A Kleene Theorem for Nominal Automata

Paul Brunet

University College London, UK
paul.brunet-zamansky.fr
paul@brunet-zamansky.fr

Alexandra Silva
University College London, UK
www.alexandrasilva.org
alexandra.silva@ucl.ac.uk

—— Abstract

Nominal automata are a widely studied class of automata designed to recognise languages over

infinite alphabets. In this paper, we present a Kleene theorem for nominal automata by providing a
syntax to denote regular nominal languages. We use regular expressions with explicit binders for
creation and destruction of names and pinpoint an exact property of these expressions — namely
memory-finiteness — identifying a subclass of expressions denoting exactly regular nominal languages.

2012 ACM Subject Classification Theory of computation — Automata over infinite objects; Theory
of computation — Formal languages and automata theory

Keywords and phrases Kleene Theorem, Nominal automata, Bracket Algebra

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.107

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version A full version of the paper is available at http://hal.inria.fr/hal-02112892.
Supplement Material A Coq library is available on GitHub.

Funding ERC Starting Grant ProFoundNet (grant code 679127)
Paul Brunet: EPSRC project EP/R006865/1
Alezandra Silva: Leverhulme Prize (PLP-2016-129)

1 Introduction

Languages over infinite alphabets have been studied in a variety of contexts: query-based
languages [8], XML processing [19], URLSs [1], process calculi [5], etc. Accordingly, a number
of automata models have been introduced for these languages, either register-based, where the
state space is finite but registers are available for storing data, or based on nominal sets, where
the state space is infinite but can be represented finitely due to symmetries. The most general
classes of such automata are Kaminski and Francez’s finite-memory automata (FMA) [8],
in the register-based style, and Bojanczyk, Klin and Lasota’s nondeterministic orbit-finite
automata (NOFA) [4], in the nominal style. These two kinds of automata have been shown
to have the same expressivity [4], and equivalence is known to be undecidable [8, 16].

While automata are useful to process and compare languages, to specify languages it
is often more natural to use regular expressions; this is for instance the standard way of
denoting a path in an XML tree. To that effect, many classes of expressions have been
proposed [9, 12, 11, 18, 14]. The expressions from [14] capture the full class of languages
recognised by either FMA of NOFA, but having been developed for FMAs they are not
straightforwardly suitable to describe NOFA languages. Some of the other formalisms are
more natural in the context of nominal automata, but all fail to capture the full class, and
instead coincide with some (usually decidable) sub-classes.
? Paul Brunet and Alexandra Silva;.

5v icensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).

Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 107; pp. 107:1-107:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9762-6872
paul.brunet-zamansky.fr
mailto:paul@brunet-zamansky.fr
https://orcid.org/0000-0001-5014-9784
www.alexandrasilva.org
mailto:alexandra.silva@ucl.ac.uk
https://doi.org/10.4230/LIPIcs.ICALP.2019.107
http://hal.inria.fr/hal-02112892
https://github.com/monstrencage/BracketAlgebra
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

107:2

A Kleene Theorem for Nominal Automata

We define in this paper a new class of regular expressions for data languages, originally
motivated by applications to program verification, as part of larger framework called bracket
algebra. These expressions feature explicit allocation (, and deallocation ,) binders, and
may be used to generate nominal languages. We prove in this paper that they are in fact

a

able to describe every language recognisable by a NOFA.

Let us illustrate our syntax on simple examples. To make this discussion simpler, we
assume for now that our alphabet is an infinite set of names A. The first notion we present
is that of a-equivalence of words with binders. Here we choose to define a-equivalence as
the smallest congruence stable by permutation of bound or fresh names. For instance the
following pair of words is equivalent: (, a(,0,) (s @5 00 o) =a G0) (4d (e g o)-
Indeed, we may derive this as follows (we underline the redex at each step):

<aa<bba><aa’b><bba> b> :a<aa<cca><aac><bba> b>
@ <bb<ccb><ddc><aad> a>'

We then define well-formed words to be those without name capture, i.e. for every prefix
u(, , every {, in u must be matched with a corresponding ,). For instance (, a{,b,) ,) is
well-formed, but (, a{,a,) ,) is not, even though the two are equivalent. Now, consider
and). We

Q
—~
Q
IS
—~
e}
o
I
~
—~
U
QU
o
<~
o~
>
(=
U
<
=l
=~

regular expressions over an alphabet composed of names from A and binders {,

associate to such an expression e a nominal language (e) in several steps:

1) take the regular language [e] denoted by e;

2) compute its closure by a-equivalence [e¢]”, adding every word that is equivalent to some
word in the initial language;

3) restrict this language to its well-formed members;

4) erase the brackets.

Here are some examples:

L1 = ({,a,)) = A: the set of all atoms;

=((, (haby) ,)) = {ab | a # b}: two letter words made of different letters;

((, a .)*) = A*: the set of all words;

((Lalaa)) ={a1...an | n>0,V1 <i,a; # a1}: the set of words such that the
ﬁrst letter is different from all others;

Ls == ((, (,a)a))={a1...an | n>0,Yi <n,a; # a,}: the set of words such that the
last letter is different from all others;

L6 = ((,a({,b)(aa)) " (A+ b)) o)) = {a1az...a, | n > 0,Vi,a; # a;11}: the set of
non-empty words such that two consecutive letters are different;

7= (((e2)" ()) ={zFu{a"y™ | n <m}.

As one can see, this technique allows for the definition of a large class of nominal languages.

In fact this class is in some sense “too large” and contains languages that are not regular, like
for instance L7. To get a Kleene theorem, we therefore introduce a tractability condition: we
ask regular expressions to have a memory-finite language. Intuitively this means there should
be a number N such that any prefix of a word in the language has less than N unmatched
brackets. This condition is decidable by induction on expressions, and such expressions
generate exactly the class of languages recognisable by NOFAs. The main result of the paper
is an exact correspondence between memory-finite nominal languages and NOFA:

» Theorem 1 (Kleene Theorem). Let L be a nominal language. The following are equivalent:
(i) L is rational, that is L = (e) for some memory-finite reqular expression e.
(ii) L is regular nominal, that is recognisable by a NOFA.

P. Brunet and A. Silva

The paper is structured as follows. In Section 2, we define our notations, and recall
some elements of nominal automata theory. We introduce in Section 3 words with explicit
binders and define an a-equivalence relation for these words. To recognise this relation we
construct in Section 4 a nominal transducer. We then present in Section 5 our syntax for
regular expressions with binders, and prove in Section 6 our main result, a Kleene theorem
for NOFA. We briefly discuss related work in Section 7. We omit some proofs in this paper,
but a longer version is available on HAL.

This paper is part of a larger research program developing a framework to reason about
programs with explicit resource (de)allocation. A companion paper describing the algebraic
framework of bracket algebra and a hierarchy of nominal languages can be found online, as
well as a Coq formalisation of the framework.

2 Preliminaries

The set of finite subsets of a set A is denoted by P (A). If A is finite, its cardinal is denoted
by #A € N. The set of words over an alphabet ¥ is written X*. The empty word is denoted
by e, concatenation of words u and v is written wwv, and |u| is the length of word w. For
w € ¥* and z € ¥, |w|, is the number of occurrences of x in w. We write |w] for the
set of letters appearing in the word w, i.e. |w] = {z € ¥ | |w|, > 0}. We denote the i*"
letter of a word u by u;, for 0 < @ < |u|. The set of prefixes of a language is defined as:
pref (L) :={u e ¥* | Jv:uv € L}.

Given a set A, and B C A, the set B™ of shuffles of B consists of the lists without
repetitions of elements from B: B™ := {le€ B* | [||=#BA MO <i<j<|l|, l; #1,)}.
Observe that if w € B>, then {a | 30 < i < |w| : w; = a} = B. We say that a list [€ A* is
duplication-free, written I € A®) when I € {a |30 <i < |l| : l; = a}™.

Rational expressions over an alphabet ¥ are terms generated by the following grammar:
e,feRat(X)y==0 | 1|1l | e+ f | e-f | e, wherel ranges over the alphabet 3. Such
a term e denotes a language [e], defined in the usual way:

[o] := 0, [={et, le-fI:={w |uele]rvelfl},
[e+ f1:=1Te]UTfD, 1] :={i}, le*] :==[e]” = {u1...un | n € NAVi,u; € [e]}.

2.1 Nominal sets

We fix an infinite set A of atoms (also called names), and write Sp the set of finitely supported
permutations over A. These are bijections 7 such that there is a finite set a C A such that
a ¢ a = m(a) = a. In the following we let a,b,... range over A and a,b,... range over finite
sets of atoms. The inverse of a permutation 7 is written 7~ . The permutation exchanging a
and b, and leaving every other name unchanged, is written (a b). We say that a permutation
7 fixes a finite set a C A, written 7 L a, when Va € a, 7(a) = a.

A set X is called nominal if it can be equipped with two functions, respectively action
— - —:6a x X — X and support supp (—) : X — Py (A), satisfying Vo € X, Vr, 7' € Ga,:

m Lsupp(z) = 7 2 == (1)
supp (m-2) = {a €A | 77" (a) € supp (z)} . (f2)
7 (n'x)=(ron') x (t3)

107:3

ICALP 2019

http://hal.inria.fr/hal-02112892
http://paul.brunet-zamansky.fr/Brackets/

107:4

A Kleene Theorem for Nominal Automata

Intuitively, this means that we may replace a name by another in any element of X, and
that each element of X only depends on a finite number of names. We say that a permutation
7 fixes a subset Y C X also written 7 L Y if Vy € Y, 7 -y = y. This enables use to state (}1)
as m L supp (z) = 7 L . We say that the name qa is fresh for , and write a # x, whenever
a ¢ supp (z). We will also use the notation X |; to mean {z € X | supp (z) C a}.

» Remark 2. In Pitts’ book [17] a nominal set is defined as a Ga-action such that every
element has some finite support. From conditions (1) and (t3) we infer that X is a nominal
set as in [17]. Furthermore, condition (}2) enforces that supp () is the least finite set that
supports z, so our notion of support coincides with the one introduced in [17]. For Coq
implementation considerations, we chose to include the support function in the definition.

For the rest of this section, we fix a nominal set X. Given x,y € X, we say that x and y
are in the same orbit, written & ~¢ y, if there exists m € G such that z = 7 - y. This is an
equivalence relation, and its equivalence classes are called orbits. A subset Y C X is called:

strict if it has no symmetries, i.e. (f1) holds as an equivalence: m L supp (y) < 7 L y;

equivariant if for every permutation m € Gp, we have 7 -Y =Y, meaning

VreBa,VyeX,yeY on-yey;

finitely supported if there is a finite a C A such that 7 L a entails 7-Y =Y
orbit-finite if Y only intersects finitely many orbits;
tractable if it is both orbit-finite and finitely supported.

» Remark 3. In Bojariczyk [2, 3] terminology, what we call tractable sets are simply called
orbit-finite, even though these are sets that are both orbit-finite and finitely supported.
We chose a different name to avoid confusion as in other papers orbit-finite sets are not
necessarily finitely supported.

In the following, we will use the following results adapted from [3]:

» Lemma 4 (Simple extension of Lemma 3.5 in [3]). Every tractable set can be expressed as
the image of a tractable set of words from A* by some equivariant function.

» Lemma 5 (Fact 3.6 in [3]). Tractable sets are closed under finite unions and products, and
under finitely supported subsets.

2.2 Nominal automata

Let ¥ be an orbit-finite nominal alphabet. A nominal automaton (NOFA) over ¥ is a
structure A = (Q,X, A, I, F) where @ is a tractable state space, I, F C @ are finitely
supported sets of respectively initial and final states, and A C Q x ¥ x @Q is a finitely
supported transition relation. This definition corresponds to Bojanczyk, Klin, and Lasota’s
“orbit-finite automata” [4]. We define the automaton’s path relation in the usual way, by
saying that p =4 p and whenever p — 4 ¢’ and (¢',x,q) € A then we also have p a4 q
Notice that since A is finitely supported, so is the path relation. The language recognised by
such an automaton is defined as usual as the set of traces leading from an initial state to a
final state:

LA :z{wGE*‘3<qi,qf>€~’><Fiqii>Aqf}-

Nominal regular languages are those recognised by nominal automata.

P. Brunet and A. Silva

» Remark 6. In the literature, the name “Nominal automaton” is sometimes used to refer to
a different class of automata, where the tractability requirement is replaced by orbit-finite
and equivariant. These two classes define the same languages: an equivariant automaton is a
particular case of a tractable one, and any tractable automaton with support a might be seen
as an equivariant automaton by replacing the set of atoms A with the set A\ a. However, we
feel that our approach leads to more intuitive encoding of some natural languages. Consider
for instance the language a - A* of words over A starting with the letter a € A. This language
is not equivariant, therefore to represent it with an equivariant automaton one needs to
remove the name a from the set of names, considering instead the alphabet A as a nominal
set over the set of names A\ {a}. We feel this is a bit counter-intuitive. However, it may be
represented by a simple tractable automaton with two states p and ¢, with p initial, g final,

a transition p — ¢, and transitions ¢ LN q for every name b € A.

We will later on rely on the following properties of nominal automata.

» Lemma 7. FEvery nominal automaton is language equivalent to a mominal automaton
whose state space is strict.

» Lemma 8. Nominal automata enjoy e-elimination.

A nominal automaton is called deterministic (DOFA) if it has a single initial state and
its transition relation is a deterministic function, i.e. if we have two transitions (p,z,q) €
AA(p,z,q¢'y € A, then g = ¢’. Languages recognised by DOFA form a strict subclass of the
regular nominal languages. E.g. the language over A of words with the last letter distinct
from all others is regular nominal but cannot be recognised by a DOFA: intuitively to check
for membership one needs to guess what will be the last letter before reading the word. There
is also a significant complexity difference: equivalence of DOFA is decidable in polynomial
time [15], the corresponding problem for NOFA is undecidable [16].

» Lemma 9. Regular languages can be recognised by deterministic nominal automata.
Proof. Regular languages can be recognised by deterministic finite state automata. Being
finite, such automata are also tractable, thus deterministic nominal automata. |
2.3 Nominal transductions

We will make intensive use of transductions in this paper. A nominal transducer is a nominal
automaton over an alphabet of the shape (X U {e}) x (I’ U {e}). For a nominal transducer 7,
we may define its path relation —[—/—]—g and the binary relation Rq it recognises:

- p —[w/w'l=5q (¢, (x,2'),q) € A
p—le/el=ap p —[wz/w'r =T q

Ry = {{u,v) € ¥* xI'™ | (g, qp) € I x F : ¢; —[u/v]—=75 ¢s}.

A binary relation R C ¥* x I'* is called a nominal transduction if it is recognised by some
nominal transducer. For a transduction R, we will sometimes see R as either a function
¥* — P (I'*) or a function P (¥*) — P (I'*), writing:

weX*, Ru):={vel*|uRuv} LCY R(L):={vel*|FueLl:uRv}.
This should not introduce any ambiguity, thanks to typing considerations.

» Lemma 10. Nominal regular languages are stable under nominal transductions.

107:5

ICALP 2019

107:6

A Kleene Theorem for Nominal Automata

Proof. Let 3, A be two tractable alphabets, and ¥/ := (X U {e}) x (T U {e}). Consider a
nominal automaton A = (@1, X, Ay, I1, F1) and a nominal transducer T = (Q2, ¥/, Ay, I, Fb).
We want to show that the language Rg (L£4) is regular nominal, by building a nominal
automaton T (A) with e-transitions. Its states are in Q1 X @2, with initial and final states
respectively I7 X Iy and Fy x Fy. Its transition relation is given by:

A={{{p1.p2) . {q1,42)) | Fy: (p1,y, 1) € A1 A {p2, (y,2) . q2) € Az}
U{{(p1,p2), 2, (P1,42)) | (D2, (€,2) ,q2) € Ao} <

3 Words over an alphabet with binders

For the rest of the paper, we fix an orbit-finite nominal set X of variables, to represent our
alphabet. We consider words built out of variables, left and right binders, respectively written
(, and). These binders are meant to represent the creation and destruction of names.

We now introduce a notion of a-equivalence for these words. This relation will be a
congruence stable under substitution of “local” names: for instance the words (, ,) and (, ;)
are equivalent. The definitions in this section are straightforward adaptations from [7].

Formally, we define our alphabet by :=XU{{, | a € A}U{,) | @ € A}. This alphabet
can be endowed with a nominal structure in the obvious way, by setting 7 - (, = (W()
T 4) = pa))> and supp ((,) = supp(,)) = {a}. In the following, a word with binders
will be an element of *, that is a finite sequence of letters from the alphabet . Words
with binders come with a natural nominal structure: the action is defined by applying the
alphabet action letter by letter, and the support of a word is the union of the supports
of its letters.

Before we define a-equivalence, we need to introduce the notion of binding power of a
word with binders. The purpose of this notion is to keep track of the occurrences of each name
along a word, and enable us to decide whether a particular name is local to the word, and
more generally to get a precise account of the way the name is used in the word, from the point
of view of the context. The binding monoid B is defined as the free monoid over the three
element set {c, f,d}, quotiented by the identities: f-f =f, ¢-f =¢, f-d=d, and c-d ==.
The letters c, f, d are meant to represent that a name might be created, free or destroyed.
An important property of this monoid is the following, as noticed in [7]: every element of B
can be uniquely represented in the form d™f"c?, with (m,n,p) € N x {0,1} x N. We use
this remark to define the size! of a binding element b € B as [d™f"c?| = m + p.

The binding power of a letter [€ with respect to a name a € A, written F, (), is
computed as follows:

_J ¢ (a=D) _Jd (a=0) o) f (a€supp(x))
R ={¢ 02 mw={ 7o) = {

(a #b) c (a#a)

The function F may be extended to words naturally as a monoid homomorphism, by setting
Fo(e) =€ and F, (lw) = Fy (1) - Fu (w). If Fy(u) = d™f"c? with n € {0,1}, we define
d, (u) :==m, f, (u) :=n, and ¢, (u) := p. This is well defined thanks to the uniqueness of
such representations. This function is equivariant, in the sense that Fr(q) (7 - u) = Fqo ().

The weight of a word u is the sum of the sizes of its binding powers: [|ul| 1= >, ca |Fa (u)] .
This sum is finite, since for every name a outside the finite set supp (u) we know that the
binding power of u with respect to a is ¢, so |F, (u)| = 0. The memory of a word u is the

maximum weight of a prefix of u, i.e. m (u) ;= max {||v]| | Jw € *:vw = u}.

I Since the size of a Boolean is constant, we do not count n in the size of d™f"c?. This simplifies a
number of computations.

P. Brunet and A. Silva

Table 1 Alpha-equivalence.

U=q UV V=qW W1 =q W2 W1 =q W2]
E=n ¢ (ae) U =g W (at) w1l =4 wal (ar) lwy =4 lwo ()
aou b, u ()
oo
<aua> “a <b(a b) 'ub>
(a) Definition of Alpha-equivalence.
U=q U=>0V=¢q U (1) U=q U=>VT, T-U=q T -V 4)
u=qvAu =4 v = uu =, v (2) U=q 0= |u| =y (5)

u=q v =Va, F, (u) = F, (v) (3)

(b) Properties of Alpha-equivalence.

We use the binding power to define the following: a is balanced in the word w, written
a o w, if F, (w) € {f,e}; a is a-fresh in w, written a #, w, if F, (w) = ¢; the a-support of
w, written supp,, (w), is the set of names a such that F, (w) # €. Notice that supp,, (w) C
supp (w). Therefore, we get that w(a) #, 7 - u if and ounly if a #, u, and similarly for
m(a) € supp,, (7 - u) and 7w(a) o 7 - u.

We may now define the a-equivalence relation over words. It is the smallest congruence
such that applying the transposition (a b) to a word where a and b are a-fresh yields an
equivalent word. We give the formal definition of =, in Table la and list some of its
properties in Table 1b. The propositions (1) and (2) state that =, is symmetric and that
concatenation is compatible with =, which together with (ag)and (at)establishes =, as a
congruence, while (3), (4), and (5) are necessary preservation properties of =,. The proofs
of these results follow a simple induction of proof trees.

Note that the deduction system we provided for =, is not a priori equivalent to the
informal description we gave before. However, the correspondence can be proved in the sense
that the same relation is obtained if we replace rule (a«) with the following rule:

aF#,u b#Lu
———— (ad)
u=q (ab) u
However, this proof is not straightforward: («a’) obviously implies (a«) (as the latter may be
seen as an instance of the former), but the converse direction is more subtle. Unfortunately,
this is the most interesting direction, as it is necessary to show that words quotiented by
=, form a nominal set, with the support function supp,, (). This property may however be
established using the transducer presented in the next section.
We say that a word u is well-formed when for every decomposition u = us(, u2, we have
¢e (u1) = 0. Intuitively, this means that there is no name capture for bound variables. The
set of well-formed words is written W.F, and we define wf (u) :={v | v =4 v Av € WF}.

4 A transducer for a-equivalence-checking

The problem that arises when trying to prove statements like (aa)is that a-equivalence is
not preserved in the inductive calls: the property uxr =, vy does not entail u =, v. In this
section we introduce a nominal transducer recognising the relation =,. The reachability

107:7

ICALP 2019

107:8

A Kleene Theorem for Nominal Automata

relation in this transducer will give us more powerful proof techniques, allowing us to perform
proofs by induction. This transducer serves several purposes: it provides us with a decision
procedure for =,, enables us to show that («aa’) is admissible, and will be used here as a
bridge between nominal automata and rational expressions over

4.1 Stacks

The states of this transducer will consist of lists of pairs of atoms, called stacks in the
following. Before we define the transducer, we introduce some useful notations. Stacks are
generated by the following grammar: s € S =[] | s::{a,b), where a,b range over names.
Hence S is isomorphic to (A x A)*. We will also use the notation s::t for the concatenation
of the two stacks s,t € S. We write py (s) for the word over A obtained by erasing the second
components of every pair in s, and symmetrically ps (s) when we erase the first components.
For instance p; ([] :: {a, b) :: {¢,d)) = ac, and ps ([] :: {a,) :: (¢, d)) = bd.
Stacks can be endowed with a canonical nominal structure defined by:

7] =] m-(s::{a,b)) :=7-s::{(w(a), w(D))
supp ([]) i= 0 supp (s (4, b)) i= supp (5) U {a, } .

Note that supp (s) = supp (p1 (s)) Usupp (p2 (s)) = [p1 (s)] U [p2 (s)].

The pivotal notions for stacks are the validates predicate and the pop function. We say
that a stack s validates the pair (a,b), written s = (a,b), when either a = b and a # s, or s
can be decomposed as s = s':: {a,b) :: " in such a way that a ¢ |p1 (s”)] and b ¢ |p2 (s”)].
When s validates {(a,b), we may pop the pair from s, yielding the stack s © (a,b) defined by:

a ¢ supp (s) ad [pr(s) b [pa(s)]
sO{a,a):=s (s::{a,b)::8")O{a,b) :=s::5".

4.2 Equivalence transducer

We now define the equivalence transducer 7T, recognising =,. Strictly speaking, this will
not be a nominal transducer, as we will discuss later on. Its state space is S, with initial
state [], and the set of accepting states S consists of all stacks s containing only reflexive
pairs, i.e. such that p; (s) = pa (s). The transition relation —[—/—]—q_ is defined by:

s —l{a /(] 270 s::{a,b)
s = (a,b) s —[a)/)27, $©(a,b)
Va € supp (z), s E (a,7(a)) = s —[z/m-x]—>3, s

4

Note that this relation is functional, in the sense that for every triple (s,{,I') € S x x

there exists at most one stack s’ such that s —[l/I'| >, .

This transducer over an
infinite state space is equivariant, as one can easily check that s —[u/v]—g, s’ entails
w8 —[m-u/m-v]—=g, w5 However, it is not orbit finite. This seems to be unavoidable
since there are infinitely many a-equivalence classes (in particular, words of different length

cannot be equivalent).
» Theorem 11. The relation Ry, is exactly =,.

The full proof has been done in Coq. The following technical lemma allows one to relate the
binding power of a word with the stack contents:

P. Brunet and A. Silva

» Lemma 12. Whenever s —[u/v]—g, s’ the following identities hold:

P2 ()]0 = (Ip1 (5)]q = da () + ca (u) Ip2 ()]0 = (12 (5)]q = da (v) + ca ().
(Where =~ is the truncated subtraction.)

This lemma has the following corollaries:

» Corollary 13. If [| —[u/v]—=g, s —[u/ /v] =, s then |s| < m (uu').
Proof. By Lemma 12, and since [—[u/v]—g_ s, we have |s| = > co (u) < [lul|. Since
|u|l € m (uu’), the result follows. <

» Corollary 14. For any words u,v of length n, the following are equivalent:
(i) wu=qvand ve WF;
(ii) there are stacks sq . ..sn such that so =[], s, € S%¢, for every index 0 < i < n we
have s; —[Uit1/Viv1]—T, Si+1, and for any index 0 < ¢ < n and name a we have
Ip2 (s3)], < 1.
These results allow us to show that the following are nominal transductions:
=57 {{u,v) | u=o v Am(u) < n}

«

wi” = {{u,v) |[u=qvAm(u) <nAveWF}.

» Theorem 15. For any n € N, both =S™ and wf™ are nominal transductions.

Proof. Thanks to Corollary 13, we know that =S$" is recognised by T,, restricted to states
SS™, made up of stacks of length less that n. This is a tractable set, by Lemma 5. Combined
with Corollary 14, this proves that wf™ is recognised by T, restricted to stacks such that
|s| < n and Va,|ps(s)|, < 1. This set of stacks being an equivariant subset of SS", by

Lemma 5 it is also tractable. <

5 Memory-finite rational languages

In this section we consider regular languages over , i.e. languages [e] for some e € Rat {).

We may lift a-equivalence to languages by first defining the a-closure of a language L as:
LY:={ue *|FwelL, u=,v}.

Now we say that two languages are equivalent if their a-closures are equal.

We lift the support function from to Rat() in the canonical way: for letters in we
use the supp (—) function from the nominal structure of the alphabet, the support of 0 and
1 is the empty set, the support of e* is that of e and the support of both e + f and e f
is supp (e) Usupp (f). This definition is an over approximation of the pointwise lifting of
the support function on words: indeed Uue[[e]] supp (u) C supp (e). Note that supp (e) is

always finite, and supports [e] in the sense that whenever 7 L supp (e), we have 7 - [e] = [e].

*

A language L C is called memory-finite if there exists a bound N such that Yu €
L,m (u) < N. A rational expression is memory-finite if its language is memory-finite.

» Lemma 16. For any rational expression e, the following are equivalent:
(i) e is memory-finite;

(ii) the set {F, (u) | u € [e], a € A} is finite;

(i) Vu € [e], m (u) <2 X |e].

(Where |e| is the number of occurrences of letters in e.)

107:9

ICALP 2019

107:10 A Kleene Theorem for Nominal Automata

This lemma was proved in Coq. The following result is of independent interest:
» Theorem 17. If e is memory-finite, then [e]” is recognisable by DOFA.

Proof. Let N be the memory of [e]. By definition, this means that [e]” is equal to
the language =SV ([e]). However, the automaton built by applying the construction
from Lemma 10 does not yield a deterministic automaton, even if the input automaton is
deterministic. Fortunately, in the present case we can determinise the resulting automaton.
To do so, we will rely on the following technical result about T, which was established using
Coq: for every word u € *, there is a word ¢r (u) € A* such that for any stack s and word v:

| =[u/v]=g s = p1(s) = tr(u) [=[v/u]=7 5= pa(s) = tr(u).

Notice that this implies that supp (¢ (u)) C supp (u): indeed since u =, u there is a stack s
such that [| —[u/u]—=7, s, so tr (u) = p; (s), and according to Lemma 12 whenever a € p; (s)
we have ¢, (u) # 0 which implies a € supp (u).

Let A =(Q,%,0,q0, F) be some deterministic finite-state automaton for [e], with ¥ €
Ps(). We write a for the finite set of names mentioned in the finite alphabet 3: a :=
U,ex supp (1) C supp (e). Notice that this means that 7 L a = 7 L ¥*. Without loss of
generality, we assume that J is a partial function @ x ¥ — @ and that A has no sink-state:
for any state ¢ € @, there exists a word u € ¥* such that d (¢,u) € F. If we look back at the
proof of Lemma 10, we see that the states in the automaton we get for =S~ (A) are pairs
of a state from @ and a stack from SSV := (A2)<N. Now, let us do the standard powerset
construction on this automaton: we get an automaton A’ :=(Q’, ,¥,q}, F’) where:

Q =P (QxSN); a = {{q0. N }; Fi={qeQ | qn(F xs") #0};
3(q,0) ={(d,s") | Ia,s) € ¢, € B: ¢ =d(q,1) Ns —=[I'/l] =7, s}
Unfortunately, the state space @)’ is not tractable, since it is not orbit-finite. However, as
we will now prove, the subset of reachable states is tractable. Therefore if we restrict A’ to
its reachable part we get a language-equivalent DOFA. A state ¢ € Q' is reachable if there

exists a word v such that ¢'(¢q),v) = ¢. By unfolding the definitions, we can see that q is
reachable by the word v when the following equivalence is satisfied:

Vg,s:{q,8) €q< Ju:q=>05qo,u) [—[u/v]—=7, s

This implies that V (g, s) € q, p2 (s) = tr (v), and p;y (s) = tr (u) for some u € pref ([e]). This
second condition tells us that p; (s) € @SV which is a finite set. Hence the set of reachable
states is contained (modulo isomorphism) in the set: Q := P (Q x aS") x ASN. This set
being the product of a finite set with a tractable one, it is tractable. Notice that the set of
reachable states is supported by the finite set a: indeed if 7 | a, then we already know that
m L 37* so if ¢ is reachable by the word v, then 7 - ¢ is reachable by 7 - v since:

(g.s) €T qg& {qgm " s)€qe Tuiqg=25(qo,u) N[—[u/v]—=7, 71 s

< Ju:q="6(qu)Am-[| =[r-u/m-v]>g, s
& Ju:q=0(q,u) N[—[u/7-v]=g, s.

We conclude that the set of reachable states is tractable by applying Lemma 5, which tells
us that a finitely supported subset of a tractable set is tractable. <

We may use expressions over to generate languages over X as follows: the language
generated by a term e € Rat (), written (¢), is the set of words obtained by erasing the
brackets from the well-formed words from [e]*. In other words, if we denote by 1 the monoid
homomorphism defined by n ({,) =n(,)) =€ and n(z) = x, we have (e) := n (wf ([e])).

P. Brunet and A. Silva

6 Kleene Theorem

In this section, we show that regular nominal languages over X are exactly those generated
by memory-finite rational expressions. To that end, we call a language L rational if there is
some memory-finite expression e such that L = (e). One direction is immediate:

» Lemma 18. For any memory-finite expression e, () is reqular nominal.

Proof. Since e is memory-finite, according to Lemma 16, every word in e has memory less
than 2 x |e|. Therefore, wf ([e]) = wf>*/! ([e]). By the classic Kleene theorem [e] is regular
and thanks to Theorem 15 we know that wf?*!¢l is a nominal transduction. Since we may
also see easily that 7 is a nominal transduction, the statement follows from Lemma 10. <«

We now show that nominal regular languages are rational. We fix a nominal automaton
A = (Q,X,A,I,F), and assume without loss of generality that its state space is strict,
equivariant and orbit-finite. We also fix a finite set ag C A that supports I, F and A. As a
first step, we will find a finite sub-automaton of A that is “large enough” to describe the
language of A. We do this by picking a finite set a C A such that:

Vo e IUFUA, 3 e TUFUA:supp(f) CaAdn:m LagAnm-8=a.

Such a set always exists: we just need to pick a representative per orbit, and take the union
of their supports. As a shorthand, we write &y for the set of permutations over A\ ag,
i.e. the permutations m € Ga such that 7 fixes ag. We then define the finite automaton

A lai={(Q la, X |5, A |a, I |a, F |a). We can relate the runs of A |5 to those in A as follows.

» Lemma 19. For any letters (x;), _, and any states (¢;), . t.fa.e.
(i) there is a run po 4 P1-.. 54 Pn
(ii) there is a run qo EATH la Q1" ELIH la @n and a sequence (ﬂ-i)&wn from &g such that
7o - go = po and Vi > 0 we have 7; - (¢i—1,Yi, @) = (Pi—1, T4, Di)-

We now define a finite automaton A’ over the alphabet |3*. The state space of this
automaton will be Q' := Q |a U{qo,qs}, with go and gy fresh states, respectively the initial
and final states. We build its transitions as follows:

(ag ~lan _
1. we have gg ——+ g € A’ for any q € I |5, and any word a; ...a, € (ap Usupp (¢))™;
ap) o an) _
2. we have ¢ ——"— q; € A’ for any g € F |5, and any word a; .. .a, € (supp (q) \ ap)™"

(ay Sap T oy o)

)

g € A’ for every transition p —» Als ¢ and any pair of words:

a

3. we have p

ai ...a, € ((supp (q) Usupp (z)) \ (supp (p) U ay))"™

by ...by € ((supp (p) Usupp (z)) \ (supp (q) Uag))™

Since we have only a finite number of transitions, we know that this automaton may be
transformed into a finite state automaton over |5, therefore thanks to Kleene’s theorem
there is a rational expression e € Rat () such that [e] = L£4/. We now need to check that e
is memory-finite and that (e) = L. For the first property, we show the following lemma:

» Lemma 20. For every run qo —4 q € Q |a, the word w € WF, m (w) < #a and either
a € supp (¢) Uag and F, (w) =c, or a & supp (¢) Uag and F, (w) = ¢.

This entails that [e] € WF and m (e) < #a. Lemma 20 will also serve in the next proof.

107:11

ICALP 2019

107:12 A Kleene Theorem for Nominal Automata

*

» Lemma 21. For any w € *, the word w belongs to wf (EAr) if and only if there

Un

. . Uo U1
is a sequence of permutations my...Tp41 € Go and a Tun Qo —A4r @1 —Ar T —a

Qa1 Mm/ gy such that w = (mo - up) ... (Tnt1 - Uny1) ond VO <i <, mi—1 - ¢ =T - G;.

From Lemmas 19 and 21 it is not hard to see that our construction is correct, thus proving
that every regular nominal language is rational.

» Theorem 1 (Kleene Theorem). Let L be a nominal language. The following are equivalent:
(i) L is rational, that is L = (e) for some memory-finite reqular expression e.
(ii) L is regular nominal, that is recognisable by a NOFA.

7 Related work

Schroder at al’s regular bar-expressions [18] enjoy a Kleene-like theorem. Regular bar-
expressions add an operator |, to the alphabet, intuitively writing an a on the right-hand
side of the bar, and hiding it from the left-hand side. These expressions are equipped
with two semantics, called “local” and “global” freshness. Under “local” freshness, the
class of automata represented by these expressions is a strict subset of the class of nominal
automata, where no name may be guessed (i.e. for every transition p 2y ¢ we have supp (9) C
supp (p) Usupp (z)), and where a policy of “name dropping” is enforced: a name may be in
the support of a state only if it will appear later. For instance, this precludes recognising the
languages Lo and Ls from the introduction. Under “global” freshness however the situation is
more contrasted. With this semantics, the expressive power of bar-expressions is incomparable
with that of memory-finite expressions. Indeed, they can denote the language of words
where all the letters are different by |a*, but cannot denote Lz := ((, a ,)*) = A*. However
if we drop the memory-finite requirement, one can translate bar-expressions into regular
expressions over by replacing every occurrence of |a with (, @ and suffixing the expression

with (ZaeSupp(e) a))*. For instance the term |a* is sent to the expression ({,a)* ,)*. In
this case, our well-formed predicate corresponds to the clean predicate used to define the
global freshness semantics, and this transformation preserves languages. This means that
unrestricted expressions with brackets are strictly more expressive than bar-expressions.

In a study of Nominal Kleene Algebra [11, 10, 6], NKA expressions were introduced,
and half a Kleene theorem for NOFA was proved. These expressions feature a unary v,(e)
operator to make a name a local to an expression e. These expressions do not allow the
interleaving of scopes, thus failing to capture languages such as 5 from the introduction.

Kurz et al. [13] considered regular expressions with binders. However, their framework
only accounts for well nested brackets, thus not covering many of the languages we consider.
They present a Kleene theorem for history-dependent automata that incorporates a bound on
the nesting depth of binding, rejecting words that exceed this depth, which is the analogue
restriction at the automaton level of our memory-finiteness property at the language level. It
is unclear whether HD-automata could be generalised to accommodate interleaving of scopes.

On the other hand Libkin and Vrgo¢’s reqular expressions with memory [14] enjoy a full
Kleene theorem with register automata. Since register automata and nominal automata are
equi-expressive, this means that regular expressions with memory are as expressive as our
memory-finite expressions. They are however quite different in style. The point of view they
choose is that of data words: they assume a finite alphabet ¥ and an infinite set of data
values D, and consider languages over the alphabet ¥ x D, i.e. each letter carries a data
value. The key feature of their syntax is to use annotation on letters. They fix a number
of variables z; ...z, and use regular expressions over an alphabet made of elements of the
shape a[c]{I where a is a letter from X, T is a subset of the variables, and ¢ is a boolean

P. Brunet and A. Silva

formula that may use atomic predicates x;~ and mf These expressions are then interpreted
as ternary relations, linking two k-tuples of data values with data words. In effect, this
amounts to simulating the run of a register automaton where the k-tuples of data values
represent the content of the registers.

—— References

1

10

11

12

13

14

15

16

17

18

19

Michal Bielecki, Jan Hidders, Jan Paredaens, Jerzy Tyszkiewicz, and Jan Van den Bussche.
Navigating with a Browser. In ICALP, pages 764-775, 2002. doi:10.1007/3-540-45465-9_65.
Mikotaj Bojanczyk. Nominal Monoids. Theory of Computing Systems, 53(2):194-222, 2013.
doi:10.1007/s00224-013-9464-1.

Mikotaj Bojarniczyk. Slightly Infinite Sets. A draft of a book, 2017. URL: https://wuw.mimuw.

edu.pl/~bojan/paper/atom-book.

Mikotaj Bojanczyk, Bartek Klin, and Stawomir Lasota. Automata theory in nominal sets.
Logical Methods in Computer Science, 10(3):1-44, 2014. doi:10.2168/LMCS-10(3:4)2014.
Benedikt Bollig, Peter Habermehl, Martin Leucker, and Benjamin Monmege. A Robust Class
of Data Languages and an Application to Learning. Logical Methods in Computer Science, 10,
2014. doi:10.2168/LMCS-10(4:19)2014.

Paul Brunet and Damien Pous. A Formal Exploration of Nominal Kleene Algebra. In MFCS,
2016. doi:10.4230/LIPIcs.MFCS.2016.22.

Jamie Gabbay, Dan R. Ghica, and Daniela Petrigsan. Leaving the Nest: Nominal Techniques

for Variables with Interleaving Scopes. In CSL, volume 41, 2015. doi:10.4230/LIPIcs.CSL.

2015.374.

Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329-363, 1994. doi:10.1016/0304-3975(94)90242-9.

Michael Kaminski and Tony Tan. Regular Expressions for Languages over Infinite Alphabets.
In Computing and Combinatorics, 2004. doi:10.1007/978-3-540-27798-9_20.

Dexter Kozen, Konstantinos Mamouras, and Alexandra Silva. Completeness and Incomplete-
ness in Nominal Kleene Algebra. In RAM:iCS, 2015. doi:10.1007/978-3-319-24704-5_4.
Dexter Kozen, Konstantinos Mamouras, Alexandra Silva, and Daniela Petrigan. Nominal Kleene
Coalgebra. In ICALP, volume 9135, pages 290-302, 2015. doi:10.1007/978-3-662-47666-6.
Alexander Kurz, Tomoyuki Suzuki, and Emilio Tuosto. A Characterisation of Languages on
Infinite Alphabets with Nominal Regular Expressions. In TCS, pages 193-208, 2012.
Alexander Kurz, Tomoyuki Suzuki, and Emilio Tuosto. On Nominal Regular Languages with
Binders. In FoSSaCS, pages 255-269, 2012.

Leonid Libkin, Tony Tan, and Domagoj Vrgo¢. Regular Expressions for Data Scientists. Journal
of Computer and System Sciences, 81(7):1278-1287, 2015. doi:10.1016/j.jcss.2015.03.005.
Andrzej S Murawski, Steven J Ramsay, and Nikos Tzevelekos. Polynomial-Time Equivalence

Testing for Deterministic Fresh-Register Automata. In MFCS, 2018. doi:10.4230/LIPIcs.

MFCS.2018.72.

Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings
over infinite alphabets. ACM Transactions on Computational Logic, 5(3):403—435, 2004.
doi:10.1145/1013560.1013562.

Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, New York, NY, USA, 2013.

Lutz Schroder, Dexter Kozen, Stefan Milius, and Thorsten Wilmann. Nominal Automata
with Name Binding. In FoSSaCS, pages 124-142, 2017. doi:10.1007/978-3-662-54458-7_8.
Thomas Schwentick. Automata for XML — A survey. Journal of Computer and System
Sciences, 73(3):289-315, 2007. doi:/10.1016/j.jcss.2006.10.003.

107:13

ICALP 2019

http://dx.doi.org/10.1007/3-540-45465-9_65
http://dx.doi.org/10.1007/s00224-013-9464-1
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book
http://dx.doi.org/10.2168/LMCS-10(3:4)2014
http://dx.doi.org/10.2168/LMCS-10(4:19)2014
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.22
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.374
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.374
http://dx.doi.org/10.1016/0304-3975(94)90242-9
http://dx.doi.org/10.1007/978-3-540-27798-9_20
http://dx.doi.org/10.1007/978-3-319-24704-5_4
http://dx.doi.org/10.1007/978-3-662-47666-6
http://dx.doi.org/10.1016/j.jcss.2015.03.005
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.72
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.72
http://dx.doi.org/10.1145/1013560.1013562
http://dx.doi.org/10.1007/978-3-662-54458-7_8
http://dx.doi.org//10.1016/j.jcss.2006.10.003

	Introduction
	Preliminaries
	Nominal sets
	Nominal automata
	Nominal transductions

	Words over an alphabet with binders
	A transducer for alpha-equivalence-checking
	Stacks
	Equivalence transducer

	Memory-finite rational languages
	Kleene Theorem
	Related work

