre-840

sponding to different types of entries. One of the advantages of deep learning models in general841

is that they are capable of automatically determining which are the relevant features for any842

predictive task.843
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