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Abstract

Oro-facial fibrosis in systemic sclerosis (Scleroderma;SSc) has a major impact on mouth

function, facial appearance, and patient quality of life. Lipotransfer is a method of recon-

struction that can be used in the treatment of oro-facial fibrosis. The effect of this treatment

not only restores oro-facial volume but has also been found to reverse the effects of oro-

facial fibrosis. Adipose derived stem cells (ADSCs) within the engrafted adipose tissue have

been shown to be anti-fibrotic in SSc and are proposed as the mechanism of the anti-fibrotic

effect of lipotransfer. A cohort of 62 SSc patients with oro-facial fibrosis were assessed

before and after stem cell enriched lipotransfer treatment. Clinical evaluation included

assessment of mouth function using a validated assessment tool (Mouth Handicap in Sys-

temic Sclerosis Scale-MHISS), validated psychological measurements and pre and post-

operative volumetric assessment. In addition, to understand the mechanism by which the

anti-fibrotic effect of ADSCs occur, SSc derived fibroblasts and ADSCs from this cohort of

patients were co-cultured in direct and indirect culture systems and compared to monocul-

ture controls. Cell viability, DNA content, protein secretion of known fibrotic mediators

including growth factor- β1 (TGF β-1) and connective tissue growth factor (CTGF) using

ELISA analysis and fibrosis gene expression using a fibrosis pathway specific qPCR array

were evaluated. Mouth function (MHISS) was significantly improved (6.85±5.07) (p<0.0001)

after treatment. All psychological measures were significantly improved: DAS 24 (12.1±9.5)

(p<0.0001); HADS-anxiety (2.8±3.2) (p<0.0001), HADS-depression (2.0±3.1) (p<0.0001);

BFNE (2.9 ± 4.3) (p<0.0001); VAS (3.56±4.1) (p<0.0001). Multiple treatments further

improved mouth function (p<0.05), DAS (p<0.0001) and VAS (p = 0.01) scores. SSc fibro-

blast viability and proliferation was significantly reduced in co-culture compared to monocul-

ture via a paracrine effect over 14 days (p < 0.0001). Protein secretion of transforming

growth factor (TGF-β1) and connective tissue growth factor (CTGF) was significantly

reduced in co-culture compared to monoculture (p < 0.0001). Multiple fibrosis associated

genes were down regulated in SSc co-culture compared to monoculture after 14 days

including Matrix metalloproteinase-8 (MMMP-8), Platelet derived growth factor-β (PDGF-β)
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and Integrin Subunit Beta 6 (ITG-β6). Autologous stem cell enriched lipotransfer signifi-

cantly improved the effects of oro-facial fibrosis in SSc in this open cohort study. Lipotrans-

fer may reduce dermal fibrosis through the suppression of fibroblast proliferation and key

regulators of fibrogenesis including TG-β1 and CTGF. Our findings warrant further investi-

gation in a randomised controlled trial.

1. Introduction

Systemic Sclerosis (Scleroderma;SSc) is a complex multisystem disease characterised by auto-

immunity, microvascular dysfunction and fibrosis of the skin and internal organs [1–2]. It has

a female predominance and the usual age of onset is between 30 and 60 years [1]. Almost all

patients with SSc have skin fibrosis despite the disease heterogeneity. Skin fibrosis is the clini-

cal hallmark of SSc, particularly in the face [3–5]. Although SSc has a high mortality rate due

to internal organ complications [6], there is also a very high disease burden due to its impact

on facial appearance and oro-facial function.

The main oro-facial features of SSc include skin induration, thickening and atrophy, retrac-

tion of the lips, microstomia, perioral fissuring, telangiectasia, and atrophy of the nasal alae

[7,8]. In more severe cases, microstomia inhibits lip and mouth closure, which leads to breath-

ing and chewing impairment [9,10], and impacts oral hygiene and dental treatment [8]. Fibro-

sis of the salivary and lacrimal glands can also lead to xerostomia and xerophthalmia [8].

Appearance and functional changes of SSc has a significant negative impact on patients’ qual-

ity of life, leading to social disability, isolation and psychological distress [11,12]. Facial

changes were ranked as the most worrying aspect of the condition and was considered more

important than any internal organ involvement by the majority of patients affected [13].

Current avaIlable therapies for SSc focus on life-threatening complications arising from

organ involvement. An effective disease modifying therapy is lacking and no treatment is avail-

able to reverse skin fibrosis [14]. Autologous lipotransfer is considered a standard reconstruc-

tive surgical technique for reconstruction of contour deformities [15,16], and is minimally

invasive with low morbidity. Our group and others have used autologous lipotransfer as a suc-

cessful treatment option in different fibrotic conditions such as SSc, hypertrophic scars, burns,

radiation-induced fibrosis, lichen sclerosus, and Dupuytren’s disease [17–20]

Dermal fibrosis is a complex pathological process caused by the deposition and accumula-

tion of extracelular matrix, mainly type I collagen in the dermis [21]. Fibroblasts are the key

contributors to fibrosis in patients with SSc. Dermal fibroblasts isolated from SSc patients have

shown to exhibit increased prolifeartion, synthesis of collagen and decreased collagenase activ-

ity [21–23]. The upregulation of collagen by SSc fibroblasts involves the alteration of several

molecular regulators including cytokines and transcription factors. To date, transforming

growth factor-beta-1 (TGF-β1) and connective tissue growth factor (CTGF) have been shown

to play a significant role in the pathway of dermal fibrosis [21]. TGF-β1 is a multifunctional

cytokine that regulates growth and differentiation of several cell types. TGF-β1 binds to spe-

cific proteins (receptors) on the cell membrane, which signal the association of Smad signalling

proteins to activate collagen synthesis [21]. The Smad proteins are thought to be one of the

most potent mediators of upregulated collagen activity in SSc fibroblasts [21]. Connective tis-

sue growth factor (CTGF) is a 36–38 kDa peptide, partially controlled by TGF-β and itself reg-

ulates multiple celular processes including mitrogenesis, chemotaxis, extracelular matrix
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(ECM) production, angiogenesis and apoptosis [21]. In vitro, CTGF enhances fibroblast acti-

vation and ECM production as a downstream mediator of TGF-β1 [21].

The effector mechanism that is responsible for the improvement in fibrosis following stem

cell enriched lipotransfer is not known. Adipose-derived stem cells (ADSCs) are a multipotent

population of progenitor cells that are found within the adipose tissue [24]. They have been

identified as the potential effector cell in stem cell enriched lipotransfer. In addition to their

multipotency, this population exhibits paracrine proangiogenic, anti-inflammatory and

immunomodulatory activities [25,26]. To understand the mechanism by which ADSCs may

reduce fibrosis in the scleroderma patients, we co-cultured ADSCs with scleroderma fibro-

blasts in culture and evaluated their proliferation, effect on gene and protein expression of

known fibrotic growth factors and cytokine mediators.

The aim of this study was to analyse the effect of autologous adipose stem cell-enriched

lipotransfer on the effects of oro-facial fibrosis in a large cohort of SSc patients. As a primary

outcome we aimed to assess the effect of autologous lipotransfer on mouth function. Second-

ary outcomes aimed to assess the psychological status, volumetric facial changes and clinical

outcome. As a secondary outcome we aimed to better understand the mechanism by which

ADSCs may have reduced fibrosis in the scleroderma patients co-culturing ADSCs with

scleroderma fibroblasts and evaluating their proliferation, effect on gene and protein expres-

sion of known fibrotic growth factors and cytokine mediators. Lastly preliminary in vitro data

demonstrated that in tissue culture ADSC modulated fibrobast properties, including attenua-

tion of some of the key profibrotic characteristics of SSc fibroblasts in vitro. This provides a

potential mechanism for the clinical benefit observed after autologous stem cell enriched lipo-

transfer in scleroderma.

2. Materials and methods

2.1 Clinical analysis

2.1.1 Participants. 62 patients with systemic sclerosis (SSc) were included in this series

(Table 1). Patients included in the study fulfilled the following inclusion criteria, (1) patients

with a confirmed diagnosis of either diffuse or limited cutaneous systemic sclerosis, (2) adult

patients (18–65 years of age), (3) stable SSc disease for at least 2 years, (4) stable lung and car-

diac function as shown by echocardiogram and lung function tests, (5) to be able to safely

undergo a general anaesthesia and (6) documented oro-facial dysfunction as assessed by

MHISS.

Table 1. Patient demographics.

Number of patients 62

Age mean (± SD) 56 (±11.59)

Sex 61 Female, 1 Male

Duration of SSc mean (±SD) 15 years (±8.81)

Subset (number of patients) dcSSc (26), lcSSc (36)

Concurrent immunosuppression

(number of patients)

Yes (31), No (31)

Major Drug treatment

Mycophenolate Mofetil (MMF) 14

Methotrexate (MTX) 6

Other 11

SSc Systemic Sclerosis, dcSSC diffuse cutaneous Systemic Sclerosis, lcSSc limited cutaneous Systemic Sclerosis.

https://doi.org/10.1371/journal.pone.0218068.t001
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All patients included presented with oro-facial changes associated with SSc such as hard-

ened and taut facial skin, loss of tissue volume, retracted and tightened lips and microstomia.

This study was performed with ethical approval and informed consent was obtained from all

patients participating in the study. This study was approved by the Hampshire B Research Eth-

ics Committee (REC reference: 16/SC/0669, IRAS project ID: 196386). Informed written con-

sent was obtained from all patients participating in the study in accordance with the research

ethics committee approval.

2.1.2 Surgical intervention. The standardized autologous lipotransfer surgical interven-

tion was performed as described by our group and others [17,18]. The lipoaspirate was

obtained from abdominal area or from thighs according to that described by Syndey Coleman

et al [15–16]. Using a 15 cm x 3 mm disposable cannula connected to a 10cc Luer Lock syringe

the adipose was harvested from the superficial layers of the subcutaneous fat of the abdomen.

Adequate fat graft volume was obtained from the participants despite their fibrosis. After har-

vesting, the lipoaspirate was enriched with stem cells through centrifugation. Our group and

others have demonstrated that centrifugation at 3000rpm for 3 mins of the adipose tissue

enriches fat with ADSC’s in the distal portion of the lipoaspirate [27–29]. The proximal lipoas-

pirate graft was discarded along with the free oil and blood segments and only the distal lipoas-

pirate graft was used for injections. The stem cell enriched adipose tissue was transferred into

a 1ml Luer-Lock syringes connected to 9 cm by 2mm blunt disposable cannulae. The stem cell

enriched fat was directly injected into the fibrotic oro-facial tissues using a minimally invasive

technique as described by Coleman et al [15] using small skin incisions (2mm). The lipoaspi-

rate was injected slowly using multiple passages with injection of lipoaspirate on withdrawal of

the cannula. The volume of graft injected into each facial area was recorded.

2.1.3 Assessment of mouth function. Mouth function was assessed pre and post-opera-

tively using the Mouth Handicap in Systemic Sclerosis Scale (MHISS) [30]. MHISS is a validated

scale assessing the handicap associated with mouth disability in SSc. It consists of 12 items

each scored from 0 to 4, with a total score ranging from 0 (minimal handicap) to 48 (maximal

handicap). The 12 items are grouped in three subscales: part 1 examines the handicap related

to reduced mouth opening and dental issues; part 2 assesses the handicap related to mouth

dryness; part 3 is related to aesthetic concerns [30,31].

2.1.4 Assessment of psychological status. Psychological status was assessed pre and post-

operatively using validated questionnaires. The Derriford Appearance scale (DAS24) examines

the frequency of avoidant or maladaptive behaviours and distress related to an appearance

concern(s), with strong psychometric properties with social anxiety, shame and negative affect

[32]. Higher scores suggest higher levels of distress and social avoidance. The Hospital Anxiety
and Depression Scale (HADS) is a validated 14 item self-report scale measuring current affec-

tive psychological functioning, standardized on both general and hospital populations and

widely used in research with patients who have physical health problems [33], including in our

previous study with patients with facial disfigurement [34]. It consists of two subscales, one

measuring levels of anxiety and the other depression. The Brief Fear of Negative Evaluation
Scale (BFNES) is a validated 12 items self-report scale examining the extent to which a person

may be pre-occupied by other people’s opinions regarding themselves [35]. Eight of the items

are positively scored and four are negatively scored in order to reduce the risk of response bias

[36], and potential scores range from 12 to 60, with high scores indicating greater fear of nega-

tive evaluation. We also used three visual analog scales (VAS) used for subjective ratings of

mood, emotion, distress on which the patient ranks the perceived noticeability of their disfig-

urement, including to an observer, and their pre-occupation with this appearance concern.

Higher rankings suggest high levels of noticeability [34, 37].
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2.1.5 Assessment of volume augmentation. Pre- and post-operative 3D scans were

recorded using the 3dMD system to measure pre- and post-operative volumetric changes. The

3dMD Vultus software was used to calculate facial volumetric changes. The pre- and post-

operative 3D scans were superimposed and aligned by rotation using the XYZ rotational coor-

dinates. The alignment precision was calculated by the root mean square (RMS) error, which

shows the variation between the two surfaces. An RMS value of 0.5 mm or less was considered

acceptable to obtain accurate alignments (www.3dmd.com). Volume change was calculated in

nose, upper lip, lower lip, nasolabial folds, cheeks, and chin. Each area was measured three

times and the average of the three measurements was recorded. A colour map was then gener-

ated to represent the relative volume change between the pre- and post-operative image. Vol-

ume change was then compared to volume injected and percentage of volume retained over

time was calculated.

2.1.6 Photograph assessment. Pre- and post-operative 2D photographs of each patient

were evaluated by three independent blinded clinical observers. Each image was graded

according to appearance, representing oro-facial disease severity as follows: severe, severe-

moderate, moderate, moderate-mild and mild.

2.2 In vitro analysis

2.2.1 Isolation and Culture of Adipose Derived Stem Cells (ADSCs). Three female

patients who were being followed up for clinical analysis were also included in the in vitro
analysis. All participants gave informed written consent. This study was approved by the

North Scotland ethical review board, reference number 10/S0802/20. Following the adipose

harvesting in three participants (age range, 45–55 years) as described above, lipoaspirate from

the abdomen was used to isolate ADSCs for in vitro analysis. The three donors had an average

duration of disease of 10 years and all of these patients had improvement in oro-facial fibrosis

following lipotransfer. ADSCs were isolated from the lipoaspirate samples according to a mod-

ified method as previously described [28]. In brief, after the removal of fibrous tissue and visi-

ble bloods vessels, lipoapirate samples were cut into small pieces and digested in Dulbecco’s

Modified Eagle’s Medium/Nutrient Mixture F-12 Ham (DMEM/F12) containing 300 U/ml

crude collagenase II (Invitrogen, Life Technologies Ltd, Paisley, UK) for 30 min in an incuba-

tor (37˚C, 5% CO2). Following this the digest was filtered though cell strainers and then centri-

fuged. After red cell lysis the ADSC pellet was then resuspended and expanded into cell

culture. Cells were maintained in culture DMEM/F12 supplemented with 10% Foetal Bovine

Serum (FBS) and 1% antibiotic solutions for 3 passages at 37˚C in a humidified atmosphere of

5% CO2 before being using for analysis.

2.2.2 Culture of Human Dermal Fibroblasts (HDFs). Scleroderma fibroblast (SSc HDF)

were grown by explant culture from 4-mm3 punch biopsies of three female donors (age range,

45–60 years) with diffuse scleroderma. All three donors had duration of SSc disease for 10

years (range, 9–12 years). Biopsies were taken for clinical or research purposes with full

informed consent, and this study was approved by the London-Hampstead National Research

Ethics Committee (HRA reference 6398). Normal control human dermal fibroblasts (HDF)

were obtained from the European Collection of Cell culture (ECACC). Both SSc-HDF and

HDF were maintained in Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham

(DMEM/F12) with 10% Foetal Bovine Serum (FBS) and 1% antibiotic solutions (Sigma, UK).

In this study, SSc derived fibroblasts were referred to as SSc and control derived fibroblasts

were referred to as HDF.

2.2.3 Co-culture set up. For all analysis, three different co-culture experiments were per-

formed to evaluate the effect of ADSCs on scleroderma and normal fibroblast behaviour.

Lipotransfer to treat systemic sclerosis
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Firstly, 2.5 x 104 ASDCs were co-cultured with 2.5 x 104 HDFs or SSc-HDF in a 6 well plate for

14 days and referred to as direct culture. Secondly, using a transwell insert 2.5 x 104 ASDCs in

the top chamber were co-cultured with 2.5 x 104 HDFs or 2.5 x 104 SSc-HDF in the bottom

chamber for 14 days and referred to as indirect culture. The transwell insert had pore of 0.4 μm

diameter to permit movement of cytokines between chambers but prevent cell migration.

Thirdly, ADSCs were grown for 48 hours in DMEM/F12 supplemented with 10% Foetal

Bovine Serum (FBS) and 1% antibiotic solutions for 48 hours. After 48 hour the medium was

harvested and cellular debris removed by centrifugation at 3000 g for 10 minutes. Medium was

either used immediately or stored frozen at -70˚C for later experiments and referred to as con-
ditioned medium (CM). As control SSc-HDF, HDF and ADSC monocultures were also set up

for direct, indirect and conditioned medium experiments.

2.2.4 Cell viability and DNA content. Cell viability and proliferation were assessed by

Alamar Blue and DNA assay respectively as described previously [28]. In brief, the commercial

available assay Alamar BlueTM (Life Technologies, UK) was used as per manufacturer instruc-

tions to assess cell viability. After 4 hours of incubation with 10% alamar blue dye, 100 μl of

media was place into 96 well plates and fluorescence was measured at excitation and emission

wavelength of 530 and 620 nm using Fluoroskan Ascent FL, (Thermo Labsystems, UK)

(n = 6). To assess proliferation, Fluorescence Hoechst DNA Quantification Kit was utilized to

quantify the DNA content (Sigma, UK). The assay was used according to manufacturer

instructions and the fluorescence was measured at 360 nm and emission at 460 nm using

Fluoroskan Ascent FL, (Thermo Labsystems, UK) (n = 6). Each experiment was performed in

triplicate. For the direct and indirect assays both viability of both cell populations was assessed.

2.2.5 Enzyme Linked Immunosorbant Assay (ELISA). Eliza assay were used to investi-

gate the paracrine effect of co-culturing SSc fibroblasts with ADSCs on the effect of cytokine

TGF-β1 and CTGF. The Quantikine ELISA kit targeting TGF-β1 (R&D systems, UK) and

ELISA Development kit targeting CTGF (Pepro Tech, UK) was performed according to

manufacturing instructions. In brief, three co-culture experiments were set up as described

earlier. At day 2, 4, 7, 10 and 14 medium were removed and used for analysis (n = 6).

2.2.6 Quantitative Real-Time Polymerase Chain Reaction (qPCR). The effect of co-cul-

turing SSc fibroblasts with ADSCs on fibrotic gene expression was studied using a RT2

Human Fibrosis PCR Array (SabioSciences, Qiagen), a system that simultaneously profiles

expression of 84 fibrosis specific genes. After 14 days the gene expression of SSc monoculture

and direct SSc and ADSC co-culture was compared (n = 3). Each experiment was performed

in triplicate. Data presented is the fold change normalized to the 5 hours keeping genes. Cell

lysis and RNA purification was performed using the RNeasy mini kit (Qiagen). The cDNA

synthesis was performed using the RT2 First Strand Kit (Qiagen). RT2 Profiler PCR Arrays in

a 100-well Rotor Disc format were obtained from Sabiosciences, Qiagen. Each disc contains

primers targeting a total of 5 housekeeping genes, 84 fibrosis-associated genes, 3 positive con-

trols, 3 negative controls, and 3 wells for balancing. The RT2 ROX FAST Mastermix (Qiagen),

containing Taq Polymerase, was used to prepare samples prior to commencing qPCR. A Cor-

bett RotorGene-6000 (Qiagen) was used for real-time sample analysis. The threshold cycle

(CT) for each well was obtained using real-time cycler software. A log view of amplification

plots was generated and a threshold value was selected in the linear phase of the plot. The rela-

tive fold-change in fibrosis associated gene expression compared to housekeeping genes for

ADSC-SSc co-culture and SSc monoculture was calculated using the ΔΔCT method. The dif-

ference in fold change of ADSC-SSc co-culture and SSc monoculture was then calculated

(n = 3).

2.2.7 Statistical analysis. Inter comparisons between pre- and post-treatment were ana-

lysed statistically using paired t-test with nonparametric Wilcoxon test (Prism6 Software). All
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other comparisons were analysed using non-paired t-tests. Tests were two-tailed with a confi-

dence interval of 95%. The average and standard deviation (SD) was calculated.

3. Results

3. 1. Clinical analysis

3.1.1 Participants. Of the 62 patients, mean age was 56 (±11.59) and 98% were female.

The mean follow up after the last treatment was 12.41 (±8.64) months (median 8 months,

range 6–53 months). 29 patients received�2 treatments and 33 patients received�3 treat-

ments. Patients received on average 3 lipotransfer procedures (median 2 treatments, range

1–10 patients) (Table 1).

Of the 62 patients, 31 patients were on immunosuppressant medication and 31 patients

were not. The immunosuppressant medication was apart of the participant’s standard routine

care, determined by clinical guidelines. 58% were affected by limited cutaneous systemic scle-

rosis (lcSSc) and 42% by diffuse cutaneous systemic sclerosis (dcSSc).

3.1.2 Tolerability and adverse events. The autologous lipotransfer procedure was overall

well tolerated. Normal post-operative sequelae occurred (bruising, swelling and tenderness of

donor site). These resolved within 14 days. We experienced only one case of superficial wound

infection occurred at the recipient site, which responded to oral antibiotic therapy and no fur-

ther surgical intervention was required. No other complication was observed.

3.1.3 Mouth function outcomes. Patients reported a significant improvement in mouth

function following treatment (6.85 ± 5.07) (p< 0.0001) (Table 2). Analysis of the three sub-

domains of the MHISS showed that there was a significant improvement in each of the three

sub domains. The mouth opening domain (3.4 ± 2.64) contributed to 50% of the overall

MHISS score. The aesthetic concerns domain contributed 28.5% (1.95 ± 1.44) and the sicca

syndrome domain 21.6% (1.5 ± 1.21) (Table 2).

Results were subdivided and compared regarding: the number of treatment the patients

received (�2 versus�3 treatments); concomitant immunosuppressant medication (patients

on immunosuppressant medication versus patients that were not); the disease subset (lcSS ver-

sus dcSS). Patients that received�3 treatments (33 patients) had a higher improvement in

mouth function (8.12 ± 5.17) compared to patients that received�2 treatments (29 patients)

(5.41 ± 4.62) (p = 0.03) (Table 2). When we compared patients that were on immunosuppres-

sant medication (31 patients) to patients that were not (31 patients), we found no difference in

MHISS scores (p = 0.18). When we compared patients with lcSSc (36 patients) to patients with

dcSSc subset (26 patients) we found no difference in MHISS scores (p = 0.90).

Table 2. Effect of lipotransfer treatment on mouth function measured by the Mouth Handicap in Systemic Sclerosis scale (MHISS).

MHISS Pre-op score Post-op score Change

in score

p value

Overall (n = 62) 31.27 ± 6.08 24.4 ± 7.11 6.85 ± 5.07 0.0001

Mouth opening subset (n = 62) 15.9 ± 3.08 12.5 ± 3.6 3.4 ± 2.64 0.0001

Sicca syndrome subset (n = 62) 7.0 ± 1.39 5.5 ± 1.58 1.5 ± 1.21 0.0001

Aesthetic concerns subset (n = 62) 8.42 ± 1.7 6.46 ± 1.99 1.95 ± 1.44 0.0001

�2 LT procedures (n = 29) 29.82 ± 6.9 24.41 ± 7.04 5.41 ± 4.62 0.0001

�3 LT procedures (n = 33) 32.54 ± 5.0 24.42 ± 7.28 8.12 ± 5.17 0.0001

Change in score after�2 LT

compared to� 3 LT

- - - 0.0368

Data are presented as mean ±SD, n = number of patients, p�0.05 was considered significant. LT Lipotransfer.

https://doi.org/10.1371/journal.pone.0218068.t002
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3.1.4 Psychological outcomes. Patients reported a significant improvement in all the psy-

chological measures following treatment: VAS for noticeability of disfigurement (3.56 ± 4.1)

(p<0.0001); DAS24 scores (12.1 ± 9.5) (p<0.0001) that measures the level of psychological dis-

tress related to physical appearance; HADS-A score (2.8 ± 3.2) (p<0.0001) that measures levels

of anxiety, HADS-D score (2.0 ± 3.1) (p<0.0001) that measures levels of depression; BFNE

scale (2.9 ± 4.3) (p<0.0001) that measures the perceived negative judgment from others

(Table 3).

Results were subdivided and compared regarding: the number of treatment they received;

the concomitant immunosuppressant medication; the disease subset (lcSS versus dcSS).

Patients that received�3 treatments (33 patients) reported a significant improvement

(4.6 ± 4.7) in the VAS for noticeability of disfigurement compared to patients that received�2

treatments (29 patients) (2.4 ± 3.0) (p = 0.01) (S1 Table). Patients that received�3 treatments

reported a significant improvement (16.2 ± 9.7) in DAS24 score compared to patients that

received�2 treatments (7.4 ± 6.9) (p<0.0001) (S1 Table). Patients that received�3 treatments

(33 patients) sustained their improvement in BFNE (p = 0.38), HADS-A (p = 0.43) and

HADS-D (p = 0.48) scores when compared to patients that received�2 treatments (29

patients) (S1 Table).

When we compared patients that were on immunosuppressant medication (31 patients) to

patients that were not (31 patients), we found no change in VAS (p = 0.63), DAS24 (p = 0.29),

HADS-A (p = 0.26), HADS-D ((p = 0.75) or BFNES (p = 0.45) scores. When we compared

patients affected by lcSSc (36 patients) to patients affected by dcSSc (26 patients), we found no

change in VAS (p = 0.77), DAS24 (p = 0.76), HADS-A (p = 0.41), HADS-D ((p = 0.33) or

BFNE (p = 0.83) scores.

3.1.5 Volumetric augmentation outcome. Fig 1 shows an example of the aesthetic

changes in the peri-oral area that were observed after surgical treatment. We found reduction

in perioral wrinkling and ridges as well as improvement in lip volumes and increased vermil-

lion show with return to normal lip volume ratios associated with perioral tissue softening

(Fig 1).

Increased volume was also observed in the cheeks and nasal area with improved facial con-

touring. The 3dMD system was used to calculate the change in facial volume of each patient at

follow-up. A heat map generated by superimposition of pre-op and post-op images illustrates

the change in facial volumes (Fig 2). The cheeks and nasolabial folds retained the greatest per-

centage of the injected volume, 93.7% and 81.9% respectively. The nose retained 67.4% while

the chin retained 68.2%. The upper and lower lips retained the least volume, 35.5% and 27.3%

respectively (Fig 2).

Table 3. Effect of lipotransfer treatment on psychological outcomes.

Pre-op score Post-op score Change

in score

p value

VAS (n = 62) 24.16 ± 5.81 20.59 ± 6.37 3.56 ± 4.16 <0.0001

DAS24 (n = 62) 55.91 ± 16.21 43.83 ± 15.41 12.08 ± 9.49 <0.0001

BFNES (n = 62) 39.35 ± 9.34 36.45 ± 9.81 2.91 ± 4.34 <0.0001

HADS-A (n = 62) 10.38 ± 4.32 7.54 ± 3.89 2.83 ± 3.29 <0.0001

HADS-D (n = 62) 8.38 ± 4.53 6.35 ± 3.74 2.03 ± 3.19 <0.0001

Data are presented as mean ±SD, n = number of patients, p�0.05 was considered significant. Psychological outcomes were evaluated by self-report questionnaires. VAS
Visual Analog Scale, DAS24 Derriford Appearance Scale, BFNES Brief Fear of Negative Evaluation Scale, HADS-A Hospital Anxiety and Depression Scale-Anxiety,

HADS-D Hospital Anxiety and Depression Scale-Depression.

https://doi.org/10.1371/journal.pone.0218068.t003
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Fig 2. Effect of autologous stem cell enriched lipotransfer on facial volume. Representative heat map generated with

3dMD system demonstrates a change in facial volume after surgical treatment with autologous stem cell enriched

lipoaspirate. Volumetric analysis of 3D images was performed with 3dMD system. The volume retained in each facial

subunit after autologous stem cell-enriched lipotransfer was calculated as a percentage of the original volume injected.

https://doi.org/10.1371/journal.pone.0218068.g002

Fig 1. Aesthetic effect of lipotransfer on the peri-oral area. Upper panel: Representative pre-operative images of the

peri-oral area of a patient with SSc. Lower Panel: Post-operative images of the peri-oral area of the patient following

autologous lipotransfer. The arrows indicate the areas of improvement in vertical furrows and soft tissue bulk.

https://doi.org/10.1371/journal.pone.0218068.g001
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3.1.6 Photographic 2-D photograph assessment. Images were graded according to dis-

ease severity as severe, severe-moderate, moderate, moderate-mild and mild. Pre-treatment

26% of patients were graded as severe and severe/moderate, 57% were graded as moderate.

Post-treatment 0% of patients were graded as severe, 13% were graded severe/moderate and

moderate and 40% of patients were graded mild (S2 Table).

3.2. In vitro analysis

3.2.1. Cell viability and DNA content. From day 4 to day 14 the cell viability and DNA

content of SSc monoculture was significantly higher than ADSC-SSc co-culture (p<0.001)

with direct and indirect culture (Fig 3). Similarly, from day 4 to day 14 the cell viability and

DNA content of ADSC monoculture was significantly higher than ADSC-HDF co-culture (p

<0.001) with direct and indirect culture (Fig 3). The HDF culture demonstrated the highest

viability and DNA content over the 14 days (Fig 3). The viability and DNA content of the

ADSC and SSc in monoculture was similar over the 14 days (Fig 3). In conditioned medium

culture experiments there was no significant differences in the viability and DNA content of

SSc and ADSC in co-culture and monoculture over 14 days (Fig 3).

3.2.1. ELISA analysis. On day 4, 7 and 14 the protein secretion of TGF-β1 from SSc

monoculture was significantly higher than ADSC-SSc co-culture, HDF monoculture, ADSC

monoculture and ADSC-HDF co-culture (p<0.001) with direct and indirect culture (Fig 4).

On day 4, 7 and 14 the protein secretion of CTGF from SSc monoculture was significantly

higher than ADSC-SSc co-culture, HDF monoculture, ADSC monoculture and ADSC-HDF

co-culture (p<0.001) with direct and indirect culture (Fig 4). In conditioned medium culture

experiments there was no significant differences in the protein secretion of TGF-β1 or CTGF

of SSc monoculture and SSc in CM (Fig 4). The protein secretion of TGF-β1 was lower in

HDF grown in CM than monoculture at day 7 and 14 (p< 0.001) (Fig 4).

3.2.3 qPCR analysis. Of the 84 fibrosis genes 68 fibrosis pathway specific genes was signifi-

cantly down regulated in ADSC-SSc co-culture compared to SSc monoculture (Fig 5, S1 Fig)

(p< 0.001). The greatest difference in fold change of gene expression compared to house keeping

genes was seen in (1) Matrix metalloproteinase-8 (MMMP-8) gene expression, with a 9.18 fold

reduction (2) Platelet derived growth factor-B (PDGF-B) gene expression, with a 7.63 fold reduc-

tion and (3) Integrin Subunit Beta 6 (ITG-β6) gene expression with a 6.5 fold reduction (Fig 5).

4. Discussion

In this study, we demonstrated a significant clinical improvement in orofacial fibrosis in SSc,

previously regarded as a disease manifestation without effective therapy. Fibrosis is a cardinal

feature of SSc that is often regarded as a prototypic fibrotic disease. In early stage disease there

is marked fibrosis and thickening of the skin but as the disease progresses the skin may thin

and become atrophic [38]. These changes in the skin are especially marked in the face and

greatly affect facial appearance and function. These combined changes affect psychological

wellbeing and have a major impact on quality of life and are regarded as more impacting than

internal organ disease involvement by affected patients [13]. Clinical management is routinely

based on self-administered home-based exercises that may temporarily improve mouth open-

ing but have no long-term effect on function or quality of life [39]. Autologous stem cell

enriched lipotransfer appears to be a successful intervention that improves the effects of facial

fibrosis. It is a well-established and safe surgical technique. In our series out of 62 patients, we

experienced only one case of infection in the recipient site (1.61%). This figure was similar to

previous reports, where in a recent review paper on safety after lipotransfer, where the

observed infection rate was between 0 and 3.6% [40].
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Fig 3. Effect of monoculture and co-culture on cell viability and DNA content after [A] direct and [B] indirect culture and using [C]

conditioned medium. SSc HDF cell viability and DNA content was significantly lower in co-culture compared to mono-culture on days 4,

7, 10 and 14 in direct and indirect culture (p < 0.001). Conditioned medium had no effect on cell viability and DNA content over 14 days.

ADSC Mono; Adipose Derived Stem Cell Monoculture. SSc Mono: Scleroderma Fibroblast Monoculture. HDF Mono; Human Dermal

Fibroblast Monoculture. ADSC-SSc Co-Culture. Adipose Derived Stem Cell- Scleroderma Fibroblast Cell Co-culture. HDF Monoculture-

Human Dermal Fibroblast Monoculture. � P< 0.05 �� P< 0.01 ���P< 0.001 ���� P< 0.0001.

https://doi.org/10.1371/journal.pone.0218068.g003
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Fig 4. Effect of monoculture and co-culture on the protein secretion of Transforming Growth Factor-β1 (TGF-β1) and

Connective Tissue Growth Factor (CTGF) in [A] direct [B] indirect and using [C] Conditioned Medium. The protein secretion of

TGF-β1 and CTGF was significantly lower in co-culture compared to mono-culture on days 4, 7, 10 and 14 (p < 0.001) in direct and

indirect culture using ELISA analysis. Conditioned medium had no effect on protein secretion of TGF-β1 or CTGF over 14 days.

ADSC Mono; Adipose Derived Stem Cell Monoculture. SSc Mono: Scleroderma Fibroblast Monoculture. HDF Mono; Human Dermal

Fibroblast Monoculture. ADSC-SSc Co-Culture. Adipose Derived Stem Cell- Scleroderma Fibroblast Cell Co-culture. HDF

Monoculture- Human Dermal Fibroblast Monoculture. � P< 0.05 �� P< 0.01 ���P< 0.001 ���� P< 0.0001.

https://doi.org/10.1371/journal.pone.0218068.g004
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Fig 5. Bar Chart showing fold change difference in fibrosis related gene expression to house keeping genes of

adipose derived stem cell scleroderma fibroblast co-culture (ADSC-SSc Co Culture) versus scleroderma fibroblast

monoculture (SSc mono). [A] The majority of the fibrosis related genes were downregulated. The greatest fold change

in expression was seen in genes marked with �including Matrix metalloproteinase-8 (MMMP-8), Platelet derived

growth factor-β (PDGF-β) and Integrin Subunit Beta 6 (ITG-β6). Average fold change of co-culture versus

monoculture of three independent experiments. Negative values = Decreased fold change in expression; Positive

values = Increased fold change in expression.

https://doi.org/10.1371/journal.pone.0218068.g005
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We have demonstrated that injection of autologous stem cell-enriched lipotransfer into the

peri-oral and facial tissue significantly improves mouth function, facial volumetric appearance

with improved psychological outcome. To date, study cohorts for facial SSc have been limited

by small sample sizes, limited outcome measures and short follow up [41–43]. In our series, we

demonstrate significant improvement in the largest cohort of patients in the literature to date,

using multiple validated outcome measures, with the longest mean follow-up of 12 months.

The response durability was 100% at 6 months follow-up; 94% between 7 and 12 months fol-

low up; and 66% after one year follow up.’

We also found that multiple sequential interventions produces cumulative benefits in both

mouth function and aesthetics. The median of the number of treatments received was 3 (range

1–10). In this study cohort, we found that patients with lcSSc required less treatments (median

2, range 1–7) compared to patient with dcSSc (median 4, range 1–7).

We found that the psychological health of the patients in this study was significantly

improved (Table 3). In contrast to previously published reports, our study was not limited to

treating only the perioral area but also the cheeks, chin, nasolabial folds, and nose. This

approach allowed for a better aesthetic outcome in terms of volume and facial elasticity that

may have contributed to the psychological improvement in these patients (Table 3). We can-

not rule out the possibility that the change in outcome may also be impacted by the Hawthorne

effect. However, when we sub-divided the data, we found that multiple lipotransfer treatments

further improved VAS and DAS24 scores that are related to aesthetic concerns (S1 Table)

implying benefit due to the intervention.

This study takes into account the heterogeneity of this disease. Clinical heterogeneity can

make optimum treatment of SSc difficult as the response to treatment can so often be heterog-

enous. LcSSc and dcSSc subsets differ in the rate of disease progression, degree of inflamma-

tion and extent of skin fibrosis [44]. When we compared the outcome measures of lcSSc

(n = 36) and dcSSc (n = 26) subsets in this patient series we found that there was no difference

in the response of these clinically diverse subsets to the intervention.

Immunological activity in SSc is a key potential stimulus to fibrosis [38,44]. As a result, the

majority of treatment approaches to SSc are immunosuppressive. When we compared the out-

come measures we found that there was no difference in the response of cases receiving con-

current immunosuppression. Thus, although the postulated effector cells, the ADSCs, are

immunomodulatory it appears that the possible anti-fibrotic effect of ADSC-rich lipotransfer

is independent of immunosuppression in this patient cohort. Immunosuppression is also

thought to impair wound healing and is inadvisable to ensure optimal surgical outcome. How-

ever, we found that it had no impact on surgical outcome in this patient group.

Disrupted tissue homeostasis caused by excessive matrix remodeling and reduced remodel-

ling leads to a loss in connective tissue that causes the skin to become atrophic and retract

[38]. This often leads to facial volume loss, pronounced vertical furrows and thinning and

retraction of the lips. Autologous stem-cell enriched lipotransfer restored peri-oral volume

and lip movement with improved aesthetics by reducing vertical furrows (Fig 1). There was a

higher resorption rate of the injected lipoaspirate in the mobile peri-oral area (Fig 2). Despite

this higher resorption rate, significant improvements in mouth function were maintained in

this area over time (Table 2, Fig 1). Greater improvements in mouth function were recorded in

patients that received�3 treatments compared to�2 treatments implying a cumulative anti-

fibrotic effect (Table 2). A previous short report suggested that there was no correlation

between fat volume injected and potential antifibrotic effect [43], indicating a trophic, para-

crine or regenerative component of autologous lipotransfer.

While the effector cell or mechanism is unclear, adipose tissue-derived lipoaspirates contain

a heterogenous population of cells including adipose derived stem cells (ADSCs) [45]. In a
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previous study, we successfully isolated, cultured and characterized ADSCs from SSc patients

and found them to be functional and phenotypically similar to healthy matched ADSCs

although the proliferation and migration of SSc ADSCs was found to be reduced in compari-

son to ADSCs from controls [28]. The immunomodulatory and angiogenic effects of ADSCs

are well documented [25,28]. It has also been suggested that ADSCs have antifibrotic proper-

ties through secretion of antifibrotic factors, matrix metalloproteinases and by modulating cer-

tain pro-fibrotic factors [45–48].

The ADSCs in this study suppressed the viability and proliferation of the SSc-HDF in cul-

ture in direct and indirect culture but not when using conditioned medium (Fig 3). These find-

ings may suggest that this effect is by a paracrine effect mediated by soluble factors released by

ADSCs. Other studies have found that ADSCs suppress proliferation of fibroblasts due to para-

crine signalling [49–52]. However, the exact mediators that cause this effect is unknown. The

decrease in proliferation using CM may not have been observed as the responsible mediators

secreted by the ADSCs may have too short half-life or present at too low concentrations [52].

The protein secretion of TGF-β1 and CTGF was significantly lower over 14 days in SSc co-

culture compared to SSc monoculture in direct and indirect analysis (Fig 4). By day 14 direct

co-culture demonstrated significantly higher protein secretion of CTGF and TGF-β1 by the

SSC-ADSC co-culture compared to indirect co-culture (p< 0.01). The data suggests the influ-

ence of ADSCs may suppress fibrosis through paracrine signaling. Few studies have also

shown that ADSC suppress TGF-β1 leading to the regression of fibrosis [49–50]. Sun et al
demonstrated that ADSSC alleviate radiation induced muscular fibrosis through the suppres-

sion of TGF-β1 expression in a rabbit model [53]. Hitwatashi et al demonstrated that ADSCs

were able to reverse the vocal fold scarring through the suppression of TGF-β1 signalling in
vitro [54]. However, the exact mechanism by which ADSCs interfere with TGF-β1 expression

is still unknown. Fewer studies have examined the effect of ADSC on CTGF secretion (Fig 4).

Rivera-Valdes et al demonstrated that ADSCs could reverse chronic kidney fibrosis through

the suppression of CTGF gene expression, in addition to IL6, IL10- TNF and TGF-β1 [55].

Similarly, liver fibrosis was reversed by ADSCs intravenous injection through the down regula-

tion of pro-collagen alpha1, CTGF and α-SMA mRNA [56].

The qPCR analysis supported these findings demonstrating reduction in TGF-β1, TGF-β2,

TGF-β3 and their receptors. The qPCR analysis also demonstrated reduction of all fibrosis

associated genes, providing further evidence that the lipotransfer may provide an anti-fibrotic

effect. Interestingly in this study, MMP-8 and PDGF-BB were also found to be significantly

decreased. Various MMPs are over-expressed in scleroderma, which can promote ECM degra-

dation and the release of TGF-β1 [57]. MMP-8 has been implicated in the pathogenesis of

fibrosis [58]. The role of MMP-8 in scleroderma is currently unknown. However, MMP-8 has

been shown to have anti-inflammatory and pro-fibrotic activities in lung fibrosis [58]. Graig

et al found that MMP-8 promoted lung fibrosis by reducing lung levels of Ip-10 and Mip-1α
[58]. Suppression of MMP-8 could be one effect by which the lipotransfer suppressed dermal

fibrosis in this study. PDGF are mitogenic and chemo-attractants to myofibroblasts and pro-

mote TGF-β1 signalling [59]. Suppression of this growth factor could be anti-fibrotic through

the inhibition of ECM deposition by altering the TGF-β1 signalling pathway [59]. In summary,

lipotransfer may reduce dermal fibrosis through the suppression of fibroblast proliferation and

down regulation of collagen synthesis by altering the protein and gene expression key regula-

tors of the fibrosis pathway including TGF-β1, MMP-8 and PDGF-ββ. Future work is needed

to understand the how the TGF-β1 signalling pathway is modulated by ADSCs using knock

out gene assays and protein analysis.

There are certain limitations to this study. This study was performed without a control

group, hence we cannot rule out a placebo effect. To overcome this a prospective randomized
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controlled clinical trial will be performed to validate these findings. However, this study has

provided an understanding into the progression of the scleroderma disease following lipo-

transfer, insight into appropriate methodology and measurement tools. This study has also

provided a foundation by which a randomized control trial can be performed.

This study has evaluated the effect of the ADSC cell within the adipose tissue on SSc-

fibroblasts to understand the mechanism by which it reverses fibrosis. Whilst the in vitro
data has provided significant evidence that the effect of lipotransfer may be mediated by the

ADSC effector cell within it, there are multiple other cell types within the lipoaspirate that

may be contributing to the effect. Hence, future work will evaluate all cell types within the

lipoaspirate to gain further insight into the mechanism by which lipotransfer may reverse

fibrosis.

The SSc and ADSCs in this study were isolated from different donor participants. As

ADSCs have shown to have some immunodulatory effect [60], future work will use ADSC and

SSCc fibroblast from matched donors with a larger cohort to more closely mimic the clinical

scenario.

5. Conclusions

This study reports an innovative and effective intervention that improves the effects of oro-

facial fibrosis in SSc. Due to its complex pathogenesis and heterogeneity, the successful transla-

tion of therapies for SSc is a challenge. Successful treatment of SSc is likely to require targeting

of multiple biological pathways and mediators [61–64]. Autologous stem cell enriched lipo-

transfer offers a potentially effective regenerative option to treat oro-facial fibrosis in SSc that

operates independently of immunosuppression and disease subset.
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