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Abstract
Non-uniform and sparse sampling of multi-dimensional NMR spectra has over the last decade become an important tool 
to allow for fast acquisition of multi-dimensional NMR spectra with high resolution. The success of non-uniform sampling 
NMR hinge on both the development of algorithms to accurately reconstruct the sparsely sampled spectra and the design of 
sampling schedules that maximise the information contained in the sampled data. Traditionally, the reconstruction tools and 
algorithms have aimed at reconstructing the full spectrum and thus ‘fill out the missing points’ in the time-domain spectrum, 
although other techniques are based on multi-dimensional decomposition and extraction of multi-dimensional shapes. Also 
over the last decade, machine learning, deep neural networks, and artificial intelligence have seen new applications in an 
enormous range of sciences, including analysis of MRI spectra. As a proof-of-principle, it is shown here that simple deep 
neural networks can be trained to reconstruct sparsely sampled NMR spectra. For the reconstruction of two-dimensional 
NMR spectra, reconstruction using a deep neural network performs as well, if not better than, the currently and widely used 
techniques. It is therefore anticipated that deep neural networks provide a very valuable tool for the reconstruction of sparsely 
sampled NMR spectra in the future to come.
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Introduction

Reconstruction of non-uniformly sampled (NUS) NMR 
spectra has become a very important tool for obtaining 
ultra-high dimensional NMR spectra with high resolution 
and in a short time. For example, being able to accurately 
reconstruct NUS NMR spectra allows for high-resolution 
four-dimensional methyl–methyl NOESY spectra for chemi-
cal shift assignment and characterisations of large proteins 
(Tugarinov et al. 2005; Vuister et al. 1993; Hyberts et al. 
2012), five-dimensional spectral of intrinsically disor-
dered proteins for chemical shift assignments (Krähenbühl 
et al. 2012; Kosiński et al. 2017), and fast characterisation 

of macromolecular dynamics (Linnet and Teilum 2016), 
amongst others. Various algorithms have been developed to 
reconstruct the full dataset from the sparsely sampled data 
(Hyberts et al. 2012; Ying et al. 2017; Coggins et al. 2012; 
Orekhov and Jaravine 2011; Balsgart and Vosegaard 2012; 
Holland et al. 2011; Kazimierczuk and Orekhov 2011), or 
otherwise extract NMR parameters from the dataset (Egh-
balnia et al. 2005; Murrali et al. 2018; Dutta et al. 2015; 
Pustovalova et al. 2018). Moreover, it has become clear that 
it is not only the algorithm used to process the sparse data 
that determines the accuracy with which information can be 
obtained from NUS NMR data, since the sampling sched-
ule used also has a substantial impact on the final outcome 
(Hyberts et al. 2012).

The development and application of deep neural net-
works (DNN) have seen an impressive growth in the last 
decade with many and highly different applications in all 
areas of science and technology, including spectroscopy. 
Traditional applications of DNN include image process-
ing and speech recognition, whereas applications involving 
the analysis of EPR DEER spectra (Worswick et al. 2018) 
and reconstruction of MRI (Han and Ye 2018; Hyun et al. 

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s1085​8-019-00265​-1) contains 
supplementary material, which is available to authorized users.

 *	 D. Flemming Hansen 
	 d.hansen@ucl.ac.uk

1	 Division of Biosciences, Institute of Structural 
and Molecular Biology, University College London, 
London WC1E 6BT, UK

http://orcid.org/0000-0003-0891-220X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10858-019-00265-1&domain=pdf
https://doi.org/10.1007/s10858-019-00265-1


	 Journal of Biomolecular NMR

1 3

2018) datasets are more recent. Briefly, a supervised DNN 
contains several layers that each transforms an input ten-
sor into an output vector or tensor. For example, a layer 
can be linear with activation functions, that is, initially the 
input tensor is multiplied by a parameter-tensor followed 
by an elementwise mathematical operation, such as tanh(x). 
Training the neural network consist of determining optimal 
parameters or parameter-tensors and training is therefore 
a classical minimisation/optimisation problem. Although 
training a DNN can involve the optimisation of millions of 
parameters, highly efficient optimisers based on stochastic 
gradients (Kingma and Ba 2014) have been developed and 
optimised neural networks now often outperform traditional 
tools used for analyses.

Reconstruction of NUS NMR data is well suited for 
supervised DNN, because of the simple architecture of the 
problem. The input data consists of the sparsely sampled 
data matrix and a sampling schedule, whereas the output 
data can consist of the fully sampled NMR spectrum in 
either the time domain or frequency domain. More impor-
tantly, a large training database can easily be generated since 
the general form of NMR spectra is well known.

It is shown below that a simple DNN based on long short-
term memory (LSTM) networks can be trained to recon-
struct sparsely sampled one-dimensional NMR spectra. 
Once the network is trained, the time required for recon-
struction is similar to reconstruction times for traditional 
methods, such as iterative-soft-thresholding (IST) (Hyberts 
et al. 2012; Holland et al. 2011; Kazimierczuk and Orek-
hov 2011) and sparse multidimensional iterative lineshape-
enhanced (SMILE) reconstruction (Ying et al. 2017). The 
network developed below is cross-validated using an exper-
imental two-dimensional 15N–1H NMR spectrum of the 
18 kDa T4 Lysozyme recorded with a large sweep width, 
so that also arginine 15Nε–1Hε signals and are observed. In 
all cases, the reconstruction with DNN yields reconstructed 
spectra with small RMSDs to the ‘true’ spectra and more 
accurate intensities of the resulting peaks in the frequency-
domain spectrum compared to traditional algorithms. It is 
envisaged that with faster computer hardware, reconstruc-
tion and analysis of high-dimensional NMR spectra will be 
substantially improved in the future using deep learning and 
artificial intelligence.

Methods

Training the Deep Neural Network

The DNNs were trained on a standard desktop computer 
(Intel Core I7-6900 K, 3.2 GHz, 64 GB RAM), equipped 
with an NVIDIA GeForce GTX 1080 TI GPU graphics card. 
The tensorflow (Abadi et al. 2015) python package with the 

keras frontend was used to generate the network graphs and 
the optimisation was performed within tensorflow using the 
stochastic ADAM (Kingma and Ba 2014) optimiser with 
standard parameters and a learning rate of 0.00012. The 
python nmrglue (Helmus and Jaroniec 2013) package was 
used to read and write NMR spectra in various formats.

Synthetic one-dimensional FIDs were generated using 
an in-house written c++ programme and these FIDs were 
stored in a binary 2D nmrPipe (Delaglio et al. 1995) format. 
The number of peaks in the synthetic FIDs was randomly 
chosen between 1 and (3/8)sp, where sp is the number of 
sampled complex points in the sampling schedule. Theo-
retically, two complex numbers or equivalently four real 
numbers, {intensity, phase, transverse relaxation rate, fre-
quency}, are required to define each signal in the one-dimen-
sional spectrum. The ratio of 3/8, which is slightly smaller 
than 1/2, was chosen to avoid over-fitting. Thus, for sampling 
schedules with 32 sampled points a maximum of 12 signals 
were generated and for sampling schedules with 48 sampled 
points a maximum of 18 signals were generated. For each 
signal in each of the synthetic FIDs, an intensity, I, a phase, 
φ, a transverse relaxation rate, R2, and a frequency, ν was 
randomly chosen. The intensities were randomly chosen 
between 0 and 1, the R2 randomly chosen between 3 s−1 and 
100 s−1, and the frequency randomly chosen over the entire 
sweep-width. Ideally, the phase, φ, should be predictable 
in NMR spectra. However, minor mis-calibrations and off-
resonance effects can lead to small deviations from perfectly 
phased spectra. Therefore, for each signal in the synthetic 
FIDs, the phase was randomly chosen between − 5o and + 5o. 
In each run of optimisation, a series of 8 × 106 synthetic 
FIDs were generated (the maximum amount that could be 
stored in the memory during training). Prior to optimisation, 
the synthetic FIDs were normalised by the absolute value of 
the first point.

During each optimisation, 10% of the training data was 
not included in the optimisation but purely used for cross-
validation. For each sampling schedule, the network was 
trained in runs consisting of 20 epochs until the average 
mean-squared error for the cross-validation set was less than 
5 × 10−4 (1.5 × 10−4) and the mean-absolute error less than 
approximately 0.013 (0.008) for 12.5% (18.75%) sampled 
data. Typically 25–50 runs were needed, which took between 
30 and 40 h depending on the specific sampling schedule 
used.

NMR Spectroscopy

A two-dimensional 15N–1H HSQC correlation spectra was 
recorded on a uniformly 13C, 15N isotope labelled sample 
of the L99A mutant of T4 Lysozyme (T4L L99A) that was 
prepared as described previously (Bouvignies et al. 2011; 
Werbeck et al. 2013). The NMR spectra was recorded at 
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25 °C on a Bruker Avance III NMR spectrometer with a 1H 
operating frequency of 700 MHz and equipped with helium-
cooled TCI inverse cryoprobe. The fully sampled spectrum 
was acquired as a 1024 × 256 complex matrix with spectral 
widths of 12 kHz (1H) and 5.1 kHz (15N). An adiabatic 13C 
pulse was applied during the 15N chemical shift evolution, t1, 
for refocussing of 15N–13Cα and 15N–13CO scalar couplings, 
and suppression of the H2O resonance was achieved using 
a flip-back pulse (Andersson et al. 1998) immediately after 
the first INEPT element. Four scans were collected for each 
t1 increment with a recycle delay of 1 s resulting in a total 
experiment time of 34 min.

Reconstruction of Experimental NMR Spectra

Reconstruction with the iterative-soft-thresholding (IST) 
algorithm was carried out with the istHMS programme 
(Hyberts et al. 2012) using standard parameters, except that 
the number of iterations was increased to 1000. The stand-
ard parameters were: initial level multiplier, i_mult = 0.98, 
end level multiplier, e_mult  = 0.98, and correction of first 
point, xc  = 0.5. For reconstruction with the SMILE (Ying 
et al. 2017) algorithm, the function within nmrPipe (Version 
2.0 beta Rev 2018.094.15.20 64-bit) was used with standard 
parameters, except that the noise factor for the signal cutoff 
(nSigma) was decreased to 3.0 from the default value of 5. 
Running the SMILE algorithm with the default nSigma of 
5.0 resulted in poor reconstruction in our hands. The stand-
ard parameters used for reconstruction with SMILE were: 
xP0 = 0.0, xP1 = 0.0, zfCount = 2, xApod = SP, xQ1 = 0.50, 
xQ2 = 0.98, xQ3 = 1.0, minTDL = 0.25, maxTDL = 4.0, 
thresh = 0.80, fraction = 1.0. Prior to analysis, the spectra 
reconstructed with the SMILE algorithm were divided by 
the downscaling factor provided in the logfile, so that inten-
sities were comparable with the fully sampled spectrum.

Reconstruction with the DNN algorithm was performed 
using a python script. First the network graph and the param-
eters were loaded from the output of the training (see above). 
Subsequently the reconstructed 1D spectra, one for each 1H 
frequency point, were generated using the predict function 
within tensorflow. Finally the reconstructed spectrum was 
saved in nmrPipe format using functions within the nmrglue 
package.

All the reconstructed spectra were Fourier transformed 
along the 15N dimension using the same window function, 
which was a square-sine window that was shifted by 0.42 π.

Data Analysis

All NMR spectra were processed using nmrPipe (Dela-
glio et al. 1995) and subsequently analysed using NMR-
FAM-Sparky (Lee et al. 2015) or in-house written python 
scripts that utilise functions within the nmrglue, numpy and 

matplotlib packages. Peak heights were determined using 
NMRFAM-Sparky and the “Center peak; pc” interpolation 
function.

Results and Discussion

A DNN Architecture for NUS Reconstruction

Nuclear magnetic resonance spectra have traditionally been 
recorded on multi-dimensional regular Nyquist grids, with 
data recorded at equally spaced time points in each of the 
dimensions. A multi-dimensional discrete Fourier transform 
is subsequently used to generate the spectrum in the fre-
quency domain for the identification of signals, their posi-
tions, intensities, line-widths and phases. However, as the 
requirement has increased for higher and higher dimensional 
NMR spectra, the concept of non-uniform, non-linear, and 
sparsely-sampled data has been improved substantially since 
some of its initial applications (Schmieder et al. 1993). 
Sparse sampling of NMR spectra is possible because the 
information contained in the spectrum is often far less than 
the actual number of data points sampled on the full Nyquist 
grid. For example, for a one-dimensional NMR spectrum 
each peak is fully characterised by four parameters, the fre-
quency ν, the linewidth Δν = R2/π, the intentity I, and the 
phase φ. Therefore, and in theory, for a one-dimensional 
spectrum with n Lorentzian shaped peaks it is sufficient 
to sample 4n real time-points or 2n complex time-points. 
As the number of dimensions increases the sparseness of 
NMR spectra typically increases, that is, a smaller fraction 
of the full Nyquist grid is required to fully characterise all 
the cross-peaks present. Whereas the linear Nyquist grid 
is easily processed using the discrete Fourier transform, a 
linear transformation, processing of sparsely sampled NMR 
spectra is traditionally more demanding. The major chal-
lenge has been to extract the spectral parameters from sparse 
data because the search-space quickly becomes very large 
and simple minimisation procedures fail due to the highly 
non-linear nature of oscillating NMR signals over the non-
regular time-domain data matrix.

The architecture of the DNN developed here to recon-
struct sparsely sampled NMR spectra is shown in Fig. 1. 
This architecture is designed with inspiration from LSTM 
networks (Hochreiter and Schmidhuber 1997) that have tra-
ditionally been used to analyse time series, for example in 
finance, handwriting, and for speech-recognition (Chen and 
Wang 2017; Graves et al. 2009). In a very recent preprint 
(Qu et al. 2019) an entirely different DNN architecture, 
based on densely connected convolution neural networks 
(CNN), has been suggested. Whereas the architecture in 
Fig. 1 has its roots in the analysis of time series, dense CNN 
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networks are often used for image processing, noise reduc-
tion, and removal of artefacts.

For the presented architecture in Fig. 1, the sparsely sam-
pled FID is represented as a 2×sp matrix, where sp is the 
number of sampled complex points with one row for each of 
the real and imaginary data. Initially the sparsely sampled 
FID and the sampling schedule are transformed into two 
vectors with length 2np, where np is the number of complex 
points in the fully reconstructed one-dimensional spectrum. 
This transformation is carried out using linear layers with 
tanh(x) activation and bias. Specifically, for a linear layer 
with the activation function a(x) and bias b, the output vec-
tor y is calculated from the input vector x, as

where 

and A is the parameter-tensor (kernel). Optimisation of the 
layer consist of optimising the parameters of the bias b and 
the parameter-tensor A (see Supporting Material).

Training the Deep Neural Network

The DNN was trained separately for each sampling schedule 
on synthetic data. In each run 8 × 106 fully sampled one-
dimensional spectra were generated randomly (see “Meth-
ods” section). The input spectra ‘Sparse time-domain’ in 
Fig. 1a, used for training the DNN were calculated from the 
fully sampled synthetic spectrum by extracting the points 
corresponding to the sampling schedule. The cost-function 
used to optimise the parameters of the DNN was calculated 
as the average mean-square-derivation between the recon-
structed spectra and the fully sampled synthetic spectra. 
For 12.5% sampled spectra (32/256) the optimisation lead 
to average mean-squared errors of the cross-validation set 
of 5 × 10−4, showing that the highly non-linear behaviour 
of the NMR time-domain spectra is well-captured by the 
deep neural network and the architecture in Fig. 1. Specifi-
cally, there is a clear indication that the DNN has indeed 
‘learned’ the task of reconstructing the spectra rather than 
‘memorising’ and interpolating the training set. For example 
for 12 peaks, and only considering peak positions, there are 
25612 = 8 × 1028 possible spectra with a resolution of SW/np. 
Additionally, there is differential peak intensities and differ-
ential line-widths of the 12 peaks as well as the possibility 
that less than 12 peaks are present. Thus, the training set 
far from span the full set of possible spectra, although up to 
5 × 108 spectra in total has been used for training,

Application to an Experimental NMR Spectrum

A two-dimensional 15N–1H HSQC correlation spectrum of 
the L99A mutant of the 164-residue protein T4 Lysozyme 
(T4L L99A) was used to evaluate the performance of the 
DNN algorithm and to compared the performance of the 
DNN algorithm with currently leading algorithms for recon-
struction of sparsely sampled NMR spectra. A spectrum 
with a large 15N sweep-width (72 ppm) was recorded with 
256 complex points in the 15N dimension, such that both 
the backbone 15N–1H correlations as well as the side-chain 
15N–1H correlations of arginine and 15N–1H2 correlations 
of asparagine and glutamine are observed, Fig. 2a. Also, 
the T4L L99A protein is in chemical exchange (Mulder 
et al. 2001), which renders some of the 15N–1H correlations 
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Fig. 1   The deep neural network (DNN) architecture and graph devel-
oped to reconstruct sparsely sampled NMR spectra. The dimensions 
of the tensors/vectors are annotated above the arrows. The number of 
sampled complex points is denoted sp, and the number of complex 
points of the reconstructed spectrum is denoted np. a The two inputs 
to the network, the sparse time-domain data and the sampling sched-
ule, are converted to two vectors with dimension 2np. Moreover, ‘F’ 
denotes a flattening layer and ‘T’ denotes a linear layer with tanh(x) 
activation and bias (see text). b The modified LSTM cell, where ‘σ’ 
denotes a linear layer with sigmoidal activation and bias, ‘+’ denotes 
an elementwise addition layer, and ‘×’ denotes an elementwise 
multiplication layer. The modified LSTM cell is applied N times. c 
The final step of the graph, which takes the two outputs of the last 
modified LSTM cell as input and produces one output, which is the 
reconstructed time-domain FID. ‘R’ denotes a reshape layer and ‘L’ 
denotes a linear layer without activation. (See Supporting Material)
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broadened and thereby leading to an even larger range of 
spectral parameters present in the spectrum.

The experimental 15N–1H HSQC spectrum was first 
Fourier transformed in the directly detected 1H dimension. 
Subsequently, for each point in the 1H frequency dimension, 
fH, the resulting fully sampled 15N time-domain spectrum, 
tN(fH) was extracted and the sparsely sampled 15N time-
domain spectrum, �N(�H) , was obtained by extracting the 
points corresponding to the sampling schedule. The recon-
structed time-domain spectra, �̃N(�H) , were obtained using 
three different algorithms (1) the DNN algorithm presented 
here, (2) the SMILE algorithm (Ying et al. 2017), and (3) the 
hmsIST algorithm (Hyberts et al. 2012). Finally the recon-
structed spectra, �̃N(�H) , obtained for each of the three algo-
rithms as well as the fully sampled spectrum, tN(fH), were 
Fourier transformed along the 15N dimension to generate 
two-dimensional frequency-domain spectra.

A sparsely sampled spectrum was generated using a 
12.5% (32 out of 256 complex points) Poisson-gap sampling 
schedule (Hyberts et al. 2012). Excerpts of the reconstructed 
spectra obtained using the three different algorithms, DNN, 
SMILE and IST, are compared with the fully sampled spec-
trum in Fig. 2b and Figure S1. Overall, all three algorithms 
provide a good reconstruction with most of the cross-peaks 
reconstructed with intensities that are similar to the fully 
sampled spectrum. The spectrum reconstructed using the 
SMILE algorithm had artefacts for 1H frequencies around 
7.3 ppm and some cross-peaks were missing in the recon-
structed spectrum.

To provide a more quantitative comparison, slices along 
the 15N frequency-domain were taken out of the recon-
structed spectra and compared to the corresponding slices 
of the fully sampled spectrum; green vertical lines in Fig. 2a. 
The first 1H frequency, 1H of 9.6 ppm, for which a 15N slice 
is shown in Fig. 3 was chosen because it intuitively should 
be easy to reconstruct due to only two very isolated and 
sharp peaks being present. The second slice, 1H of 7.4 ppm, 
should intuitively be more difficult to reconstruct since it 
contains many peaks with differential line widths. A good 
reconstruction is obtained for the slice at 1H of 9.6 ppm, 
Fig. 3a, c, although reconstruction with the IST algorithm 
leads to visible artefacts when a random sampling scheme is 
used. For the more challenging slice, 1H of 7.4 ppm, all three 
algorithms lead to similar RMSDs between the reconstructed 
and the fully sampled spectrum, Fig. 3b, when a Poisson-
gap sampling is used. For the random sampling schedule, 
Fig. 3d, the DNN algorithm leads to significantly better 
reconstructions than both IST and SMILE. The fact that the 
DNN algorithm leads to a significantly better reconstruc-
tion for very sparse and random samples is already apparent 
from a simple visualisation of the reconstructed 2D spectra 
(Figure S2), where artefacts and extra peaks are observed in 
the spectra reconstructed with IST in particular.

Subsequently, the ability of the different reconstruction 
algorithms to reproduce peak intensities was quantified. The 
discrete Fourier transform traditionally used to transform 
fully sampled spectra is a linear operator as well as an iso-
morphic transformation. Intensities are therefore represented 
well in the frequency-domain spectrum. Since the sparse 
data are sampled on a non-uniform grid, the reconstruction 
algorithms are inherently non-linear and a quantification 
of how well peak intensities are reconstructed is therefore 
important. For a set of 134 isolated peaks, Figure S3, the 
peak heights were obtained by interpolation (see “Methods” 
section). Figure 4 shows a comparison of normalised peak 
intensities obtained from the fully sampled spectrum ver-
sus intensities obtained from spectra reconstructed with the 
three algorithms from a 12.5% Poisson-gap sampling. In this 
dataset the DNN algorithm had a good overall reproduc-
tion of peak intensities with a normalised RMSD of just 

Fig. 2   a The fully sampled 15N–1H HSQC spectrum of T4L L99A 
used to evaluate the performance of the DNN algorithm for recon-
struction of sparsely sampled one-dimensional spectra. The peaks 
between 82 and 88 ppm originate from arginine side-chain 15Nε–1Hε. 
The green vertical dashed lines show where the one-dimensional 
spectra in Fig. 3 are extracted from. b Overlays created for a part of 
the spectrum (black dotted box in a) of the fully sampled spectrum 
(blue) and the three reconstructed spectra (red), DNN, SMILE and 
IST. Reconstructed spectra were generated from a sparsely sampled 
spectrum based on a Poisson-gap sampling schedule with 12.5% 
of the points sampled (32 out of 256; Table  S1). Main differences 
between the fully sampled spectrum and the reconstructed spectra are 
indicated with black arrows
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over 1% and a Pearson correlation between peak intensi-
ties measured in the spectrum reconstructed with DNN and 
the fully sampled spectrum of R2 = 0.996. This is similar 
to the Pearson correlation estimated using the densely con-
nected convolution network (Qu et al. 2019), R2 = 0.992. The 
SMILE algorithm generally had a good reproduction of peak 
intensities as well, however, with a handful of peaks rather 
poorly reconstructed, leading to an overall RMSD of about 
3%. The IST algorithm also had a good reproduction of peak 
intensities, however, with substantial better reconstruction of 
the more intense peaks and slightly worse reconstruction of 
weaker peaks, which lead to an overall RMSD of about 2%.

Three types of sampling schedules were evaluated, (1) 
a 12.5% (32/256) random sampling, (2) a 12.5% Poisson-
gap sampling, and (3) a 18.75% (48/256) Poisson-Gap sam-
pling. Three individual sampling schedules were randomly 
generated for each type leading to a total of nine sampling 
schedules, Table S1. For each of the three types of sampling 
schedules the two metrics described above in Figs. 3 and 4 
were used to quantify the overall quality of the reconstruc-
tion. Firstly, the RMSD between the reconstructed spectra 
and the fully sampled spectrum was calculated for each of 
the 1H frequency points, as in Fig. 3, and the average RMSD 
for 1H frequencies between 6.5 and 9.6 ppm; 〈RMSD〉spec 
reported. Secondly, the normalised peak intensities from 

Fig. 3   Representative one-dimensional 15N slices of reconstructed 
spectra compared with the corresponding fully sampled spectrum 
(vertical lines in Fig.  2a). a, c Reconstructed 1D spectra with a 1H 
frequency of 9.6  ppm and b, d reconstructed 1D spectra with a 1H 

frequency of 7.4 ppm. e and f show the corresponding fully sampled 
spectrum. Spectra in a and b were reconstructed from a 12.5% Pois-
son-Gap sampling, while spectra in c and d were reconstructed from 
a 12.5% random sampling (Table S1)



Journal of Biomolecular NMR	

1 3

reconstructed spectra were compared to those obtained from 
the fully sampled spectrum, as in Fig. 4.

From the summary in Fig. 5 it is apparent that the DNN 
algorithm generally leads to better reconstructions for the 
T4L L99A 15N–1H spectrum, both in terms of RMSD 
between the reconstructed spectrum and the fully sampled 
spectrum as well as reproducing peak intensities. This is 
particularly the case for the more sparse data (12.5%) and 
for random sampling schedules. Reconstruction using the 

IST algorithm improves substantially when a Poisson-gap 
schedule is used as also pointed out previously (Hyberts 
et al. 2012).

Conclusion

Reconstruction of sparse and non-uniformly sampled NMR 
spectra is increasingly becoming more important as the 
demand for fast acquisition and ultra-high-dimensional 
spectra increases. A strategy to reconstruct sparsely sampled 
NMR spectra using deep neural networks was presented. 
The proposed strategy employs a new network architecture 
that is based on LSTM layers, which are frequently used 
in the analysis of time series. Optimisation of the neural 

Fig. 4   Comparison of normalised peak intensities obtained from 
the fully sampled spectrum (abscissa axis) with those obtained from 
reconstructed spectra (ordinate axis). The comparison are shown for 
a reconstruction using the DNN algorithm, b reconstruction using the 
SMILE algorithm, and c reconstruction using the IST algorithm. The 
dashed black line corresponds to y = x and R2 is the Pearson coeffi-
cient of linear correlation. All reconstructions were carried out on a 
12.5% Poisson-gap sampled spectrum (Table S1)

Fig. 5   Summary of reconstruction of sparsely sampled one-dimen-
sional NMR spectra. a The average normalised RMSD between the 
fully sampled frequency-domain spectrum and the reconstructed 
spectrum calculated for 1H frequency between 6.5 and 9.6  ppm. b 
The RMSD between normalised peak-intensities obtained from the 
fully sampled spectrum and the reconstructed spectra. The vertical 
error-bar shows the standard-deviation for three reconstructions
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network on a standard desktop computer allowed for excel-
lent reconstruction of sparsely sampled one-dimensional 
experimental NMR spectra at a level that was as good as, or 
slightly better than, current algorithms. The time required 
for reconstruction with the presented neural network is simi-
lar to reconstruction times for traditional methods (Hyberts 
et al. 2012; Ying et al. 2017), albeit longer than an alterna-
tive strategy presented very recently (Qu et al. 2019). It is 
important to stress that in this study deep neural networks 
were used to reconstruct only one-dimensional spectra, how-
ever, the presented strategy shows an avenue for employ-
ing deep neural networks to more generally analyse and 
reconstruct sparsely sampled spectra. It is envisaged that 
with further explorations of deep network architectures and 
optimisations, accurate reconstructions of high-dimensional 
NMR spectra will become possible using deep learning and 
artificial intelligence.
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