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systematic evaluation of library 
preparation methods and 
sequencing platforms for high-
throughput whole genome bisulfite 
sequencing
Li Zhou1, Hong Kiat Ng1, Daniela I. Drautz-Moses2, stephan C. schuster2, stephan Beck3, 
Changhoon Kim4, John Campbell Chambers1,5,6,7 & Marie Loh1,5,8

Whole genome bisulfite sequencing (WGBS), with its ability to interrogate methylation status at 
single CpG site resolution epigenome-wide, is a powerful technique for use in molecular experiments. 
Here, we aim to advance strategies for accurate and efficient WGBS for application in future large-
scale epidemiological studies. We systematically compared the performance of three WGBS library 
preparation methods with low DNA input requirement (Swift Biosciences Accel-NGS, Illumina TruSeq 
and QIAGEN QIAseq) on two state-of-the-art sequencing platforms (Illumina NovaSeq and HiSeq 
X), and also assessed concordance between data generated by WGBS and methylation arrays. Swift 
achieved the highest proportion of CpG sites assayed and effective coverage at 26x (P < 0.001). TruSeq 
suffered from the highest proportion of PCR duplicates, while QIAseq failed to deliver across all quality 
metrics. There was little difference in performance between NovaSeq and HiSeq X, with the exception 
of higher read duplication rate on the NovaSeq (P < 0.05), likely attributable to the higher cluster 
densities on its flow cells. Systematic biases exist between WGBS and methylation arrays, with lower 
precision observed for WGBS across the range of depths investigated. To achieve a level of precision 
broadly comparable to the methylation array, a minimum coverage of 100x is recommended.

Epigenetic modifications contribute to gene regulation in a heritable fashion without affecting the underlying 
genomic sequences. DNA methylation, one of the most well-characterized epigenetic modifications, involves the 
conversion of cytosine to 5-methylcytosine via the covalent transfer of a methyl group to the fifth carbon position 
of cytosine to form 5-methylcytosine. This heritable epigenetic mark remains stable during cell division and acts 
as a form of cellular memory, regulating various cellular activities such as transcription and chromosomal stabil-
ity, and plays a crucial role in embryonic development, genomic imprinting and X-chromosome inactivation. In 
particular, aberrant DNA methylation has been found to be associated with various complex human diseases such 
as cancer, autoimmune diseases, metabolic disorders, type-2 diabetes and obesity1–5.

Recent advancements in technology has now rendered it possible to investigate the link between DNA 
methylation and various human phenotypes in a high-throughput fashion. Over the last decade, more than 
300 epigenome-wide association studies (EWAS) have been published, with more than half in the last two years 
alone. This rapid increase in the publication of EWAS studies not only reflect the advancement in technology for 
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measurement of methylation, but is also likely influenced by the success of initial EWASes. Notably, almost all of 
these studies (~99%) were exclusively performed on methylation arrays. Although the development of methyl-
ation arrays has made DNA methylation analyses much more affordable, these arrays remain largely inefficient, 
covering less than 3% of the CpG sites in the human genome, even on the latest Illumina MethylationEPIC 
Beadchip6. In addition, as the contents of these arrays were determined by expert panels, the selected CpG sites 
present a biased representation of the genome.

In contrast, whole genome bisulfite sequencing (WGBS) is able to reveal methylation status at each cytosine 
across the whole genome, with approximately 95% of all CpG sites in the human genome assessable via WGBS6. 
Since the establishment of the first human genome-wide, single-base-resolution DNA methylation map in 2009 
by WGBS7, the technique has been utilized in the investigation of the relationship between DNA methylation loci 
and human phenotypes in both basic and clinical research8, albeit in small scale studies or at very low coverage. 
The widespread utilization of WGBS, particularly in EWAS studies, has been hindered primarily by its prohib-
itively high cost and the large DNA input required, compounded by the extensive computational power and 
expertise necessary for its accurate interpretation.

With maturation of the next generation sequencing (NGS) technology and improvements in library prepa-
ration methods9, both the cost of WGBS and the DNA input amount necessary has greatly reduced, rendering 
this technology increasingly affordable for usage in EWAS and other studies. It is therefore now timely to estab-
lish clear recommendations for the generation of high quality WGBS data in view of the repertoire of library 
preparation methods and sequencing platforms available, which ultimately impacts upon the quantification and 
interpretation of methylation data.

As previous studies have focused on comparing established pre- and post-bisulfite WGBS library methods 
as well as short-read sequencing using older HiSeq platforms and high PhiX spike-in10–12, there remains a wide 
knowledge gap for comparison of library preparation method performances with respect to WGBS experi-
ments performed on the latest generation of Illumina sequencing platforms, along with lower PhiX spike-in. 
The International Human Epigenome Consortium (IHEC) requires single replicate 30x coverage for reference 
methylomes, and depending on analysis features, recommends multiple replicates based on saturation and recov-
ery analysis13,14. Although the National Institutes of Health (NIH) Roadmap Epigenomics Project recommends 
the use of two replicates with a combined total coverage of 30x15, the exact rationale for this guideline is unclear.

Therefore, in this study, we aim to (i) systematically compare the performance of three WGBS library prepa-
ration methods with low DNA input requirement across two state-of-the-art sequencing platforms in terms of 
data quality, (ii) assess the agreement between data generated by WGBS versus that from methylation arrays, and 
finally, (iii) provide a data-driven recommendation for genomic coverage for future WGBS studies.

Results
Comparison of library preparation methods. To systematically compare the performance across differ-
ent library preparation methods, we selected three kits, namely Swift Biosciences Accel-NGS Methyl-Seq DNA 
Library kit (Swift thereafter)16, Illumina TruSeq DNA Methylation kit (previously known as EpiGnome Methyl-
Seq kit, TruSeq thereafter)17 and QIAGEN QIAseq Methyl Library kit (QIAseq thereafter) in view of their low 
DNA input requirement (Table 1). All libraries were sequenced on the HiSeq X platform at 150 bp paired end 
(PE). DNA samples were previously extracted from whole blood for Samples 1–4 and from isolated white blood 
cell subsets for Samples 5–8 (CD4+ T cells: Samples 5 and 8; Neutrophils: Samples 6 and 7). Library preparation 
and sequencing protocols were carried out by two independent sequencing providers according to their respec-
tive best practice.

Provider A B

Samples Samples 1–4 Samples 5–8

Sample Type Whole Blood Isolated cell subtypes

Library preparation method Swift TruSeq QIAseq Swift TruSeq QIAseq

DNA input (ng) 200 50

DNA fragmentation before 
bisulfite treatment Yes No Yes No

Bisulfite conversion kit EZ DNA Methylation-Gold Kit EpiTect Fast 
Bisulfite Kit

EZ DNA 
Methylation-Gold 
Kit

EpiTect Fast Bisulfite Kit

Sequencing Platform HiSeq X HiSeq X

Spike-in (%) PhiX (5%) 12%~89.6% WGS sequences

PCR enzyme Enzyme R3 FailSafe VeraSeq Ultra Enzyme R3 FailSafe VeraSeq Ultra

PCR cycles 7 10 9 9 12 6

Number of effective lanes 
per sample 1 1 1 1.17 1.13 1.15

Average data output per 
sample1,2

150.88 Gb, 
499.61 Mrp

142.14 Gb, 
470.65 Mrp

147.56 Gb, 488.61 
Mrp

157.49 Gb, 524.95 
Mrp

151.95 Gb, 
506.49 Mrp

102.14 Gb, 340.45 
Mrp

Table 1. Experimental setup for comparison of library preparation methods. 1Gb: giga base. Mrp: million read 
pair. 2In these experiments, one lane of HiSeq X flow cell generates 145.68 ± 9.96 (mean ± standard deviation 
(SD)) Gb from provider A, and 119.29 ± 24.50 Gb from provider B.
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One lane of HiSeq X generates 100–125 Gb of data on average, which in turn is expected to yield ~33x genome 
coverage assuming no data loss during pre-processing. As data loss is expected due to various quality filters, the 
two sequencing providers determined the number of effective lanes to use by aiming for an estimated effective 
genome coverage of ~30x based on their respective experience and usual spike-in as well as pooling strategies.

One particular challenge in performing WGBS is the unbalanced base composition of the library. As early 
versions of the Illumina software were not designed to handle unbalanced libraries, a substantial spike-in of DNA 
of an unbiased composition, typically PhiX spike-in at ~25%, was necessary to maximise the cluster passing 
filter during sequencing and generate data of reasonable quality. With recent iteration of the HiSeq X software 
(Real-Time Analysis (RTA) 2.7.7 and HiSeq Control Software (HCS) 3.4.0.38), which includes a revised Q-table 
to facilitate sequencing of unbalanced libraries, a 5% spike-in of PhiX is now sufficient to generate high-quality 
sequencing data, which was the protocol adopted by Provider A. For Provider B, in line with their usual practise, 
their preferred strategy was to use Whole Genome Sequencing (WGS) spike-in instead (Table 1).

Comparison of quality metrices. Now, we first examined the fraction of reads that have average sequence quality 
score of at least Q20 (Phred quality score of 20, equivalent to the probability of an incorrect base call 1 in 100) 
or Q30 across the three library preparation methods. Q20 fractions were similar between Swift and TruSeq, but 
significantly lower for QIAseq (Fig. 1a; Swift: 99.9%, TruSeq: 99.8%, QIAseq: 99.1%; P[ANOVA] = 2.21E-5; Swift 
vs. TruSeq: P = 7.34E-1, Swift vs. QIAseq: P = 5.71E-5, TruSeq vs. QIAseq: P = 1.09E-4). Results were similar at 
Q30 (Fig. 1a, Swift: 95.3%, TruSeq: 95.9%, QIAseq: 91.7%; P[ANOVA] = 1.02E-5; Swift vs. TruSeq: P = 6.38E-1, 
Swift vs. QIAseq: P = 3.15E-4, TruSeq vs. QIAseq: P = 1.00E-5). This was also true when we analyzed Read 1 (R1) 
and Read 2 (R2) separately (Supplementary Fig. 1a). As expected, the proportion of bases trimmed for low quality 
(Q < 20) was lowest for Swift and highest for QIAseq method in the overall libraries (Fig. 1b; Swift: 0.6%, TruSeq: 
1.1%, QIAseq: 1.6%; P[ANOVA] = 2.33E-5; Swift vs. TruSeq: P = 6.89E-3, Swift vs. QIAseq: P = 1.39E-5, TruSeq 
vs. QIAseq: P = 1.62E-2), as well as in R1 and R2 raw reads respectively (Supplementary Fig. 1b). Consistent with 
previous studies, a higher proportion of bases were trimmed for low quality in R2 relative to R1 across all kits 
except for QIAseq, which is likely attributable to the larger variation observed (Supplementary Fig. 1b; Swift: 
P = 8.86E-5; TruSeq: P = 2.35E-9; QIAseq: P = 6.93E-1)11.

We next compared the insert size between the three library preparation methods. On average, insert sizes were 
significantly higher for libraries generated by the Swift method than those from TruSeq, and lowest for librar-
ies by QIAseq (Fig. 1c; Swift: 248 bp, TruSeq: 181 bp, QIAseq: 161 bp; P[ANOVA] = 8.33E-14; Swift vs. TruSeq: 
P = 6.12E-12, Swift vs. QIAseq: P = 1.96E-13, TruSeq vs. QIAseq: P = 3.14E-3). In keeping with this, both TruSeq 
and QIAseq library preparation methods generated reads with high proportion of adaptor contamination, indica-
tive of adaptor read-through (Fig. 1d; adaptor sequence trimming rates: Swift: 0.7%, TruSeq: 8.4%, QIAseq: 7.5%; 
P[ANOVA] = 8.02E-6; Swift vs. TruSeq: P = 9.20E-6, Swift vs. QIAseq: P = 1.82E-4, TruSeq vs. QIAseq: P = 7.59E-
1). This distribution in terms of adaptor contamination was also observed in both R1 and R2 across all three meth-
ods, with no significant differences between R1 and R2 (Supplementary Fig. 1c). Since read pairs with insert size 
less than the length of a single read can read into the adaptor (adaptor read-through), we indeed observed here 
that adaptor trimming rate was significantly inversely correlated with insert size (Pearson’s r = −0.87, P = 2.11E-
9). Also, as expected, shorter insert size was associated with higher proportion of overlapping bases between R1 
and R2 (r = −0.98, P = 2.07E-20), with the proportion of overlapping bases between paired reads lowest for Swift, 
and highest for QIAseq method (Fig. 1e, Swift: 15.7%, TruSeq: 28.5%, QIAseq: 36.4%; P[ANOVA] = 4.39E-15; 
Swift vs. TruSeq: P = 6.91E-11, Swift vs. QIAseq: P = 4.74E-14, TruSeq vs. QIAseq: P = 8.81E-7).

Another measure of library quality is read duplication rate, with higher duplication rates indicative of lower library 
diversity18. Our results showed that the TruSeq library preparation method generated a higher fraction of duplicates 
relative to both Swift and QIAseq (Fig. 1f, Swift: 19.0%, TruSeq: 41.6%, QIAseq: 23.0%; P[ANOVA] = 2.00E-10; Swift 
vs. TruSeq: P = 7.31E-10, Swift vs. QIAseq: P = 2.41E-1, TruSeq vs. QIAseq: P = 3.41E-8).

Comparison of alignment rate, coverage depth and bias. We next compared mapping efficiency across the three 
library preparation methods. There was no difference between Swift and TruSeq in terms of mapping efficiency 
(Fig. 2a; Swift: 81.5%, TruSeq: 79.3%; Swift vs. TruSeq: P = 1.71E-1). QIAseq suffered the lowest mapping effi-
ciency, with only one-third of its reads mapping successfully (Fig. 2a; Swift vs. QIAseq: P = 3.28E-14, TruSeq vs. 
QIAseq: P = 3.28E-14). A closer inspection of the unmapped reads from data generated by the QIAseq method 
revealed that on average, 13% (SD: 1.7%) were broken pairs and 51% (SD: 3.0%) were reads containing too many 
mismatches/deletion/insertion and/or other unknown sequences, both of which were not permitted during align-
ment (see Methods for details on mapping criteria).

We now turn to investigate the impact of the above observations on effective read depth. We applied the qual-
ity control and trimming parameters in line with previous reports, followed by alignment (Supplementary Fig. 2). 
We obtained an average effective read depth (mean depth) of 26x (SD: 2x) for Swift, followed by 13x (SD: 1x)  
for TruSeq, and finally, 6x (SD: 2x) for QIAseq (Fig. 2b; P[ANOVA] = 4.43E-18; Swift vs. TruSeq: P = 4.65E-14, 
Swift vs. QIAseq: P = 3.28E-14, TruSeq vs. QIAseq: P = 3.54E-9). Despite the similar alignment rates, libraries 
generated by the TruSeq method delivered read depths that were approximately 50% lower than that for the Swift 
method. This difference is accounted for by the higher proportion of low quality, duplicate and/or overlapping 
reads in the TruSeq compared to the Swift libraries (Fig. 1). To account for any potential bias due to differences 
in raw sequencing output, we normalize the effective depths by raw read counts (i.e. read counts before any 
of the above quality filter was applied). As expected, the Swift method achieved the highest normalized aver-
age read depth (mean depth per billion raw read; calculated as average effective read depth/library size) (50x 
per billion read pairs, SD: 2x), followed by TruSeq and QIAseq (26x (SD: 1x) and 13x (SD: 3x), respectively) 
(Fig. 2c; P[ANOVA] < 2E-16; Swift vs. TruSeq: P = 3.28E-14, Swift vs. QIAseq: P = 3.28E-14, TruSeq vs. QIAseq: 
P = 1.35E-12).
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We then examined coverage across the reference genome by chromosome to determine if there was any bias in 
the distribution of reads across and within the chromosomes (Fig. 2d). The Swift method presented the most uni-
form coverage across the genome (P = 1.00E+0, Chi-Square goodness of fit test), followed by QIAseq (P = 3.70E-1),  
with the distribution for TruSeq significantly non-uniform (P = 3.05E-49). We also noted ‘0’ coverage at gap 
regions (‘N’s) across all three library preparation methods. In addition, we observed the TruSeq method resulted in 
clear biases in the form of GC-rich regions enrichment/AT-rich regions depletion across all nucleotide categories, 
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Figure 1. Comparison of quality metric across library preparation methods. (a) Raw reads with sequencing 
quality > Q20 or >Q30. (b) Bases trimmed due to low quality (<Q20). (c) Library insert size (bp). (d) Bases 
containing adaptor sequences. (e) Overlapping bases between Read 1 and Read 2. (f) Read duplicates (read-
pairs). Read duplicates were defined as two read-pairs with the same start and end positions. All libraries 
were sequenced on the HiSeq X platform. n.s.: not statistically significant, P > 0.05, *P < 0.05, **P < 0.01, 
***P < 0.001. Bars show average values, with error bars representing standard error of mean.
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while this bias was less obvious with the other two library preparation methods (Fig. 2e, Supplementary Table 1). 
In addition, we also observed that the Swift method was the only approach that did not display significant differ-
ences in nucleotide amplification bias between our two providers (Supplementary Table 1).

We next compared the percentage of genome that is covered at each minimum depth cutoff across the three 
methods. In line with the mapping rates observed, we found that the Swift method covered a significantly higher 
percentage of the genome relative to the other two methods up to 40x, after which the difference became insignif-
icant between Swift and TruSeq, with QIAseq remaining the worst performing method across the entire range of 
minimum depths (Fig. 3a, Supplementary Table 2).

A similar trend was observed when we focused on only CpG sites coverage across the genome, with the Swift 
method again outperforming the other two library preparation methods at minimum depths below 35x. However, 
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the genome. One representative sample (Sample 1) was plotted for each of the three methods, with coverage 
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each bin (n = 421). The genome was divided into a total of 421 bins according to default settings by qualimap. 
(e) Nucleotide amplification biases, expressed as the logarithm 2 transformed ratio of observed to expected 
coverage for different nucleotide and dinucleotide combinations. G/C-rich category (defined as C, G, CC, CG, 
GC and GG) and A/T-rich category (defined as A, AA, AT, T, TA and TT) are highlighted in pink. All libraries 
were sequenced on the HiSeq X platform. Each line represents one sample (library). n.s.: not statistically 
significant, P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001. Bars show average values, with error bars representing 
standard error of mean.
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Figure 3. Comparison of genome and CpG coverage at different minimum depths and genomic regions across 
library preparation methods. (a) Genome coverage at different minimum depths (5–50x). (b) CpG site coverage 
at different minimum depths (5–50x). For (a,b), Loess smoothing was applied, with the 95% confidence 
intervals indicated by gray shaded areas. (c) Distribution of depth (coverage) for CpG sites across different 
genomic features. Only CpGs with minimum depth between 10x and 50x (~99% of all CpG sites) were displayed 
in the boxplots. (d) Average percentages of CpGs covered at different genomic features. The percentages were 
calculated by dividing the number of CpG sites covered with a minimum depth of 10x for each genomic 
feature by the total number of CpG sites in the genome for the corresponding genomic feature. (e) Boxplots of 
methylation level for CpGs in the mitochondria across all libraries by Provider A (left) and B (right). Only CpGs 
with a minimum depth of 10x were included. (f) Percentage of genome covered at each minimum depth across 
different number of raw read pairs. (g) Percentage of CpG sites in the genome covered at each minimum depth 
across different number of raw read pairs. For (f,g), results obtained from downsampling analyses are shown 
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at cutoffs above 35x, TruSeq covered the highest percentage of CpG sites in the human genome, although the dif-
ference was marginal, not always statistically significant relative to the Swift method and was observed at less than 
8% of CpGs (Fig. 3b, Supplementary Table 3). When stratified by genomic feature, the Swift method showed that 
CpG sites from intron, repeat and intergenic regions were covered at higher depth relative to those from promoter 
and exon regions, whilst the opposite was true for both TruSeq and QIAseq methods (Fig. 3c, P < 0.001). This 
resulted in the Swift method delivering successful quantification of methylation at 10x for a higher proportion of 
CpG sites IN intron, repeat and intergenic regions, compared to alternate approaches (Fig. 3d).

When examining the distribution of methylation level across the chromosomes, consistent with previous 
reports19,20, we found very low methylation signal in mitochondrial DNA (mtDNA) with Swift and QIAseq 
(Fig. 3e; Supplementary Table 4). For TruSeq, methylation signals were high (44.1% ± 5.3%) for libraries pre-
pared by provider A, but very low for those by provider B (3.8% ± 6.3%). This is likely due to differences in DNA 
input, whereby Provider A did not perform any form of DNA fragmentation prior to bisulfite conversion, while 
Provider B sonicated the input DNA.

To determine the raw library size (i.e. number of read pairs before applying quality filters) needed to achieve a 
prespecified percentage of genome or CpG coverage at a certain minimum read depth, we performed downsam-
pling analysis on our current dataset, utilizing all available sequencing data across our samples. The percentage 
of genome and CpGs covered at different minimum depths across a range of raw library sizes were interrogated 
for the three library preparation methods (Fig. 3f,g). Our results suggest that at least 500 million raw library reads 
(pair-end reads) would be necessary to achieve 50% genome coverage at minimum depth of 30x with the Swift 
method, whereas 900 million and more than one billion raw read pairs will be needed for TruSeq and QIAseq 
respectively (Fig. 3f). Similarly, in terms of CpG coverage, at least 600 million raw read pairs would be required to 
achieve 50% CpG coverage at minimum depth of 30x with the Swift method, whereas 700 million and more than 
one billion raw read pairs were necessary for TruSeq and QIAseq respectively (Fig. 3g).

Comparison between Novaseq and Hiseq X sequencing platforms. Having systematically evalu-
ated the performance of the three library preparation methods, we next compared performance between the two 
leading Illumina high-throughput sequencing platforms: NovaSeq 6000 launched early 2017 and the more com-
monly available HiSeq X platforms (Table 2). Relative to the HiSeq X, the NovaSeq provides more reads per run 
and a higher maximum output by virture of its higher cluster density. The run time is also shorter on the NovaSeq, 
primarily achieved via the migration to the two-color chemistry from the four-dye system. For this section, all 
libraries were generated based on the best-performing protocol established above (bisulfite conversion: EZ DNA 
Methylation-Gold Kit; library preparation: Swift (Fig. 4)), with the same library split into two and sequenced 
independently on NovaSeq 6000 and HiSeq X.

Library preparation and sequencing procedures were carried out by two independent sequencing providers 
according to their respective best practice. One lane of NovaSeq S2 and S4 flow cell is expected to produce on 
average 500–625 Gb and 600–750 Gb of data respectively. In line with the data generation predicted, the antic-
ipated effective genome coverage per lane was ~30x for the HiSeq X sequencing, and ~160x and ~200x for the 
NovaSeq platform for S2 and S4 flow cell respectively (Table 2).

Comparison of quality metrices. For R1 raw reads, there were no significant difference between NovaSeq and 
HiSeq X in terms of both Q20 and Q30 fractions (Fig. 5a; Q20 NovaSeq: 100.0%, HiSeq X: 99.9%; P > 0.05; Q30 
NovaSeq: 98.4%, HiSeq X: 98.5%, P > 0.05). However, for R2, although there was no significant difference for 
Q20, we observed a significantly higher Q30 fraction for NovaSeq (Fig. 5a; Q20 NovaSeq: 98.8%, HiSeq X: 98.7%, 
P = 3.49E-1; Q30 NovaSeq: 95.9%, HiSeq X: 92.1%, P = 3.10E-2). Similarly, the fraction of bases trimmed for low 
quality was also smaller for NovaSeq relative to HiSeq X for both R1 and R2 (Fig. 5b; R1 NovaSeq: 0.1%, HiSeq 
X: 0.2%, P = 2.94E-5; R2 NovaSeq: 0.4%, HiSeq X: 0.9%, P = 1.07E-2). As observed in the previous section as well 
as earlier studies11,21,22, a higher proportion of low quality bases were trimmed for R2 compared to R1 on both 
platforms (Fig. 5b; NovaSeq: P = 1.31E-4; HiSeq X: P = 6.28E-4). Higher read duplication rate was also observed 
on the NovaSeq compared to the HiSeq X (Fig. 5c; NovaSeq: 23.8%, HiSeq X: 19.0%; P = 1.60E-2).

Comparison of coverage depth and bias. As expected, sequencing output was higher for the NovaSeq compared 
to the HiSeq X platform (Table 2; NovaSeq 239 Gb per sample (SD: 31 Gb) vs. HiSeq X 154 Gb per sample (SD: 
14 Gb); P = 3.34E-5). Mean effective read depth for NovaSeq and HiSeq X sequencing were 37x  ± 3x (SD) and 
26x  ± 2x respectively (Fig. 5d; P = 4.21E-5). After normalization for sequencing output, NovaSeq now had a 
lower effective read depth (46x per billion read pairs ± 4x), compared to HiSeq X (50x per billion read pairs ± 2x) 
(Fig. 5e, P = 1.22E-3). This difference was primarily driven by the higher duplication rate observed with the 
NovaSeq platform (Fig. 5c).

We next compared the percentage of total CpG sites covered at different minimum depths (1–80x) between 
NovaSeq and HiSeq X platforms after normalizing for the sequencing output and scaled up to one billion read 
pairs. In general, there was no statistical difference in the coverage between NovaSeq and HiSeq X at normalized 
minimum depth less than 45x (Fig. 6a; Supplementary Table 7). In terms of nucleotide amplification bias, no sig-
nificant difference was observed between the two platforms (Fig. 6b, Supplementary Table 8; P > 0.05).

here for minimum depths ranging from 1–100x for library sizes consisting of 100–1000 M raw read pairs. All 
available samples were pooled for the downsampling analyses. All libraries were sequenced on the HiSeq X 
platform. n.s.: not statistically significant, P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001. Error bars represent 
standard error of mean.
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Lastly, we performed downsampling analysis on samples analyzed on the two sequencing platforms. For the 
two platforms, a similar number of paired-end reads is needed to achieve a comparable mean sequencing depth, 
as well as similar CpG coverage at any given minimum depth (Fig. 6c,d; Supplementary Tables 9–10). Both nor-
malization and downsampling confirmed that genome coverage was similar between the NovaSeq and HiSeq X 
platforms at comparable sequencing output.

Comparison between WGBS and array data. Next, we evaluated the performance of WGBS for 
quantification of DNA methylation, in comparison to established methods based on methylation arrays. For 
WGBS, we focused on results generated using Swift library preparation method and HiSeq X platform as the 
optimal combination based on our earlier experiments. Samples 1–4 were assessed on the Illumina Infinium 
HumanMethylation450 assay (450K)23, while Samples 5–8 were assessed on the MethylationEPIC BeadChip 
(EPIC) assay24. DNA methylation level was quantified based on previously established workflow as outlined in 
Supplementary Fig. 2 for WGBS and by the CPACOR pipeline for methylation arrays25.

We found that while the methylation arrays were able to assay only <3% of all CpG sites in the human genome, 
WGBS quantifies methylation at the great majority of CpG sites (87% at 10x coverage; Fig. 7a). WGBS also yielded 
considerably higher CpGs coverage within each genomic feature relative to both arrays (Fig. 7b).

We next evaluated the concordance between methylation levels assayed by WGBS and array. The analysis was 
restricted to only CpG sites available on both platforms, and CpG sites with a minimal depth of 10x coverage 
with WGBS. For these CpG sites, an average read depth of 24x (SD: 1.4x) was achieved. As expected, we observed 

Swift
TruSeq

QIAseq

fraction of CpGs covered
coverage uniformity
normalized average effective depth
align rate
read duplicates
overlapped bases
adaptor sequence
mean insert size
low quality bases
Q30 fraction
Q20 fraction

Color Key

poor good

Figure 4. Overall performance comparison between library preparation methods. Heatmap displaying 
rankings of the three library preparation methods by main performance metric. The libraries are ranked from 
one to three, with one (red) for the worst performing method and three (green) for the best performing method. 
Where there is no statistically significant difference between any pairwise comparison for a particular metric, 
the two methods will be given the same rank equivalent to the average ranks e.g. for Q20 fraction, QIAseq was 
the worst performing method (hence given a rank score of 1), while both Swift and TruSeq had the same rank 
score of 2.5 = (2 + 3)/2 since there was no statistically significant difference between the two.

Provider A B

Samples Samples 1–4 Samples 5–8

Sample Type Whole Blood Isolated cell subtypes

Library Preparation Method Swift

DNA input (ng) 200 50

DNA fragmentation before 
bisulfite treatment Yes

Bisulfite conversion kit EZ DNA Methylation-Gold Kit

Sequencing Platform HiSeq X NovaSeq HiSeq X NovaSeq

Spike-in (%) PhiX (5%) WGS sequences 
(12~89.6%)

WGS sequences 
(86~96%)

PCR enzyme Enzyme R3

PCR cycles 7 9

Effective number of lanes per 
sample 1 0.25 1.17 0.56

Average data output per 
sample1,2

150.88 Gb, 
499.61 Mrp

226.95 Gb, 
751.50 Mrp

157.49 Gb, 524.95 
Mrp

250.91 Gb, 
836.38 Mrp

Table 2. Experimental setup for comparison of sequencing platforms. 1Gb: giga base. Mrp: million read pair. 
2In these experiments, one lane of HiSeq X flow cell generates 150.88 ± 0.82 (mean ± SD) Gb from provider A, 
and 134.75 ± 17.31 Gb from provider B. One lane of NovaSeq S4 flow cell generates 907.81 ± 103.92 Gb from 
provider A, and one lane of S2 flow cell generates 448.06 ± 60.07 Gb from provider B.
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global correlation levels to be high between array and WGBS, with correlation coefficients ranging from 0.95 to 
0.97 (Supplementary Fig. 3). In addition, as observed from the Bland-Altman plots26,27, for CpG sites with beta 
values between 0 and 0.5, on average, methylation levels from WGBS were 6.78% (SD:1.06%; P = 1.03E-3) and 
3.19% (SD:1.00%; P = 7.66E-3) lower than beta values from the 450 K and EPIC methylation array respectively 
(Fig. 7c). In contrast, for beta values between 0.5 and 1, WGBS rendered methylation levels that were higher than 
the arrays by 2.76% (SD:1.43%; P = 3.09E-2) and 7.68% (SD:2.65%; P = 1.02E-2) for 450 K and EPIC respectively 
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Figure 5. Comparison of quality metric for libraries sequenced on the NovaSeq and HiSeq X sequencing 
platforms. (a) Raw reads with sequencing quality > Q20 or > Q30. Values from Read 1 and Read 2 were 
analyzed separately. (b) Bases trimmed due to low quality (<Q20). (c) Read duplicates (read-pairs). Read 
duplicates were defined as two read-pairs with the same start and end positions. (d) Effective sequencing depth, 
calculated based on mapped reads after read duplicates removal, with overlapping bases counted only once. 
(e) Average depth per billion raw read pairs. All libraries were generated by the Swift library preparation kit. 
The same libraries were split into two and sequenced independently on NovaSeq 6000 and HiSeq X. n.s.: not 
statistically significant, P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001. Bars show average values, with error bars 
representing standard error of mean.
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Figure 6. Comparison of genome and CpG coverage at different minimum depths and nucleotide amplification 
bias between NovaSeq and HiSeq X sequencing platforms. (a) CpG site coverage at different minimum depths 
(1–80x). Loess smoothing was applied, with the 95% confidence intervals indicated by gray shaded areas. 
(b) Nucleotide amplification biases, expressed as the logarithm 2 transformed ratio of observed to expected 
coverage for different nucleotide and dinucleotide combinations. G/C-rich category (defined as C, G, CC, CG, 
GC and GG) and A/T-rich category (defined as A, AA, AT, T, TA and TT) are highlighted in pink. Each line 
represents one sample (library). (c) Genome coverage at each minimum depth across different number of raw 
read pairs. (d) CpG site coverage at each minimum depth across different number of raw read pairs. For c and 
d, results obtained from downsampling analyses are shown here for minimum depths ranging from 1–200x for 
library sizes consisting of 100–4000 M raw read pairs. All available samples were pooled for the downsampling 
analyses. n.s.: not statistically significant, P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001. Bars show average 
values, with error bars representing standard error of mean.
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Figure 7. Comparison of performance between WGBS and methylation arrays on the HiSeq X sequencing 
platform. (a) CpG site coverage by WGBS and methylation arrays (450 K and EPIC). (b) CpG site coverage 
at different genomic features. The percentages were calculated by dividing the number of CpG sites covered 
with a minimum depth of 10x for each genomic feature by the total number of CpG sites in the genome for 
the corresponding genomic feature. Inset: Distribution of CpG sites in the genome by genomic features. Bars 
show average values, with error bars representing standard error of mean. (c) Bland-Altman plots comparing 
methylation levels reported by WGBS and the methylation arrays. Upper (all probe types): WGBS versus 450 K 
(left), WGBS versus EPIC (right). Lower (stratified by Type I and Type II probes): WGBS versus 450 K (left), 
WGBS versus EPIC (right). Each line represents one sample (library). (d) Comparison of standard deviation 
(SD) of methylation levels of replicate samples between WGBS and methylation arrays. CpG sites were binned 
according to their average coverage, inclusive of the lower limit and exclusive of the upper limit. For WGBS 
data, only CpG sites with a minimal depth of 10x were used across all analyses shown here. For c and d, only 
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(Fig. 7c). The bias between WGBS and array was similar for Type I and Type II probes23,24 (Fig. 7c; P = 5.73E-1 
and 3.73E-1 for 450 K and EPIC respectively) and across a range of read depths (Supplementary Fig. 4; P = 0.998 
and P = 1 for 450 K and EPIC respectively).

To further compare the reproducibility of WGBS and methylation array data, we quantified variability for 
technical replicates (n = 2) of each biological sample. Array showed higher precision than WGBS across the entire 
assay range, with precision improving at higher sequencing depth. As expected, variation was lower for measure-
ments at CpG sites covered at higher depth for WGBS (Fig. 7d; Supplementary Table 11). At the current recom-
mended coverage of 30x15, the standard deviation (SD) observed for WGBS was two to three fold higher than that 
on the methylation array. This suggests that to achieve a level of precision that is broadly similar to that observed 
in methylation array, a coverage of at least 100x will be necessary.

To illustrate the impact of the relationship between depth and precision, we calculated sample sizes needed for 
population-based case-control studies using WGBS or methylation array across a range of differences in methyl-
ation levels, taking into account both technical and biological variability (Supplementary Table 12). Compared to 
array, the sample sizes needed to identify comparable changes in methylation are similar using 100x WGBS, but 
three times greater using 30x WGBS sequencing.

Discussion
In this study, we set out to systematically evaluate three contemporary WGBS library preparation methods across 
two state-of-the-art sequencing platforms. We also assessed the performance and precision of the WGBS method 
relative to the methylation arrays, in an effort to provide data-driven recommendations for future WGBS studies, 
in particularly with respect to minimum coverage.

Traditional WGBS library preparation workflow involves DNA fragmentation, sequencing adaptor liga-
tion prior to bisulfite treatment and Polymerase Chain Reaction (PCR) amplification7,28. As large amounts of 
DNA are typically lost during fragmentation and bisulfite conversion, this renders WGBS less suitable for many 
human studies whereby samples are often limited in quantity. Here, we focus on three commercially available 
post-bisulfite library preparation methods which requires lower DNA input16,17,29.

Our results showed the Swift method outperforms the other two library preparation methods across various 
metrics, including percentage of low quality bases, read duplicate rates and coverage uniformity, which is poten-
tially attributable to differences in underlying chemistry such as the polymerase used. The Swift method also 
achieved the highest effective read depth, with significantly higher percentages of both genome and CpG sites 
interrogated across all depths. One reason for this may be the larger insert size for libraries generated by the Swift 
method. Longer inserts benefit from less adaptor contamination and overlapping reads, both of which increases 
coverage efficiency30. This could potentially be accounted for by the lower volumetric ratio of magnetic beads to 
DNA used by the Swift method (Swift: 0.85; TruSeq: 1.0; QIAseq: 1.6), which preferentially enrich larger frag-
ments in the final cleanup step during library preparation9,31.

In addition, the TruSeq protocol contains the highest number of PCR amplification cycles (10–12 cycles), in 
contrast to only 7–9 and 6–9 cycles for Swift and QIAseq respectively. This might help explain the higher duplica-
tion rate with the TruSeq method, and hence reduce downstream library diversity and genome coverage, although 
the impact is minimal beyond ~10 cycles32,33. The high number of PCR cycles in the TruSeq method is also in 
line with the observation that its libraries showed the highest degree of nucleotide amplification/GC bias. GC 
bias in sequencing can occur due to factors such as priming, size selection, and probability of sequencing errors, 
with PCR previously identified as the main contributor34–40. The observed GC bias is clearly a disadvantage as it 
impacts upon even read coverage, which was observed with the TruSeq method.

Indeed, the Swift method was able to cover significantly higher percentages of the genome as well as CpG sites 
relative to the other two methods. CpG sites from intron, repeats and intergenic regions, typically with lower GC 
content, were covered at a higher depth relative to those from the promoter and exon regions by the Swift method, 
while the opposite trend was true for TruSeq and QIAseq methods. This suggests that the Swift method could 
cover more potentially functionally relevant CpG sites in intron, repeats and intergenic regions than the other 
two methods41–44.

We also systematically evaluated the performance of the two leading Illumina high-throughput sequencing 
platforms, namely HiSeq X and NovaSeq. We observed a higher read duplication rate on the NovaSeq platform. 
This might reflect the shorter distance between the nanowells on the NovaSeq flow cell, which has been proposed 
to increase the probability of forming another cluster in a neighboring nanowell from the same original DNA 
molecule during cluster generation, which is commonly referred to as Exclusion Amplification (ExAmp) dupli-
cates45,46. Higher cluster densities on the flow cell has also been suggested to suppress GC-rich reads39. However, 
we did not observe any differences in GC bias between the two platforms.

Data quality was comparable between HiSeq X and NovaSeq, with a marginally higher Q30 fraction on R2 and 
lower proportion of low quality bases on the NovaSeq. This may seem counter-intuitive, given that the two-color 
chemistry utilized on the NovaSeq has been previously suggested to overcall high confidence G bases due to its 

CpG sites found in both WGBS and array data are considered in the analyses. All WGBS data included in 
this analysis are generated by the Swift library preparation kit on the HiSeq X platform. For comparison of 
performance between WGBS and methylation arrays across all three library preparation methods on the 
HiSeq X platform, including TruSeq and QIAseq, see Supplementary Fig. 3a–d; Supplementary Table 11. For 
comparison of performance between WGBS and methylation arrays with the Swift method on both HiSeq X 
and NovaSeq platforms, see Supplementary Fig. 4a–d. n.s.: not statistically significant, P > 0.05, * P < 0.05, 
** P < 0.01, ***P  < 0.001.
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inability to distinguish between no signal and a G base47. However, it is worth noting that this problem with false 
G bases, in particular with poly-G tails, is much less prominent when overall data quality is high, as was the case 
here in our study.

This marginal improvement in data quality and reduction in workflow time on the NovaSeq appears to come 
at a cost. Even on the most cost efficient NovaSeq configuration (i.e. NovaSeq 6000 with S4 flow cell), the cost 
per Gb of data generated remains higher than that on the HiSeq X. Nonetheless, as the NovaSeq has only been 
recently launched, it is expected that its cost of sequencing will decrease over time as the associated experimental 
protocol gets optimized.

One key advantage in the utilization of WGBS is its ability to provide unbiased genomewide coverage. Indeed, 
WGBS method, as expected, quantified methylation at substantially more CpG sites than methylation arrays 
(24.6 millions versus 0.8 million out of 28.7 million). The improvement in coverage was most notably for introns, 
repeats and intergenic regions which are not well represented in the available methylation arrays, and which have 
been suggested to be key locations for functionally important CpG sites44.

We also observed systematic biases in methylation levels between WGBS and methylation arrays, likely due to 
differences in its underlying chemistry and mathematical approach to methylation quantification. WGBS quan-
tifies methylation level based on discrete read counts, while the array measures fluorescence intensity detected 
from its probes. While array measurement has been established to be accurate and reproducible, the performance 
of WGBS as an assay for quatification of DNA methylation has not been widely studied.

We showed that at the recommended sequencing depth of 30x, the technical variability for WGBS is two 
to three fold higher than that for the methylation array. This lower precision observed is likely to be due to 
insufficient reads/counts to generate reliable quantification48. The precision of WGBS improves with increased 
sequencing depth as observed from our downsampling analyses, and a minimum coverage of 100x is necessary 
to achieve a level of precision that is broadly similar to that observed in methylation array. Given the differential 
cost for sequencing at different depths, this has important implications for the design of future population-based 
WGBS studies.

Methods
samples from whole blood. Samples were obtained from participants of The London Life Sciences 
Prospective Population Study (LOLIPOP). LOLIPOP is a prospective cohort study of ~28 K Indian Asian and 
European men and women, recruited from the lists of 58 General Practitioners in West London, United Kingdom 
between 2003 and 200849–52. Aliquots of whole blood collected at enrolment were stored at −80 °C for extraction 
of genomic DNA. The LOLIPOP study is approved by the National Research Ethics Service (NRES Committee 
London Fulham 07/H0712/150) and all experiments were performed in accordance with relevant guidelines and 
regulations. All participants gave written informed consent.

samples from isolated white blood cells. Samples from isolated white blood cells were obtained from 
DNA of individuals recruited at random from the outpatient departments at Ealing and University College 
Hospitals London as previously described4. Only DNA extracted from CD4+ T cell and neutrophils were used 
in this study. All experiments were performed in accordance with relevant guidelines and regulations. Informed 
consent was obtained from all participants (NRES Committee London Fulham 07/H0712/150, NRES Committee 
London City Road and Hampstead 13/LO/0477 and NRES Committee London Harrow 09/H0715/65).

Library preparation and sequencing strategy. Fifty or 200 ng of genomic DNA was used for library 
preparation according to the respective sequencing providers’ usual practice. DNA was bisulfite converted 
with the EZ DNA Methylation Gold Kit (Zymo Research) for use with the Swift and TruSeq library preparation 
methods, while the EpiTect Fast bisulfite conversion kit (QIAGEN) was to be used with the QIAseq method 
according to manufacturers’ preferences. The libraries were subsequently generated according to their respective 
protocols16,17.

Briefly, for Swift library construction, adaptase was applied to the bisulfite-converted DNA, with adaptors 
as well as a low-complexity tail simultaneously ligated to the 3′ end of the DNA fragments. Following a primer 
extension, the bottom strand DNA was synthesized and the 3′ end was ligated with adaptor sequences. For 
TruSeq, bisulfite-treated DNA was first primed by random hexamers which carried a tag sequence on its 5′ end. 
Subsequently, the bottom strand DNA was extended and the 3′ end was annealed with another terminal-tagging 
oligo, which induce the synthesis of the 3′ adaptors. As for the QIAseq library preparation, bisulfite-converted 
DNA was repaired, primed with a short primer which induced bottom strand DNA synthesis, followed with 
end-polishing of the DNA strand and adaptor ligation.

Subsequently, all the above single-stranded DNA fragments with adaptors ligated were purified and enriched 
by Polymerase Chain Reaction (PCR) according to respective kits’ instruction manuals. The resulting PCR prod-
ucts were cleaned up and quality was assessed by an Agilent 2100 Bioanalyzer. Before sequencing, the library was 
spiked in with other high-complexity sequences, e.g. PhiX or WGS sequences according to the providers’ usual 
protocols to compensate for the reduced sequence diversity in bisulfite converted libraries. Finally, amplified 
DNA fragments were quantified by qPCR or PicoGreen assay and sequenced on either HiSeq X or NovaSeq 
6000 platform to generate 2 × 150 bp paired-end libraries. The HiSeq Control Software (HCS) versions used were 
HCS:3.5.0.7 and HD 3.4.0.38, along with Real Time Analysis software version 2.7.7.

Data quality analysis and processing. Raw sequencing output BCL data were converted to FASTQ 
files by using bcl2fastq v2.20 software53. The sequence quality was checked by FastQC v0.11.554. Adaptors and 
low quality sequences (Phred <20) were trimmed by Trim Galore v0.4.4_dev and cutadapt v1.1555,56. Different 
additional trimming were applied according to the library preparation method used. As random oligos (6N) 
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and low complexity tail (8N) introduced during TruSeq and Swift library preparation respectively would lead 
to artifactual cytosine methylation calling and low quality sequencing bases, nucleotide trimming is recom-
mended57,58. We tested parameters with different levels of stringency to optimize the trimming criteria in an 
effort to strike a balance between mapping rates and depth of coverage. For the QIAseq method, although no 
length information of the oligos used for random priming was provided from the library preparation protocol, 
we similary tested different parameters at varying strigency and arrived at the current parameters which balances 
amount of data loss (coverage depth) and mapping efficiency. The final trimming parameters were as follows: 
Swift:–clip_R2 18–three_prime_clip_R1 18; TruSeq:–clip_R1 8–clip_R2 8–three_prime_clip_R1 8–three_prime_
clip_R2 8; QIAseq:–clip_R1 10–clip_R2 10. Trimmed reads were checked by FastQC again before mapping to 
bisulfite-converted hg19 genome by bismark30.

To generate the bisulfite-converted reference genome, the hg19 genome sequences were firstly converted to 
both a C-to-T and a G-to-A version (equivalent to a C-to-T conversion on the reverse strand). Similarly, the 
sequencing reads obtained were also converted in the same fashion before alignment by bismark. The mapping 
parameters were: bismark –bowtie2 -p 4 –bam–score_min L,0,−0.2. The mapped reads were deduplicated by 
deduplicate_bismark and sorted by samtools v1.3 for further analysis59. Read duplicates were defined as two 
read-pairs with the same start and end positions. The depth of coverage distribution per chromosome was gen-
erated by Qualimap v2.2.160. Read depth of coverage and insert size were analyzed by Picard tools v2.18.1661. 
The effective depth was calculated after removing read duplicates and counting the overlapping bases only once. 
DNA methylated sites were identified, extracted and counted by bismark_methylation_extractor. Methylation 
level were computed by custom-made R scripts. Only CpG sites with depth of coverage >10x were considered for 
methylation analysis. Methylation array analyses were performed according to the workflow published by Lehne 
et al.25. All data analyses were conducted by custom-made bash and R scripts (R version > = 3.4.4).

Genomic features definition. All genomic features were defined based on hg19 genomic annotation 
Reference Sequence (RefSeq) database acquired from UCSC table browser62. Promoters were defined as regions 
of +/−1kb around transcription start sites63. Exonic and intronic regions were according to transcripts defini-
tion, after removing the promoter regions as defined above. Repeats regions were downloaded from UCSC table 
browser, after filtering for exonic, intronic and promoter regions as defined above. Intergenic region were defined 
as regions of the genome not overlapping with gene body, promoter or repeats regions as defined above.

statistical tests for comparisons between groups. One-way Analysis of Variance (ANOVA), followed 
by post-hoc Tukey HSD test were carried out to compare various performance metrices of the three library prepa-
ration methods (Swift, TruSeq and QIAseq). Paired t-test was used to assess the difference between NovaSeq and 
HiSeq X platforms. For other comparisons against average performance or null hypothesis of expected perfor-
mance (e.g. no GC bias), t-test or Wilcoxon/Mann-Whitney U test was applied as appropriate. The chi-square 
test was used to test for uniformity of coverage, with observed distribution corresponding to mean coverage in 
individual bins and expected distribution corresponding to overall mean coverage after removal of regions with 
no coverage in the gap regions. For the Bland-Altman plot, the difference between WGBS sample methylation 
level and array beta value were plotted against the average array beta values.
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