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Making good decisions requires people to appropriately explore their
available options and generalize what they have learned. While com-
putational models can explain exploratory behavior in constrained
laboratory tasks, it is unclear to what extent these models general-
ize to real world choice problems. We investigate the factors guiding
exploratory behavior in a data set consisting of 195,333 customers
placing 1,613,967 orders from a large online food delivery service.
We find important hallmarks of adaptive exploration and generaliza-
tion, which we analyze using computational models. In particular,
customers seem to engage in uncertainty-directed exploration and
use feature-based generalization to guide their exploration. Our re-
sults provide evidence that people use sophisticated strategies to
explore complex, real-world environments.
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When facing a vast array of new opportunities, a decision1

maker has two key tasks: to acquire information (often2

through direct experience) about available options, and to3

apply that information to assess options not yet experienced.4

These twin problems of exploration and generalization must5

be tackled by any organism trying to make good decisions,6

but they are challenging to solve because optimal solutions7

are computationally intractable (1). Consequently, the means8

by which humans succeed in doing so—especially in the com-9

plicated world at large—have proven puzzling to psycholo-10

gists and neuroscientists. Many heuristic solutions have been11

proposed to reflect exploratory behavior (2–4), inspired by12

research in machine learning (5, 6). However, most studies13

have used a small number of options and simple attributes (7).14

To truly ascertain the limits of exploration and generalization15

requires empirical analysis of behavior outside the lab.16

We study learning and behavior in a complex environment17

using a large data set of human foraging in the “wild”—online18

food delivery. Each customer has to decide which restaurant19

to pick out of hundreds of possibilities. How do they make a20

selection from this universe of options? Guided by algorithmic21

perspectives on learning, we look for signatures of adaptive22

exploration and generalization that have been previously iden-23

tified in the lab. This allows us not only to characterize these24

phenomena in a naturally incentivized setting with abundant25

and multi-faceted stimuli, but also to weigh in on existing26

debates by testing competing theories of exploratory choice.27

We address two broad questions. First, how do people28

strategically explore new options of uncertain value? Different29

algorithms have been proposed to describe exactly how un-30

certainty can guide exploration in qualitatively different ways,31

such as by injecting randomness into choice, or by making32

choices directed toward uncertainty (8). However, results have33

been mixed, and these phenomena remain to be studied under34

real-world conditions. Second, how do people generalize their35

experiences to other options? Modern computational theories 36

make quantitative predictions about how feature-based simi- 37

larity should govern generalization, which can in turn guide 38

choice. But again it is unclear whether these theories can 39

successfully predict real-world choices. 40

Our results suggest that customers explore (i.e., order from 41

unexperienced restaurants) adaptively based on signals of 42

restaurant quality, and make better choices over time. Explo- 43

ration is indeed risky and leads to worse outcomes on average, 44

but people are more likely to explore in cities where this down- 45

side is lower due to higher mean restaurant quality. Moreover, 46

we show that customers’ exploratory behavior might not only 47

take into account the prospective reward from choosing a 48

restaurant, but also the degree of uncertainty in their reward 49

estimates. Consistent with an optimistic uncertainty-directed 50

exploration policy, they preferentially sample lesser known 51

options and are more likely to reorder from restaurants with 52

higher uncertainties. 53

Importantly, we apply cognitive and statistical modeling 54

to customers’ choice behavior and find that their choices are 55

best fit by a model that includes both an “uncertainty bonus” 56

for unfamiliar restaurants, and a mechanism for generalization 57

by function learning (based on restaurant features). People 58

appear to benefit from such generalization, as exploration 59

yields better realized outcomes in cities where features have 60

more predictive power. We also show that people generalize 61

their experiences across different restaurants within the same 62

broad cuisine type, defined both empirically within the data 63

set, and by independent similarity ratings. As predicted by a 64

combination of similarity-based generalization and uncertainty- 65

directed exploration, good experiences encourage selection of 66

other restaurants within the same category, while bad experi- 67

ences discourage this to an even greater extent. 68
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In order to set the stage for our analyses of purchasing69

decisions, we first review the algorithmic ideas that have been70

developed to explain exploration in the laboratory.71

Prior work on the exploration-exploitation dilemma72

Uncertainty-guided algorithms. Most of what we know about73

human exploration comes from multi-armed bandit tasks, in74

which an agent repeatedly chooses between several options and75

receives reward feedback (9, 10). Since the distribution of re-76

wards for each option is unknown at the beginning of the task,77

an agent is faced with an exploration-exploitation dilemma78

between two types of actions: should she exploit the options79

she currently knows will produce high rewards while possibly80

ignoring even better options? Or should she explore lesser-81

known options to gain more knowledge but possibly forego82

high immediate rewards? Optimal solutions only exist for sim-83

ple versions of this problem (1). These solutions are in practice84

difficult to compute even for moderately large problems. Vari-85

ous heuristic solutions have been proposed. Generally, these86

heuristics coalesce around two algorithmic ideas (8). The87

first one is that exploration happens randomly, for example88

by occasionally sampling one of the options not considered89

to be the best (11); or by so-called soft-maximization of the90

expected utilities for each option—i.e., randomly sampling91

each option proportionally to its value. The other idea is that92

exploration happens in a directed fashion, whereby an agent93

is explicitly biased to sample more uncertain options. This94

uncertainty-guidance is frequently formalized as an “uncer-95

tainty bonus” (5) which inflates an option’s expected reward96

by its uncertainty.97

There has been a considerable debate about whether or98

not directed exploration is required to explain human behav-99

ior (12). For example, Daw and colleagues (12) have shown100

that a softmax strategy explains participants’ choices best in101

a simple multi-armed bandit task. However, several studies102

have produced evidence for a direct exploration bonus (4, 13).103

Recent studies have proposed that people engage in both ran-104

dom and directed exploration (2, 14). It has also been argued105

that directed exploration might play a prominent role in more106

structured decision problems (15). However, evidence for such107

algorithms is still missing in real-world purchasing decisions,108

where other mechanisms such as coherency maximization have109

been observed (7, 16).110

Generalization. Multiple studies have emphasized the impor-111

tance of generalization in exploratory choice. People are known112

to leverage latent structures such as hierarchical rules (17) or113

similarities between a bandit’s arms (18).114

Inspired by insights from the animal literature (19), Ger-115

shman et. al (20) investigated how generalization affects the116

exploration of novel options using a task in which the rewards117

for multiple options were drawn from a common distribution.118

Sometimes this common distribution was “poor” (options119

tended to be non-rewarding), whereas sometimes the com-120

mon distribution was “rich” (options tended to be rewarding).121

Participants sampled novel options more frequently in rich122

environments than in poor environments, consistent with a123

form of adaptive generalization across options.124

Schulz et al. (21) investigated how contextual information125

(an option’s features) can aid generalization and exploration126

in tasks where the context is linked to an option’s quality by127

an underlying function. Participants used a combination of 128

functional generalization and directed exploration to learn the 129

underlying mapping from context to reward (see also (22)). 130

Results 131

We looked for signatures of uncertainty-guided exploration 132

and generalization in a data set of purchasing decisions from 133

the online food delivery service Deliveroo (see Materials and 134

Methods for more details), using both statistical and cognitive 135

modeling. Further analyses and details can be found in the 136

SI Appendix. In the first two sections of the Results, we 137

provide some descriptive characterizations of the data set. In 138

particular, we show that customers learn from past experience 139

and adapt their exploratory behavior over time. Moreover, 140

exploration is systematically influenced by restaurant features 141

and hence amenable to quantification. We then turn to tests 142

of our model-based hypotheses. We find that customers’ ex- 143

ploratory behavior can be clustered meaningfully, exhibits 144

several signatures of intelligent exploration which have previ- 145

ously been studied in the lab, and can be captured by a model 146

that generalizes over restaurant features while simultaneously 147

engaging in directed exploration. 148

Learning and exploration over time. We first assessed if cus- 149

tomers learned from past experiences, as reflected in their 150

order ratings over time (Fig. 1a). The order rating is defined 151

as customers’ evaluation on a scale between 1 (poor) and 5 152

(great). Customers picked restaurants they liked better over 153

time: there was a positive correlation between the number of 154

a customer’s past orders and her ratings (r = 0.073; 99.9% CI: 155

0.070, 0.076, see SI for further analyses). 156

Next, we assessed exploratory behavior by creating a vari- 157

able indicating whether a given order was the first time a 158

customer had ordered from that particular restaurant—i.e., 159

a signature of pure exploration (20). Figure 1b shows the 160

averaged probability of sampling a new restaurant over time 161

(how many orders a customer had placed previously). 162

Customers sampled fewer new restaurants over time, leading 163

to a negative overall correlation between the number of past 164

orders and the probability of sampling a new restaurant (r = 165

−0.139; 99.9% CI: −0.142, −0.136). Exploration also comes 166

at a cost (Fig. 1c), such that explored restaurants showed a 167

lower average rating (mean rating=4.257, 99.9% CI: 4.250, 168

4.265) than known restaurants (mean rating=4.518, 99.9% CI: 169

4.514, 4.522). 170

Customers learned from the outcomes of past orders. Fig- 171

ure 1d shows their probability of reordering from a restaurant 172

as a function of their reward prediction error (RPE; the differ- 173

ence between the expected quality of a restaurant, as measured 174

by the restaurant’s average rating at the time of the order, 175

and the actual pleasure customers perceived after they had 176

consumed the order, as indicated by their own rating of the 177

order). RPEs are a key component of theories of reinforce- 178

ment learning (23), and we therefore expected that customers 179

would update their sampling behavior after receiving either 180

a positive or a negative RPE. Confirming this hypothesis, 181

customers were more likely to reorder from a restaurant af- 182

ter an experience that was better than expected (positive 183

RPE: p(reorder)=0.518, 99.9%; CI: 0.515, 0.520) than after 184

an experience that was worse than expected (negative RPE: 185

p(reorder)=0.394, 99.9%; CI: 0.391, 0.398). The average cor- 186
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Fig. 1. Learning and exploration over time. a: Average order rating by number of past orders. b: Probability of sampling a new restaurant in dependency of the number of
past orders. Dashed black line indicates simulated exploratory behavior of agents randomly exploring available restaurants. c: Distribution of order ratings for newly sampled
and known restaurants. d: Average probability of reordering from a restaurant as a function of reward prediction error. Means are displayed as black squares and error bars
show the 95% confidence interval of the mean.
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Fig. 2. Factors influencing exploration.
a: Effect of relative price. The relative price indicates how much cheaper or more expensive a restaurant was compared to an average restaurant in the same city. b: Effect of
standardized (z-transformed) estimated delivery time. c: Effect of average rating. d: Effect of a restaurant’s number of past ratings (certainty). Means are displayed as black
squares and error bars show the 95% confidence interval of the mean.

relation between RPEs and the probability of reordering was187

r = 0.110 (99.9% CI: 0.107, 0.114).188

Determinants of exploration. In the next part of our analysis,189

we focused on what factors were associated with the decision190

to explore a new restaurant. In particular, we assessed if191

exploratory behavior was systematic and therefore looked at192

the following four restaurant features that were always visible193

to customers at the time of their order: the relative price (i.e.,194

how much cheaper or more expensive a restaurant is compared195

to the average within the same country) of a restaurant, its196

standardized estimated delivery time, the mean rating of a197

restaurant at the time of the order, and the number of people198

who had rated the restaurant before.199

Customers preferred restaurants that were comparatively200

cheaper (Fig. 2a): the correlation between relative price and201

the probability of exploration was negative (r = −0.059; 99.9%202

CI: −0.0641, −0.0548). There was a non-linear relationship be-203

tween a restaurant’s estimated delivery time and its probability204

of being explored (Fig. 2b): exploration was most likely for205

standardized delivery times between 1 and 2.5 (0.288, 99.9%206

CI: 0.285, 0.292), and less likely for delivery times below 1207

(0.288, 99.9% CI: 0.285, 0.292 or above 2.5 (0.252, 99.9% CI:208

0.229, 0.274). This indicates that customers might have taken209

into account how long it would take to plausibly prepare and210

deliver a good meal when deciding which restaurants to explore.211

The average rating of a restaurant also affected customers’212

exploratory behavior (Fig. 2c): higher ratings were associated213

with a higher chance of exploration (r = 0.038; 99.9% CI:214

0.0337, 0.0430). The number of ratings per restaurant also215

influenced exploration (Fig. 2d), with a negative correlation216

of r = −0.188 (99.9% CI: −0.192, −0.183). This may have217

a mechanical component because restaurants that have been218

tried more frequently are intrinsically less likely to be explored219

for the first time. We therefore repeated this analysis for all220

restaurants that had been rated more than 500 times, yielding221

a correlation of r = −0.034 (99.9% CI: −0.042, −0.026). 222

Table 1. Results of the mixed-effects logistic regression.
Estimate Std. Error z value Pr(>|z|)

Intercept -0.663 0.008 -82.01 <.001
Relative price -0.014 0.006 -2.27 .02

Time-Linear -0.0246 0.008 -3.22 .001
Time-Quadratic 0.015 0.004 3.89 <.001
Average rating 0.086 0.006 13.85 <.001

Number of ratings -0.475 0.007 -70.27 <.001

We standardized and entered all of the variables into a 223

mixed-effects logistic regression modeling the exploration vari- 224

able as the dependent variable and adding a random in- 225

tercept for each customer (see SI for full model compari- 226

son). We again found that a smaller number of total ratings 227

(β = −0.475), a higher average rating (β = 0.086), and a 228

lower price (β = −0.014) as well as a quadratic effect of time 229

(βLinear = −0.025, βQuadratic = 0.015) were all predictive of 230

customers’ exploratory behavior. 231

In summary, exploration in the domain of online ordering is 232

systematic, interpretable and amenable to quantification. We 233

next turned to an examination of our model-based hypotheses 234

concerning directed exploration and generalization. 235

Signatures of uncertainty-directed exploration 236

We probed the data for signatures of uncertainty-directed ex- 237

ploration algorithms that attach an uncertainty bonus to each 238

option. One such signature is that directed and random explo- 239

ration make diverging predictions about behavioral changes 240

after either a positive or a negative outcome. Whereas random 241

(softmax) exploration predicts no difference between the extent 242

of sampling behavior change following a better-than-expected 243

outcome versus following a worse-than-expected outcome, di- 244

rected exploration predicts a stronger increase in sampling 245

behavior after a worse-than-expected outcome (see SI). This is 246
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Fig. 3. Signatures of uncertainty-directed exploration.
a: Entropy of the next 4 choices in dependency of reward prediction error (RPE). b: Probability of reordering from a restaurant in dependency of RPE, shown for restaurants with
high and low relative variance. c: Probability of choosing a novel restaurant in dependency of its difference to an average restaurant within the same cuisine type for restaurants
with high and low relative variance. d: Probability of choosing a novel restaurant in dependency of its relative price for restaurants with high and low relative variance.

due to the properties of algorithms that assess an option’s util-247

ity by a weighted sum of its expected reward and its standard248

deviation. After a bad experience, the mean and standard249

deviation both go down, whereas after a good experience the250

mean goes up but the standard deviation goes down. Thus,251

there should be greater change in customers’ sampling behavior252

after a bad than after a good outcome.253

We verified this prediction by calculating the Shannon en-254

tropy of customers’ next 4 purchases after having experienced255

either a better-than or a worse-than-expected order. The cal-256

culated entropy was higher for negative RPEs (Fig 3a; 1.112,257

99.9% CI: 1.109, 1.115) than for positive RPEs (1.082, 99.9%258

CI: 1.081, 1.084), in line with theoretical predictions of a259

directed exploration algorithm.260

We calculated each restaurant’s relative variance, i.e., how261

much more variance in its ratings a restaurant possessed as262

compared to the average variance per restaurant within the263

same cuisine type (although customers cannot see the actual264

estimate of a restaurant’s variance in ratings, they can access265

all past rating as well as a summary that shows the distribution266

over ratings). We then compared the reorder probability for267

restaurants with a high vs. low relative rating variance, based268

on a median split (Fig. 3b). This probability was higher for269

restaurants with high relative variance than for restaurants270

with low relative variance for both negative and positive RPEs.271

Thus, customers were more likely to return to restaurants with272

higher relative uncertainty.273

We also assessed customers’ exploratory behavior in depen-274

dency of the differences in ratings for a given restaurant as275

compared to the average of all restaurants within the same276

cuisine type (value difference). The probability of exploring277

a new restaurant increased as a function of the restaurant’s278

value difference (Fig. 3c; r = 0.05, 99.9% CI: 0.045, 0.056).279

Additionally, a restaurant’s relative variance also correlated280

with its probability of being explored (Fig. 3c; r = 0.05; 99.9%281

CI: 0.045, 0.056). Comparing restaurants with a high vs. low282

relative variance in their ratings revealed a shift of the choice283

function towards the left. In other words, restaurants with284

higher relative uncertainty (0.344; 99.9% CI: 0.341, 0.349) are285

preferred to restaurants with lower relative uncertainty (0.319;286

99.9% CI: 0.317, 0.321), as predicted by uncertainty-directed287

exploration strategies (2). This difference can also be observed288

when repeating the same analysis using a restaurant’s price289

(Fig. 3d): as restaurants get more expensive, they are less290

likely to be explored (r = −0.017; 99.9%CI: −0.023, −0.013).291

This function is again shifted for restaurants with higher rela-292

tive uncertainty: given a similar price range, relatively more293

uncertain restaurants are more likely to be explored than less294

uncertain restaurants. 295

Table 2. Results of mixed-effects logistic regression.

Estimate Std. Error z value Pr(>|z|)
Intercept -0.342 0.007 45.81 <.001

Value difference 0.114 0.0135 8.47 <.001
Relative price -0.087 0.007 -11.67 <.001

Variance difference 0.084 0.003 24.13 <.001
To further validate these findings, we fit a mixed-effects 296

logistic regression, using the exploration variable as the depen- 297

dent variable. For the independent variables, we used the mean 298

difference in ratings between the restaurant and the average 299

restaurant within the same cuisine type, a restaurant’s relative 300

price, and its relative uncertainty (see Tab. 2). The average 301

value difference (β = 0.114), the relative price β = −0.0876) 302

and the relative uncertainty (β = 0.084) all affected a restau- 303

rants’ probability to be explored. Thus, even when taking 304

into account a restaurant’s price and its ratings, customers 305

still preferred more uncertain options. This provides further 306

evidence for a directed exploration strategy. 307

Signatures of generalization. Having observed how ex- 308

ploratory behavior changes with experience, we investigated 309

how generalization might affect exploration in several ways. 310

First, we looked for evidence of information spillovers by ana- 311

lyzing changes in exploration within cuisine clusters. These 312

seven clusters were defined in a data-driven manner based 313

on patterns of consecutive explorations, that is, how one ex- 314

ploratory choice predicted the next (see Fig. 4a and Mate- 315

rials and Methods). This was also related to a subjective 316

understanding of similarity; the frequency of switching be- 317

tween cuisine types was strongly correlated with similarity 318

ratings provided by 200 workers on Amazon Mechanical Turk 319

(r = 0.78; Fig. 5a). Hinting at strategies of directed explo- 320

ration as before, we found that bad outcomes had a larger 321

effect than good outcomes compared to a baseline of aver- 322

age switches (Fig. 4b)—customers were especially averse to 323

exploring other restaurants in the same cluster after a worse- 324

than-expected outcome (-5.19%), more than they favored such 325

exploration after a better-than-expected outcome (+2.27%). 326

This suggests that uncertainty-modulated exploration takes 327

into account experiences with different restaurants of similar 328

types. Intriguingly, we also observed that customers tended 329

to switch to exploring “Unhealthy” cuisines after bad experi- 330

ences with any other type (+2.72%). This may reflect people 331

balancing differing goals across successive choices (24). 332

Second, we analyzed how exploration is modulated by the 333

distribution of restaurant quality in a city. Gershman et 334

al. (20) showed that participants explore novel options more 335
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Fig. 4. Clusters and changes of exploration.
a: Clusters of exploration between different cuisine types within customers’ consecutive explorations. Green rectangles mark clusters of exploration. b: Moves between clusters
after better-than-expected (positive RPE) and worse-than-expected (negative RPE) outcomes as compared to a restaurant-specific mean baseline. Centers of radar plots
indicate a change of -5%, outermost lines indicate a change of +5%. A change of 1% roughly translates to 500 orders.
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Fig. 5. Signatures of generalization.
a: Probability of switches between cuisine types and rated similarities between the same types. b: Average rating per city and proportion of exploratory choices. Turquoise line
marks least-square regression line. c: Predictability of a restaurant’s quality and average rating of explored restaurants. Turquoise line marks least-square regression line. d:
Results of model comparison for new customers’ behavior. Considered models were the Bayesian Mean Tracker (BMT), a Gaussian Process with a mean-greedy sampling
strategy (GP-M), and a Gaussian Process with a Upper Confidence Bound sampling strategy (GP-UCB).

frequently in environments where all options are generally336

good. We found evidence for this phenomenon in our data337

(Fig. 5b): there was a positive correlation between a city’s338

average restaurant rating and the proportion of exploratory339

choices in that city (r = 0.32; 99.9% CI: 0.21, 0.49, see SI340

Appendix for partial correlations). Moreover, there was also a341

positive correlation between a city’s variance of ratings and342

the proportion of exploratory choices (r = 0.48; 99.9% CI:343

0.37, 0.59), indicating that higher uncertainties in ratings were344

linked to more exploration.345

Third, we examined how the success of exploration de-346

pended on the predictability of individual ratings from restau-347

rant features (price, delivery time, mean rating, and number348

of ratings). Customers gave higher ratings to explored restau-349

rants in cities where ratings were generally more predictable350

(r = 0.73; Fig. 5c, 99.9% CI: 0.53, 0.84). Thus, exploration351

seemed to be enhanced by the degree to which features permit-352

ted a reduction in uncertainty, similar to findings in contextual353

bandit tasks (21).354

In an attempt to test algorithms of both directed explo-355

ration and generalization simultaneously, we compared three356

models of learning and decision making based on how well they357

captured the sequential choices of 3,772 new customers who358

had just started ordering food and who had rated all of their359

orders. The first model was a Bayesian Mean Tracker (BMT)360

that estimates the mean quality for each restaurant indepen-361

dently. The second model was an extension of the BMT model 362

(Gaussian Process regression) that estimates mean quality as 363

a function of observable features (price, mean rating, deliv- 364

ery time, and number of past ratings). The shared feature 365

space allows this model to generalize across restaurants. Gaus- 366

sian Process regression is a powerful model of generalization 367

that has been applied to model how participants learn latent 368

functions to guide their exploration (15, 21, 22). It can be 369

seen as a Bayesian variant of similarity-based decision making, 370

akin to economic theories of case-based decision making (25) 371

and psychological formulations of similarity judgments (26). 372

This model was paired with two different policies: stochastic 373

sampling of actions in proportion to their estimated mean 374

quality (GP-M), or with a directed exploration strategy that 375

sampled based on both the mean and an uncertainty bonus 376

(formally, an option’s upper confidence bound, GP-UCB). 377

We treated customers’ choices as the arms of a bandit and 378

their order ratings as their utility, and then evaluated each 379

model’s performance based on its one-step-ahead prediction 380

error, standardizing performance by comparing to a random 381

baseline. Since it was not possible to observe all restaurants 382

a customer might have considered at the time of an order, 383

we compared the different models based on how much higher 384

in utility they predicted a customer’s final choice compared 385

to an option with average features out of all the restaurants 386

available in that customer’s city. As Fig. 5d shows, the BMT 387
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model barely performed above chance (r2 = 0.013; 99.9% CI:388

0.005, 0.022). Although the GP-M model performed better389

than the BMT model (r2 = 0.231; 99.9% CI: 0.220, 0.241),390

the GP-UCB model achieved by far the best performance391

(r2 = 0.477; 99.9% CI: 0.465, 0.477). Thus, a sufficiently pre-392

dictive model of customers’ choices required both a mechanism393

of generalization (learning how features map onto rewards),394

and a directed exploration strategy (combining a restaurant’s395

mean and uncertainty to estimate its decision value).396

Discussion397

We investigated customers’ exploratory behavior in a large data398

set of online food delivery purchases. Customers learned from399

past experiences, and their exploration was affected by a restau-400

rant’s price, average rating, number of ratings and estimated401

delivery time. Our results further provide evidence for several402

theoretical predictions: people engaged in uncertainty-directed403

exploration, and their exploration was guided by similarity-404

based generalization. Computational modeling showed that405

these patterns could be captured quantitatively.406

Of course, drawing causal inferences from large data sets407

is difficult (27). Thus, although we believe that our results408

provide evidence that people use sophisticated strategies in409

complex, naturalistic environments, these effects nonetheless410

deserve further investigation, for example by conducting online411

experiments.412

Furthermore, our model does currently not explain all pos-413

sible intentions customers might have when ordering food such414

as maintaining a healthy diet or balancing different goals over415

successive choices like saving money and trying out expensive416

food (24). These could hypothetically be incorporated into417

the kernel function.418

Taken together, our results advance our understanding of419

human choice behavior in complex real-world environments.420

The results may also have broader implications for understand-421

ing consumer behavior. For example, we found that customers422

frequently switch to unhealthy food options after bad expe-423

riences. A potential strategy to increase the exploration of424

healthy food might thus be to increase healthy restaurants’425

relative uncertainty by grouping them with other frequently426

explored options such as Asian restaurants, which showed a427

comparatively lower relative uncertainty per restaurant.428

While we have focused on using cognitive models to predict429

human choice behavior, the same issues come up for the design430

of recommendation engines in machine learning. These engines431

use sophisticated statistical techniques to make predictions432

about behavior, but do not typically try to pry open the433

human mind (28). This is a missed opportunity, since one434

could generate better recommendations of which restaurants435

to try next, based on a particular customer’s estimated values436

and uncertainties; as models of human and machine learning437

have become increasingly intertwined, insights from cognitive438

science may help build more intelligent machines for predicting439

and aiding consumer choice.440
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Materials and Methods444

445

The Deliveroo data set. The data consisted of a representative ran- 446

dom subset of customers ordering food from the online food de- 447

livery service “Deliveroo”. The data set contained 195,333 fully 448

anonymized customers. These customers placed 1,613,968 orders 449

over two month (February and March 2018) in 197 cities. There were 450

30,552 restaurants in total leading to an average of 155 restaurants 451

per city. We arrived at this data set by filtering out customers with 452

less than 5 orders (too little data points to analyze learning) and 453

more than 100 orders (likely multiple people sharing an account). 454

Clustering analysis. Cuisine tags were manually defined by Deliveroo. 455

We analyzed for each cuisine type how much exploring this type 456

on a time point t was predictive of exploring another cuisine type 457

on a time point t + 1, using a linear regression model. Repeating 458

this analysis for every combination of cuisine types lead to the 459

graph shown in Figure 4a. We then analyzed the resulting matrix of 460

r2-values using hierarchical clustering. This clustering excluded the 461

cuisine type “European” as it was found to contain little information 462

about customer choice behavior. 463

Similarity judgments. To elicit similarity ratings between different 464

cuisine types, we asked 200 participants on Amazon’s Mechanical 465

Turk to rate the similarities between two randomly sampled types 466

out of the 20 types used for the clustering analysis reported above. 467

Participants were paid $1 and had to rate 50 pairs of cuisine types 468

on a scale from 0 (not at all similar) to 10 (totally similar). 469
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