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Abstract— Micro-Doppler signatures are extremely valuable in 

the classification of a wide range of targets. This work 
investigates the effects of jamming on micro-Doppler 
classification performance and explores a potential deep topology 
enabling low bandwidth data fusion between nodes in a 
multistatic radar network. The topology is based on an array of 
three independent deep neural networks (DNNs) functioning 
cooperatively to achieve joint classification. In addition to this, a 
further DNN is trained to detect the presence of jamming and 
from this it attempts to remedy the degradation effects in the 
data fusion process. This is applied to real experimental data 
gathered with the multistatic radar system NetRAD, of a human 
operating with seven combinations of holding a rifle-like object 
and a heavy backpack which is slung on their shoulders. The 
resilience of the proposed network is tested by applying synthetic 
jamming signals into specific radar nodes and observing the 
networks’ ability to respond to these undesired effects. The 
results of this are compared with a traditional voting system 
topology, serving as a convenient baseline for this work.  
 

Index Terms— Radar; Multistatic Radar; Human Micro 
Doppler; Radar Classification; Fusion; DNN; Synthetic Jamming 

I. INTRODUCTION 

he Doppler effect is a directly observable phenomenon in 
radar and is detected through the change in received 
frequency as a target approaches or recedes from the 

transmitter. Micro-Doppler is exhibited through additional 
modulations on top of the main Doppler component. This 
effect is heavily utilized in Automatic Target Recognition 
(ATR) applications and classification problems, as these 
further modulations are often unique to a target [1]-[4]. From 
this it is possible to discriminate between a variety of human 
activities such as walking, running, crawling and the 
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characterization of free or confined movements of the arms, 
related to the carrying of different objects this may potentially 
include weapons such as rifles [5].  

Machine learning (ML) has become incredibly popular over 
the past few years and it has found many applications in 
engineering and data science fields [6], as well as making a 
significant impact in radar research. This is owed to the simple 
fact that ML provides an opportunistic means of processing or 
analyzing a given data set, which requires a degree of 
intelligence which can conveniently be tackled through non-
linear extrapolation. Typically, in classification problems, 
features are extracted through using a bespoke algorithm which 
is generally tailored to the mission at hand, this can be 
laborious and may be considered inadequate in terms of system 
robustness (depending on the application). Specifically, in the 
context of classification in micro-Doppler the spectrogram can 
vary drastically depending on the aspect angle [7][8], radar 
parameters and many other operating conditions. Therefore, 
designing a robust feature extraction algorithm which can cope 
under this challenging environment is incredibly difficult. It is 
also clear that the classification accuracy is highly dependent 
upon the precision at which the algorithm can extract the most 
important features [9][10].  

Deep learning is derived from the same fundamental 
concepts which ML is based upon, specifically neural networks 
(NN), however it differs in that it consists of multiple 
processing layers of diverse dimensions, each designed to 
perform a certain task within the context of the network 
optimally. An extensive variety of structures and topologies 
have been rigorously researched, to name but a few examples: 
Convolutional Neural Networks (CNN), Long Short Term 
Memory (LSTM), Deep Belief Network (DBN) and DNN  
[11]-[16]; these enable high classification accuracies to be 
obtained over large data sets of images.  

Multistatic radar offers many advantages over traditional 
monostatic radar, the primary one being, that it enables a 
significantly increased coverage and provides a multi-
perspective view of the target [17]. Such configurations also 
boast resilience to jamming, though necessary systems need to 
be in place to actively detect and cooperatively manage 
corrupted sensor information. A recent publication investigated 
classification performance with the same multistatic radar with 
degraded radar data as a function of the manipulated number of 
pulses [18]. This utilized a feature extraction algorithm which 
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exploited eight empirical and statistical features to perform 
classification; and as expected, accuracy is hindered as the 
severity of degradation is increased.  

Deep learning has not been leveraged or copiously applied in 
the context of multistatic radar alongside the presence of 
targeted enemy jamming. The aim of this work is to exploit the 
inherent Micro-Doppler effect in conjunction with deep 
learning algorithms, to enable a cooperative ATR approach to a 
human target performing seven, potentially hostile activities in 
an open field. Multi-domain frequency representations of the 
target will also be exploited to see which transformation is the 
most beneficial to the classification task [19], implementing 
multiple of these to improve the overall performance of the 
system. Intelligent data fusion amongst the radar nodes and 
active jamming detection systems and topologies will also be 
investigated; to observe how the multistatic radar system can 
cope under the presence of an array of mostly hostile jamming 
measures, simulating purposeful enemy interference.  

The rest of this paper is organized as follows: Section II 
presents the experimental setup and the parameters used in the 
radar system, Section III details the signal processing methods 
utilized, Section IV presents the configuration of the networks, 
Section V presents results and discusses noteworthy findings, 
finally, Section VI concludes the work and Section VII 
indicates areas for future research.  

II. EXPERIMENTAL SETUP & RADAR SYSTEM 
The multistatic radar system (NetRAD) which has been 

developed over the past 15 years at University College 
London (UCL) was used to collect the experimental data 
presented in this paper. It is a coherent pulsed radar with three 
separate but identical nodes operating at S-Band [20]. The 
transmitted waveform is a linear frequency modulated (LFM) 
chirp signal, which enables stretch processing and pulse 
compression at the receiver [17]. The operating parameters 
surrounding the radar system are detailed in Table. I; the 
antennas used for these experiments were parabolic dish 
antennas which have a beamwidth of approximately 18˚×18º, 
yielding a cross range resolution of approximately 28 m at a 
range of 90 m. This allowed the area in which the target is 
operating within to be well encapsulated. The bandwidth 
chosen led to a range resolution of 3.3 m and combining this 
with the pulse length leads to a pulse compression ratio of 27 
or an equivalent gain of 14.3 dB.  

TABLE. I 
OPERATIONAL PARAMETERS OF THE MULTISTATIC RADAR SYSTEM  

(NETRAD) 

Radar Parameter Value 

Center Frequency (Fc) 2.4 GHz 

Transmit Power (Pt) +23 dBm 

Bandwidth (BW) 45 MHz 

Pulse Repetition Frequency (PRF) 5 KHz 

Antenna Gain (GTX , GRX) 18 dBi  

Pulse Length (τ) 0.6 µs  

Recording Time  10.0 s 

The experiments were performed in a large open field at the 
UCL sports ground in Shenley during March 2016. The setup 
chosen deployed three radar nodes along a linear baseline with 
50 m separation, as depicted in Fig. 1a. The target operated at 
an average distance of 90 m from the transmitter (Node 1) and 
103 m from the bistatic receiver (Node 3). Node 1 operated as 
a monostatic transceiver in VV-pol, Node 2 was configured as 
a monostatic receiver in horizontal polarization (H-Pol), 
therefore functioning in VH-Pol and Node 3 was configured as 
a bistatic receiver in VV-pol. The target carried a metallic pole 
(in relevant tests) of 1 m in length, to mimic the constrained 
movement of holding a rifle (Fig. 1b) and a heavy rucksack 
weighing approximately 15 kg, as shown in Fig. 1c.  

 
 

Fig. 1. Experimental configuration and an example of a subject performing 
some activities down range 

The data collection consisted of each person (four people) 
performing seven activities of combinations of walking with a 
rucksack and with a rifle. These activities and the 
corresponding class identifiers are detailed in Table. II.  

TABLE. II 
DESCRIPTION OF HUMAN ACTIVITIES/CLASSES 

Class 
Identifier / 

ζ 

Description of physical activity† 

Rucksack Rifle 

0 N/A N/A 

1 Strap on one shoulder N/A 

2 Strap on both shoulders N/A 

3 Slung on one shoulder Held with two hands across 

4 N/A Held with two hands across 

5 Strap on both shoulders Slung on one shoulder 

6 Strap on both shoulders Held with two hands across 

†The subject walks forward (towards node 1) in all the configurations. 

III. SIGNAL PROCESSING  

A. Radar Data Processing 

A comprehensive dataset was gathered consisting of  
10 repeats per person (40 samples) of the 7 different activities 
(280) over the three radar nodes (840 total samples). The 
recording duration of each sample was 10 seconds, each of 
these were matched filtered by performing a Hilbert 

(a)                                        (b)                               (c) 
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transformation and correlating against a bank of reference 
chirp signals. Once the range time plot was produced a 
Constant False Alarm Rate (CFAR) detector algorithm was 
applied to automatically detect the range cells in which the 
human targets operated within, which differed between the 
nodes and occasionally samples. The number of training cells 
used was 20, with 2 guard cells and probability of false alarm 
(PFA) of 0.01. This also ensured that the subsequent 
processing stages were as clean as possible, as empty range 
cells were not dwelled upon. 

A Short Time Fourier Transform (STFT) was then applied 
over these identified range cells, with a pad factor of 4, a 
hamming window of length 0.3 s and a 95% overlap factor [5] 
[7]. These samples were then split into 10 (1.0 s each) yielding 
a total of 8400 spectrogram samples across the whole system. 
To provide the deep network with a further representation of 
the input samples, a Cadence Velocity Diagram (CVD) was 
produced by taking the FFT across each successive Doppler 
bin [21]. An example of some spectrograms obtained for two 
different classes and the corresponding CVD is shown in  
Fig. 2. The cepstrogram transformation which reveals log-
frequency change over time, was investigated but the plots 
obtained were found to be unfavorable for classification [24].  

The entire signal processing chain was fully automated 
without the need of manual inputs once the initial processing 
parameters had been set and could be executed through a 
single command. If the script had control over the radar 
parameters, it could be dropped into a closed loop radar 
system with very little modification.  

 
Fig. 2. Micro-Doppler signatures as a spectrogram and CVD (normalised) : 
(a) Normal walking spectrogram / ζ0; (b) Walking with rucksack spectrogram 

/ ζ2; (c) Normal walking CVD / ζ0; (d) Walking with rucksack CVD / ζ2. 

B. Synthetic Jamming Injection 

To simulate potential scenarios of jamming, a methodology 
was devised whereby commonly used and well understood 
electronic attack (EA) methods were borrowed from the field 
of electronic warfare (EW) [22] and adapted to suit the 
experimental setup. A summary of the implemented 
techniques and their corresponding class identifiers are 
detailed in Table. IV.  

TABLE. III 
COMBINATIONS OF JAMMING TYPES, TECHNIQUES AND A DESCRIPTION OF THE 

METHOD OF IMPLEMENTATION BOTH VIRTUALLY AND PHYSICALLY 

Jamming Description of implementation and practical 
employment 

Type Technique 

Escort 

Targeted 
Pulse 

Compression  
/ ς1 - ς3 

High level of jamming whereby the transmitted 
waveform is learnt and it retransmits modifying 
or removing or the initial frequency modulation 
– a dedicated vehicle retrofitted for electronic 
attack 

Self-
Protect

-ion  

Spot  
/ ς4 – ς6 

Random noise injected throughout the range 
cells that the target is operating within - a simple 
dirty handheld jammer 

Stand 
off  

Cover 
/ ς7 – ς9 

Noise superimposed onto random frequency 
modulations – dedicated kit which another 
soldier could carry 

Blinking 
/ ς10 – ς12 

Similar to spot jamming, however jamming is 
alternated at 2 Hz, in this scenario there is no 
second target in the field – dedicated kit to 
provide coordinated jamming 

Stand 
in 

Unintentional 
/Inadvertent 

/ ς13 – ς15 

Low level of jamming, whereby random bursts 
of noise are observed extending across the entire 
processing range of radar – communications 
within the area of detection are inadvertently in 
operation during the time of recording (such as 
Wi-Fi) 

Deceptive/  
ς16 – ς18 

Very high level of jamming, with similar 
methodology to targeted pulse compression, 
however the position of the target is constantly 
shuffled between range bin extents on a pulse to 
pulse basis. Consequently, the CFAR detector 
output becomes erratic – an advanced device 
inconspicuously deployed close to the radar, 
providing intelligent directed jamming into that 
node 

 
In each of the listed techniques, three levels of jamming 

severity were employed; this is discussed in detail in Section 
V.C. There are 6 jamming implementations, 3 levels (18) and 
a further class (ς0) to represent an uncorrupted case (19) and 
two transformations types, leading to a total of 38 jamming 
classes. The jamming to signal ratio (JSR) was determined for 
each step and was evaluated based on Eqn. 1, this ensures that 
the values are feasible for a realistic jammer; the equation 
below represents a self-protection jammer (SPJ).  

2 2

2
4R

J J W eff
R J
pk PRF pc R W

P G B J RJSR
P f G G B

π
στ

= ⋅      (1) 

The terms in Eqn. 1 are: PJ represents the average transmit 
power, GJ the antenna gain and BJ

W the bandwidth, collectively 
for the jamming device. BR

W is the bandwidth,τ is pulse length, 
pR

pk is the peak transmit power, fPRF is the PRF, Gpc is the pulse 
compression gain, GR is the antenna gain, R, is range and σ is 
the radar cross section (RCS), all of these collectively 
applying the specifications of the pulsed radar system (Table. 
I). For the three levels of jamming (Section V.C) the average 
transmit power calculated was: 63 µW, 630 µW and 6.3 mW 
respectively; using a jamming antenna with a reasonable gain 
of 10 dBi, a target RCS of 0 dBsm [17] and at a range of 90 m. 
This was obtained under the following assumptions: the noise 
temperature, receiver bandwidths and combined losses of the 
radar and jamming device are equal and that the jamming 
efficiency (Jeff) is 100%, meaning the device is jamming over 
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the full radar bandwidth. The calculated average power levels 
in order to generate the desired JSR’s are feasible for any of 
the jamming devices/systems listed in Table. IV. This quick 
analysis delivers an understanding of the roles each radar 
parameter plays in the context of the experimental setup.  

The jamming signals were injected into the range time 
domain of the radar data, with the methods of implementation 
described in Table. IV The CFAR could operate mostly 
unaffected, in all cases but the most extreme jamming 
conditions. In this case the range cells were not able to be 
isolated therefore the STFT was applied over all range cells to 
obtain the micro-Doppler signature (60 cells). This was 
necessary as otherwise completely blank spectrograms would 
be produced, meaning the targeted jamming had done its job 
and leaving little for the system to respond to. In the context of 
a real system employing a robust CFAR detector, it may have 
some further algorithms to be able to cope with various forms 
of jamming prior to transformations. However, successful 
classification in later stages would still not be guaranteed due 
to the distortion present in the resultant spectrograms, as 
depicted in Fig. 3. Therefore, the rationale behind this 
implemented penalty is a reasonable compromise between 
having an operational CFAR and degraded spectrograms.  

It should be noted that in the case of targeted pulse 
compression Fig. 3a, the idea of direct jamming injection does 
not apply and the method of degradation is not trivial. This is 
because it is not possible to directly change the modulation of 
the radar data after the experiments had taken place, the 
closest equivalent would be to intervene in the match filtering 
process. This was achieved by altering the frequency response 
of the reference chirp and defining three worsening levels akin 
to the potential learning stages taking place in the EA escort 
vehicle described in Table. IV. The first level was defined as a 
frequency chirp extending over half the true bandwidth of the 
real chirp signal (22.5 MHz), the second being a CW signal at 
2.4 GHz and the final level being no match filtering process 
taking place at all; effectively undoing the pulse compression 
gain of 14.3 dB as detailed in Section II.  

 
Fig. 3. Collage of spectrograms after synthetic jamming injection into the 
range time domain; the correlation with the JSR is indicated in brackets: 
(a) Targeted Pulse Compression (no matched filter); (b) Spot (20 dB);  

(c) Cover (random modulations of amplitude proprotional to the noise level, 
20 dB); (d) Blinking (20 dB); (e) Unintentional (number of corrupted pulses 

proportional to noise level, 20 dB); (f) Deceptive (number and degree of 
shuffled pulses across range cells proportional to the noise level 20 dB)  

IV. NETWORK CONFIGURATIONS 

The deep learning architecture chosen for implementation in 
this work is based upon the popular pre-trained model known 
as AlexNet [23]. This was chosen as it significantly 
outperforms other models, such as GoogleNet, Resnet50, 
Resnet101 and InceptionResnetV2; in a multitude of aspects 
such as convergence time, network simplicity and training 
time (for this scenario). DNNs were trained at each radar node 
meaning that a total of 2800 samples were available and from 
this, the samples were split into 60% training, 10% validation 
and 30% test pools. The training data was augmented in real 
time and consisted of mirroring the spectrograms and CVDs in 
the X and Y planes, any other combination of rotations, 
sheering, scaling and translations only hindered the obtained 
classification accuracy. In the context of this work, tuning the 
specific architecture of the deep learning model was not of 
importance as it would have led to significantly longer training 
times, accepting this enabled creativity regarding 
combinations of these networks, applicable to implementation 
in multistatic radar systems.  

A. Voting System  
The simplest network architecture depicted in the red 

dashed box in Fig. 4 and consists of 3 independently trained 
DNNs (nx), input image pools are represented by (ix) and are 
delivered concurrently to the respective networks. As each 
network has an output of 14 classes and the CVD is a direct 
transformation of the spectrogram, this means that they 
effectively correspond to the same class. Therefore, at each 
network an internal vote is made between the two 
transformations as to which one is the most confident in their 
decision. The intermediate prediction is composed of the most 
confident prediction of each network for each input test image. 
Finally, the predictions from the three nodes are then 
compared and a similar procedure takes place, whereby the 
final decision is dominated by the most confident radar node.  

B. Feed Forward Network 
A more advanced method of combining the decisions from 

each of the three radar nodes was determined, whereby a feed 
forward network (Fn) consisting of 21 hidden units was placed 
between the probabilistic output of each of the three DNNs 
and funneled back to the original classes and hence the final 
decision (D0). Each of the DNNs have 14 outputs, using the 
same voting process as above this is compressed down to 7 
and then aggregated to form a 21-class output. This is then 
input to the feed forward network (FFN) which is trained on 
the unused 10% validation data pool, from this the appropriate 
internal weights (wm,n) are determined. The FFN configuration 
is portrayed by the blue dashed box in Fig. 4.  

C. Feed Forward with Jamming Detection 
The final network configuration consists of an 

amalgamation of the two previous designs, but in addition to 
this there is a further network (JΩ) running in parallel, which 
can detect the presence of jamming in any of the three radar 
nodes. As JΩ is based on a DNN architecture, this enables it to 
detect and distinguish between a wide variety of the jamming 
measures, it also has the ability to discriminate between the 
three levels. As the synthetic jamming was injected directly 
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into the range time data for each of the 18 jamming classes 
(chosen randomly for each discrete jamming level), the 
training pool consisted of 191,520 images (19×2×8400×60%). 
This included the spectrogram and CVD versions which lead 
to total of 38 classes and includes the baseline transformations 
which have no jamming applied (2 classes). To test the 
system, a Look Up Table (LUT) of permutations was devised 
consisting of 64 unique combinations (43), which is based on 
the 3 jamming levels plus one uncorrupted (4), to the power of 
the number of radar nodes (3), this can be seen in Fig. 7. 

For each of the permutations a unique FFN was trained on 
the equivalent jammed images based on the reserved 10% 
validation data. This was repeated over 5000 iterations taking 
the network achieving the highest classification accuracy 
using the 30% testing data. With this bank of 64 FFNs, the 
jamming detector is able to analyze the input image and 
determine the class and hence the level of jamming. From this 
it can then switch in the appropriate FFN such that the 
particular jammed node is weighted appropriately as to retain 
confidence in the final classification decision (D0).  

 
Fig. 4. Diagram of the three progressive network configurations 

V. RESULTS  
Three DNNs based on the AlexNet architecture were 

trained on a GPU workstation consisting of two Nvidia GTX 
1080TI’s. The learning rate was set to 1e-4, the mini-batch 
size to 16 and the maximum epochs to 45, this led to a training 
time of three hours per network. Two types of test scenarios 
have been experimented with in this work: the first compares 
the results of the voting system to the feed forward system, 
this uses the unseen 30% unjammed testing data, the second 
compares the performance of the automatic jamming detection 
system with that of the voting system, when the jammed 
testing data across all permutations are input to the system.  

A. Voting System  
The classification accuracy achieved using the unjammed 

test data and the voting system topology is detailed in Table. 

V. The average accuracy gained from the intermediate voting 
stage over the simple aggregate average was 6.2%. Finally, an 
average of 14.3% is gained utilizing the final voting stage.  

TABLE. IV 
VOTING SYSTEM CLASSIFICATION ACCURACY 

Scenario / % Node 1 Node 2 Node 3 

Average 73.3 75.2 68.9 

Spectrogram 78.1 79.1 75.6 

CVD 68.5 71.3 61.8 
Internal Vote 79.2 80.7 76.1 

Final Vote 86.8 

 
The confusion matrix for the final vote is shown in Fig. 5, 

with the class accuracy having a standard deviation of 8.42. 
The key for the classes can be found in Table. II.  

 
Fig. 5. Confusion matrix for voting system 

B. Feed Forward Network  
The FFN obtains the same intermediate classification 

accuracies as in Table. IV, except for the final decision, where 
90.7% is obtained. The confusion matrix for this test is shown 
in Fig. 6 and an improvement of 3.9% is demonstrated over 
the voting system methodology. The accuracy across the 
classes appear to be more stable consistently staying over 85% 
and this is confirmed through the standard deviation of 4.49.  

 
Fig. 6. Confusion matrix for feed forward (FFN) system 
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C. Feed Forward Network with Jamming Detection 
Fig. 7 shows the classification accuracy of the trained FFN 

bank when the equivalent jammed images from the testing 
image set are injected into the network. It is important to note 
that no jamming detection occurs as they have been injected 
systematically into the correct jamming permutations.  

 
Fig. 7. Classification accuracy of the 64-FFN bank with Jamming Detection  

Finally, the jamming detection network (JΩ) was trained 
over a period of five days and was manually stopped when the 
validation accuracy saturated at 86%. This was more than 
acceptable considering the large volume of training images 
used. Following this, the 38 classes were compressed back 
down to the original 19 classes, this delivered a performance 
gain just short of 10%, now yielding a final jamming 
classification accuracy of 95.5%. As mentioned in section 
III.B, three levels of jamming severity were chosen; the SNR 
on average of each spectrogram was 37 dB and the third 
jamming level was chosen to be 30 dB as this caused the 
classification accuracy to consistently fall below 20% in every 
case (approaching the random guess accuracy of 14.3%). The 
other two jamming levels were chosen to be 10 dB and 20 dB 
respectively, which produced quite an even spread of jamming 
levels. This resulted in a residual Signal to Jamming Ratio 
(SJR) of approximately, 7 dB, 17 dB and 27 dB over the entire 
dataset.  

The classification accuracy of the jamming detector is 
shown in Fig. 8, this indicates how well the detector is able to 
match the predicted jamming state to the correct jamming 
permutation for all three radar nodes. The first 16 
permutations exhibit a significant dip of approximately 20%, 
as the jamming detector only achieves an accuracy of 89% for 
cases of nil jamming. This is made worse by the fact that there 
is only one class for this case as opposed to six for each other 
forms of jamming. It should also be noted that even if the 
incorrect FFN is called from the reference bank, outright 
classification failure is not guaranteed, therefore Fig. 7 and 
Fig. 8 do not simply multiply to produce Fig. 9.  

 
Fig. 8. Accuracy of the jamming detector (JΩ) over the permutation indices 

Fig. 9, depicts the classification accuracy of the complete 
system, when the jamming detector is running in parallel with 
the base DNNs at each node and automatically determining 
the jamming severity for each successive input image. 
Following this, it then matches it to the believed permutation 
index and hence the appropriate network from the 64-FNN 
reference bank. The red trace shows the accuracy obtained 
from using the aforementioned complete system from Fig. 4; a 
mean gain of 16.2% (green trace) is observed over the voting 
system (represented by the blue trace). The benefits of the 
system become evident when the input jamming combinations 
are particularly severe (50 to 64), however there is only so 
much that the system can cope with in the presence of serious 
directed jamming into all three of the radar nodes.  

 
Fig. 9. Accuracy of the jamming system compared with the voting system  

The result of using the predictions from only the 
monostatic radar node is shown in Fig. 10, the four steps 
observed are due to the discrete jamming levels and the 
permutation order used for node 1. Though the comparison 
of every point is strictly not possible as the red trace 
encompasses permutations across all three radar nodes, it is 
still clear that the multistatic detection system offers 
performance gain, as the permutations within each step only 
mean that the other two nodes are being jammed to some 
further degree. The benefits of a multistatic system are 
especially obvious at the permutation boundaries (indices: 
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1, 16, 32 and 48), where an improvement of approximately 
4%, 25%, 49% and 63% is observed respectively.  

 
Fig. 10. Classification accuracy of the complete jamming detection system 

compared with the monostatic setup (node 1) 

VI. CONCLUSION 
In this work, real experimental data was gathered from four 

people performing seven different activities in the field. This 
data was batch-analyzed to produce two transformations of the 
same activity (the spectrogram and CVD), this representation 
diversity has proved to be highly advantageous, raising the 
accuracy of the jamming classifier (JΩ) by 10%. In addition to 
this, a further data set was generated of the equivalent jammed 
images of these two transformations in order to train JΩ. A 
novel classification architecture was then proposed; which 
consisted of multiple DNNs assigned at each radar node, 
culminated by a suitable FFN, which is intelligently chosen by 
the over watch jamming detector (JΩ). The performance of this 
topology was compared against a voting system baseline, 
which in some respects could be considered the simplest way 
of fusing the data between the three radar sensors.  

The results obtained demonstrate that utilization of FFNs in 
this sensor system is indeed advantageous even in the simplest 
of cases, however this architecture begins to really prove itself 
in the face of targeted jamming; keeping classification 
accuracy above 70% for roughly 60% of the permutations, as 
opposed to the spurious nature of the voting system. Though, 
it should be noted that the voting system still has some 
jamming mitigation capabilities, as the injected jamming may 
cause the DNN to become unconfident in its final probabilistic 
decision, therefore handing over responsibility to the other 
nodes in an attempt to try and salvage a correct decision; this 
in some cases still functions to a respectable degree.  

A wide range of options and parameters were explored in 
order to improve the classification accuracy of the collective 
DNNs. The pre-trained DNN Alexnet was found to be 
superior in terms of classification accuracy, complexity and 
training time; in addition to this, only X-Y reflections were 
found to be beneficial when augmenting the training data, 
which is logical, as the transformations have strong physical 
kinematic meaning, changing over time. Differing dwell times 
of (0.5, 1 and 2.5 seconds) were also briefly investigated and a 

dwell time of 1 second was found to be the most suitable for 
this classification problem. This represents a challenging 
tradeoff between generating a sufficiently sized data set for the 
DNN and also that each image contains enough visual cues for 
classification to occur. A further frequency transformation 
called the cepstrogram [24], which emphasizes periodic details 
in the spectrogram [19], was also experimented with. This was 
found to not contain enough information as to warrant its 
implementation as a useful transformation in the scope of this 
classification problem.  

The notion that multistatic radar provides improved 
performance over a monostatic system, in the presence of 
targeted enemy jamming, is thoroughly put through its paces. 
This is proven through a range of tests and experimentations; 
but specifically, in Fig. 10, where even just the opportunity of 
having uncorrupted data is enough to maintain classification 
accuracy at 80%, as opposed to just 17% for the monostatic 
node (in the worst cases of jamming). In addition to this, the 
multistatic setup can also provide small performance gains of 
a couple percent due to having three times the amount of 
information available to the overall system. This would be 
exaggerated further if the target was in an unfavorable position 
in the field, but within the coverage of the multistatic network.  

This complete classification system architecture as 
discussed in IV.C, is capable of highly efficient data 
throughput between sensors, as only probabilistic confidence 
vectors needs to be shared. Although all three input images are 
input to the single jamming detection classifier, this DNN 
could easily be duplicated at each node sharing only the 
degree to which the node thinks it is being jammed between 
each node. The system could then make a decision about 
which FFN to switch in at a centralized node, then producing a 
final decision as to the class of the target in question. The 
modular nature of this architecture is particularly 
advantageous and relaxes demands on data throughput 
between radar nodes, which is a principle concern and can 
very easily become an issue over long distances.  

VII. FUTURE WORK 
As this is a preliminary investigation into jamming resilient 

systems using deep learning, there is a large scope for future 
work to be undertaken. The most distinguished outcome in 
any classification driven problem, is to obtain higher 
accuracies. This could potentially be achieved in a multitude 
of ways: to design and train a custom DNN architecture, 
enabling the weights for each layer to be determined from 
scratch, rather than predefined matrices as it is using Alexnet. 
The training time will be significantly longer, but the 
advantages to be gained may be favorable. Impressive results 
were observed in the case of the jamming detector, where the 
training sets were significantly larger and it was trained over a 
long period. An investigation into the generation of synthetic 
data sets may also be of interest, such as the use of Generative 
Adversarial Networks (GANs), where their use has already 
been proven in the context of human micro-Doppler [25].  

Other methods of sensor fusion could also be considered 
through careful design [26], or the operation of the current 
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architecture could be improved, by giving the jamming 
detector direct control over the weights rather than having a 
reference bank. This would require mapping the weight space 
within the hidden layers mathematically and thorough tests to 
determine the optimum assignment function for the weights at 
each jamming level. It should be noted that this would only be 
worthwhile if there is a need to granulize the jamming levels 
significantly, this is a metric open for investigation.  

This work dealt with the effects caused by known jamming 
techniques and trained the DNN in a supervised learning 
fashion. In a practical environment it is not entirely possible to 
predict every possible effect caused by targeted jamming, 
therefore the system may not be able respond in an ideal 
manner. A thorough examination into this issue is required, 
treating the scenario as an unsupervised learning problem.  

Finally, it may also be possible to leverage the properties of 
machine learning in the form of stacked auto encoders (SAEs) 
[27], to potentially undo or to actively recover the effects of 
jamming. This is expected to have a similar effect as the 
topology described in this work, in that it will be effective up 
until a specific threshold. A direct expansion to this work 
would be to have a combination of the topologies, whereby the 
jamming detector would be able to call upon specific SAE 
recovery cells to restore as much of the original data as 
possible, prior to classification.  
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