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Pure-state entanglement transformations have been thought of as irreversible, with reversible transformations
generally only possible in the limit of many copies. Here, we show that reversible entanglement transformations
do not require processing on the many-copy level but can instead be undertaken on individual systems, provided
the amount of entanglement which is produced or consumed is allowed to fluctuate. We derive necessary and
sufficient conditions for entanglement manipulations in this case. As a corollary, we derive an equation which
quantifies the fluctuations of entanglement, which is formally identical to the Jarzynski fluctuation equality
found in thermodynamics. One can also relate a forward entanglement transformation to its reverse process in
terms of the entanglement cost of such a transformation, in a manner equivalent to the Crooks relation. We
show that a strong converse theorem for entanglement transformations is formally related to the second law of
thermodynamics, while the fact that the Schmidt rank of an entangled state cannot increase is related to the third
law of thermodynamics. Achievability of the protocols is done by introducing an entanglement battery, a device
which stores entanglement and uses an amount of entanglement that is allowed to fluctuate but with an average
cost which is still optimal. This allows us to also solve the problem of partial entanglement recovery, and in fact,
we show that entanglement is fully recovered. Allowing the amount of consumed entanglement to fluctuate also
leads to improved and optimal entanglement dilution protocols.
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I. INTRODUCTION

Entanglement is generally regarded as the essential feature
of quantum mechanics. Originally introduced by Einstein,
Podolsky, and Rosen [1] to argue that quantum mechanics
was not a complete theory of nature, and shown by Bell to
not be explainable by any locally realistic theory [2], it is now
regarded as the key resource in quantum information theory. It
allows for basic primitives such as teleportation and quantum
cryptography, is seen as a key ingredient in the speedup
of quantum computers, and is behind quantum advantages
in communication complexity and precision measurements.
The pioneering works of quantum information theory sought
to quantify entanglement [3–5], and provide conditions for
transformations between entangled states using only local
operations and classical communication (LOCC) in the limit
of sharing many copies of the same state. In these works,
one can think of entanglement as an average quantity, with
entanglement manipulations generally only being possible in
the limit of sharing many copies of the same quantum state.

This mirrors the early stages of the history of statistical
mechanics a century ago, when quantities such as work and
heat, while regarded as being a single number, are really aver-
age quantities which only emerge in the thermodynamic limit.
Indeed, the analogy between thermodynamics and pure-state
entanglement transformations was made explicit in [6], as
well as in the case of mixed-state entanglement manipulations
with more limited success [7–11].

At around the same time as the resource theory of entan-
glement was being developed, the Jarzynski equation, and

Crooks relation were discovered. These and other results in
stochastic thermodynamics give exact information about the
fluctuations of work and heat about their average values
[12–15]. This raises the question as to whether one can under-
stand entanglement as a fluctuating quantity, from which we
can understand some of the present many-copy results in en-
tanglement theory as a restriction to the case in which we can
only compute average quantities. Indeed, it has recently been
shown that there is a connection between fluctuation theorems
and the majorization condition [16], raising the prospect that
fluctuation theorems have wider applicability. This is because
the majorization criterion and its generalization are known to
play an important role both in determining state transforma-
tions in thermodynamics [17,18] and in single-copy pure-state
entanglement manipulation [19].

Here, we will see that we can in fact think of entanglement
as a resource whose amount can fluctuate and we derive a
fluctuation theorem which quantifies the extent to which it
can. In order to do this, we will need to define what we mean
by fluctuations of entanglement. In some cases, we may be in-
terested in processes which, with probability P(w), coherently
produce or consume some amount w of maximally entangled
pure states (or ebits). We will find necessary and sufficient
conditions that this superposition of entanglement fluctuations
has to satisfy. Our conditions apply to all pure-state trans-
formations, even those which probabilistically create a pure
target state from some ensemble. To achieve the conditions,
we introduce the notion of an entanglement battery, which
is a system which stores entanglement, and introduce and
prove the existence of the family of battery-assisted LOCC
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protocols. The operations allowed on such battery can add or
consume entanglement from it in a coherent manner, and the
necessary and sufficient conditions we derive will characterize
this superposition.

In doing so, we find that this entanglement battery can be
used to perform tasks which were previously impossible. For
example, pure-state entanglement transformations, which are
generally irreversible at the level of single copies [19], become
reversible. A special case of this reversibility is entanglement
concentration and dilution, two of the most basic primitives of
entanglement theory. In concentration, many copies of a pure
state are converted into many maximally entangled states,
while dilution is the reverse process. Current protocols only
work in the asymptotic limit of infinitely many copies, and
while current concentration protocols are optimal, dilution
protocols are not. For general pure-state transformations, the
rate of converting n copies of state |ψ〉AB into m copies of the
state |φ〉AB is given by

n

m
= S(ψA)

S(φA)
(1)

with S(ρ) := − tr ρ log2 ρ, ψA = trB |ψ〉〈ψ |AB, and similarly
for φA = trB |φ〉〈φ|AB. In this asymptotic limit, state transitions
become reversible, but only up to factors of order

√
n. So,

while |ψ〉⊗n
AB → |φ〉⊗m

AB may be possible by LOCC, it is gener-

ally the case that |φ〉⊗m
AB → |ψ〉⊗n−o(

√
n)

AB . Or, to put it another
way, in the limit of large n, the transition |ψ〉⊗n

AB → |φ〉⊗n
AB is

possible, consuming (producing) S(φA) − S(ψA) maximally
entangled states (ebits) on average, while the reverse process
|φ〉⊗n

AB → |ψ〉⊗n
AB is possible with the production (consumption)

of the same average number of ebits up to factors of
√

n
n . In the

limit of large n, the rates for the forward and reverse process
are the same, but the difference between the absolute number
of ebits used diverges.

Although the average rate of entanglement consumed or
produced is given by S(φA) − S(ψA), this quantity will fluc-
tuate and in any instance of the protocol, the amount of
maximally entangled states which one obtains or consumes
will vary. Here, we derive a number of fluctuation theorems
which exactly characterize these fluctuations. Thus far, the
characterization of such fluctuations has been unsolved, with
the only progress being that one can obtain the probability
of concentrating to m ebits in the regime of infinitely many
input states, provided no constraints are put on the rest of the
distribution [20].

Indeed, the result in [20] can be seen as the majorization
condition in the special case of the final state being maximally
entangled. More generally, Nielsen [19] showed that

|ψ〉AB → |φ〉AB (2)

is possible by LOCC, if and only if the majorization condition
q(φ) � p(ψ ) holds, i.e., that

k∑
j=1

q j (φ) �
k∑

i=1

pi(ψ ), ∀k, (3)

with pi, q j being the eigenvalues of ψA, φA written in
nonincreasing order p1 � p2 � · · · � pd . Indeed, the LOCC
protocol which achieves any pure-state transformation can be

taken to consist of a POVM measurement by Alice, followed
by a unitary transformation by Bob conditional on the result of
Alice’s POVM [20]. That majorization is a necessary condi-
tion for a pure-state transformation suggests that single-copy
transformations are irreversible, and typically, q(φ) � p(ψ )
and q(φ) ⊀ p(ψ ) [19], meaning that no transition can happen
in either direction.

Surprisingly, we find this is not the case in the presence
of an entanglement battery. We will see that one can perform
any pure-state entanglement transformation at the single-copy
level. Furthermore, we see that reversibility on the single-
copy level is restored in the presence of an entanglement
battery, and that we can exactly characterize the fluctuations
of entanglement in the battery. As a result, one does not
need an infinite number of copies of the input state to distill
entanglement, but instead the copies can be processed on
the individual level. This special case is reminiscent of the
streaming entanglement distillation protocols introduced in
[21], where processing is done one system at a time, albeit
with a quantum memory of order log2 n. In the streaming
protocol, ebits are emitted after a lag of log2 n states have
been processed; thus the lag becomes infinite in the limit in
which we achieve perfect entanglement concentration. Using
the entanglement battery, there is no lag, and the processing is
truly on the individual copy level.

The paper is structured as follows. In Sec. II we define the
notion of an entanglement battery and of the operations on
it that yield entanglement fluctuations. Then, in Sec. III we
state all the main results, which take the form of necessary
and sufficient conditions on those fluctuations. We first start
from the more general set of them and move to more specific
constraints akin to the so-called integral fluctuation theorems.
We finish the section with the analog of Crooks’ theorem for
which a reverse process is defined. We finally conclude in
Sec. IV, where we explain applications of our results to open
problems in entanglement theory such as partial entanglement
recovery or embezzlement, and we briefly discuss the experi-
mental feasibility of the protocols. We place the proofs of the
main results as well as further details about the setting in the
appendices.

II. ENTANGLEMENT BATTERY AND
BATTERY-ASSISTED LOCC

Let us now introduce the notion of an entanglement battery
and define the ways in which one can act on it. In analogy with
the thermodynamic scenario [16], the definition of entangle-
ment “work” will be determined by the restriction we impose
on the type of transformations we implement on the battery.

Just as an ordinary battery (such as a weight at height
h) stores energy that can be used to inject or store work in
the context of thermodynamics, the entanglement battery can
be thought of as a storage device for entanglement. Just as
work can be thought of as the change in average energy of
the battery or average height of the weight, we will see that
von Neumann entropy can be thought of as the change in the
average number of maximally entangled states stored in the
entanglement battery.

We are interested in characterizing the entanglement fluc-
tuations of any state transformation. To do so, let us begin by
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considering a natural set of battery states |ex〉 on a system A′B′
given by

|ex〉A′B′ =
(

1√
2

(|1〉|1〉 + |2〉|2〉)

)⊗x

⊗ (|0〉|0〉)⊗(n−x), (4)

for some large n; i.e., they consist of x ebits and n − x pure
product states. A common subset of LOCC protocols that we
want to characterize are those which coherently produce or
consume ebits with some probability.

Such protocols can be considered by taking A′B′ to be
a battery which starts off in state |ex〉A′B′ , and then, if w

ebits of entanglement are added or removed from the battery,
|ex〉A′B′ → |ex+w〉A′B′ , provided x and n are sufficiently large
so that we avoid the top and bottom of the battery. We will
use the convention that positive w corresponds to gaining
entanglement, while negative w corresponds to consuming it.
Just as work is the raising and lowering of the weight, here,
we want to consider the raising and lowering of the number
of ebits by w and we are interested in characterizing the
fluctuations in w during the pure-state LOCC transformation
of Eq. (2).

We thus want to consider entanglement gain or consump-
tion to be the process of raising or lowering the number of
ebits in the entanglement battery with the raising or lowering
operator defined through �w|ex〉A′B′ = |ex+w〉A′B′ , where x +
w is understood modulo n + 1 to ensure that �w is a unitary
(though we will pick the states on the battery to be such that
the top and bottom of the battery are never reached in prac-
tice). If initially the battery is found to be in state |ex〉A′B′ , then
the final superposition over |ex+w〉A′B′ ,

∑
w

√
P(w)|ex+w〉A′B′ ,

gives us a probability distribution over entanglement we call
P(w). Note also that either Alice or Bob can measure the
amount of entanglement in the battery resulting in the state
|ex+w〉 with probability P(w) and revealing the entanglement
loss or gain. In general, we might want w to take on noninteger
values, and indeed one can easily consider a set of battery
states which allow this, as discussed in Appendix A 1.

In our protocols, we will consider a more general initial
battery states of the form

|η〉A′B′ =
n∑

x=0

√
αx|ex〉A′B′ . (5)

What we require from the state of our battery |η〉A′B′ is that,
for any pure input |ψ〉 and output |φ〉 states of the system, the
LOCC transformation

|ψ〉AB ⊗ |η〉A′B′ −→ σABA′B′ ≈ |φ〉AB ⊗ |η′〉A′B′ (6)

can be achieved reversibly, with |η′〉A′B′ being a state of the
battery which is also useful for further arbitrary entanglement
transformations. This is a fairly strong condition, because in
order to ensure that the final state of the system is pure, it must
be virtually uncorrelated with the battery.

In fact, we show that purity of the target state of the system
implies that in the limit of ideal transformations, the battery is
in a uniform superposition over |ex〉A′B′ (see Appendix A 2 for
the proof). This is qualitatively similar to the case of using a
reference frame in order to perform a transformation on pure
states which would otherwise be limited by a conservation law
[22,23]. It might appear surprising that one can retain purity

on the system, since the battery would appear to become
correlated with it. However, as we show in Appendix D, not
only can this be done but also it can be done perfectly, as

|ψ〉AB ⊗ |η〉A′B′ → σABA′B′ ≈ |φ〉AB ⊗ |η〉A′B′ , (7)

provided the battery state is chosen to be close to a uniform
superposition over sufficiently many eigenstates |ex〉, for ex-
ample, αx = 1

N+1 for x ∈ { n−N
2 , . . . , n+N

2 } with N chosen large
enough to obtain the transformation of Eq. (7) to any desired
accuracy. For general state transformations, we must therefore
take the initial state of the battery to be in such a uniform
superposition, and the final state of the battery must also
be close to this if it is to be used for further arbitrary state
transformations.

The raising or lowering maps set the type of transitions that
the battery can undergo, and achieving Eq. (7) for all states is
a consequence of this definition. These maps are guaranteed
to exist but we note, however, that we have not found whether
they can have a fixed form as a LOCC map on the battery
that applies the transition of Eq. (7) universally. This would
amount to finding an explicit form of the LOCC protocols
that raises and lowers the battery with the operator � and that
implements any one of the possible state transitions on the
system.

That a transformation of the form of Eq. (7) is possible
might appear paradoxical, since the entanglement in the bat-
tery is changing, but the state of the battery barely does. How-
ever, large changes in average quantities need not correspond
to large changes in the state. In particular, 〈η|�w|η〉A′B′ is
close to 1 for all w, and thus the states of the system will not
become correlated with the battery. Nonetheless, the average
entanglement of the states �w|η〉A′B′ and |η〉A′B′ differ by w,
reflecting the fact that large changes in a system’s average
observables need not take it to orthogonal states. This is also a
property of embezzling states [24–26], although the processes
we consider are more general than embezzling transforma-
tions, as they generally require classical communication to
perform, while embezzlement does not [24].

A similar phenomenon also occurs in the use of reference
frames to maintain coherence. For instance, in [27] it was
shown that a large uniform superposition over energy levels
can be used repeatedly to simulate arbitrary unitary processes
on a single small system via energy-preserving interactions.
The results here are qualitatively similar, in that we use a
large entanglement battery in a uniform superposition to per-
form transitions that would otherwise be restricted. However,
the constraints that must be circumvented in both scenarios
are formally very different: here we have to circumvent the
majorization constraints imposed by Nielsen’s theorem [19],
while in [27] one is limited by asymmetry considerations, akin
to the WAY theorem [28,29] (in which majorization does not
appear).

We will call any LOCC protocol which implements Eq. (7)
battery-assisted LOCC, or BLOCC, which will be the set of
operations allowed in what follows. More precisely, we say
that a pure-state transformation is possible under BLOCC
if there exists a sequence of BLOCC protocols 	N and
states |
N 〉 and |�N 〉 such that |
N 〉 → |�N 〉 under BLOCC
and limN→∞ |
N 〉 = |ψ〉AB ⊗ |η〉A′B′ and limN→∞ |�N 〉 =
|φ〉AB ⊗ |η〉A′B′ . In what follows, we will state our results in
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the limit of large N , although in our proofs we consider the
finite case.

Although purity of the target state requires a perfectly
uniform battery, in Appendix D we show how to relax this
condition to batteries of finite size. More specifically, we show
how to implement the more general state transformation,

|
〉ABA′B′ : =
∑
i,x

√
pix|ii〉 ⊗ |ex〉

(8)
	−→ |�〉ABA′B′ : =

∑
j,x′

√
q jx′ | j j〉 ⊗ |ex′ 〉,

via a BLOCC protocol 	 and with the initial and final states
of the system being arbitrarily close to pure. As before, the
probability distribution over entanglement fluctuations can
still be quantified by imagining that initially we could have
measured |ex〉, and at the end of the process we could have
measured |ex′ 〉, and we consider the entanglement fluctuation
in the battery to be given by w = x′ − x with probability P(w)
given by the statistics of those measurements.

Indeed, we can sample from the probability distributions
pi, q j , and P(w), as well as the joint distribution P(i, j,w)
as follows: Initially, Bob (or Alice) can measure his (her)
state with the POVM {|i〉〈i| ⊗ Px}, where Px is the projector
onto the subspace spanned by the reduced state of |ex〉.
Alice then performs the POVM measurement which would
have implemented the transformation of Eq. (8), and, finally,
measures her state with the POVM {| j〉〈 j| ⊗ Px′ }. Note that
Alice’s POVM commutes with Bob’s measurement, and Al-
ice’s measurement of x′ commutes with Bob’s measurement
of x, and so we can compute P(i, j,w). When these initial and
final measurements are performed the actual transformation
|ψ〉AB → |φ〉AB does not happen, but their statistics capture
the relevant information of the map 	.

III. RESULTS

We now present the main results, which take the form of
constraints on the possible transitions via BLOOC, given by
relations between the fluctuations in the battery (labeled by
w) and the Schmidt coefficients of the initial and final states
of the system. We are able to prove six results about fluctu-
ations of entanglement and use them to prove the existence
of optimal BLOCC protocols for entanglement dilution and
partial entanglement recovery. The main result from which
the remaining five follow gives a family of necessary and
sufficient conditions for state transformations to be possible
under BLOCC, which take a similar form to those in [16] in
the context of quantum thermodynamics (a major difference
being the role of initial and final states in the constraints,
which is reversed).

Result 1 (assisted stochasticity). A pure-state BLOCC
transformation |ψ〉 → |φ〉 between states with Schmidt co-
efficients pi and q j and a distribution of maximal entangle-
ment P(w) coherently consumed or produced in the process
is possible if and only if there exists a conditional prob-
ability distribution P(i,w| j) satisfying the following three
conditions: ∑

i,w

P(i,w| j) = 1, ∀ j, (9)

∑
j,w

P(i,w| j)2w = 1, ∀i, (10)

∑
j,w

P(i,w| j)q j = pi, ∀i. (11)

We give the proof of the necessity and sufficiency of
these conditions in Appendices B and C, respectively. The
conditions Eqs. (9)–(11) can be thought of as a generalization
of the doubly stochastic conditions for the matrix of 	, which
is well known to be equivalent to the standard majorization
condition on the initial and final states. The appearance of
the random variable w reflects the departure from this double
stochasticity (recovered when w = 0), and thus the nonzero
values of w reflect our ability to perform transitions on
the system beyond those allowed by the usual majorization
constraints. This again is due to the use of the battery through
the BLOCC protocols (which are a subset of all the possible
LOCC protocols on system and battery, with the properties
outlined in Sec. II).

Our next result can be derived from the above relations (see
Appendix E for proof) and can be though of as the second law
of entanglement.

Result 2 (the second-law equality for entanglement). Given
an initial state |ψ〉 with Schmidt coefficients pi and a target
state |φ〉 with coefficients qj , the distribution of entanglement
that can be coherently extracted in converting |ψ〉 into |φ〉
under BLOCC satisfies

〈2w−log2 q j+log2 pi〉 = 1. (12)

This equality is akin to recent fluctuation theorems for
arbitrary input and output states [15,16,30–32].

The next result is a single necessary and sufficient
condition for a transformation between states via BLOCC
protocols, provided one has access to enough fluctuating
entanglement.

Result 3 (conditions for state transformations with en-

tanglement fluctuations). The transformation
〈w〉

|ψ〉 → |φ〉 is
possible under BLOCC, if and only if

〈w〉 � S(ψA) − S(φA). (13)

To prove the necessity, we just need to use Jensen’s the-
orem on Eq. (12), together with the fact that the exponential
function is convex. Sufficiency follows from setting a partic-
ular value to the work fluctuations, w = log2 q j − log2 pi in
Eq. (10), which gives a set of work fluctuations that saturates
the inequality. This inequality can be thought of as akin to
the traditional second law of thermodynamics, stated that the
average work W required in transforming a state ρ into a
state σ has to satisfy 〈W 〉 � F (ρ) − F (σ ) with F (ρ) the free
energy F (ρ) = 〈H〉 − T S(ρ), T the temperature of the bath
that the system is in contact with, and H the Hamiltonian of
the system.

It is this result which implies reversibility of single-copy
transformations if an entanglement battery is allowed. This
is the same sense in which thermodynamics has a reversible
regime. Going between two states in thermodynamics requires
an amount of work given by the change in free energy, while in
the reverse process one obtains back the same amount of work.
Here, we even have reversibility on the level of fluctuations;
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namely, if we have entanglement fluctuations w = log2 qi −
log2 pi, then there exists a reverse process which has equal and
opposite entanglement fluctuations given by wrev = log2 pi −
log2 qi.

This contrast—between irreversibility of single-copy trans-
formations when one does not allow a battery, and the
ability to perform such transformations when one has an
entanglement battery—is reminiscent of very recent results in
thermodynamics. There, it has been shown that state trans-
formations which occur at the small scale [18] are funda-
mentally irreversible. Yet, if one allows fluctuating work,
reversible transformations are possible when acting on single
copies [33].

In addition to Eq. (13), higher-order corrections govern-
ing entanglement manipulations can be found by Taylor-
expanding Eq. (12) as in [16], giving

M∑
k=1

(ln 2)k

k!
〈(w − log2 q j + log2 pi )

k〉 � 0, (14)

with M odd and M = 1 corresponding to the previously
known average case.

That Eq. (13) is necessary and sufficient means any state
transition is in fact possible, given that one has access to
enough entanglement on average. However, this constraint
does not contain information about the size such fluctuations,
which also has to be taken into account. To show its im-
portance, we focus on pure-to-pure transitions in which the
Schmidt rank increases. Without a battery, the Schmidt rank
cannot increase, not even probabilistically [36], and when
assisted with a battery in BLOCC protocols, the difficulty of
such transitions is expressed in the following result.

Result 4 (third law of entanglement). Let pmin and qmin be
the smallest Schmidt coefficients of the initial and final states
of the system. The entanglement fluctuations are bounded by∑

w

2w � qmin

d ′ pmin
, (15)

where d ′ is the number of nonzero Schmidt coefficients of the
final state.

The proof of this result follows from considering a partic-
ular case of the constraints of Result 1. The details can be
found in Appendix F. From this, it follows that in the limit
in which we are increasing the Schmidt rank (that is, when
pmin → 0), either the amount of fluctuations or the size of
them must diverge. This is the analog of a number of results in
thermodynamics associated with the third law, which roughly
speaking states that decreasing the rank of a state requires
infinite resources, in the form of infinite work fluctuations,
an infinite-sized bath, or both [37]. On the other hand, other
transitions between states may be such that the initial one has
Schmidt coefficients that majorize the final. In that case one
can refer back to the setting of Nielsen’s theorem [19], which
shows that no work at all is needed for the transition. In such
cases in which the majorization conditions hold, perhaps up
to some small error, we expect that the size of the fluctuations
of w will not be very strongly constrained. For instance, one
could have a transition allowed by the majorization criteria
in which some entanglement is gained on average, or where
some large fluctuations occurs with a small probability. This

discussion indicates that even if in principle all transitions be-
tween states are possible given enough average entanglement
(as per Result 3), some may still be harder than others if one
considers the size or number of those fluctuations. This infor-
mation is not captured by Eq. (13) but by the necessary and
sufficient constraints on the stochastic matrices of Result 1.
One can think of the appearance of w in Eqs. (9)–(11) as
a correction to the bistochasticity constraints imposed by
majorization. Thus, we expect that the further a particular
transition is from satisfying the majorization conditions, the
larger the work fluctuations should be to allow for that transi-
tion. Both Eq. (13) and Eq. (15) support this conclusion in a
different way: Eq. (13) says that if the entanglement entropy
of the initial state is lower than that of the final (forbidden
by majorization), average fluctuations are unavoidable, and
Eq. (15) says that if qmin/pmin is very large (also forbidden by
majorization), either we have a large number of fluctuations
or a small number of very large ones.

The general necessary and sufficient constraints of Result
1 allow us to also find an analog of the Jarzynski equation
which applies to the case in which the final state |φ〉AB is a
maximally entangled state of dimension d ′:

Result 5 (Jarzynski for entanglement). When the final state
is a maximally entangled states of dimension d ′, we have

〈2w〉 = d

d ′ , (16)

with d the dimension of the support of the initial state.
The proof is given in Appendix G and it follows easily from

the constraints of Result 1. Recall that the Jarzynski equation
applies when an initially thermal state is driven to an out-of-
equilibrium state, with a possibly different Hamiltonian. It is
written as

〈eβW 〉 = Z ′

Z
, (17)

where W is the thermodynamic work, and Z and Z ′ are the
initial and final partition functions Z = tr[e−βH ]. We thus
see that for entanglement, the dimension of a maximally
entangled state is akin to the partition function of the thermal
state.

An immediate application of Eq. (16) is that it provides
a strong converse bound that applies when one attempts to
concentrate more entanglement than the maximum rate given
by log2 d/d ′ [20]. That is, if one attempts to extract more
entanglement than that rate, one immediately sees that in
order to satisfy Eq. (16), the probability of success has to go
exponentially quickly to zero:

P
(
w � log2

d
d ′ + x

) =
∑

w�log2
d
d ′ +x

P(w)

�
∑

w�log2
d
d ′ +x

P(w) 2w−log2
d
d ′ −x

�
∑
w

P(w) 2w−log2
d
d ′ −x = 2−x. (18)

In the thermodynamic case, one similarly has that Eq. (17)
implies that if one attempts to extract work from a heat bath,
the probability of success goes exponentially fast to zero, and

012317-5



ALHAMBRA, MASANES, OPPENHEIM, AND PERRY PHYSICAL REVIEW A 100, 012317 (2019)

it is thus a quantitative strengthening of the ordinary second
law of thermodynamics, which simply says that the average
work you can extract from a single heat bath in a cyclic
process is zero. With this, we point out a link between the
second law and the strong converse.

This brings us to our fifth result, an analog of the Crooks
relation from statistical mechanics [13], which we explain in
Appendix H 1 for completeness. Given any forward LOCC
protocol corresponding to the matrix P(i,w| j), we are able to
define a reverse LOCC protocol where, in particular, Bob’s
unitary transformations are taken to be the inverse of the
forward ones. The reverse process and its relation with the
forward one are explained in detail in Appendix H 2. As it
turns out, the two processes are related in a way similar to
how a process and its time-reversed analog are related in
thermodynamics [34,35]. In fact, we find the following:

Result 6 (crooks for entanglement). Suppose |ψ〉 BLOCC−→
|ebitd〉 while extracting entanglement {P(w),w}. Then there

exists a state |ψ ′〉 such that |ψ ′〉 BLOCCrev

−→ |ebitd ′ 〉 while extract-
ing entanglement {Prev(−w),w} and where

P(w)

Prev(−w)
= 2−w d ′

d
. (19)

The proof of this statement follows straightforwardly once
the definition of the reverse process is established. It can be
found in Appendix H 3.

In the same way in which the Jarzynski equality can be
derived from Crooks’ theorem, this expression is a refinement
of Eq. (16). It implies that extracting w in a forward protocol
is exponentially suppressed with respect to extracting −w in
the reversed protocol.

IV. CONCLUSION

Our results show that through the proof of the existence
of the BLOCC protocols, one can consider entanglement as
a quantity to which we can associate fluctuations, and whose
fluctuations are constrained in much the same way as work is
in the context of previous results in statistical mechanics. It is
remarkable that the mathematical structure of thermodynam-
ics and pure-state entanglement transformation with a battery
are so related, given the very different physical scenarios
under consideration. For example, there is no heat bath in
entanglement theory, the doubly stochastic maps depend on
the initial and final states of particular transformation, unlike
in thermodynamics, and the doubly stochastic maps take final
states to initial states.

In classical thermodynamics (i.e., when the initial and final
states are diagonal in the energy eigenbasis), it is unambigu-
ous what the work is after a given process. In the implicit
case, one initially measures the total energy of system and
bath, and performs the measurement once again at the end of
the process. The energy difference must be the work which
has been extracted. In the explicit case in which we include
the battery and impose total energy conservation [16,18], the
work is just the energy difference in the battery before and
after the transformation. Likewise, the system is originally in
some particular energy level |i〉 and ends in some particular

energy level | j〉. Thus the probability distribution over i, j,w
has a simple interpretation.

However, in the quantum case, we cannot implement pure-
state thermodynamical transformations and expect that the
work will always be a measurable quantity [38,39]. This is
because to implement arbitrary unitary transformations, one
must have access to some system (the battery), which must
be in a coherent state which is a superposition over many
energy levels. Measuring the energy of this battery destroys
the ability to implement the unitary transformation. We here
see similar phenomena between the entanglement case and the
quantum thermodynamics case. We can measure the amount
of entanglement consumed or extracted each time, but if we
do so, then we cannot implement the transformation |ψ〉 →
|φ〉. Nonetheless, the physical interpretation of the fluctuation
relation is clear, as it could in principle be measured.

In thermodynamics, work, whether classical or quantum,
should be thought of as a process, not an observable [16].
Classically, it is the process of raising or lowering a weight.
Likewise, in the case of the entanglement battery, the entan-
glement fluctuation can be seen as the adding to or subtracting
from the number of ebits in the battery. In both cases, the
change in average quantities (whether work or entanglement)
does not move the battery to an orthogonal state, and can only
be measured on many copies. We thus have the intriguing
phenomena that entanglement fluctuations in a battery enable
us to perform entanglement transformations, but do not cor-
respond to a single von Neumann measurement. Crucially,
the entanglement battery must have an uncertain amount of
entanglement, that is, must not be in a state with a definite
amount of entangled pairs, in order to aid in a pure-state
entanglement transformation. Since work can be identified
with the process of raising and lowering the battery, it would
be desirable to have a universal set of LOCC maps on the
battery that applied to all the possible states in the system,
as is the case in the thermodynamic scenario [16]. This would
perhaps amount to a more concrete description of the BLOCC
protocols introduced here. While we believe this is possible,
perhaps by starting from explicit constructions of LOCC
protocols based on Nielsen’s result [19], we leave the question
for future work.

In the main section of this article, we have considered
the case in which the target state is only a single pure state
|φ〉AB ⊗ |η′〉A′B′ . In Appendix I, we show that our results
also hold in the case of an ensemble of pure target states
{|φt 〉AB ⊗ |ηt 〉A′B′ }t . There, we take as an example the original
entanglement concentration and dilution protocols. Using the
results presented here, we can quantify the entanglement
fluctuations in all concentration protocols, and we see why
previous dilution protocols were suboptimal. We show how to
make them optimal and thus achieve true reversibility.

We find another interesting application of our results, in
that we can solve a problem known as partial entanglement
recovery [40]. There, one considers the irreversible LOCC
transformation |ψ〉AB → |φ〉AB and asks whether some of the
entanglement can be recovered in the operation, by perform-
ing a transformation on an ancillary system |φ〉AB ⊗ χA′B′ →
|ψ〉AB ⊗ |ω〉A′B′ . Since the choice of χA′B′ and ωA′B′ is allowed
to depend on ψAB and φAB, there is clearly the trivial solution
in which χA′B′ = ψAB and ωA′B′ = ψAB, and one just performs
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the swap operation between AA′ and BB′. To rule out such
trivial solutions, one can consider a notion of genuine par-
tial entanglement recovery [41] which requires limiting the
dimension of the ancillary system. Progress on finding ways
to partially recover some of the entanglement has been made
in [42]. Here, we see that instead of restricting the dimension
of the ancilla to enforce a notion of genuine recovery, we can
instead demand that the ancillary state be universal. We then
see that in fact, all the entanglement can be recovered.

Finally, the results here help us better understand the notion
of catalysis and embezzlement, and provide a solution to
the problem posed by approximate catalysis [43]. In exact
catalysis, one asks whether there exists a system in state η

such that the transition ρ ⊗ η → σ ⊗ η is possible. In the case
in which the conditions for ρ ⊗ η → σ ⊗ η to be possible are
given by majorization conditions, the conditions for ρ → σ

to be possible catalytically were found to be given by the
monotonicity of Renyi entropies [44,45].

However, from a physical point of view, it is impossible
to return a catalyst in exactly the same state, so it seems
more natural to ask whether ρ ⊗ η → σ ⊗ η′ is possible, with
η ≈ η′. We thus see that our battery can be thought of as
a type of catalyst in this sense. The conditions for ρ → σ

to be possible under approximate catalysis depend on how
close we should return the catalyst to its initial state [43].
In the case in which we do not restrict the dimension of the
catalyst, embezzlement [24–26] poses a problem. Embezzling
is the process of extracting a resource from a state, without
changing the state by very much. In the case of entanglement
embezzling, we can extract ebits from an embezzling state
without changing the state by much [24].

The problem, then, is that if we allow approximate cataly-
sis, any transformation is possible in the limit of an arbitrarily
large catalyst, because we can use an embezzling state as an
approximate catalyst. In fact, the amount by which the catalyst
changes can be made arbitrarily small. This result has stalled
entanglement theory, because one should allow approximate
catalysis in any transformation, yet it seems to render the
theory trivial, since all state transformations become possible.
In the context of the present article, we see that we can bypass
this issue. In particular, by quantifying how much fluctuating
entanglement is transferred to the catalyst (in this case the
entanglement battery), we can account for how much of it is
used in any process. The fact that the catalyst’s state changes
very little does not take away from the fact that the amount of
entanglement in it has changed by a significant amount. As a
result, the theory does not trivialize.

Not only do we find an array of phenomena in entan-
glement akin to those found in thermodynamics, but also
previous problems, such as entanglement recovery, the prob-
lem of embezzlement, and a strong converse of entanglement
concentration, are related to those in thermodynamics. We
thus see that many issues and open problems can be solved
by connecting them to fluctuation relations. It is perhaps not
surprising that fluctuation theorems for entanglement enable
one to solve such problems, given the fertile research land-
scape that fluctuation theorems have opened up in the field
of thermodynamics. Our hope is that likewise, fluctuating
entanglement allows for the discovery of further phenomena
in entanglement theory. Towards this aim, in Appendix J we

find that for the processing of a few qubits, an entanglement
battery need not be large to be useful. This gives hope that
experimental implementation of the protocols presented here
may one day be performed.

Most of the results here focus on the existence of LOCC
protocols that implement the desired transitions, and do not
specify the particular character or complexity of the unitaries
and measurements. A similar problem occurs in the analogous
thermodynamic scenario, for which recent results [50–52]
show that one can in fact implement a large number of transi-
tions with an experimentally feasible subset of free operations.
This may be a starting point for a similar result in the present
context of entanglement, which we leave for future work.
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APPENDIX A: BATTERY-ASSISTED LOCC

1. The entanglement battery

In this section we expand the definition of the entanglement
storage battery, and we show how to define it so that not
only integer values of w can be stored. In order to allow
for the consumption or generation of nonintegral amounts of
entanglement, we substitute the product states and ebits in
Eq. (4) with the following two types of states which contain
almost the same amount of entanglement:

|�+
u 〉 = 1√

u

u∑
i=1

|ii〉, (A1)

|�−
u 〉 = 1√

u − 1

2u−1∑
i=u+1

|ii〉. (A2)

The state |�+
u 〉 contains log2 u ebits of entanglement, while

|�−
u 〉 contains log2(u − 1) ebits. Hence, in going from one to

the other |�+
u 〉 → |�−

u 〉, the amount of entanglement that we
borrow is

δw = log2

(
u

u − 1

)
≈ 1

u
, (A3)

where the above approximation holds in the large-u limit.
Therefore, the parameter u controls how fine-grained the
entanglement scale is. We will henceforth choose u large
enough such that all values of w are as close as required to
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multiples of δw. Also note that the two states |�+
u 〉, |�−

u 〉 are
locally distinguishable.

The states of the battery that have a well-defined amount
of entanglement are the following:

|ex〉A′B′ = |�+
u 〉 ⊗ · · · ⊗ |�+

u 〉︸ ︷︷ ︸
x

⊗ |�−
u 〉 ⊗ · · · ⊗ |�−

u 〉︸ ︷︷ ︸
n−x

, (A4)

for all integers x ∈ {0, . . . , n} and A′, B′ labeling Alice and
Bob’s halves of the battery, respectively. In the protocols that
we consider, all battery states are contained in the subspace
generated by {|ex〉}n

x=0. The reduced state on Alice or Bob’s
half of the battery is then

sx = trB′ |ex〉〈ex| =
(

1

u

u∑
i=1

|i〉〈i|
)⊗x

⊗
(

1

u − 1

2u−1∑
i=u+1

|i〉〈i|
)⊗(n−x)

. (A5)

The set of states {sx}n
x=0 are also orthogonal and live on

some subspace A′ of H⊗n where H = C2u−1. When restricted
to Alice’s system, our LOCC protocol will map this sub-
space to itself. We will often use a suitable restriction of
{|z〉}z∈{1,2,...,2u−1}n as an orthonormal basis for A′. We will write
z ∈ sx to denote that |z〉 belongs to the support of sx. Note
also that

n∑
x=0

ux(u − 1)n−xsx = IA′ , (A6)

so the orthogonal projectors Px = ux(u − 1)n−xsx give a reso-
lution of the identity on A′. In general, the initial state of the
battery is denoted by Eq. (5).

2. Reversible pure-state transformations require a battery in a
uniform superposition

In this section we show that the state of the battery |η〉A′B′ =∑
x γx|ex〉A′B′ must be close to a uniform superposition of

entanglement eigenstates |ex〉A′B′ , if we assume the following
two conditions:

(1) The only allowed actions on the battery are raising and
lowering the amount of entanglement, so that the final state is
of the form

|�〉ABA′B′ =
∑

r

|φr〉AB ⊗ �r |η〉A′B′ . (A7)

(2) The state of the battery |η〉A′B′ allows for approxi-
mately implementing all reversible pure-to-pure entanglement
transformations |ψ〉AB → |φ〉AB. That is, for every ε > 0,
there is a reversible BLOCC transformation with final state
(A7) being ε-close to the target one,

‖�ABA′B′ − φAB ⊗ ηA′B′ ‖1 � ε, (A8)

and with identical marginal

�B = φB. (A9)

The first condition is what allows us to quantify the notion
of an entanglement fluctuation, by defining it to be the adding
or subtracting of the number of ebits of the battery. Before
proving the uniformity of |η〉 let us collect some useful facts.
The nonzero Schmidt coefficients of |ex〉 are

S|ex〉 = {
ξ−1/2

x , appearing ξx times
}
, (A10)

where we define the constants

ξx = (u − 1)n

(
u

u − 1

)x

. (A11)

For any components γx, the nonzero Schmidt coefficients of
|η〉 = ∑

x γx|ex〉 are

S|η〉 = {|γx|ξ−1/2
x , appearing ξx times, for all x

}
. (A12)

Recalling that �δw|ex〉 = |ex+1〉 and δw = log2[u/(u − 1)],
we arrive at

S�δw |η〉 =
{

|γx|ξ−1/2
x

√
u − 1

u
, appearing ξx

u

u − 1
times, for all x

}
. (A13)

Also, we note that without loss of generality we can assume
that the coefficients γx are real and positive. Hence, we define
αx = γ 2

x , which satisfy normalization
∑

x αx = 1.
Now, let us consider the particular pure-to-pure reversible

transformation |ψ〉AB → |φ〉AB with

|ψ〉AB = 1√
2

(|0, 0〉AB + |�+
u 〉AB), (A14)

|φ〉AB = 1√
2

(|0, 0〉AB + |�−
u 〉AB), (A15)

where |�±
u 〉AB are defined in (A1) and (A2). The states

{|0〉A, |1〉A, . . . , |2u − 1〉A} form an orthonormal basis
for Alice’s Hilbert space, and analogously for Bob. It

is known [19] that reversibility is only possible when
the Schmidt coefficients of the initial and final states
are identical. And, since the Schmidt coefficients of the
two states (A14) and (A15) are different, reversibility
can only be achieved with a nontrivial action on the
battery. Let us prove that if the global initial state is
|
〉ABA′B′ = |ψ〉AB ⊗ |η〉A′B′ , then the global final state
must be

|�〉ABA′B′ = 1√
2

(|0, 0〉AB ⊗ |η〉A′B′ + |�−
u 〉AB ⊗ �δw|η〉A′B′ ).

(A16)

012317-8



ENTANGLEMENT FLUCTUATION THEOREMS PHYSICAL REVIEW A 100, 012317 (2019)

The Schmidt coefficients of the initial state are the Cartesian
product {

1√
2
,

1√
2u

, . . . ,
1√
2u︸ ︷︷ ︸

u

}
× S|η〉. (A17)

Now, we must show that the only final state of the form (A7)
with the above Schmidt coefficients is (A16). Invoking (A9)
we obtain

|�〉ABA′B′ = 1√
2
|0, 0〉AB ⊗ |η0〉A′B′

+ 1√
2(u − 1)

u−1∑
j=1

| j, j〉AB ⊗ |η j〉A′B′ , (A18)

with

|η j〉 =
∑

r

cr
j�

r |η〉, (A19)

and j = 1, 2, . . . , u − 1. If there is a value of j with
more than one nonzero cr

j , then the Schmidt coefficients
| ∑r cr

j
√

αx−r | ξ−1/2
x cannot be of the form

√
αx ξ−1/2

x , be-
cause for any x � n − rmax

δw
we must have αx = 0, where rmax

denotes the largest value of r in this transformation. There-
fore, state (A18) can also be written as

|�〉ABA′B′ = 1√
2
|0, 0〉AB ⊗ �r0 |η〉A′B′

+ 1√
2(u − 1)

u−1∑
j=1

| j, j〉AB ⊗ �r j |η〉A′B′ . (A20)

Now, using (A13), we see that the only way to recover the
Schmidt coefficients (A17) is to set r j = δw for all j > 0 and
r0 = 0. This is precisely (A16).

Next, we prove the uniformity of the coefficients αx by
invoking condition (A8). In order to do this, we need to
compute the partial trace of (A16), which is

�AB = 1
2 (|0, 0〉〈0, 0| + |�−

u 〉〈�−
u | + |0, 0〉〈�−

u |〈η|�−δw|η〉
+ |�−

u 〉〈0, 0|〈η|�δw|η〉). (A21)

Substituting this in (A8) we obtain

1
2‖|0, 0〉〈�−

u |(〈η|�−δw|η〉 − 1)

+ |�−
u 〉〈0, 0|(〈η|�δw|η〉 − 1)‖1 � ε, (A22)

which is equivalent to∑
x

√
αxαx+1 = 〈η|�δw|η〉 � 1 − ε. (A23)

Using the identity

1
2‖|ψ〉〈ψ | − |φ〉〈φ|‖1 =

√
1 − |〈ψ |φ〉|2 (A24)

on the two pure states |η〉 and �δw|η〉, we obtain∑
x

|αx − αx+1| � 2
√

1 − (∑
x
√

αxαx+1
)2 �

√
8ε. (A25)

And finally, applying the triangular inequality, we obtain∑
x

|αx − αx+y| � y
√

8ε, (A26)

for all y such that |y| � rmax/δw.
It is clear that given ε and y, the inequality will hold the

more uniform the set of αx is. For instance, if we take αx =
1/N uniform, we have that

∑
x |αx − αx+y| = 2y

N , so an error
of ε in the transformation means we need a width of N � 1√

2ε
.

APPENDIX B: NECESSARY CONDITIONS FOR
PURE-STATE BLOCC

In this Appendix we prove the necessary part of Result
1. That is, if a BLOCC protocol exists for the transforma-
tion given in Eq. (8), then there must exist a conditional
distribution P(i,w| j) satisfying the three conditions given
by Eqs. (9)–(11). Throughout, we shall denote the density
matrix of a pure state |ψ〉AB by ψAB and its reduced state
on subsystem A by ψA, omitting subsystem labels when the
context is clear.

We divide the proof into two parts. First, we outline the
structure of the LOCC operations we consider. We then use
this structure to prove that the existence of a BLOCC protocol
implies the existence of a stochastic matrix that obeys the
constraints of Result 1.

1. Pure-state LOCC transformations

Let 	 denote the completely positive (CP) map associated
with a particular BLOCC protocol. Since this transforms pure
states to pure states (on system plus battery) we can assume
[20] that 	 consists of the following steps:

(1) Alice performs a POVM {Mm} on AA′.
(2) Alice sends the outcome m to Bob.
(3) Bob applies a correction unitary Vm on BB′.
Thus, following [19], we have

�ABA′B′ = 	(
ABA′B′ ) =
∑

m

(Mm ⊗ Vm)
ABA′B′ (Mm ⊗ Vm)†.

(B1)
Imposing the purity of the final state �ABA′B′ , we get

�ABA′B′ ∝ (Mm ⊗ Vm)
ABA′B′ (Mm ⊗ Vm)†, ∀m, (B2)

which implies the existence of some positive coefficients rm

satisfying

(Mm ⊗ Vm)|
〉ABA′B′ = √
rm |�〉ABA′B′ . (B3)

Applying the unitary V †
m on the two sides we get (Mm ⊗

I)|
〉 = √
rm (I ⊗ V †

m )|�〉 and

〈
|(M†
mMm) ⊗ X |
〉 = rm〈�|I ⊗ (VmXV †

m )|�〉, (B4)

for any operator X , where we have omitted the specification
of subsystems ABA′B′. Using

∑
m M†

mMm = I, we obtain

〈
|I ⊗ X |
〉 = 〈�|I ⊗ 	BB′ (X )|�〉, (B5)

where 	BB′ is

	BB′ (X ) =
∑

m

rmVmXV †
m . (B6)
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We emphasize that 	BB′ depends on the initial state |
〉ABA′B′

via the probabilities rm = 〈
|(M†
mMm) ⊗ I|
〉. This allows

us to relate the map 	BB′ to the global map generated by the
actual protocol

	BB′ (X ) = trAA′ [	ABA′B′ (
AA′ ⊗ X )]. (B7)

Equation (B5) can also be written as


BB′ = 	∗
BB′ (�BB′ ), (B8)

where 
BB′ and �BB′ are Bob’s initial and final reduced states,
and 	∗

BB′ is the dual map of 	BB′ .

2. Necessary conditions for P(i,w| j)

In what follows we define the conditional distribution
P(i,w| j), which captures relevant information about the CP
map of the BLOCC transformation 	. In order to derive the
necessary conditions we need to define P(i,w| j) imposing
that the final system-battery state is product �ABA′B′ = φAB ⊗
ηA′B′ , which, as expressed in Eq. (A8), is true in the limit
ε → 0. Hence,

P(i,w| j) =
∑

x′
tr

[(|i〉〈i| ⊗ Px′− w
δw

)
	∗

BB′ (| j〉〈 j| ⊗ [Px′ ηB′ Px′])
]

(B9)

=
∑

x′
αx′ tr

[(|i〉〈i| ⊗ Px′− w
δw

)
	∗

BB′ (| j〉〈 j| ⊗ sx′ )
]
(B10)

which corresponds to the statistics obtained in the following
five-step procedure:

(1) Prepare the state | j〉〈 j|B ⊗ ηB′ .
(2) Measure the position of the battery Px′ .
(3) Transform the resulting state with the map 	∗

BB′ .
(4) Measure the system with |i〉〈i| and the battery with Px.
(5) Record the variable w = (x′ − x)δw and forget x

and x′.
Let us now see that Eqs. (9)–(11) are necessary. By con-

struction, P(i,w| j) is a normalized probability distribution

∑
i,w

P(i,w| j) =
∑

x′
tr{(I ⊗ I)	∗

BB′ (| j〉〈 j| ⊗ [Px′ ηB′ Px′])}

= tr[	∗
BB′ (| j〉〈 j| ⊗ ηB′ )] = 1, (B11)

where we have used that the map X �→ ∑
x′ Px′XPx′ is trace

preserving. Hence, we have shown that Eq. (9) holds.
Now, let us move on to proving Eq. (10). Using Px =

ux(u − 1)n−xsx and the unitarity of the map 	∗
BB′ , we obtain

∑
w, j

P(i,w| j)2w =
∑
w,x′

αx′ tr
[(|i〉〈i| ⊗ sx′− w

δw

)
	∗

BB′ (I ⊗ Px′ )
]

≈
∑
w,x′

αx′− w
δw

tr
[(|i〉〈i| ⊗ sx′− w

δw

)
	∗

BB′ (I ⊗ Px′ )
]

= tr[(|i〉〈i| ⊗ ηB′ )	∗
BB′ (I ⊗ I)] = 1, (B12)

where we have approximated αx′ ≈ αx′− w
δw

. We can bound the
accuracy of this approximation as∣∣∣∣∣∣

∑
w, j

P(i,w| j) 2w − 1

∣∣∣∣∣∣
=

∣∣∣∣∣∑
w,x′

(
αx′ − αx′− w

δw

)
tr

[(|i〉〈i| ⊗ sx′− w
δw

)
	∗

BB′ (I ⊗ Px′ )
]∣∣∣∣∣

=
∣∣∣∣∣∑

w,x

(
αx′+ w

δw
− αx′

)
tr

[(|i〉〈i| ⊗ sx′
)
	∗

BB′
(
I ⊗ Px′+ w

δw

)]∣∣∣∣∣
�

∑
w:|w|�wmax

∑
x′

∣∣αx′+ w
δw

− αx′
∣∣

�
√

8 ε
wmax

δw
≈

√
8 ε wmax u, (B13)

where we have used Eq. (A26) and the fact that the number of
values of w in the range |w| � wmax and with discretization
δw is approximately wmax/δw. That is, for fixed wmax and u,
the approximation becomes more exact as ε tends to zero. We
thus see that P(i,w| j) satisfies Eq. (10) in the limit ε → 0.

To obtain Eq. (11) we use Eq. (B8) and the ap-
proximate equality of reduced states �BB′ ≈ φB ⊗ ηB′ =
(
∑

j q j | j〉〈 j|) ⊗ (
∑

x′ αx′sx′ ) in the following:∑
w, j

P(i,w| j)q j =
∑
j,x′

q j αx′ tr[(|i〉〈i| ⊗ I)	∗
BB′ (| j〉〈 j| ⊗ sx′ )]

= tr[(|i〉〈i| ⊗ I)	∗
BB′ (φB ⊗ ηB′ )]

≈ tr[(|i〉〈i| ⊗ I)	∗
BB′ (�BB′ )]

= tr[(|i〉〈i| ⊗ I)
BB′ ] = pi. (B14)

Now, we can bound the accuracy of the above approximation
by using assumption (A8) as

∑
i

∣∣∣∣∣∣
∑
w, j

P(i,w| j)q j − pi

∣∣∣∣∣∣
=

∑
i

| tr[(|i〉〈i| ⊗ I)	∗
BB′ (φB ⊗ ηB′ − �BB′ )]|

� ‖	∗
BB′ (φB ⊗ ηB′ − �BB′ )‖1

� ‖φB ⊗ ηB′ − �BB′ ‖1 � ε, (B15)

where we have used that ‖X‖1 = | max0�P�I tr PX | and that
	∗

BB′ is a trace-preserving CP map.

APPENDIX C: SUFFICIENT CONDITIONS FOR
PURE-STATE BLOCC

In this Appendix we prove the sufficient part of Result
1. That is, if there exists a conditional distribution P(i,w| j)
satisfying the three conditions given by Eqs. (9)–(11), then
there exists a BLOCC protocol for the transformation given in
Eq. (8).

We start with a conditional probability distribution
P(i,w| j) satisfying Eqs. (9), (10), and (11). Our goal is to
show that given such a probability distribution, it is possible
to construct a battery-assisted LOCC protocol that converts a
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bipartite pure state with Schmidt coefficients pi into a bipartite
pure state with coefficients q j while extracting a coherent
entanglement distribution {P(w),w}.

To do this, we first need to pick a battery of size n and with
spacing parameter u such that it is capable of incorporating
fluctuations by w. In other words, we want to pick u such
that for each w there exists an integer au

w such that w ≈
au

w log2 ( u
u−1 ). As u increases, this approximation improves.

More specifically, for fixed u, we take au
w to be the greatest

integer such that

au
w log2

(
u

u − 1

)
� w. (C1)

With respect to this, P(i,w| j) satisfies [using Eq. (10)]

∑
j,w

P(i,w| j)

(
u

u − 1

)au
w

� 1. (C2)

Introducing au
w allows us to deal with the fact that general w

cannot be written as an exact multiple of log2 ( u
u−1 ). We will

define the maximum of all these as

au
max = max

w

{∣∣au
w

∣∣}. (C3)

To prove sufficiency, we will first construct a series of
LOCC protocols 	N , indexed by N := n − 2au

max, such that
(for even N)

|
N 〉 =
d∑

i=1

n∑
x=0

√∑
w

piw

N + 1
δx+au

w∈{ n−N
2 ,..., n+N

2 }|ii〉 ⊗ |ex〉,

(C4)

where piw := ∑d
j=1 P(i,w| j)q j , is converted into

|�N 〉 =
d∑

j=1

n∑
x′=0

√
q j

N + 1
δx′∈{ n−N

2 ,..., n+N
2 }| j j〉 ⊗ |ex′ 〉. (C5)

Note that here we take an initial state that is correlated be-
tween system and battery and convert it into a final state which
is product across this divide and has support of size N + 1 on
the battery. However, the protocol can also be applied in the
case in which the initial system and battery are uncorrelated.
This we consider in Appendix D, where we prove that in
the limit of large N , the state in Eq. (C4) tends to a product
state, and thus acting the protocol on an initial product state
will result in a target state arbitrarily close to the ideal one
of Eq. (C5) and an entanglement distribution which is also
arbitrarily close to the ideal one.

1. Construction of �N

To show the existence of a protocol converting |
N 〉 into
|�N 〉, we ultimately need to construct a doubly stochastic
matrix that maps the Schmidt coefficients of |�N 〉 to those
of |
N 〉 [19]. We do this in three steps.

a. Conversion to P(i, x| j, x′ )

From P(i,w| j) and au
w, we first define the object

P(i, x| j, x′) via

P(i, x| j, x′) =
∑
w

P(i,w| j)δx′−x,au
w
, (C6)

where x and x′ are integers between ±∞. Next, we rewrite
Eqs. (9), (C2), and (11) in terms of this new object.

Using Eq. (9), we see that P(i, x| j, x′) satisfies

d∑
i=1

∞∑
x=−∞

P(i, x| j, x′) =
d∑

i=1

∞∑
x=−∞

∑
w

P(i,w| j)δx′−x,au
w

=
d∑

i=1

∑
w

P(i,w| j)

= 1,

while Eq. (C2) gives that

d∑
j=1

∞∑
x′=−∞

P(i, x| j, x′)
(

u

u − 1

)x′−x

=
d∑

j=1

∞∑
x′=−∞

∑
w

P(i,w| j)δx′−x,au
w

(
u

u − 1

)x′−x

=
d∑

j=1

∑
w

P(i,w| j)

(
u

u − 1

)au
w

� 1.

Finally, Eq. (11) can be used to show that

d∑
j=1

∞∑
x′=−∞

P(i, x| j, x′)
q j

N + 1
δx′∈{ n−N

2 ,..., n+N
2 }

=
d∑

j=1

∞∑
x′=−∞

∑
w

P(i,w| j)δx′−x,au
w
δx′∈{ n−N

2 ,..., n+N
2 }

q j

N + 1

=
d∑

j=1

∑
w

P(i,w| j)
q j

N + 1
δx+au

w∈{ n−N
2 ,..., n+N

2 }

=
∑
w

piw

N + 1
δx+au

w∈{ n−N
2 ,..., n+N

2 }.

To summarize, our three equations are now

d∑
i=1

∞∑
x=−∞

P(i, x| j, x′) = 1, (C7)

d∑
j=1

∞∑
x′=−∞

P(i, x| j, x′)
(

u

u − 1

)x′−x

� 1, (C8)

d∑
j=1

∞∑
x′=−∞

P(i, x| j, x′)
q j

N + 1
δx′∈{ n−N

2 ,..., n+N
2 }

=
∑
w

piw

N + 1
δx+au

w∈{ n−N
2 ,..., n+N

2 }. (C9)
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Note also that in a refinement of Eq. (C7), for x′ ∈
{ n−N

2 , . . . , n+N
2 } we have that

d∑
i=1

n∑
x=0

P(i, x| j, x′) = 1. (C10)

b. Construction of a doubly substochastic matrix

From P(i, x| j, x′) we will now construct a matrix with rows
and columns labeled by the Schmidt basis of system-battery,
|i, z〉 and | j, z′〉, respectively. This matrix will be doubly
substochastic (the row and column sums will be less than or

equal to 1) but it will have the important property of mapping
the Schmidt coefficients of |�N 〉 to those of |
N 〉.

Define for all z ∈ sx, z′ ∈ sx′ , where x, x′ ∈ {0, . . . , n},
R(i, z| j, z′) = P(i, x| j, x′)u−x(u − 1)x−n. (C11)

R(i, z| j, z′) is a square, doubly substochastic matrix. To see
this note that if we had not truncated the range of x and x′
to lie in {0, . . . , n} and assumed that the degeneracy of z ∈
sy was uy(u − 1)n−y (regardless of the fact that this does not
make much sense for y < 0 or y > n) we would have had from
Eq. (C7) that

d∑
i=1

∑
z

R′(i, z| j, z′) =
d∑

i=1

∞∑
x=−∞

∑
z∈sx

P(i, x| j, x′)u−x(u − 1)x−n =
d∑

i=1

∞∑
x=−∞

P(i, x| j, x′) = 1

and using Eq. (C8) that

d∑
j=1

∑
z′

R′(i, z| j, z′) =
d∑

j=1

∞∑
x′=−∞

∑
z′∈sx′

P(i, x| j, x′)u−x(u − 1)x−n =
d∑

j=1

∞∑
x′=−∞

P(i, x| j, x′)
(

u

u − 1

)x′−x

� 1,

where R′ is the nontruncated version of R.
While R is not doubly stochastic, it does satisfy [using Eq. (C9)]

d∑
j=1

n+N
2 +au

max∑
x′= n−N

2 −au
max

∑
z∈sx′

R(i, z| j, z′)
q j

N + 1
u−x′

(u − 1)x′−nδx′∈{ n−N
2 ,..., n+N

2 }

=
d∑

j=1

∞∑
x′=−∞

P(i, x| j, x′)
q j

N + 1
u−x(u − 1)x−nδx′∈{ n−N

2 ,..., n+N
2 }

=
∑
w

piw

N + 1
u−x(u − 1)x−nδx+au

w∈{ n−N
2 ,..., n+N

2 };

i.e., it maps the Schmidt coefficients of |�N 〉 to those of |
N 〉.
Finally, for those z′ associated with x′ ∈ { n−N

2 , . . . , n+N
2 }

we have from Eq. (C10) that

d∑
i=1

n∑
x=0

∑
z∈sx

R(i, z| j, z′) = 1; (C12)

i.e., these columns do actually sum to 1.

c. Construction of a doubly stochastic matrix

Finally we wish to construct a doubly stochastic matrix
from R which also maps the Schmidt coefficients of |�N 〉 to
those of |
N 〉. This will directly imply the existence of the
LOCC protocol, 	N , taking |
N 〉 to |�N 〉. We will denote this
matrix by R̃ and construct it as follows:

(1) For all z′ associated with x′ ∈ { n−N
2 , . . . , n+N

2 }, set

R̃(i, z| j, z′) := R(i, z| j, z′). (C13)

(2) Define

ri,z =
d∑

j=1

n+N
2∑

x′= n−N
2

∑
z′∈sx′

R(i, z| j, z′). (C14)

Then for z′ associated with x′ /∈ { n−N
2 , . . . , n+N

2 }, set

R̃(i, z| j, z′) := 1 − ri,z

dM
, (C15)

where M := ∑ n−N
2

x′=0 ux′
(u − 1)n−x′ + ∑n

x′= n+N
2

ux′
(u − 1)n−x′

so dM is the number of columns of R̃ not contained in the
support of the Schmidt coefficients of |�N 〉. In other words,
this procedure evenly distributes the deficit in each row
among the columns of R̃ not contained in the support of the
Schmidt coefficients of |�N 〉.

Now, for z′ associated with x′ ∈ { n−N
2 , . . . , n+N

2 }, we have

d∑
i=1

n∑
x=0

∑
z∈sx

R̃(i, z| j, z′) = 1, (C16)

while for all other z′,

d∑
i=1

n∑
x=0

∑
z∈sx

R̃(i, z| j, z′) =
d∑

i=1

n∑
x=0

∑
z∈sx

1 − ri,z

dM

= dMT

dM
− 1

dM
(dMT − dM ) = 1,
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where MT := ∑n
x=0 ux(u − 1)n−x so dMT is the total number

of columns or rows in R̃. Hence R̃ is stochastic.
By construction, we have that

d∑
j=1

n∑
x′=0

∑
z′∈sx′

R̃(i, z| j, z′) = 1. (C17)

Hence R̃ is doubly stochastic.
Finally, as we have not altered the columns in the support

of �N , we have that

d∑
j=1

n+N
2 +au

max∑
x′= n−N

2 −au
max

∑
z∈sx′

R̃(i, z| j, z′)

× q j

N + 1
u−x′

(u − 1)x′−nδx′∈{ n−N
2 ,..., n+N

2 }

=
∑
w

piw

N + 1
u−x(u − 1)x−nδx+au

w∈{ n−N
2 ,..., n+N

2 },

so R̃ maps the Schmidt coefficients of |�N 〉 to those of |
N 〉.
Using the results of [19], the existence of such an R̃ implies
that we have an LOCC protocol that converts |
N 〉 into |�N 〉.

APPENDIX D: THE LARGE-N LIMIT OF BLOCC
PROTOCOLS

Here we show that the state |
N 〉 given in Eq. (C4),

|
N 〉 =
d∑

i=1

n∑
x=0

√∑
w

piw

N + 1
δx+au

w∈{ n−N
2 ,..., n+N

2 }|i, i〉 ⊗ |ex〉,

(D1)

tends to a state that is product between system and battery in
the limit of large N . To see this, consider the overlap between
|
N 〉 and the state:

|
̃N 〉 =
d∑

i=1

n∑
x=0

√
pi

n + 1
|ii〉 ⊗ |ex〉. (D2)

It is given by

〈
̃N |
N 〉 =
d∑

i=1

n∑
x=0

√
pi

n + 1

∑
w

piw

N + 1
δx+au

w∈{ n−N
2 ,..., n+N

2 }

�
d∑

i=1

n+N
2 −au

max∑
x= n−N

2 +au
max

√
p2

i

(n + 1)(N + 1)

�n + 1 − 2au
max

n + 1

= N + 1

N + 1 + 2au
max

N→∞−→ 1. (D3)

Hence, the fidelity between |
̃N 〉 and |
N 〉 tends to 1. Thus, in
the limit of large N , the initial state of the system tends to the
pure state |ψ〉 = ∑d

i=1
√

pi|ii〉, the reduced state of the system
in |
̃N 〉.

Note that given a protocol 	N that converts |
N 〉 to |�N 〉,
if we apply 	N to |
̃N 〉 we will in general create a mixed
state σ̃N . However, as the fidelity is nondecreasing under the
application of quantum channels, the fidelity between |�N 〉
and σ̃N will also tend to 1 with increasing N and in addition
the reduced state of σ̃N on the system AB will be increasingly
close in fidelity to |φ〉AB.

We can also consider the closeness of the probability
distribution

P̃(i, x, j, x′) = tr

[
| j〉〈 j| ⊗ Px′

∑
m

Mm(|i〉〈i| ⊗ Px )
̃(|i〉〈i| ⊗ Px )M†
m

]
(D4)

to

P(i, x, j, x′) = tr

[
| j〉〈 j| ⊗ Px′

∑
m

Mm(|i〉〈i| ⊗ Px )
(|i〉〈i| ⊗ Px )M†
m

]
. (D5)

If the trace distance between 
̃ and 
, D(
, 
̃ ), is ε, then as for general ρ and σ we have D(ρ, σ ) = max{Em} D(sm, tm) (where
the maximization is over all POVMs and where sm := tr [Mmρ] and tm := tr [Mmσ ]), we have that∑

i, j,x,x′,m

|P̃(i, x, j, x′, m) − P(i, x, j, x′, m)| � ε, (D6)

where

P(i, x, j, x′, m) = tr[| j〉〈 j| ⊗ Px′Mm(|i〉〈i| ⊗ Px )
(|i〉〈i| ⊗ Px )M†
m] (D7)

and P̃(i, x, j, x′, m) is similarly defined. This implies that∑
x

|P̃(i, x, j, x′) − P(i, x, j, x′)| � ε (D8)

and finally that

|P̃(i, j,w) − P(i, j,w)| � ε, (D9)
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so we obtain a distribution when applying the LOCC protocol
to |
̃〉 similar to what we would have had if we had applied it
to |
〉.

APPENDIX E: THE SECOND-LAW EQUALITY FOR
ENTANGLEMENT

In this section we give the proof of Result 2.
Theorem 1. Given an initial state |ψ〉 with Schmidt co-

efficients pi and a target state |φ〉 with coefficients q j , the
distribution of entanglement that can be coherently extracted
in converting |ψ〉 into |φ〉 under BLOCC satisfies

〈2w−log2 q j+log2 pi〉 = 1. (E1)

Proof. The proof follows straightforwardly from the con-
straints on stochastic matrices from Result 1. As we are
considering BLOCC protocols, Eq. (10) holds:∑

j,w

P(i,w| j)2w = 1, ∀i.

Multiplying this equation by pi and summing over i then
gives (with a small rewriting of the conditional probability
distribution) ∑

i, j,w

P(i, j,w)
pi

q j
2w = 1.

Moving the probabilities into the exponent then gives the
result. �

APPENDIX F: A QUANTITATIVE THIRD LAW
OF ENTANGLEMENT

Here we give the detailed proof of Result 4. From the ma-
jorization criterion, we know that in pure-to-pure transitions,
the Schmidt rank cannot increase, not even probabilistically
[36]. This is essentially the analog of a number of results
in thermodynamics associated with the third law, where a
general statement is that decreasing the rank of a state requires
infinite resources, in the form of infinite work fluctuations,
an infinite-sized bath, or both [37]. The particular question
that this answers is, what is the infinite resource involved in a
potential increase of Schmidt rank?

Theorem 2. Let pmin and qmin be the smallest Schmidt
coefficients of the initial and final states of the system. The
entanglement fluctuations are bounded by∑

w

2w � qmin

d ′ pmin
, (F1)

where d ′ is the number of nonzero Schmidt coefficients of the
final state.

Proof. We start from Eq. (11):∑
j,w

P(i0,w| j)q j = pmin, (F2)

with pi0 = pmin. From this we can write

P(i0,w| j)q j � pmin, ∀ j. (F3)

Plugging this in Eq. (10) we obtain∑
j,w

pmin

q j
2w � 1, (F4)

from which it follows that

d ′ pmin

qmin

∑
w

2w � 1, (F5)

finishing the proof. �
From this, we see that if we start in a state with a small

lowest probability and transform it into one in which the
probabilities are more uniform, either the magnitude of the
biggest entanglement fluctuations will have to be very large,
or there will be a large number of fluctuations. In particular,
we see that in the limit in which we are increasing the Schmidt
rank (that is, when pmin → 0), the amount of entanglement
which might be required must diverge.

It is important to notice that in our framework, the accuracy
of the approximations is limited by the magnitude of the
biggest work fluctuation wmax, as in Eq. (D3). On top of that,
the number of possible work fluctuations is limited by the size
of the battery we are using. These two factors hence limit how
much we can change a very small Schmidt coefficient.

APPENDIX G: JARZYNSKI’S EQUALITY FOR
ENTANGLEMENT

In this section we give the proof of Result 5.
Theorem 3. When the final state is a maximally entangled

state of dimension d ′, we have

〈2w〉 = d

d ′ , (G1)

with d the dimension of the support of the initial state.
Proof. We again start from Eq. (10):∑

j,w

P(i,w| j)2w = 1, ∀i.

We have that P(i,w| j) 1
d = P(i,w, j). Hence if we multiply

both sides with 1
d ′ we obtain∑

j,w

P(i,w, j)2w = 1

d ′ , ∀i.

We now sum over the index i, to obtain∑
i, j,w

P(i,w, j)2w =
∑

i

1

d ′ = d

d ′ .

�

APPENDIX H: REVERSED TRANSFORMATIONS AND AN
ENTANGLEMENT CROOKS THEOREM

1. Crooks’ fluctuation theorem

Here we outline an important result in statistical mechanics
for which we are giving an entanglement analog. This is
Crooks’ theorem, first shown for classical settings in the
seminal paper [13], and later extended to quantum systems
by Tasaki [46].
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The setting is as follows: a system is in an initial thermal
state e−βH

Z , with Z = tr [e−βH ]. It is then taken out of equilib-
rium through some particular protocol (for instance, a unitary
process). An amount of work W is consumed in the process,
and this quantity can vary within different runs, giving rise to
a probability distribution P(W ). At the end of the protocol, the
Hamiltonian of the system may have changed to H ′.

Then the system is reset to the new thermal equilibrium
e−βH ′

Z ′ , and a time-reversed protocol is applied to it, extracting
a work distribution Prev(−W ).

Crooks’ theorem then relates the two work distributions via
the following relation:

P(W )

Prev(−W )
= e−βW Z ′

Z
. (H1)

This is thus a relation between the work extraction of two
different processes starting from thermal equilibrium. It ex-
presses the fact that extracting positive work along a process
has a probability which is exponentially suppressed with
respect to that of extracting a negative amount of work in the
reversed process. This way, it can be understood as a quanti-
tative statement of the irreversibility of thermodynamics.

2. Reversed LOCC

We now proceed to define the analog of the reversed LOCC
protocol from which we will derive an entanglement version
of Crooks’ theorem. The idea is to define a protocol in which
the unitaries performed by Bob are not given by Vm but by
their conjugates V †

m . This then yields a simple relation between
the stochastic matrices that correspond to each of the two
processes.

Let us start with Eq. (B3) from Appendix B:

(Mm ⊗ Vm)|
〉ABA′B′ = √
rm |�〉ABA′B′ . (H2)

We can rewrite this equation as

[(Mm

√

AA′ ) ⊗ Vm]|ξ 〉ABA′B′ = √

rm(
√

�AA′ ⊗ I)|ξ ′〉ABA′B′ ,

(H3)

where |ξ 〉ABA′B′ = ∑
l |ll〉ABA′B′ and |ξ ′〉ABA′B′ = ∑

l |l ′l ′〉ABA′B′

are the un-normalized maximally entangled states in the
Schmidt basis of the initial and final states.

Thus we also have (using the Choi-Jamiołkowski
isomorphism)

Mm

√

AA′

∑
l

|l〉〈l|AA′V †
m = √

rm

√
�AA′

∑
l ′

|l ′〉〈l ′|AA′ , (H4)

which is equivalent to the following operator identity in the
Hilbert space of AA′:

Mm

√

AA′ = √

rm

√
�AA′Vm. (H5)

This gives the polar decomposition of the operator Mm
√


AA′ .
Let us now choose an arbitrary state �′

AA′ which commutes
with 
AA′ (such that they have the same Schmidt basis), and
define 
 ′

AA′ as


 ′
AA′ =

∑
m

rmVm�′
AA′V †

m . (H6)

Note that 
 ′
AA′ has the same eigenbasis as �AA′ while �′

AA′
with the same eigenbasis as 
AA′ . This follows from the fact
that the unitaries Vm map between the two bases, as can be
seen from Eqs. (H2) and (H5).

These new states allow us to define the following set of
positive operators:

Mrev
m := √

rm

√
�′

AA′V †
m

√

 ′

AA′
−1

, (H7)

where
√


 ′
AA′

−1
has nonzero support on the support of 
 ′

AA′
only, the projector onto which we define as �
 ′

AA′ .
It is straightforward to check that∑

m

Mrev†
m Mrev

m = �
 ′
AA′ . (H8)

Thus, together with the projector I − �
 ′
AA′ , they form a valid

POVM. They also satisfy the following identity:

Mrev†
m 
 ′

AA′Mrev
m = √

rm�′
AA′ , ∀m. (H9)

Note that the outcome given by I − �
 ′
AA′ never occurs when

acting on 
 ′
AA′ .

We now show that these measurement operators give a pure
state when applied to |
〉AA′BB′ . Note that

|�′
m〉 = 1√

rm

(
Mrev

m ⊗ I
)|
 ′〉AA′BB′ (H10)

= (
√

�′
AA′ ⊗ I)(V †

m ⊗ I)
∑

l ′
|l ′l ′〉ABA′B′ , (H11)

so we see that to obtain |�′〉AA′BB′ Bob has to implement the
particular unitary that maps the initial to the final Schmidt
basis. This unitary is V †

m , as seen in Eq. (H11). Hence we have

I ⊗ V †
m |�′

m〉 =
√


 ′
AA′ ⊗ I

∑
l ′

V †
m ⊗ V †

m |l ′l ′〉ABA′B′ (H12)

=
√

�′
AA′ ⊗ I

∑
l

|ll〉ABA′B′ = |
 ′〉AA′BB′ . (H13)

Note that the second line follows from the first because from
the definition of V †

m in Eq. (H2) we know that V †
m ⊗ V †

m is
the unitary that maps the initial to the final Schmidt basis in
both Alice and Bob simultaneously (up to a permutation of
the elements which may depend on m).

We have thus shown that

Mrev
m ⊗ V †

m |
 ′〉ABA′B′ = √
rm|�′〉ABA′B′ , ∀m. (H14)

That is, we have defined a reversed LOCC protocol that takes
state |
 ′〉AA′BB′ to |�′〉AA′BB′ . In the next section we move on
to investigating the relationship between the original LOCC
transformation and this reversed protocol.

3. Crooks’ theorem for entanglement

In this section we show how the notion of the reversed pro-
tocol allows us to derive an entanglement analog of Crooks’
theorem. For simplicity, we shall assume that for the work
distributions extracted, w

δw
is an integer.

Let us assume that we have a sequence of forward pro-
tocols that takes |
N 〉 → |�N 〉 as defined in Eq. (C4) and
Eq. (C5), in which there is a work distribution. The results
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in Appendix B imply that we can find a matrix P(i,w| j).
After that, we can use the results of Appendix C 1 to de-
fine P(i, x| j, x′), R(i, z| j, z′), and R̃(i, z| j, z′). The matrix
R̃(i, z| j, z′) is the stochastic matrix that changes the Schmidt
coefficients of the final state to those of the initial state, and
thus we can write it as

R̃(i, z| j, z′) = tr[(|i〉〈i| ⊗ |z〉〈z|)	∗
BB′ (| j〉〈 j| ⊗ |z′〉〈z′|)],

(H15)

where 	∗
BB′ (·) is defined as in Eq. (B8).

Let us now define the following matrix:

Q(i, x| j, x′) = tr[(|i〉〈i| ⊗ Px )	∗
BB′ (| j〉〈 j| ⊗ sx′ )]. (H16)

For the range of x′ in which the battery has support, that is
x′ ∈ { n−N

2 , . . . , n+N
2 }, this is related to P(i, x| j, x′) as

Q(i, x| j, x′) =
∑

z∈sx,z′∈sx′

u−x′
(u − 1)x′−n tr[(|i〉〈i| ⊗ |z〉〈z|)	∗

BB′ (| j〉〈 j| ⊗ |z′〉〈z′|)] (H17)

=
∑

z∈sx,z′∈sx′

R̃(i, z| j, z′) (H18)

=
∑

z∈sx,z′∈sx′

u−x′
(u − 1)x′−nP(i, x| j, x′) (H19)

= P(i, x| j, x′). (H20)

The step from the second to the third line only holds in that particular range of z′ (or rather, x′) specified above, in which
R̃(i, z| j, z′) = R(i, z| j, z′).

Thus, using Eq. (C6), we have that

Q(i, x| j, x′) =
∑
w

P(i,w| j)δx′−x, w
δw

, (H21)

within this range of x′.
In the previous section we have seen that the reversed LOCC protocol is such that the mixture of unitaries is the dual. This

motivates the following definition:

Qrev( j, x′|i, x) = tr[(| j〉〈 j| ⊗ Px′ )	BB′ (|i〉〈i| ⊗ sx )]. (H22)

This matrix satisfies

Qrev( j, x′|i, x) = ux′
(u − 1)n−x′

ux(u − 1)n−x Q(i, x| j, x′). (H23)

Using Eq. (H21), if we assume that x′ is within the range in which the battery has support, that is x′ ∈ { n−N
2 , . . . , n+N

2 }, we
have that

Qrev( j, x′|i, x) = ux′
(u − 1)n−x′

ux(u − 1)n−x

∑
w

P(i,w| j)δx′−x, w
δw

(H24)

= ux′
(u − 1)n−x′

ux(u − 1)n−x

∑
w

δx′−x, w
δw

∑
x′′

αx′′ tr
[(|i〉〈i| ⊗ Px′′− w

δw

)
	∗

BB′ (| j〉〈 j| ⊗ sx′′ )
]

(H25)

=
∑
w

δx′−x, w
δw

∑
x′′

(
u

u − 1

) w
δw

αx′′ tr
[(|i〉〈i| ⊗ Px′′− w

δw

)
	∗

BB′ (| j〉〈 j| ⊗ sx′′ )
]

(H26)

=
∑
w

δx′−x, w
δw

∑
x′′

αx′′ tr
[
(| j〉〈 j| ⊗ Px′′ )	BB′

(|i〉〈i| ⊗ sx′′− w
δw

)]
(H27)

�
∑
w

δx′−x, w
δw

∑
x′′

αx′′+ w
δw

tr
[(| j〉〈 j| ⊗ Px′′+ w

δw

)
	BB′ (|i〉〈i| ⊗ sx′′ )

]
(H28)

�
∑
w

δx′−x, w
δw

∑
x′′

αx′′ tr
[(| j〉〈 j| ⊗ Px′′+ w

δw

)
	BB′ (|i〉〈i| ⊗ sx′′ )

]
(H29)

≡
∑
w

Prev( j,−w|i)δx′−x, w
δw

, (H30)
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where the approximations are exact in the limit of an ideal battery, and in the last line we have defined Prev( j,−w|i) ≡∑
x′′ αx′′ tr [(| j〉〈 j| ⊗ Px′′+ w

δw
)	BB′ (|i〉〈i| ⊗ sx′′ )] in analogy to Eq. (B10). This is such that∑

j,w

Prev( j,−w|i) = 1, (H31)

∑
i,w

Prev( j,−w|i)2−w = 1, (H32)

which follow from Eq. (9) and Eq. (10), respectively. Because it is a stochastic matrix, it maps an arbitrary probability distribution
to another, ∑

i,w

Prev( j,−w|i)q′
i = p′

j,−w. (H33)

To summarize: given a sequence of forward LOCC protocols, with a matrix Q(i, x| j, x′) that maps the final-state coefficients
to the initial-state ones, there exists a sequence of reversed protocols as defined in Appendix H 2, with a matrix given by
Qrev( j, x′|i, x) that also maps from the final coefficients to the initial ones. Let us now take a final state for the protocol to be

|�′
N 〉 =

d∑
i=1

n∑
x=0

√
q′

i

N ′ + 1
δx∈{ n−N ′

2 ,..., n+N ′
2 }|ii〉 ⊗ |ex〉, (H34)

where N ′ = N − 2|wmax
δw

|; |wmax
δw

| is the absolute value of the integer corresponding to the biggest work fluctuation and N is related
to n as per Appendix C. The reasoning behind choosing the battery support to be in terms of N ′ rather than N will be explained
shortly.

These coefficients are mapped to the following initial-state coefficients:∑
i,x

Qrev( j, x′|i, x)
q′

i

N ′ + 1
δx∈{ n−N ′

2 ,..., n+N ′
2 } =

∑
i,x

∑
w

Prev( j,−w|i)δx−x′, w
δw

q′
i

N ′ + 1
δx∈{ n−N ′

2 ,..., n+N ′
2 } (H35)

=
∑

i

∑
w

Prev( j,−w|i) q′
i

N ′ + 1
δx′− w

δw
∈{ n−N ′

2 ,..., n+N ′
2 } (H36)

=
∑
w

p′
j,−w

N ′ + 1
δx′− w

δw
∈{ n−N ′

2 ,..., n+N ′
2 }. (H37)

Thus in analogy with the results of Appendix C we conclude that the sequence of reversed protocols maps from the following
initial states,

|
 ′
N 〉 =

d∑
j=1

n∑
x′=0

√√√√∑
w

p′
j,−w

N ′ + 1
δx′− w

δw
∈{ n−N ′

2 ,..., n+N ′
2 }| j j〉 ⊗ |ex′ 〉, (H38)

to the |�′
N 〉 given in Eq. (H34). The correction in the support

of the battery to the range { n−N ′
2 , . . . , n+N ′

2 } is such that in the
sum Eq. (H38) the variable x′ does not take values outside
the range { n−N

2 , . . . , n+N
2 }, which is the condition needed for

Eq. (H24) to hold.
We are now in a position to derive the analog of Crooks’

theorem. While in thermodynamics the derivation of Crooks
requires that the initial states of both the forward and reverse
protocols are thermal, for entanglement we need to take the fi-
nal states of both protocols to be maximally entangled (though
possibly of different dimensions) so qj = 1

d and q′
i = 1

d ′ .
The work distributions associated with the forward and

reversed processes are then

P(w) =
∑
i, j

P(i,w| j)
1

d
, (H39)

Prev(−w) =
∑
i, j

Prev( j,−w|i) 1

d ′ . (H40)

Following from Eq. (H23), it can be seen that they obey the
relation

P(w)

Prev(−w)
= 2−w d ′

d
. (H41)

We have thus shown the following:

Theorem 4. Suppose |ψ〉 BLOCC−→ |ebitd〉 while extracting
entanglement {P(w),w}. Then there exists a state |ψ ′〉
such that |ψ ′〉 BLOCCrev

−→ |ebitd ′ 〉 while extracting entanglement
{Prev(−w),w} and where

P(w)

Prev(−w)
= 2−w d ′

d
. (H42)
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APPENDIX I: PROBABILISTIC BLOCC
TRANSFORMATIONS AND FULL REVERSIBILITY OF
ENTANGLEMENT DILUTION AND CONCENTRATION

We previously considered pure-state transformations given
by Eq. (6) where the final state is close to |φ〉AB ⊗ |η′〉A′B′ . We
can generalize our results to the case when the final state is
given by an ensemble of pure states close to |φt 〉AB ⊗ |ηt 〉A′B′

each with probability pt —or, to put it in a way which holds in
the idea limit, where the amount of entanglement transferred
to the battery is a classical random variable pw|t occurring
with probability pt and the final system states are an ensemble
|φt 〉AB.

Let us call transformations with such an ensemble of pure
states probabilistic BLOCC. We want to show that Eqs. (9)–
(11) are still necessary and sufficient, even if the final bat-
tery state is allowed to be an ensemble of pure states. This
allows us to apply our results to well-known examples such
as entanglement concentration, where one does not have an
entanglement battery, and instead one distills some random
number of ebits peaked around nS(ψA) from n copies of |ψ〉AB

[3]. Then the case of entanglement concentration corresponds
to setting all the |ηt 〉A′B′ equal to the initial state |η〉A′B′ (so the
battery is not used in the transformation), and by considering
the final system to be some number of maximally entangled
states |φt 〉AB = |et 〉AB. One can then transfer these ebits into
the battery so that the final state of the system is in a product
state, and the battery is in �t |η〉A′B′ with probability pt .

To see that (9)–(11) are still necessary and sufficient con-
ditions, we can use a result which follows from [47]:

Lemma 1. Consider an ensemble of pure states |φt 〉 occur-
ring with probability pt which can be written in a Schmidt
basis as |φt 〉 = ∑

j
√

q j|t | j j〉AB. Consider the average target
state, |φ̄〉 = ∑

j
√

q j | j j〉AB, where q j = ∑
t pt q j|t . Then it is

possible to transform an initial state |ψ〉AB to the ensemble
{|φt 〉, pt } under LOCC iff it is possible to transform |ψ〉AB

into |φ̄〉.
Note that because all states with the same Schmidt coeffi-

cients are equivalent under LOCC, we can write |φt 〉 using the
same Schmidt basis without loss of generality.

Now, to see that Eqs. (9)–(11) are necessary under proba-
bilistic BLOCC, consider an ensemble of possible work and
final-state distributions, which we can characterize by the
probability distributions {P(w, j|i, t ), pt }, with the ensemble
of final states arbitrarily close to a pure-state ensemble which
we denote by {pt , |φt 〉 ⊗ |ηt 〉}, each with Schmidt coeffi-
cients

√
q jx′ |t [(u − 1)/u]x′/2. (In the rest of this section we

omit the factor [(u − 1)/u]x′/2). We can write the process
map which takes pxi to qx′ j|t as P( j, x′|i, x, t ) = P(w = [x′ −
x]δw, j|i, t ). Then, due to Lemma 1, we know that one can
transform the initial state into this ensemble, only if one can
transform it into the average target state with Schmidt coeffi-
cients

√∑
t q jx′|t pt . Since we can take

∑
t q jx′|t pt = q jx′ , the

transformation into the ensemble can only be accomplished if
we can transform into the pure state with Schmidt coefficients√

q jx′ of the average state. The necessary conditions for pure-
state transformations, Eqs. (9)–(11), then apply.

To see that (9)–(11) are sufficient, we want that given
any P(w, j|i) that satisfies them, one can transform the
initial state into any ensemble given by the process map

P(w, j|i, t ) as long as P(w, j|i) = ∑
t P(w, j|i, t )pt . Now,

every P(w, j|i, t ) can be considered as a process which takes
the initial state with Schmidt coefficients pix to a final state
with Schmidt coefficients qjx′ |t , which we can convert to a
P(x′, j|i, x, t ) as was done in Eq. (C6). We can then see that
P(x′, j|i, x) = ∑

t P(x′, j|i, x, t )pt , and that q jx′ = ∑
t q jx′ |t pt

gives the Schmidt coefficients for the average state corre-
sponding to the final ensemble given by q jx′|t . Lemma 1 then
guarantees that we can create this ensemble.

Now, in known dilution protocols, the amount of entan-
glement does not fluctuate, while the original entanglement
concentration [3] protocol is one in which the final amount
of entanglement does fluctuate, but probabilistically rather
than coherently. Nonetheless, due to the results in this section,
Result 1 still holds. In the protocol, of concentration, one starts
with n copies of

|ψ〉AB = √
p|00〉AB +

√
1 − p|11〉AB (I1)

and we want to concentrate them into t copies

|φ〉AB = 1√
2

(|00〉AB + |11〉AB). (I2)

This can be done by having Alice perform a measurement
onto projectors Pt = ∑

v∈t |v〉〈v|, where v are strings in the
Schmidt basis and t is the set of all strings which have t
1’s (called the typecast). Since all strings which have the
same typecast have equal probability, this projects the state
into a maximally entangled one. The amount of entanglement
gained t is nS(ψA) on average but has to satisfy the fluctuation
theorems presented here. And in fact, as we have shown, all
other concentration schemes must also.

For entanglement dilution, existing protocols are not op-
timal, but using an entanglement battery, not only can one
perform dilution on the single-copy level, but also, the total
yield can be improved and made optimal. Take, for example,
the teleportation protocol of [3], where Alice performs Schu-
macher compression [48] on her half of the n copies of her
local state so that it sits on only k = nS(ψA) + O(

√
n) qubits.

She then teleports her state to Bob, using k ebits. While the
average number of ebits consumed is equal to S(ψA), the total
number requires an additional amount of order

√
n. This is

due to the compression step, which although asymptotically
efficient in terms of an average rate (k/n), wastes order

√
n

ebits. Likewise, the more sophisticated protocol of [49] also
relies on compression and teleportation, using up O(

√
n) more

ebits than strictly needed. Dilution and concentration are thus
not strictly reversible, since in concentration, the average
is peaked around S(ψA) but the amount fluctuates and can
be both more or less than the average. However, using the
entanglement battery, entanglement dilution can be performed
in such a way that it is reversible, not only in the sense that the
average amount of ebits consumed or produced do not differ
by O(1/

√
n), but also in the sense that all the moments and the

fluctuations are the same (as can be seen by applying Result
3), which implies full reversibility.

APPENDIX J: AN ESTIMATE OF THE BATTERY SIZE

Here we give an example of a transition for which only a
small battery is needed. For that we need the following lemma.
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Lemma 2. In a BLOCC protocol with a battery of finite size
N , we have that

F (trA′B′ [|�N 〉〈�N |], trA′B′ [σ̃ ]) � 1

1 + 2au
max

N+1

, (J1)

where F (ρ, σ ) is the quantum fidelity. The state σ̃ is defined
as the output of the protocol when an initial product state
between system and battery |
̃N 〉 is the input [as defined in
Eq. (D2)] and au

max is defined in Eq. (C3). We recall that
|�N 〉 is a final state of the finite-sized LOCC transition as in
Eq. (C5). The marginals are over the system Hilbert space AB.

Proof. Starting from Eq. (D3), we have that the initial states
|
N 〉 and |
̃N 〉 are close by

|〈
̃N |
N 〉| � 1

1 + 2au
max

N+1

. (J2)

Given the monotonicity property of the fidelity under com-
pletely positive trace-preserving maps, this quantity lower-
bounds that of the final states 	(|
N 〉〈
N |) = |�N 〉〈�N | and
	(
̃N ) = σ̃ :

F (|�N 〉〈�N |, σ̃ ) =
√

〈�N |σ̃ |�N 〉 � |〈
̃N |
N 〉|. (J3)

The fidelity between states can also only increase if we trace
out the battery and focus on the system only:

F (trA′B′ [|�N 〉〈�N |], trA′B′ [σ̃ ]) � F (|�N 〉〈�N |, σ̃ ); (J4)

thus we get to the expression

F (trA′B′ [|�N 〉〈�N |], trA′B′ [σ̃ ]) � 1

1 + 2au
max

N+1

. (J5)

�
The inequality in this lemma allows us to estimate how far

we are from the ideal infinite battery case, in which all the
different initial and final states coincide.

That is, to have a high fidelity, of at least 1 − ε, the trade-
off between the size of the battery and the desired accuracy is

1

1 + 2au
max

N+1

� 1 − ε. (J6)

We see that the parameter au
max fixes the trade-off between size

and fidelity. It is defined in Eq. (C3) and is used to be able to
approximate arbitrary values of w, so there is not a general
upper bound for it. However, good particular choices of w,
such as multiples of log2

u
u−1 with u integer, yield low au

max,
and hence a good trade-off too.

As a simple example, let us take a reversible transforma-
tion, in which w ≡ wi j = log2

pi

q j
. In such processes wmax =

max {D∞(p|q), D∞(q|p)}, where we define the Renyi-∞ di-
vergence as D∞(p|q) := log2 supi(

pi

qi
). We choose an ini-

tial state with coefficients p = (1/2, 1/4, 1/8, 1/8) and a
final state with q = (1/4, 1/4, 1/4, 1/4), for which we have
wmax = log2 2, and a choice of u = 2 yields au

max = 1.
Thus the states are

|
N 〉 =
√

1

2
|00〉 ⊗

n+N
2∑

x= n−N
2

1

N + 1
|ex−1〉 +

√
1

4
|11〉

⊗
n+N

2∑
x= n−N

2

1

N + 1
|ex〉 +

√
1

8
(|22〉 + |33〉)

⊗
n+N

2∑
x= n−N

2

1

N + 1
|ex+1〉, (J7)

|�N 〉 =
√

1

4
(|00〉 + |11〉 + |22〉 + |33〉)

⊗
n+N

2∑
x′= n−N

2

√
1

N + 1
|ex′ 〉. (J8)

For this case, to achieve a fidelity of at least 1 − ε =
0.85, it is sufficient to take N � 11, and hence a battery
consisting of n ≡ N + 2au

max � 13 systems. We also note that
the dimension of the Hilbert space of the individual systems
of the battery is 2u − 1, so in this case the Hilbert space of
each of these is C3 ⊗ C3.
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