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Abstract

The research presented in this thesis explores methods for rendering realistic virtual

content in mixed reality applications. Rendering content for mixed reality presents

unique challenges, as it is critical that the virtual content is not only realistic, but

also consistent with its real surroundings. This thesis is concerned with methods to

achieve this goal, focusing on those which require minimal prior information about

the real scene and work in real time. In particular, methods are presented which

address two problems in this area.

The first problem is correct handling of occlusion between virtual and real

objects. When adding virtual content to a real scene, it is challenging to deter-

mine where real objects should occlude the added virtual content. An approach

was developed to combine the noisy colour and depth outputs of RGBD cameras to

determine accurate real-virtual occlusions. A method was also developed to quan-

titatively assess the quality of such approaches.

The second problem is capturing a detailed lighting model of a real environ-

ment quickly, and updating it in real time. The appearance of objects is greatly

dependent on the surrounding lighting environment, so a detailed lighting model is

invaluable when attempting to render realistic virtual content into the scene. A num-

ber of novel approaches to capture this lighting information and use it are developed,

and applications for these approaches are also explored, including rendering virtual

objects which reflect the changing real world around them. In contrast to previous

approaches which require external light probes or infer lighting indirectly from the

real scene, the presented approaches use a self-contained two-camera system and

use the extra information to infer the lighting at the virtual object location.



Impact Statement

The research presented in this thesis explores new methods for capturing and us-

ing data from the real world to improve rendering for mixed reality (MR). In an

academic setting, this contributes to an extensive body of work carried out by re-

searchers over a number of years on mixed reality and realistic rendering tech-

niques. The research has been presented at international, peer reviewed VR and

MR conferences, exposing it to the wider academic community.

During the thesis, focus was placed on exploring methods which used con-

sumer hardware, and did not require expert knowledge or a long time investment

in carrying out precapture steps. The intent was to develop techniques which could

form part of MR systems accessible to as many people as possible. It is the author’s

hope that as the necessary hardware becomes cheaper and more widely available,

techniques such as these will form part of compelling MR applications used by a

wide range of people.

The occlusion handling method presented here addresses an important prob-

lem in many MR applications; that real content does not usually occlude virtual

content. This makes the virtual content appear unrealistic and confuses users about

the spatial relationships between real and virtual objects. The technique tackles

these problems, and critically handles the case where a user’s hands occlude a vir-

tual object. This opens up the possiblity in the future of users being able to pick up

and manipulate virtual objects in MR via gestures, or even using haptic feedback

gloves.

The lighting capture methods provide ways to extract more information about

the real scene, which is useful for adding virtual objects which interact with the real
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lighting and geometry. As is shown in the thesis, this can be used to allow virtual

objects to cast shadows on real objects, reflect nearby real objects, and feel like a

cohesive part of a real scene. In the future, these techniques could be developed

further and combined with new rendering approaches to offer truly photorealistic

mixed reality experiences.
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Chapter 1

Introduction

This thesis focuses on improved rendering techniques for mixed reality (MR).

Mixed reality refers to the blending of stimuli from the real world with those pro-

duced by a computer to produce a user experience combining virtual and real con-

tent. Mixed reality approaches may add virtual stimuli, or mediate and modify

stimuli from the real world.

Milgram et al. [99] define a Reality-Virtuality Continuum. This continuum

ranges from purely real environments to purely virtual environments. Environments

lying within this continuum contain both real and virtual content, and are referred to

as Mixed Reality (MR) environments. The more specific terms Augmented Reality

(AR) and Augmented Virtuality (AV) are used to refer to environments containing

mainly real objects or mainly virtual objects respectively.

Mixed reality environments can be experienced on a range of different plat-

forms. These can be broadly classified into video see-through and optical see-

through displays. Optical see-through displays allow some or all of the light from

the real scene to pass through to the user’s eyes, augmenting it with light to give the

impression that additional virtual content is present in the scene. Video see through

displays instead capture the real scene using a camera or cameras, modify or pro-

cess the camera output to add virtual content, and then display this information to

the user.

In this thesis, the focus will be on video see-through systems, and all examples

shown will use such systems. Many of the presented techniques would also be
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applicable to optical see-through systems as well, however.

The thesis will mainly focus on MR applications in which the virtual content is

intended to appear to be a part of the real environment. In addition to the challenges

involved in rendering realistic virtual content in real time, this presents additional

challenges in making the content appear consistent with the real content around it.

This thesis attempts to tackle some of these challenges. In particular, the focus

is on the problems of correctly handling real-virtual occlusion, and capturing real-

world illumination in real time. This captured illumination can be used to correctly

render photorealistic virtual content and simulate its effects on the surrounding real

environment.

1.1 Research Problem
Differential rendering [28] provides in principle a solution to the problem of render-

ing virtual objects into real scenes in a believable way, making the objects appear to

be illuminated by the environment around them, and also rendering the influence of

the virtual objects on their surroundings. In practice, however, differential rendering

techniques require information about the real world which is generally not available

- specifically, geometry and material property information. This thesis will focus

on ways to improve the rendering of virtual objects in MR, which are tolerant to

information about the real environment being incomplete or inaccurate.

More specifically, the thesis focuses on two specific areas. The first is the

correct handling of real-virtual occlusion, and is discussed in part I of the thesis. The

second, capturing illumination models of real environments without light probes, is

discussed in part II.

1.2 Research Questions & Scope
Part I of the thesis explores how RGBD cameras can be used to improve occlusion

handling in mixed reality applications. These cameras capture valuable real depth

information, but this information is noisy and incomplete. The question is how this

depth data can be processed and combined with the RGB data to provide accurate

MR occlusion.
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Within this general question, a number of areas were explored. First, ap-

proaches were developed which took the colour and depth frame pairs supplied

by the RGBD camera as input, and processed these to estimate accurate occlusion.

Following this, the quality of the approaches was quantitatively assessed, using a

novel comparison approach.

Part II of the thesis focuses on a separate but related problem - how can a

detailed, accurate lighting model of the real world be captured and updated in real

time, and how can this be effectively used to render realistic virtual content for MR?

Specifically, the use of self-contained systems of cameras to capture this infor-

mation was investigated. This differed from much of the existing literature, which

has tended to use external light probes or obtain less detailed information indirectly

through inverse rendering approaches.

1.3 Structure
Chapter 2 gives an overview of literature relevant to this project. It gives a brief

overview of mixed reality in general, and then covers more specific topics in this

area: realistic rendering, tracking and reconstruction, occlusion handling and cap-

turing real illumination information.

The remainder of the thesis is divided into two parts, the first relating to real-

virtual occlusion, and the second to capturing real world illumination.

Chapter 3 in part I focuses on the problem of real-virtual occlusion - this in-

volves determining at which pixels a virtual object should be occluded by real ob-

jects in the scene, and hence should not be rendered.

The subsequent chapters in part II focus on capturing real world environment

illumination without the use of light probes, and explore some of the ways in which

this information can be used to render realistic virtual content into MR scenes.

Chapter 4 details the first approach developed in the course of the EngD project

to tackle this problem. This early approach was able to render specular virtual ob-

jects with detailed reflections of their real surroundings, but was limited to capturing

only low dynamic range information.



1.4. Contributions 18

Chapter 5 builds on chapter 4, adapting the approach to capture and use high

dynamic range information from the real scene.

Chapter 6 focuses on the development of a final system which improves upon

the previous approaches in a number of ways, most notably in requiring no prior

knowledge about the real environment geometry.

1.4 Contributions

1.4.1 Methodological Contributions

1. A method for evaluating the quality of per-frame quality and temporal stabil-

ity of AR occlusion methods relative to ground truth (Chapter 3).

1.4.2 Technical Contributions

1. Design of an approach for rendering accurate real-virtual occlusion in video

see-through MR applications, given noisy and/or incomplete colour & depth

inputs (Chapter 3).

2. Design of an approach for capturing and updating in real time a detailed illu-

mination model for the real environment in an MR application (Chapter 4).

3. Extension of the previous approach to capture photometrically accurate, high

dynamic range lighting information (Chapter 5).

4. Development of an approach for capturing a similar illumination model using

no prior geometric information about the real environment (Chapter 6).

1.4.3 Publications

This project has resulted in the following publications, appearing in peer-reviewed

conferences:

WALTON, D.R., THOMAS, D., STEED, A., SUGIMOTO, A. Synthesis of En-

vironment Maps for Mixed Reality. In 16th International Symposium on Mixed and

Augmented Reality, ISMAR 2017 (2017)

Contains extracts of work presented in Chapter 4.
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WALTON, D.R., STEED, A. Accurate Real-time Occlusion for Mixed Reality.

In 23rd ACM Symposium on Virtual Reality Software and Technology, VRST 2017

(2017)

Contains extracts of work presented in Chapter 3.

WALTON, D.R., STEED, A. Dynamic Environment Capture for Mixed Real-

ity. In 24th ACM Symposium on Virtual Reality Software and Technology, VRST

2018 (2018)

Contains extracts of work presented in Chapter 6.



Chapter 2

Background

2.1 Mixed Reality
Virtual reality systems attempt to give the user the experience of entering a purely

virtual, computer-generated environment. In virtual reality applications, the aim is

to replace the real sensory inputs of a user with synthetic ones, using devices such

as VR headsets, headphones and haptic feedback devices. Other systems have a

different focus, choosing to selectively replace or modify the user’s sensory inputs,

allowing them to experience a mixed environment consisting of virtual and real

content. This concept is known as mixed reality (MR).

Virtual
Environment

Real
Environment

Augmented
Virtuality

Augmented
Reality

Mixed
Reality

Figure 2.1: Representation of a reality-virtuality continuum. Based upon a diagram from
[98, 99].

More precisely, Milgram et al. [98, 99] introduced the concept of mixed reality

spanning a reality-virtuality continuum, ranging from reality to virtual reality (see

figure 2.1). As one moves along this line, a larger proportion of a user’s real sensory

inputs are replaced with synthesised, virtual stimuli. Other terms used in this area

such as “augmented reality” (AR) and “augmented virtuality” (AV) can be viewed

as encompassing parts of this continuum. The term X-reality (cross-reality, or ex-
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tended reality), or “XR” has a similar meaning to MR, but has a more expansive

definition, with more focus on interactions between the virtual and real domains.

In addition to the usual challenges present when rendering realistic virtual con-

tent in purely virtual scenes, rendering realistic virtual content for MR applications

presents some unique difficulties. Hardware must be developed capable of display-

ing virtual and real content to the user simultaneously. The rendered content must

not only appear realistic in isolation, but must also be consistent with the real con-

tent around it. In particular, the content must be correctly registered to the real

environment, must be occluded by real content where appropriate, and must appear

to be illuminated by the real environment around it. Furthermore, the influence of

the virtual content on its real surroundings must also be accounted for - for example,

an opaque virtual object placed on a real table might be expected to cast a shadow.

This challenge relates to the Extent of World Knowledge (EWK) axis in Mil-

gram et al.’s taxonomy of MR displays [98], a representation of which is shown in

figure 2.2. This classifies MR applications according to the extent to which they

have access to knowledge of the real environment. At the extreme left end of this

scale, the application has no knowledge of the real environment at all; not only is

the application unaware of the geometry and properties of the real scene, it also

lacks information about the location of the display in the real world. At the extreme

right end of the scale, the application has access to a full, detailed model of the

real environment, sufficient to render it in a VR setting, in addition to knowing the

location of the display relative to this model.

World
Unmodelled

World Completely
Modelled

Where/What Where + What

World Partially
Modelled

Figure 2.2: Extent of World Knowledge (EWK) in mixed reality applications. Based upon
a diagram from [98].

Most MR applications sit somewhere between these two extremes, having ac-

cess to only partial information about the real environment. For example, an appli-
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cation based on tracking of fiducial markers, such as that developed by Kato and

Billinghurst [73] only has knowledge of the pose of the display relative to each

fiducial marker. In particular, it only has access to the “Where” information shown

to the left of figure 2.2. Recently, approaches such as Kinect Fusion [106] have

enabled detailed models of the real environment to be reconstructed in real time,

whilst simultaneously tracking the camera. This provides the “Where + What” in-

formation shown towards the right of the axis. The greater EWK enables a wider

range of interesting interactions between virtual and real objects, such as the physics

simulation between virtual balls and the real environment shown in [106].

The work presented in this thesis attempts to provide ways to develop MR

applications with a greater EWK, enabling these new interactions between virtual

and real content. It particularly focuses on developing EWK when starting with

little prior knowledge of the real environment.

In this section, existing literature relating to MR applications is discussed. Sec-

tion 2.2 first explores MR display hardware. Section 2.3 then explores how the

content driving these displays is rendered. Sections 2.4, 2.5 and 2.6 discuss issues

relating to the development of EWK. Section 2.4 explores work related to tracking

motion and building a model of the real world in an MR application. Section 2.5

discusses the more specific problem of determining where virtual content should

be occluded by real content. Finally, section 2.6 explores works which attempt to

capture knowledge about the light sources illuminating the real environment.

2.2 Mixed Reality Display Devices

Mixed reality applications require a method for displaying a mixture of both real

and virtual content to a user simultaneously. There are a wide variety of display

devices which can be used to achieve this.

Broadly, MR display devices can be categorised as either optical see-through

or video see-through.

Optical see-through devices allow light from the real world to pass through the

display, so that the real world is directly visible to the user. Such devices modify
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the light passing through them in order to add virtual content. The first optical see-

through HMD was developed by Sutherland [133], and was nicknamed the “Sword

of Damocles” due to the large ceiling-mounted mechanical tracking system. At the

time of writing, optical see-through devices including the Microsoft Hololens1 and

Magic Leap One2 are becoming commercially available, which are compact and

self-contained, capable of tracking using on-board sensors.

Video see-through devices capture the real world via one or more imaging de-

vices, modify the resulting images to add virtual content, and then finally display

the captured images to the user on a conventional opaque display. It is possible

to implement video see-through MR systems on devices such as mobile phones or

tablets, or alternatively via a HMD equipped with cameras such as the VRVANA3 or

AR Rift [132, 130]. Current AR SDKs such as ARKit4 and ARCore5 make it com-

paratively straightforward for developers to produce markerless AR apps working

on the majority of modern mobile devices.

Other systems use display devices such as projectors to add virtual content at a

specific location in a virtual environment. Such systems are sometimes referred to

as Spatial Augmented Reality (SAR) systems [8].

2.2.1 Optical See-through Devices

Since optical see-through systems display the real world directly, they avoid issues

related to degrading the quality of the user’s perception of the real world. The

real world observed by the user suffers from no latency, loss of resolution or loss

of focal cues. This is an important advantage for a number of reasons - it improves

the user experience, and reduces the possibility of issues such as simulator sickness.

Optical see-through systems also have inherent safety advantages - the users of such

systems are still capable of seeing the real world if the display should fail.

There are a number of challenges involved in making successful optical see-

through MR systems however, particularly if the focus is on rendering realistic vir-

1https://www.microsoft.com/en-us/hololens
2https://www.magicleap.com/magic-leap-one
3http://vrvana.com/index.html
4https://developer.apple.com/arkit/
5https://developers.google.com/ar/

https://www.microsoft.com/en-us/hololens
https://www.magicleap.com/magic-leap-one
http://vrvana.com/index.html
https://developer.apple.com/arkit/
https://developers.google.com/ar/
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tual content. Optical see-through devices require displays which can be expensive

and complicated to produce, increasing the cost of such devices.

Some degree of latency will be involved in determining the pose of the device,

rendering virtual content accordingly and then displaying this content to the user.

If this latency is too great, the registration between real and virtual content will

appear incorrect, particularly during rapid motion of the device. This can reduce

the perceived realism of the virtual content, and in extreme cases make the device

difficult to use [35].

When observing real objects, the shape of the lenses in the user’s eyes is

changed to bring them into focus. However, current commercial optical see-through

displays can only display virtual content at a limited number of discrete focal depths

(one in the Hololens, and two in the Magic Leap One). This causes the virtual ob-

ject to potentially appear inconsistent with the real world, and could also make it

difficult for the user to focus on virtual and real content simultaneously, even when

they appear to be at the same depth. The problem is more pronounced when virtual

objects are closer to the display.

Only a small number of optical see-through systems such as those of Kiyokawa

et al. [77] and Gao et al. [41] are capable of selectively completely blocking incom-

ing light from the real environment on parts of the display. For many systems, in-

cluding the Hololens and Magic Leap One, it is not possible to display truly opaque

virtual content - some light from the real environment behind the virtual object will

always pass through, causing the virtual content to appear translucent. This greatly

limits the ability of such devices to render virtual content which appears to be real,

particularly in bright environments.

2.2.2 Video See-through Devices

In general, video see-through systems have the advantage of allowing virtual con-

tent to appear more similar to real content, but they degrade the user’s ability to

perceive the real world to some degree.

In contrast to optical see-through displays, both the rendered virtual content

and displayed real content may suffer from latency. In the case of the virtual content,
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the latency results from the need to determine the pose of the display via tracking,

render the virtual content appropriately and then display it. For the real content, the

latency results from needing to capture an image or images of the real world, pro-

cess them appropriately and then display them. Consequently, the latency is often

different for the virtual and real content. Excessive latency may reduce the user’s

ability to perceive both the virtual and real environments, in addition to causing

issues such as “simulator sickness” in HMDs.

Video see-though MR systems are capable of rendering fully opaque virtual

objects, and allow for differential rendering techniques to be used to produce realis-

tic virtual objects to the environment. Furthermore, changes to the real environment

such as adjusting real lighting and modifying real material properties are possible.

Diminished reality techniques can also be applied to remove real objects from the

scene. This opens up a wider range of possible applications for such devices.

Video see-through devices can use conventional displays such as those in VR

headsets or on the screens of mobile devices, and do not require the more expen-

sive specialised display hardware of optical see-through devices. However, suitable

high-framerate, wide field of view cameras are required to capture the real world

and specialised processing hardware may be needed to reduce the latency involved

in capturing, processing and displaying the images.

2.3 Photorealistic Rendering for Mixed Reality
As briefly mentioned in section 2.1, rendering photorealistic content for mixed re-

ality presents a number of challenges. This section will focus specifically on the

problem of rendering realistic virtual content and its influence on the real environ-

ment, under the assumption that lighting information and real scene geometry and

material information is available.

2.3.1 Photorealistic Rendering of Virtual Content

Many techniques used in realistic mixed reality rendering build on techniques in-

tended for rendering purely virtual environments. Real-time realistic rendering is a

vast research topic which can only be briefly introduced here.
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2.3.1.1 The Rendering Equation

The appearance of a real object is a consequence of both its intrinsic material prop-

erties and the lighting environment around it. The light incident on a surface point

is a combination of light emitted directly by light sources, in addition to light re-

flected, refracted, scattered etc. by other scene objects. This concept was formalised

by Kajiya in the rendering equation [62]. For a point x on the surface of an opaque

object, this can be expressed as follows:

Lo(x,ωo) = Le(x,ω)+
∫

Ω

f (x,ωi,ωo)Li(x,ωi)(ωi ·nx)dωi (2.1)

Here, Lo is the radiance leaving x in the direction ωo. Le is the radiance emitted

by the surface itself at x. The surface normal at x is nx, and Ω is the hemisphere

centred around n. Li is the incident radiance. The function f is the bidirectional

reflectance distribution function (BRDF), and captures the properties of the surface

material wrt its response to incoming light.

There are a number of challenges involved in solving this equation in practice.

One of these challenges is finding Li, as this may consist in part of light reflected

from other surface points, requiring the rendering equation to be solved there as

well. This results in a recursive definition. This is clearer in an alternative expres-

sion of the rendering equation, which uses an integral over the scene surfaces S:

I(x,x′) = g(x,x′)
(

e(x,x′)+
∫

S
ρ(x,x′,x′′)I(x′,x′′)dx′′

)
(2.2)

In this equation, I(x,x′) is the intensity of light emitted from x′ to x. The

geometry term g is 1 if x′ is visible from x, and 0 otherwise. e is the intensity of

light emitted by the surface at x′ to x. Finally, ρ(x,x′,x′′) captures what proportion

of the light emitted from x′′ to x′ is reflected on to x, and depends upon the BRDF

at x′ and position and orientation of x, x′ and x′′. These terms are defined more

precisely in [62].

Here, I is defined recursively, with deeper recursion depth corresponding to

light paths involving more bounces. Fortunately, since energy is lost each time
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light is reflected, considering only a finite number of bounces is often sufficient to

approximate the true result closely.

Realistic rendering techniques generally consist of attempting to solve the ren-

dering equation in one of its forms, often with some form of simplification.

2.3.1.2 Global vs Local Illumination

Rendering methods can be broadly categorised into local illumination (LI) and

global illumination (GI) approaches. LI approaches calculate the appearance of

each surface point independently of the rest of the scene. Referring back to equa-

tion 2.1, this corresponds to assuming that Li is fixed and does not depend upon

Lo at other surface points. This removes the recursive element from the rendering

equation, making solving it much simpler. In practice, further simplifications are

often made such as modelling the lighting environment Li as a number of simple

point or directional sources, and using a simple reflectance model such as that pro-

posed by Phong [112] to approximate the BRDF f and remove the need to perform

a spherical integral at each surface point.

LI approaches are efficient and highly parallelisable, making them well-suited

to real-time rendering approaches using modern massively parallel graphics hard-

ware. They are, however, incapable of simulating many real lighting interactions

where lighting at one point is affected other points in the real scene. The effects of

such interactions include cast shadows, caustics and interreflection (colour bleed-

ing). GI techniques attempt to simulate some of these interactions, and therefore

provide more realistic results.

Some GI techniques can be viewed as attempting to solve the rendering equa-

tion numerically, for example via Monte Carlo methods (path-tracing) or finite el-

ement methods (radiosity). However, many real-time techniques focus on approxi-

mating a single GI phenomenon. Examples include shadow mapping, which is used

to render shadows cast by opaque objects, and environment mapping, which can be

used to render reflections from highly specular surfaces. A much more detailed

review of real-time GI methods can be found in [115].

It is also possible to precompute GI using an offline approach, and store the
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result for use at runtime. If the virtual scene and lighting environment are both

fixed, the result can simply be stored in textures for the virtual objects, which are

typically referred to as lightmaps. More flexible precomputation approaches allow

the lighting environment or real scene geometry to change at runtime.

2.3.1.3 Precomputed Radiance Transfer

Precomputed radiance transfer (PRT) [127] is a technique for real-time photoreal-

istic rendering which is used as part of the MR approaches detailed in chapters 4,

5 and 6 of this thesis. PRT is an approach which allows realistic GI lighting in-

teractions to be precomputed and stored, enabling them to be rendered in real-time

at runtime. The following is a brief overview of diffuse PRT - more detail, and a

discussion of applying PRT to the specular case can be found in [127].

The overall approach of PRT is to store a mapping between the incident ra-

diance and emitted radiance for each point on the surface of a virtual object. In

this thesis, we focus on the diffuse case, where the emitted radiance is the same in

all directions. Given this assumption, PRT involves precomputing a transfer func-

tion M so that the emitted radiance can be expressed as the integral
∫

S2
M(s)L(s)ds.

Here, L is the lighting environment, expressed as a spherical function, and S2 is the

sphere {x ∈R3 | |x|= 1}. M encapsulates a number of components of the rendering

equation 2.1; the BRDF f , the effect on Li of reflections and shadowing by other

surface points, and the dot product ωi ·nx.

This presents a number of problems; M is a full function S2 → R, so storing

such a function for each surface point on an object would consume a large amount

of memory. Furthermore, the integral needs to be computed at each visible surface

point at each frame during runtime, which would be prohibitively expensive if it

were computed using numerical integration.

PRT addresses both of these problems by projecting the functions M and L to

a basis of functions S2→R. The basis used in [127] is the spherical harmonic (SH)

basis, which can be viewed as analogue of the Fourier basis for spherical functions

(the first few bands of SH functions are shown in figure 2.3). A spherical function

can be projected to the first N bands of spherical harmonics, resulting in a projection
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Figure 2.3: First 7 bands of SH basis functions, as spherical plots. In these plots, the dis-
tance from the centre represents magnitude, and the colour represents the sign
(green is positive, and blue is negative). Image rendered by the author.

which can be stored using just N2 coefficients, at the cost of some accuracy and the

loss of higher frequencies. This allows the transfer functions for each surface point

to be stored compactly. Furthermore, these projections have the following useful

property:

∫
S2

Ã(s)B̃(s) = ∑
i

AiBi

Here, A and B are spherical functions, Ã is the SH approximation to A and Ai is

the ith coefficient of the SH projection of A. This means that, at runtime, the lighting

is simply calculated by taking the dot product of the incident lighting coefficients

with the transfer coefficients at each visible surface point.

Note that this discussion has focused on grayscale, but PRT can be applied

to colour as well by applying this technique independently to each colour channel.

Figure 2.4 shows an example of a lighting environment (the spherical plot on the

left of the image) and a virtual object illuminated by it via PRT. Here, grayscale

PRT was used to determine shadow intensity, and the colour was determined by an

albedo texture.
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Figure 2.4: Example 3D cow object on planar surface, with lighting simulated via PRT.
The SH projection of the incident radiance is shown as a blue/green spherical
plot at the top left (plotted in the same way as the basis in figure 2.3). The 3D
model used was created by Keenan Crane [23], and has been released to the
public domain.

2.3.2 Differential Rendering

Debevec [28] introduced the concept of differential rendering, which provides a

framework for rendering the influence of added virtual content on the surrounding

real environment. This involves rendering two images, IR and IRV . IR consists of a

rendering of the real environment model, and IRV consists of the real environment

model together with the added virtual content. The difference between these images

D := IRV − IR then provides a good estimate of the influence of the virtual content

on the real scene. This can be added to the real input image to produce the final MR

output.

Differential rendering is particularly valuable due to its robustness to inaccu-

racy in the real environment model. Since the rendered real environment model is

never observed directly, convincing results can be achieved with even very basic

real scene models and approximated material properties. This is very important in

AR applications, where often detailed real geometry and material information is not

available. This property was demonstrated in [28], where photorealistic results were



2.4. Tracking and Reconstruction 31

achieved despite the real scene model being a simple diffuse plane. It should also be

noted that differential rendering is a general framework, and implementations can

use any specific GI rendering technique to produce IR and IRV .

One disadvantage of differential rendering as decribed here is the necessity

to render two separate images IR and IRV . Since both are rendered using a poten-

tially computationally expensive GI rendering approach, producing a single frame

of output can be quite expensive. For this reason, some approaches attempt to com-

pute D directly, without separately computing IR and IRV . Kan and Kaufmann [63]

achieved this using a specially adapted ray-tracer, using different categories of ray

corresponding to the mixed and virtual scene. In this project, a similar concept is

applied to produce D using a single pass of PRT (more detail is given in section

4.3.8).

2.4 Tracking and Reconstruction

A critical feature of MR systems is registration - that the added virtual content re-

sponds to changes in the user’s viewpoint, in the same way that real content would.

MR systems with poor registration tend to have virtual content which does not ap-

pear to move together with real content when the user moves their head (in the case

of an MR headset) or viewing device (when video see-through MR is implemented

on a phone, for example). This can make the virtual content appear less realistic,

make it harder for the user to judge spatial relationships between objects and in

extreme cases can cause simulator sickness.

Registration requires the current pose of the MR device to be known at each

frame, in order to determine how to correctly render the virtual content. This pose

is obtained using some form of tracking approach. In the case of video see-through

MR approaches using a video camera, The ability to track camera motion and recon-

struct the real environment is critical for many mixed reality applications. Tracking

methods provide estimates of the pose of the camera, which enable correct regis-

tration of virtual content to the real world. Reconstruction approaches can provide

important data about the real environment, which can include geometry and colour
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information, and in the case of some recent approaches, semantic labelling and ma-

terial information. These data are also of great importance for rendering realistic

virtual content, in addition to enabling interactions between real and virtual objects.

Simultaneous localisation and mapping (SLAM) approaches address the track-

ing and reconstruction challenges simultaneously. These approaches involve esti-

mating the location of an entity whilst simultaneously constructing a map of its en-

vironment. SLAM is a broad field, and has been applied to a wide range of sensing

technologies including Radio Detection and Ranging (RADAR), Light Detection

and Ranging (LIDAR), Global Navigation Satellite Systems (GNSS) and others.

One particular subset of SLAM approaches focuses on imaging devices, including

colour and depth cameras. This is referred to here as vision-based SLAM.

Vision-based SLAM approaches can be broadly categorised as dense or sparse.

Sparse approaches include MonoSLAM [27], PTAM [79] and ORB-SLAM [101,

102].These construct a map consisting of relatively few, sparsely distributed points.

Often, each of these points is associated with an image feature generated using a

method such as SIFT [87], enabling them to be relocalised within future images.

Some more recent “direct” methods including LSD-SLAM [38] and DSO [37] use

per-pixel stereo matching against keyframes rather than keypoint-based approaches,

enabling them to capture many more 3D points. For this reason, these approaches

are sometimes referred to as “semi-dense”.

Dense vision-based SLAM approaches such as DTAM [107] and CNN-

SLAM[134] construct a more complete model of the real environment. This model

can take a variety of forms - it might consist of a triangle mesh or a grid of voxels,

for example. After being exposed sufficiently to the real scene, such approaches

have to potential to construct a complete 3D model of the real environment.

Sparse approaches provide camera pose estimations which are very useful for

AR applications. They are also frequently less computationally expensive and more

robust than dense approaches, in part because implementing loop closure and relo-

calisation strategies is more straightforward. However, they only provide very lim-

ited information about the structure of the real environment. Even semi-dense ap-
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proaches can only reconstruct very incomplete models, typically only reconstruct-

ing the edges of objects. By contrast, dense approaches can also provide full 3D

models of the real environment, enabling a wider range of MR interactions such as

differential rendering or physical interactions between real and virtual objects.

It is challenging, however, to capture a dense model using traditional RGB

cameras alone, particularly when the environment contains featureless surfaces such

as blank walls for which depths are difficult to estimate. For this reason, other

sensing devices such as RGBD cameras are often used in dense SLAM methods.

2.4.1 Dense RGBD SLAM

RGBD cameras capture detailed colour and depth information in real time, making

them extremely useful as sensing devices for dense vision-based SLAM approaches.

In this section, a brief overview of current dense RGBD SLAM approaches is given.

Beginning with the publication of Kinect Fusion [106] and the availability of

affordable RGBD sensors such as the Kinect, there has been a rapid increase in

the development of GPU-accelerated dense 3D reconstruction methods using these

devices. These methods track the motion of the RGBD camera in the world and

integrate depth data into a dense 3D geometric model. The majority of recent ap-

proaches can roughly be grouped according to the type of world representation they

use, into volumetric or surfel-based (sometimes called point-based) approaches.

Volumetric approaches include the original Kinect Fusion approach. These ap-

proches store the world representation as samples of an implicit function, typically

a variety of signed distance function, on a regular grid. Kinect Fusion used a single

fixed grid which only allowed reconstruction within a fixed volume, and was fairly

memory inefficient as much of the volume typically consists of empty space. More

recent publications have addressed both of these shortcomings. Moving-volume

approaches [118, 148] extend the area which can be reconstructed by shifting the

reconstructed volume as the sensor moves in the real world, and serialising already

captured areas. More recent approaches such as [109, 157, 61, 81] instead address

the problem by storing the volume more efficiently, using volume hierarchies or

hashing. Dai et al. [26] recently proposed an approach which allows the quality of
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previously observed regions to be refined by de-integrating and re-integrating data.

All volumetric approaches, however, require significant computation to integrate the

input data into the volume, and to render the volume for tracking and visualisation.

Surfel-based approaches such as that of Keller et al. [74] instead use a model

consisting of a list of points with associated normals and radii, each defining a

small disc which forms part of a real surface. Surfels have long been used as an

alternative to connected triangle meshes for representing 3D objects in computer

graphics [111]. As compared to volumetric approaches, surfel-based approaches

are inherently more memory-efficient as all data stored corresponds to part of a

real surface. Creating, updating and rendering surfels is also comparatively com-

putationally inexpensive, as no expensive raycasting operations are required. As

compared to volumetric approaches, however, converting the resulting model into

a triangle mesh is more complex, as the surfels have no connectivity information.

More recent surfel-based dense SLAM approaches have added capabilities such as

real-time loop closure [149] and the ability to explicitly detect and handle planar

surfaces [121].

Not all RGBD SLAM techniques use volumetric or surfel based representa-

tions. Thomas and Sugimoto [137, 138] use a series of bump-mapped planes to

store the real geometry more compactly. They later enhanced the representation by

using more general parametric surfaces [139]. Salas-Moreno et al. [122] identified

objects present in the scene in a database, and then these objects could be repre-

sented in the reconstruction using just a database index and 6DoF pose. Kerl et al

used a series of RGBD keyframes [75]. Bloesch et al. [10] used a unique repre-

sentation based on an autoencoder network to store reconstructions in an extremely

compact form.

Although the majority of dense SLAM approaches focus on the reconstruction

of static scenes, some more recent approaches are capable of overcoming this lim-

itation. Rünz et al. [119, 120] created techniques capable of tracking a number of

rigid sub-scenes which can move relative to one another. Other techniques have

tackled the problem of reconstructing objects capable of non-rigid deformations
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[1, 105, 59]. Dou et al. [31] showed how their non-rigid reconstruction approach

could be used to capture performances of actors in real time.

Techniques have also been proposed which use just RGB input, but estimate

depth values and apply a dense RGBD SLAM approach to generate a detailed re-

construction of the real environment. These depth values may be inferred via stereo

techniques [113], or more recently by using deep learning methods [134].

2.5 Occlusion in Mixed Reality
It can prove challenging to correctly reproduce occlusion in a MR application.

Whilst mutual occlusion between virtual content can be efficiently rendered in mod-

ern graphics hardware, handling occlusion between virtual and real content is non-

trivial. This is because it is a priori unclear where the real content should occlude

the virtual content, as the location of the real content is often not known.

It should be noted that there is also a separate problem with occlusion in some

optical see-through AR displays. These suffer from the issue that virtual content

is unable to fully occlude the real content behind it. This is a hardware limitation

of displays such as those in the Microsoft Hololens, and whilst it is an interesting

problem, it is not explored here. Here, the focus is on the problem of determining

where real content should occlude virtual content, particularly for video see-through

applications. A number of authors have attempted to tackle this problem, and some

of the suggested approaches are summarised here.

2.5.1 Model-based Approaches

A number of well-established approaches exist for accurately rendering the occlu-

sion of virtual objects by real objects, using a detailed geometric model of the real

scene [12]. Provided accurate registration is possible, these approaches can render

detailed occlusion between virtual and real objects very efficiently, by making use

of GPUs.

Such techniques are only applicable to static or precisely tracked real objects,

for which detailed models are available. Consequently, such methods are not capa-

ble of resolving occlusion in the common case where the user of an MR application
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moves their hand in front of a virtual object. Additionally, should tracking become

inaccurate, virtual content will exhibit incorrect occlusion.

2.5.2 Contour Tracking

Another class of approaches attempts to remove the requirement to accurately

model the real scene, by tracking the silhouette of the occluding real object(s)

[7, 85, 78]. Such methods typically track these object edges using a variant of

the active contours (snakes) algorithm [72]. Similar techniques can also be used to

refine the occlusion estimates produced by model-based methods [78].

Although such approaches have the advantage of not requiring models of the

real scene, they typically require sufficient processing power to track the silhouette

contours. The tracked contours may also not be entirely accurate, either due to

problems in fitting (e.g. local minima), or to insufficient resolution and/or flexibility

of the contour model. The active contours algorithm requires initialisation, which

may need to be performed by the user (as in [85]); this may not always be desirable

or practical.

These methods also implicitly make the assumption that occluders are opaque

objects with continuous, definite boundaries of finite length. This assumption does

not hold for a wide variety of real-world occluders. Examples include translucent

objects such as smoke or stained glass, as well as objects exhibiting subpixel-scale

detail such as hair.

2.5.3 Masks and Mattes

The approaches discussed in sections 2.5.1 and 2.5.2 all attempt to solve the prob-

lem of determining where real-virtual occlusions occur in an MR application. Many

[142, 67, 7, 85, 78] produce a binary label for each pixel in the augmented image,

indicating whether a real-virtual occlusion occurs at that pixel, effectively segment-

ing the image. The binary image containing these labels, a “mask”, can be used to

composite the real and virtual images to produce the augmented image.

This is, however, not a complete solution to the problem, as some pixels in

an image may be partially occupied by real content, and partly by occluded virtual
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content. Such pixels are common at the boundaries of objects, where their edges

bisect pixels, but also occur due to translucent real objects, as well as objects on

a subpixel scale (such as hair). Assigning binary labels to such pixels leads to a

variety of errors, including aliasing along edges.

For this reason, in the related area of foreground-background separation (e.g.

for image compositing), some methods instead attempt to develop a matte contain-

ing a scalar ‘alpha’ value in the range [0,1] for each pixel [129]. Here, 1 indicates

a pixel containing only foreground content, and 0 indicates a pixel containing only

background content. Values in the (0,1) range contain a combination of foreground

and background. A high-quality matte can produce better results than a binary

mask, avoiding problems such as aliasing along edges (“jaggies”), as well as prop-

erly handling small-scale and translucent content [128].

2.5.4 Occlusion and Depth

Where per-pixel depth values are available, these may be used to determine occlu-

sion between virtual and real objects. This may be achieved by simply comparing

the depths - where a virtual object has a greater depth than a real object, it can be

assumed that the real object occludes the virtual object at this pixel.

Wloka et al. [151] describe an MR system which makes use of this principle

to correctly composite real and virtual images. In this application, the real depth

measurements are acquired using a stereo camera pair and a stereo matching algo-

rithm. These are then added to the z-buffering process used in rendering the virtual

content, preventing virtual objects from being rendered at those pixels where real

objects exist at lower depths. This allows for the real and virtual content to be effi-

ciently composited, but may cause aliasing along occlusion edges, due to the lack of

sub-pixel occlusion. Kanbara et al. [67] later developed an approach with improved

depth estimation, and demonstrated its use on a head-mounted display (HMD).

A number of other papers have focussed on the similar problem of producing

an alpha matte, separating a foreground object from its background. Performing this

operation on a colour image alone is a challenging problem, and existing solutions

typically require user input to specify the approximate object location, and have
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a high computational complexity, rendering them unsuitable for use in real-time

applications [114, 144].

The additional information provided by a depth map can be exploited to pro-

duce mattes efficiently, without requiring user input. Wang et al. [147] made use

of depth information to automate the application of two established alpha matting

techniques to video sequences. More recently, a number of approaches have been

developed to perform video alpha matting in real-time [161, 146, 145]. Applications

of such algorithms include inserting participants in a videoconferencing system into

a single virtual room, for more natural remote group chat [88]. Crabb et al. [22]

proposed a method for real-time matting, based on a cross bilateral filter. Similarly

to CVF Occlusion, this approach involves processing the depth and colour images

using an edge-preserving filter. However, CVF Occlusion is designed for MR occlu-

sion specifically, and uses a two-step filtering and thresholding approach to provide

improved results.

2.5.5 Depth Map Enhancement

As mentioned in section 2.5.4, an accurate real depth map may be used to solve

the real-virtual occlusion problem. However, the depth map can only be used to

provide binary results at each pixel, which leads to some degree of aliasing along

the occlusion edges.

A number of techniques exist to improve the quality of the depth map produced

by an RGBD camera, using its colour output. One class of these approaches uses

some variety of structure-transferring filter, such as a cross bilateral filter [34], to

move detail from the colour image to the depth map, and fill holes. L. Chen et

al. [19] presented an approach which used morphological operators and suitably

adapted cross bilateral filters to remove incorrect values, fill holes and remove noise

from depth maps. A later approach by C. Chen et al. [18] instead finds the improved

depth map as the minimum of an energy function using the input depths, estimated

confidence values and the location of edges in the colour image.

Many works focus on the situation where a depth map and colour image are

available, but the depth map is of lower resolution. Here, the task is to upsample and
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refine the depth map, to obtain per-pixel depth values for the larger colour image.

Approaches have tackled this problem in a variety of ways, including cost volume

filtering [153, 20] and adapted bilateral filters [16]. Du et al. [32] used an edge-

snapping approach, and also demonstrated how the output could be used to render

improved MR occlusion.

2.5.6 Reconstruction and Occlusion

Ventura & Höllerer [142] demonstrated an MR system which compared a planar

reconstruction of the environment to the observed colours to identify dynamic real-

virtual occlusions. This approach works well under the assumption that the recon-

struction is accurate and the scene is static. However, it implicitly assumes that

dynamic objects are always located between the viewer and the virtual object, re-

sulting in incorrect behaviour when (for example) a user places their hand behind

a virtual object, or the appearance of the scene changes. The method is also only

capable of generating binary segmentations, rather than full alpha mattes.

A number of recent methods have been developed to produce dense, detailed

3D reconstructions of real scenes in real-time (see section2.4.1). This opens up

the possibility of using such reconstructions to calculate occlusion, using a method

similar to that described in sect. 2.5.1. This allows such techniques to be applied in

situations where scene geometry is not known a priori.

Such methods are capable of producing high-quality results, but rely heavily

on the quality of the reconstruction, as well as the accuracy of the camera track-

ing. The quality of the rendered occlusion will be lessened in situations where the

reconstruction is not capable of accurately capturing the fine detail or transparency

of a real object. Many techniques, including Kinect Fusion and InfiniTAM [61] as-

sume a static scene, and the occlusion will be very inaccurate if this assumption is

violated (for example, if a user obscures a virtual object with their hand).

2.6 Real Illumination Capture for Mixed Reality
Existing work on capturing real-world lighting for augmented reality can be roughly

grouped into two categories. One uses physical light probes of various forms to
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capture the necessary information. The other attempts to recover the lighting by

other means. In this section, relevant concepts and existing work in this area are

reviewed.

2.6.1 Dynamic Range

Real illumination information for MR applications is typically captured using one

or more digital cameras. The images captured by such cameras consist of a regular

grid of quantised, usually integer values. Converting these values to obtain the

radiance values needed for lighting calculations presents a number of challenges.

Firstly, the relationship between pixel value and radiance is dependent upon the

properties and settings of the camera, and is often non-linear.

Secondly, since the pixel values are quantised, they can only express radiance

values over a limited range. Any radiance below a certain threshold will result in a

pixel value of 0, and anything above a threshold will result in the maximum integer

value (often 255). This means that the radiance at these pixels is unknown, and thus

the dynamic range that can be expressed in such an image is limited. In this thesis,

we refer to pixels with a value of 0 as “zero-valued”, and pixels with the maximum

integer value as “saturated”.

Real scenes often have wide dynamic ranges which are difficult to capture

within a single image, without incurring significant quantisation error or exceeding

the physical capabilities of the camera’s image sensor. For this reason, it is often

necessary to capture multiple exposures or use dedicated HDR imaging devices in

order to capture the full dynamic range of the real scene.

Mann and Pickard [89] developed a method for capturing a series of images

with different exposure settings, and merging these into a HDR radiance map. Their

technique was further developed and improved by Debevec and Malik [29]. First, a

mathematical model called a response curve, describing the mapping from pixel val-

ues to radiance for the camera in question is estimated. Then, to capture a radiance

map, the camera is mounted on a fixed tripod, and a number of images are captured

from the same viewpoint using a number of different exposure times. These can

then be converted to radiance values using the estimated response curve. Each pixel
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of the output radiance map is a weighted sum of these radiance values. In [29], the

weighting uses a score function favouring pixels which have an LDR pixel value in

the centre of the range (i.e. 128 for a typical 8-bit image).

The process of capturing a series of similar images using different exposure

settings is often referred to as exposure bracketing. The term originated in film

photography, where bracketing was used to increase the chances that a well-exposed

image would be captured when the photographer was unsure of the optimal expo-

sure settings. The same term is now used to refer to the similar process of capturing

images to produce a HDR radiance map.

The radiance map typically consists of floating-point values, or of values quan-

tised using a higher bitdepth in order to store the required dynamic range. Radiance

maps cannot be shown directly on conventional LDR display devices, which typi-

cally require 8-bit RGB input. Generally, a mathematical function is selected and

applied to transform the HDR values to the 0-255 range required for display, in a

process known as tone-mapping.

Tone-mapping, or tone reproduction is a problem which has been studied for

a long time, dating back to techniques used in film photography. A wide range of

tone-mapping techniques exist, but can be broadly categorised into two categories.

Global techniques apply the same mapping function independently at each pixel,

whilst adaptive techniques modify the function across the image, which can help to

preserve detail in both bright and dark regions of the image.

Recently, display devices with higher dynamic range accepting higher bitdepth

input (e.g. 10-bit) are becoming more widely available. The dynamic range of

these displays is still currently much more limited than that present in real scenes,

however, and tone-mapping is still necessary.

Although these approaches ([89, 29]) work well for capturing images of static

scenes, artefacts are produced if the camera moves or the scene changes whilst

the exposures are captured. This means they cannot be used to capture moving

scenes, and are not suitable for capturing HDR video footage. Scene objects which

move relative to the camera whilst the the bracketed exposures are captured tend
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to introduce so-called “ghosting” artefacts, where multiple translucent copies of the

moving object are overlaid, giving a ghostly appearance. More recent techniques

[103, 11, 90] attempt to remove such artefacts by modelling and compensating for

the motion of the scene.

Kang et al. [69] developed an approach for capturing HDR video footage.

Their method involves capturing bracketed exposures at video framerate, matching

pixels between neighbouring frames using optical flow, and warping and merging

the frames to produce an estimated radiance map corresponding to each captured

image. This method requires only a single video camera, but the optical flow cal-

culation and warping are expensive and can fail to produce accurate results in some

cases.

Other HDR video techniques focus on using imaging hardware to solve

the problem of capturing multiple exposures simultaneously. Several authors

[2, 3, 143, 140] introduce approaches using multiple sensors equipped with dif-

ferent neutral density filters and a beam splitter to capture multiple exposures at

the same time at video framerate. These can then be merged to produce the output

HDR video. The use of ND filters means that all sensors can use the same exposure

time, which avoids potential issues with different sensors having different levels of

motion blur when capturing moving scenes. Nayar and Mitsunaga [103] achieve a

similar result using a single sensor, instead placing small ND filters over individual

pixels to achieve spatially varying exposure over the sensor. This removes the need

for multiple sensors and a beam splitter, but requires an interpolation process to

estimate a HDR image at the resolution of the sensor.

Unger and Gustavson [141] capture and merge several exposures taken using

an adapted rolling shutter image sensor. A typical rolling shutter sensor exposes

and reads pixels in rows, progressing vertically down the sensor until the full image

has been captured. In [141], each row instead captures each of the desired expo-

sures sequentially, meaning that all of the exposures are captured in an interleaved

fashion over a very short period of time. Since the captured exposures are so close

temporally, they can be merged without introducing much ghosting. However, un-
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like the ND-filter based approaches, the different exposures use different exposure

times, which can introduce some artefacts due to differing levels of motion blur.

Deep learning approaches have also been applied to estimate HDR images

from LDR input. Endo et al. [36] generate high and low exposure versions of a

medium-exposure input using two separate CNNs, and composite these to form the

final output. Eilertsen et al. [33] instead directly recover the HDR image using

a single U-Net style network. Although both approaches are intended to operate

on single static images, future approaches tailored for LDR-HDR video conversion

may soon be developed.

2.6.2 Light Probes for Mixed Reality

Environment maps have long been used to simulate reflection from virtual ob-

jects [9]. They have seen widespread use, particularly as an efficient alternative

to ray-tracing for simulating effects such as refraction and mirror reflection [45].

Physical light probes are often used to obtain such environment maps. These

can be classified into passive probes, such as chrome spheres, and active probes,

such as fisheye cameras. Chrome spheres [54, 28, 44, 4, 68] can provide detailed

reflection information, which is useful for rendering specular and translucent vir-

tual objects. Other types of passive probes also exist, however, including diffuse

spheres [5], which provide useful information for rendering Lambertian virtual ob-

jects. Calian et al. [15] presented a novel probe design intended for directly cap-

turing spherical harmonics, for adding virtual content shaded using Precomputed

Radiance Transfer (PRT) [127]. Yao et al. [154] demonstrated a method for using

arbitrary objects of known geometry as passive light probes.

Cameras with a wide field of view can be used as active probes [65, 63]. They

can also provide detailed, high-frequency lighting information, and, unlike passive

probes, do not need to remain in the camera’s field of view. Grosch et al. [46]

made use of this, placing a fisheye camera at the entrance to a room to measure

incoming light, and then simulating light transport within the room to add virtual

content. Rohmer et al. [116] demonstrated a technique combining information from

multiple fisheye cameras to collect detailed lighting over a volume. Other active
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light probes have also been developed, such as that of Matsuoka et al. [94], who

used a hemispherical array of photodiodes to find the dominant light direction.

2.6.3 MR Lighting Without Probes

A wide variety of approaches exist that attempt to recover lighting information for

mixed reality applications without the use of physical light probes. Such methods

typically attempt to recover some information about the light in the real environment

indirectly from its effect on the image to be augmented. These approaches can be

categorised by the type of lighting model they attempt to fit to the visible scene.

One class of approach fits a point-source model. In this case, the application’s

goal is to determine the locations and intensities of one or more point sources in the

real scene. For example, a number of techniques [123, 124, 125, 51, 6] attempt to

identify light source directions by finding shadow boundaries in the real image, and

inferring the locations of the point sources casting them. Zheng et al. [160] uses

similar techniques to allow real objects to be manipulated in a static image, and to

allow their shadows to change consistently.

Frahm et al. [40] present an alternative approach, using a hardware setup some-

what similar to the one proposed here. They combine a television camera with an

upward-facing fisheye camera. In a precapture stage, the pair is moved through the

scene, and the fisheye camera is used to estimate the position of light sources in the

studio. These are then used for lighting virtual content via shadow mapping.

Another possible model type represents the incident light at the point of interest

as a linear combination of spherical basis functions, with the Spherical Harmonic

(SH) basis being commonly used. These representations are typically appropriate

for representing low-frequency lighting. Okabe et al. [110] introduced an inverse

illumination technique which also analysed shadows in order to compute a SH rep-

resentation of the low-frequency illumination in the scene.

Karsch et al. [70, 71] use a combination of an environment map and visible

light sources to estimate illumination from a single image. Since the problem of fit-

ting the environment map is severely under-constrained, samples are selected from

a database of environment maps captured from similar real-world environments.
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Gruber et al. [49, 48, 50] have presented a number of techniques designed for

rendering virtual content with consistent illumination, using only the output of a

single RGBD camera. These techniques involve capturing a geometric model of the

scene using Kinect Fusion [60, 106]. The environment illumination and albedo of

the scene are then estimated using an inverse rendering approach. The lighting is

captured in the form of spherical harmonics, which can then be used to illuminate

virtual content added to the scene. The approach can produce impressive results,

but is limited to recovering low frequency lighting.

Meilland et al. [96] presented an approach for probeless AR. Their approach

uses the output of an RGBD camera to construct a dense 3D model of the envi-

ronment. The auto-exposure feature of the camera is enabled to allow detail to be

captured in bright and dark areas of the environment. The resulting HDR model is

rendered into cubemaps, and processed to find real light locations to use for ren-

dering shadow maps. More recently, Zhang et al. [158] showed how this kind of

approach could be used in an MR application for virtually refurnishing rooms, and

Rohmer et al. [117] used a similar HDR model to render photorealistic virtual con-

tent on mobile and desktop hardware. These approaches capture rich scene infor-

mation using just an RGBD sensor, but have the disadvantage of requiring the whole

scene to be reconstructed before virtual content can be added. They also are limited

in their ability to update the model should the real lighting or geometry change. Fi-

nally, they can only be used in settings where the environment can be reconstructed

using an RGBD sensor (i.e. small indoor environments).

Kan [64] introduced a method for capturing a HDR environment map by pro-

jecting and aligning multiple images taken using a mobile device, to form a single

spherical image. They later showed how this precaptured map could be used to

illuminate virtual objects [66].

Whelan et al. [150] developed a method for reconstructing a scene and de-

tecting the locations of point light sources, using an RGBD camera. This involves

observing the locations of specular highlights over time, and applying geometric

reasoning to find the 3D location of the light sources which caused them.
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Recently, a number of papers have proposed methods based on deep learning

techniques to estimate HDR environment maps from single, limited field-of-view

LDR images. These approaches form part of a wider movement to apply such

techniques to mixed and augmented reality[83]. Gardner et al. [42] presented a

technique to directly estimate HDR environment maps from images of indoor envi-

ronments. Hold-Geoffrey et al. [55] presented a technique to capture a parametric

model in the outdoor setting, and more recently Legendre et al. [84] presented a

technique to recover full environment maps in both indoor and outdoor settings.

These techniques all have the advantage of requiring only a single RGB camera,

however they estimate only a plausible approximation of the real lighting, with no

guarantee of correctness.

In summary, the existing literature provides useful ways to estimate low-

frequency lighting or point light source locations without the use of physical light

probes. This is suitable for rendering diffuse virtual objects, but insufficient to

render highly specular reflections. Methods also exist to recover high-frequency

information without probes, but these typically require a precapture step and do not

update in real time to reflect changes in the lighting environment. More recent deep

learning approaches can provide estimated lighting based on a single RGB image,

but the estimated lighting may not correspond to the true scene lighting.
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Chapter 3

Real-Virtual Occlusion in Mixed

Reality

The content in this chapter comes from the following paper, which was published

in VRST 2017:

WALTON, D.R., STEED, A. Accurate Real-time Occlusion for Mixed Reality.

In 23rd ACM Symposium on Virtual Reality Software and Technology, VRST 2017

(2017)

3.1 Introduction
The first part of the EngD project focused on the problem of properly handling oc-

clusion in mixed reality scenes. In addition to increasing the perceived realism of

MR scenes, proper handling of occlusion is also critical for proper spatial under-

standing.

Occlusions in MR can be classified according to the objects involved. Where

a virtual object occludes another virtual object, this occlusion can be handled using

one of a number of well-established techniques such as z-buffering. Real objects

occluding other real objects do not need to be handled by the MR system. Handling

cases where real objects occlude virtual ones, or vice-versa, is more challenging.

This is because typically detailed geometric information about the real world is not

available, and it is unclear where these occlusions occur.

One potential way to address this issue would be to make use of a dense 3D
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Figure 3.1: MR scene containing a virtual laptop, using a variety of occlusion handling
methods. Left: Scene with no occlusion handling (virtual content always
rendered over real content). Middle: Scene using occlusion handling based
directly on RGBD depth input. Right: Scene using the occlusion handling
method detailed in this chapter.

reconstruction algorithm such as Kinect Fusion [60]. Such approaches, however,

have a high computational cost and are unable to capture dynamic objects which

move or change in shape. This means, for example, that they would be unable to

properly handle occlusion in the common case where a user moves their hand in

front of a virtual object.

RGBD cameras provide dense depth information per-frame, which in principle

could be used directly to solve the occlusion problem. In practice, however, the

output of these cameras is noisy and incomplete, and using them directly gives

poor-quality results. The centre image in figure 3.1 shows a typical example.

This project focused on developing an approach to make use of both the depth

and colour frames produced by an RGBD camera to provide detailed, high-quality

occlusion. A number of approaches were developed and tested, with the most suc-

cessful being named Cost Volume Filtering Occlusion (CVF Occlusion). This ap-

proach made use of the cost volume filtering framework developed by [56]. In

addition, a method was developed to quantitatively compare such real-time MR oc-

clusion methods.

3.2 Occlusion Method: Details

3.2.1 Hardware Setup

The hardware system used by this method consists of a single RGBD camera ob-

serving a scene containing an MR marker. Here, the ArUco library [43] was used

to determine camera location, which tracks by using fiducial markers.
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Table 3.1: Pixel category names and associated conditions.

‘infront’ On virtual object, real depth < virtual depth
‘behind’ On virtual object, real depth > virtual depth.
‘process’ On virtual object, real depth unknown or

equal to virtual depth
‘ignore’ Off virtual object.

Although a marker-based tracking system was used here, alternative marker-

less tracking systems such as PTAM [80] could also be used for this purpose. The

camera location is only used to correctly position the virtual content in the render-

ing step. A marker-based system was chosen because stable, external tracking was

needed to compare a range of occlusion techniques.

3.2.2 Rendering

The virtual content is rendered, using the transforms obtained from the tracking.

In addition to rendering RGB pixels, the depth (i.e. z co-ordinate) of each pixel in

camera space is also rendered, producing a virtual depth map. The minimum and

maximum depths of each virtual object are recorded.

3.2.3 Pixel Categorisation

The virtual depth map and real depth map are compared, to categorise each pixel in

the image. These pixel categories are used as input to the subsequent stages of the

approach. The categories employed are listed in table 3.1.

The pixel categories are named according to whether the real scene is in front

of or behind the virtual object at a given pixel.

As noted by [108], the style of depth camera used here suffers from lateral

noise. This noise causes inaccurate depths at pixels near edges in the depth map. If

the pixels were classified exactly as described in table 3.1, this would lead to some

pixels erroneously being included in the ‘infront’ and ‘behind’ categories.

In order to mitigate this problem, a morphological (erosion) operator was used

to remove pixels within a 3-pixel range of the border of the ‘infront’ and ‘behind’

categories. These pixels were included in the the ‘process’ category if occupied by

the virtual object, or the ‘ignore’ category otherwise. As noted in [108], the lateral
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Figure 3.2: Stages involved in generating an augmented image using the proposed method.
Top left: Categorisation applied to pixels. Classes are coloured as follows:
‘infront’, ‘behind’, ‘process’, ‘ignore’. Top right: Initial costs. Middle left:
Filtered costs. Middle right: thresholded costs. Lower left: Final matte. Lower
right: Composited MR image.

noise does not vary significantly with depth, so this 3-pixel range could be generally

applied.

Note that the pixel categories generated here are similar in concept to the

trimaps used in alpha matting techniques such as that of [21]. The difference is

that here, in addition to the three typical categories of foreground, background and

unknown, we add a fourth ‘ignore’ category.

The top left image in figure 3.2 shows an example classification of pixels in an

to which a virtual dragon is being added.
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3.2.4 Initial Cost Calculation

Using these categories, per-pixel costs are generated, using a similar approach to

that used by Hosni et al. for interactive image segmentation [56]. In order to cal-

culate these costs, colour models are first fitted to the ‘infront’ and ‘behind’ pixel

categories, in a small area around the ‘process’ region. In this implementation, we

used histograms, however other colour models such as Mixture of Gaussians could

also be used.

Once the models are fitted, the initial costs can then be generated. Each cost is

a 32-bit floating-point value, and captures the likelihood of the real object being in

front of or behind the virtual object at that pixel.

For pixels in the ‘infront’, ‘behind’ or ‘ignore’ categories, the cost is simply

set to 1, 0 or 0.5 respectively. In the ‘process’ region, it is set to a value in the range

[0,1] calculated as follows:

C(p) =
Pin f ront(p)

Pin f ront(p)+Pbehind(p)

Here, p is the pixel in question, and Pin f ront , Pbehind are the probabilities of the

pixel’s colour under the respective histograms.

In many cases, these costs already resemble a reasonable image matte. Often,

however, it contains inappropriate colour detail. This is removed in the subsequent

cost filtering step.

An example of these initial costs can be seen in the top right of figure 3.2.

3.2.5 Cost Volume Filtering

Following this, a guided filter [52] is applied to the costs. The guided filter is an

edge-preserving smoothing filter, which takes two images as input; a guidance im-

age and an input image. The filter has the effect of smoothing the input image,

whilst preserving hard edges present in the guidance image.

Here, the input image consists of the initial costs, and the guidance image is the

colour image from the RGBD camera. The guided filter has the effect of smoothing

the costs and removing some of the unnecessary detail, whilst preserving hard edges
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in the colour image. These hard edges typically correspond to occlusion boundaries.

This initial cost volume filter uses a fairly broad radius to provide a strong

smoothing effect. After the filtering stage, the pixels in the ‘process’ region typ-

ically more closely resemble the desired matte, as can be seen in the middle left

image of figure 3.2.

3.2.6 Matte Generation

Following the filtering stage, the filtered costs are thresholded to produce an initial

matte for compositing the virtual object. Costs above 0.5 are set to 1.0, and those

below 0.5 are set to zero. Only pixels from the ‘process’ region are used This

produces an initial, binary matte.

A second guided filter is then applied to the matte. This filter uses a smaller

radius, and has the effect of ‘feathering’ the occlusion edges. This removes the

aliasing artefacts that would result from using the initial binary matte as-is. Results

are particularly improved in cases where occluders have ‘fuzzy’ edges where many

pixels should exhibit partial occlusion (for example the hair on a person’s head, or

a fluffy toy). Examples of thresholded costs and the final generated matte can be

seen in the middle right and bottom left of figure 3.2, respectively. Here, one can

see that the filter has removed the aliasing artefacts from the edges of the hand.

This process is adapted from the matting approach proposed by [56]. How-

ever, Hosni et al. use an iterative approach, where the model fitting, filtering and

thresholding stages are repeated multiple times. In our approach these stages are

performed only once, improving the efficiency and allowing the process to run in

real time. Since the depth map is already close to the true occlusion edges, a single

iteration is typically sufficient. Future implementations could use multiple itera-

tions if this is necessary. This would be useful if, for example, the RGBD sensor

used has a lower-resolution depth sensor, or higher-resolution colour sensor than

the one used here.

If multiple iterations are required, it is possible to take advantage of another

property of the guided filter. When multiple images are to be filtered using the same

guidance image and filter parameters, much of the computation can be reused to
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improve efficiency. This reduces the computational cost of subsequent iterations.

3.2.7 Compositing

Once an alpha matte has been produced, a compositing process is applied to produce

the final augmented image.

This process is an approximation on the boundary of the occluding real object

(i.e. at pixels where the matte value lies in the range (0,1)). Here, the input colours

at each pixel co initially contain a linear combination of the real background and

foreground colours cb and c f :

co = αcb +(1−α)c f

In principle, the augmented image should have the colour ca, where:

ca := αcv +(1−α)c f

Here, cv is the colour of the virtual object at this pixel. The approaches de-

scribed here determine α , but not c f . Consequently, the output image uses co in

place of c f . This could produce erroneous composites in certain situations, particu-

larly when the foreground and background colours differ greatly at a pixel exhibit-

ing partial occlusion. We found that this approximation produced reasonable results

in our tests, however.

3.3 Implementation & Evaluation Method

3.3.1 Implementation

This implementation of CVF Occlusion used a combination of CPU and GPU pro-

cessing. The initial pixel categorisation, histogram fitting and cost calculation took

place on the CPU, and were implemented in C++. The costs were then transferred

to the GPU, and all subsequent processing took place there. This meant that the

most expensive component of the approach, the two guided filter applications, could

take advantage of efficient GPU implementation. It also minimised the information

which needed to be transferred between CPU and GPU at each frame. The GPU
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code was written in OpenGL, which was also used to render virtual content and

compose the output image. Components such as the guided filter were implemented

in compute shaders.

The guided filter implementation used the efficient formulation described in

[52]. This consists of a series of box filters, in addition to a number of simple pixel-

wise image operations, such as adding, subtracting or multiplying two images. The

box filters are implemented using summed area tables [24] (later works often refer

to these as integral images). Consequently, our implementation is O(N), where N is

the number of pixels in the input image. It is independent of the radius of the filter

employed. The summed area tables were calculated using parallel GPU prefix sums

along rows and columns of the image.

3.3.2 Quality Evaluation Method

In order to quantify the relative quality of the results, it was necessary to develop a

procedure for obtaining ground truth occlusions, and metrics to compare this ground

truth to the output of CVF occlusion.

A small environment in which to carry out the experiment was constructed,

containing an occluding object and some background objects. The RGBD camera

was mounted on the quick-release plate of a sturdy tripod and pointed towards the

scene. An MR marker, attached to a stiff foamcore board was placed off to the

side of the scene, visible to the camera. The MR scene consisted of a single virtual

object, between the real foreground and background objects, arranged to be partly

obscured by the foreground.

We also intended to compare the results of CVF occlusion to those of a dense,

Kinect Fusion-style algorithm. Such algorithms are intended to construct a scene

model of gradually increasing quality over time, and need to view objects from

multiple angles to produce accurate models. In order to compare a dense SLAM

method to the proposed approach during the reconstruction, the following steps

were repeated:

1. Detach the camera from the tripod.
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2. Move the camera around the scene for a period of time, allowing Kinect Fu-

sion to reconstruct the scene.

3. Reattach the camera to the tripod.

4. Mark a series of frames for comparison, record the appearance, depth, mask

of the virtual object.

5. Move the green screen behind the object, and capture the ground truth frame.

6. Remove the green screen.

The dense SLAM algorithm used for the comparison here was InfiniTAM [61].

This builds upon the original Kinect Fusion approach, adding a volume hashing

mechanism enabling it to store the scene model compactly and reconstruct larger

areas.

RGBD cameras, such as the one used in this example, an Xtion Pro, typically

suffer from some temporal noise, particularly in the depth output. Because of this,

it was decided to compare a series of consecutive frames during each cycle, to

determine if this temporal noise caused the error of any of the approaches to vary

significantly (here, 4 frames were used).

In practice, it was found to be easier to losslessly record the footage from

the RGBD camera, and then apply the algorithms afterwards. This approach was

chosen as it would not have been possible to run all of the compared approaches

simultaneously in real-time.

3.3.2.1 Per-frame Accuracy

The mattes obtained using the occlusion methods were compared to ground truth

mattes, in order to assess their accuracy. Figure 3.3 shows the process of developing

a ground truth object matte from a green screen image. First, a photo editing tool is

used to produce a matte b) from the input green screen image a). In practice it was

found that attempting to produce this matte without user intervention sometimes

led to inaccurate results for more challenging objects. The pixels of this matte not
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a) b)

c) d)

Figure 3.3: Developing a ground truth matte, using a green screen. a): Green screen placed
behind foreground object. b): Matte extracted from greenscreen image. c):
Pixels occupied by virtual object. d): Ground truth occlusion matte.

occupied by the virtual object c) are then set to zero, resulting in an accurate ground

truth matte d).

Once ground truth mattes MG had been obtained, the accuracy of the automati-

cally generated mattes M was then measured by calculating the mean squared error

(MSE), as defined in equation 3.1.

MSE(M) :=
1
|Ω| ∑

p∈Ω

(M(p)−MG(p))2 (3.1)

3.3.2.2 Temporal Noise

In addition to improving the quality of mattes for individual frames, as measured

by the MSE metric, it is also desirable for an occlusion method to remove the tem-

poral noise present in the depth maps. This noise manifests as disturbing flickering

artefacts along occlusion boundaries when the depth map is used directly.

In order to assess the ability of the occlusion methods to remove temporal

noise, an additional metric was calculated. During step 4 of the capture procedure

outlined in sect. 3.3.2, several frames are captured in sequence whilst the camera is

fixed to a sturdy tripod. These frames contain static real and virtual scenes and so



3.3. Implementation & Evaluation Method 58

ideally the matte output would be constant over each of these sequences.

To measure the temporal noise in a sequence of output mattes, the variance at

each pixel location in the matte is computed across the sequence. The mean of these

variances is then taken, to provide a scalar measure of the temporal noise. As noted

above, the ideal occlusion method would produce a sequence of identical mattes,

resulting in a value of zero. A method that produced some degree of temporal noise

would produce mattes with more variation, resulting in a higher (worse) value.

There are some limitations to assessing temporal noise in this way, as the cam-

era and real scene are kept static. It is possible that the characteristics of the depth

noise vary as the camera moves relative to the scene. Measuring temporal noise

when the camera is moving is a more challenging problem, which we leave to fu-

ture work.

3.3.3 Compared Techniques

This evaluation method was applied to a number of different occlusion methods, to

compare their performance.

Two naı̈ve occlusion methods were implemented, which use the depth map

from the RGBD camera directly. We refer to these as ‘Direct1’ and ‘Direct2’. ‘Di-

rect1’ assigns matte values m using just the real, unprocessed depth dr and the

virtual depth dv at each pixel as follows:

m :=

1 if dr > dv

0 if dr ≤ dv or dr unknown

‘Direct2’ is otherwise identical, but sets m to 1 where dr is unknown. Thus,

both methods compare real and virtual depths per-pixel to determine occlusion. In

cases where the real depth is unknown, ‘Direct1’ assumes the virtual object is oc-

cluded, and ‘Direct2’ assumes it is not occluded. Missing values occur on both

unoccluded and occluded parts of the virtual object, so neither of these approaches

is inherently superior (although one might provide better results in a particular situ-

ation).

CVF occlusion was also compared to the earlier method of Crabb et al. [22].
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This approach was developed for foreground-background segmentation, rather than

MR occlusion. Here it has been adapted by setting the threshold depth to the mean

depth of the virtual object, and setting regions of the matte not located on the virtual

object to zero. This adapted method is referred to as ‘Crabb’ in the results.

To provide context, the presented method was also compared to simpler ap-

proaches using other structure-transferring filters. In these approaches, an initial

matte was generated using the pixel categorisation described in sect. 3.2.3, and the

filter was then applied to refine it. The initial mattes were generated by setting pixel

values from the behind category to 1, those from the unknown category to 0.5, and

those from the infront or ignore categories to 0.

The filters tested were the guided filter and an adapted joint bilateral filter.

The baseline guided filter approach uses the same filter implementation as CVF

occlusion, but only applies a single filter pass with no thresholding stage. The

baseline bilateral approach used a modified joint bilateral filter, adapted to only

draw information from pixels in the ‘infront’ and ‘behind’ categories. In both cases,

the filter was only applied to pixels in the ‘process’ category. These two methods

are referred to as ‘Guided’ and ‘Bilateral’ in the results (according to the filter used).

CVF occlusion is referred to as ‘CVF’ in the results.

3.4 Results

The experiment was repeated for a number of small MR scenes. These were con-

structed to be on a scale which allowed the camera to produce accurate depth values,

and Kinect Fusion to reconstruct the scene accurately. Images of the scenes con-

structed are shown in figure 3.4.

The first scene, ‘Normal’ was designed to represent a typical use case, and

the other two to represent more challenging situations. In ‘Same Colour’, the fore-

ground and background are of a similar colour near the virtual object. In ‘Specular’,

highly reflective foreground objects mean that the RGBD camera is often unable to

obtain accurate foreground depths.
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Normal Specular

Same Colour

Figure 3.4: Colour frames from the three scenes constructed to test the output of the algo-
rithm.

3.4.1 Per-frame Accuracy

Figure 3.5 shows the measured errors of the resulting mattes relative to the ground

truth frames, using the MSE error metric. Each bar shows an average MSE for

the frames captured consecutively in each cycle. In the first group, InfiniTAM has

been exposed to the scene for a short length of time, with a stationary camera. In

subsequent groups, the algorithm has been exposed to the scene from a wider range

of viewing angles, for a longer length of time. The InfiniTAM error measurements

(shown in orange) are the only ones which should show variation over time, as the

other approaches do not make use of temporal information. Figure 3.6 shows some

example results produced using CVF occlusion, with ground truth for comparison.

In the typical case ‘Normal’ scene, the proposed method provides better results

than both direct approaches. The errors are also below those obtained using the
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Figure 3.5: Matte quality for each of the compared frames of the three RGBD sequences,
as measured using Mean Square Error.
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Figure 3.6: Example results obtained using CVF occlusion on each of the three test se-
quences (top row), and results using the corresponding ground truth mattes
(bottom row).

other per-frame approaches.

Looking at the results of the two direct approaches, one can see that which is

superior depends upon the situation. In the ‘Normal’ and ‘Same Colour’ sequences,

where there are typically more unknown values behind the virtual object, Direct1

has lower errors. However, in the ‘Specular’ scene where there are many unknown

values in front of the virtual object, Direct2 produces better results.

The accuracy of the CVF occlusion is lower in the two more challenging cases.

In these cases the MSE is not always lower than both Direct1 and Direct2. However,

in the ‘Same Colour’ example it is better than Direct1, and in the ‘Specular’ example

it is better than Direct2, suggesting that the presented approach is more generally

applicable.

The ‘Specular’ example is an interesting case where the approach of Crabb et

al. often outperforms the presented approach in MSE. It should be noted, however,

that Crabb suffered from much greater temporal noise in this sequence (see figure

3.7). Whether low temporal noise or MSE accuracy is a more important metric is

likely to vary depending upon application domain.

The results from InfiniTAM gradually improve as the scene is exposed to the

RGBD camera. For the first few frames in the ‘Normal’ and ‘Same Colour’ se-
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quences, its error is much higher than the proposed approach. This highlights an

advantage of using a per-frame approach; good results can be obtained, even on the

first frame of a sequence.

It is also worth noting that, under certain conditions, such as rapid camera

movement, reconstruction methods such as InfiniTAM can lose tracking, and this

often results in the scene model becoming corrupted. Care was taken to avoid such

rapid motions when capturing these sequences. The method presented here does not

use any intra-frame state, and thus will continue to operate even when the camera

image changes very quickly.

3.4.2 Temporal Noise

Figure 3.7 shows the average temporal noise estimates for each occlusion method,

for each captured sequence. The noise estimates were calculated as described in

sect. 3.3.2.2 and the average of these values was taken over each sequence.

As can be seen in figure 3.7, for the typical use case example ‘Normal’, the

proposed approach offers a reduction in temporal noise. It is lower than both of

the direct approaches, but also lower than Crabb et al., and the simplified guided

filter and bilateral approaches. This shows the benefit of the two-step approach and

thresholding stage, which reduce the direct dependence of the output matte on the

noisy input depths.

In the more challenging ‘Same Color’ scene, although the MSE was not con-

sistently below that of both direct approaches (as discussed above), the temporal

noise of the proposed approach was still lower. In this sequence, CVF occlusion

also showed significantly lower MSE than the baseline guided filter approach. The

reason for this can be seen in figure 3.8. The thresholding stage used in CVF oc-

clusion tends to produce results with well-defined boundaries, avoiding the errors

which can be seen in the guided filter example.

InfiniTAM consistently offered the lowest temporal noise across all scenes, al-

though this comes at the cost of its slow response to changes in real scene geometry

(for example, if an occluding real object is moved).
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Figure 3.7: Temporal noise for each of the compared frames of the three RGBD sequences,
measured as described in sect. 3.3.2.2.
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Figure 3.8: Example results from the ‘Same Colour’ sequence, using the presented ap-
proach (left) and the baseline approach using a single guided filter only (right).

3.4.3 Performance

In order to demonstrate the capability of CVF occlusion to work in real-time, a

simple MR application was developed. This overlaid a single virtual object on the

color image provided by the RGBD camera, using a fiducial marker for tracking.

The occlusion method was applied at each frame, and the resulting matte used to

compose the final MR image, which was displayed on the screen.

This application was tested using a computer with an Intel Core i7 processor

and an Nvidia GTX 1080 GPU. An Asus Xtion Pro depth camera was used for both

colour and depth input, at depth and colour resolutions of 640x480 pixels. Using

this setup, the application was able to run consistently at 30 frames per second using

CVF occlusion, the limiting factor being the framerate of the camera.

The occlusion method was also timed in isolation. In order to obtain meaning-

ful values, it was necessary to forcefully synchronise the GPU (using glFinish).

This means that the results may not reflect use of the method in a larger applica-

tion, where the GPU could potentially run other tasks in parallel. They do provide

a useful upper bound, however. With this synchronisation, each frame could be

processed in between 5 and 7 milliseconds. Due to the O(N) implementation of

the guided filter, the processing time was largely independent of the kernel size

used, and the proportion of pixels in the ‘process’ category, offering a consistent

framerate.

The implementations of the Bilateral, Guided Filter and Crabb et al. ap-

proaches used here were implemented on the CPU, and able to run at near real-time
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(40-50ms per frame). More optimised GPU implementations of these approaches

would likely have similar performance to CVF occlusion. Thus we believe that the

cost of CVF occlusion is comparable with these other approaches, and it may be

faster in many use cases.

3.5 Discussion
CVF occlusion implicitly assumes a single virtual object - that is, that all real points

lie either in front of or behind the virtual object. The same techniques could be

applied to more complex scenes with alternating layers of virtual and real content,

by processing each virtual layer separately. It would also be possible to process

occlusion for each virtual layer in parallel.

The implementation of CVF occlusion used for the evaluation was not care-

fully optimised. It would be possible to further improve it to reduce the cost or

allow implementation on lower-power mobile platforms. The summed area table

calculation used in the guided filter in particular was implemented using two filter

passes, and efficiency could be improved using the formulation proposed by [104].

Occasionally, the depth camera will be unable to register any valid depth values

for an occluding foreground object, due for example to small size, translucency or

specularity. In these cases the object is only visible in the depth image as a patch

of unknown values, surrounded by background pixels. In this case, the proposed

approach will then incorrectly render the virtual object in front of the occluder.

This problem is difficult to address using the information available to the algorithm,

but was found to occur relatively rarely in practice.

3.6 Conclusion
This chapter focused on the development of CVF occlusion, a method of produc-

ing accurate occlusion mattes from colour and depth input from an RGBD cam-

era. CVF occlusion operates independently on each frame, and is therefore capable

of working immediately, and handling dynamic and deformable objects. A novel

comparison approach was used to demonstrate that the method offered compara-

ble results to a dense reconstruction approach (InfiniTAM), at lower computational
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cost.

This approach could be used directly to address the MR occlusion problem

without the need for full 3D scene reconstruction. In future work, however, it would

be interesting to explore combining techniques like CVF occlusion with 3D recon-

struction methods. This has the potential to combine the best features of both ap-

proaches - the temporal stability of 3D reconstruction methods and CVF occlusion’s

ability to handle dynamic real objects.

Alternatively, future image-based approaches could use information from pre-

ceding frames to further reduce the effects of temporal noise in the final output

mattes, as well as allowing for better handling of cases where there are no valid

depth values for a foreground object in a single frame (as discussed in sect. 3.5).

It would be interesting to explore the possibility of automatically detecting

challenging scenarios, and adapting to them. For example, in the ‘Same Colour’ se-

quence shown here, it would be possible to note that the background and foreground

histograms are very similar, and adapt the subsequent stages of the approach.

This approach currently attempts to solve the occlusion problem by producing

a matte, containing alpha values for each pixel. Strictly speaking, as mentioned in

sect. 3.2.7, this is insufficient, and compositing also requires the real foreground

colour to be extracted. Future methods might attempt to do so, in order to produce

more accurate augmented images in the presence of translucency.

CVF occlusion could be a good fit for the GPUs available on mobile devices. A

more optimised implementation of this approach could form part of an augmented

reality system implemented on a mobile device, such as a Google Tango device,

or a phone equipped with a stereo camera pair. It could also be applied on an MR

headset, such as the Microsoft Hololens or Magic Leap One.
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Chapter 4

Probeless Illumination Capture for

Mixed Reality

The content in this chapter comes from the following paper, published in ISMAR

2017:

WALTON, D.R., THOMAS, D., STEED, A., SUGIMOTO, A. Synthesis of En-

vironment Maps for Mixed Reality. In 16th International Symposium on Mixed and

Augmented Reality, ISMAR 2017 (2017)

4.1 Introduction
Ensuring that rendered virtual objects appear consistent with the real world is an

important goal in the field of mixed reality (MR). Part of this involves rendering the

virtual objects in such a way that they appear to be illuminated by the world around

them, by reproducing effects such as shadowing, reflection and refraction.

Rendering these effects requires information about the lighting environment,

which is often captured using light probes. These light probes may be objects with

known geometry and material properties, such as chrome or glass spheres. Alterna-

tively, a camera with a suitably wide field of view may be used. When such a probe

is placed at the location of the virtual objects, the information can be used to light

the virtual objects accurately.

However, there are applications where it may be impractical to place physical

light probes in the real scene. In a mobile see-through AR app, for example, it would



4.1. Introduction 70

be preferable to use a single, self-contained device, such as a phone, tablet or a

HMD such as the Hololens or MagicLeap One. A variety of methods exist to capture

lighting information without the requirement to place separate physical light probes

in the real scene. Such methods, however, typically capture lighting in the form of

point light source locations [123, 124, 125, 51, 40, 6] or low-frequency spherical

harmonic maps [110, 49, 48, 50]. These are useful for illuminating virtual content

with diffuse shading, but, unlike physical light probes, cannot be used to render ef-

fects such as mirror reflection and refraction of light. Other approaches [96] capture

these higher frequencies, but require the whole environment to be reconstructed as

a preprocess, and cannot respond correctly to subsequent changes in the real envi-

ronment.

The method introduced here attempts to recover full environment maps at the

location of each virtual object, which can be used to render these high-frequency

effects. The method uses an RGBD camera and a small fisheye camera, contained

in the same unit. An indoor, single room environment is assumed, and it is assumed

that rough geometry for this room is available (a 2D floorplan, the height of the

ceiling, and the initial RGBD camera pose). Both cameras are used to construct

and update a detailed model of the room, which can then be used to render the

environment maps at any place in the scene in real time. The 3D model of the

scene consists of a dense, detailed model of the surfaces around the virtual objects,

and a coarse model of the walls, ceiling and floor of the room. Both are updated

in real time, enabling the virtual objects to respond to changes in the environment.

This division of the real scene into distant and nearby components is similar to that

proposed by Debevec [28].

Creating and updating this model is challenging. The main contributions de-

tailed in this chapter are as follows:

1. An efficient method for updating the texture of the coarse model using the

fisheye camera, whilst correctly handling occlusions.

2. A method for responding to dramatic lighting changes in the room, updating

the whole model including regions not visible to the camera pair.
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Figure 4.1: Image augmented with virtual reflective teapot, rendered using the proposed
system. Note the reflections of the nearby real objects. No physical light probe
was placed near the teapot.

3. A system which uses these data to produce accurate environment maps at

desired locations in the real scene.

These contributions were demonstrated by implementing a real-time AR sys-

tem capable of rendering virtual objects with a variety of material properties in a

number of challenging environments. The system was also evaluated, comparing

the results produced to those achievable using the fisheye camera directly. Overall,

the results suggest that our approach can produce more accurate results and reduce

visual artefacts.

4.2 System Overview
This section contains an overview of the structure of the system, and details of the

hardware setup used.

4.2.1 Data Flow

Figure 4.2 contains a flowchart, giving an overview of the presented system. The

inputs to the system (shown in pink) consist of RGB and depth frames from the

RGBD camera, fisheye images from the upward-facing camera and rough geome-

try for the room (generated from the floorplan as described in section 4.3.1). The

method produces as output an environment map, rendered from the virtual object’s
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Figure 4.2: System overview flowchart. Inputs are shown in pink, intermediate data in blue,
and the output is shown in green.

location. This environment map can then be used to render one or more virtual

objects, as described in section 4.3.8.

The coarse model geometry is generated as a preprocess, as the application

starts. The other stages are performed in real time, as new frames arrive from the

RGBD and fisheye cameras. A new environment map is rendered at each frame,

prior to rendering the virtual object.

4.2.2 Hardware Setup

The hardware setup used in this system consisted of an Xtion Pro Live RGBD

camera attached to a small upward-facing camera by a rigid bracket (Point Grey

Chameleon3 CM3-U3-13Y3C-CS). The upward-facing camera is equipped with a

182 degree fisheye lens (Lensagon CF5M1414), as shown in figure 4.3. The device

is intended to be held by the user, with the RGBD camera facing forward, and the

fisheye camera facing upward. The colour output of the RGBD camera is displayed
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Figure 4.3: Hardware setup used for the proposed method.

to the user, augmented with the virtual content.

Both of the cameras were calibrated. This involved calibrating the cameras

individually, in addition to finding the 6DoF transform between the two cameras.

The RGBD camera was calibrated using the camera calibration app from MAT-

LAB’s Computer Vision Toolbox [93], which was applied to the RGB images.

The camera used for this implementation was capable of automatically warping

the depth image to correspond to the RGB image, and this feature was activated.

The fisheye camera was somewhat more complex to calibrate. There are a

range of camera models available for omnidirectional cameras, and each model has

advantages and disadvantages, in terms of accuracy and computational complexity.

Here, the camera was first calibrated using the calibration method of Scaramuzza et

al. [126]. This provides a high-accuracy camera model, but it is also unfortunately

somewhat expensive to evaluate. For this reason, at runtime, the images were pro-

cessed so that they conformed to the simpler model of Ying and Hu [155]. This

undistortion stage was performed efficiently using a precalculated look-up table

(LUT).
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Once both cameras were calibrated, the 6DoF transform connecting their cam-

era poses was recovered. This was achieved by finding point matches in the overlap-

ping region in the images captured by the two cameras, and solving for the transform

which best aligned the matches, using the Levenberg-Marquardt algorithm [86, 91].

For this implementation, a single upward-facing fisheye camera was used, cap-

turing roughly the hemisphere above the camera pair. We chose this configuration

as it was capable of capturing much of the scene that would be reflected by a vir-

tual object, including most major light sources. It would also be possible to use the

proposed approach with other camera configurations, for example adding a second

fisheye camera to capture a full 360 image. In this case, however, if the device

is held by a user, they will be visible to the camera pair, and this may need to be

handled explicitly in the coarse model updating stage (section 4.3.3).

4.3 System Detail
This section covers each of the stages involved in the system in greater detail.

4.3.1 Initialising the Coarse Model

The output of the fisheye camera cannot be used directly as an environment map.

This is due to the displacement between the camera and the virtual objects, as well

as its limited field of view - the camera used here captured a roughly hemispherical

region. One of the main goals of the software is to interpret the output of both

cameras, to synthesise an environment map at the location of the virtual object.

In order to render the virtual environment maps, a geometric model of the

scene is created. This consists of two components. The first is a dense 3D model

generated using the RGBD data, capturing the region directly around the virtual

objects. The second is a less-detailed, coarse model of the whole room. This is

generated from the rough geometry of the room, which is assumed to be known a

priori; the floorplan of the room (a 2D polygon) and the height of the ceiling. From

this information, the vertices, indices and texture coordinates of the coarse model

are generated automatically.

It is assumed that the system is used indoors, within a room. This was felt to be
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a reasonable assumption, as this corresponds to the typical use case for the system,

and it is not generally possible to use current RGBD cameras outdoors. For outdoor

scenes, other environment models could be developed.

For the examples shown here, in order to simplify the implementation, the

floorplan and ceiling height were measured by hand. In an end-user application,

however, this information could be obtained using the output of the camera pair,

for example by applying the method of Cabral and Furukawa [14] to a suitable

image captured by the fisheye camera. Alternatively, a SLAM technique such as

LSD-SLAM could be employed. Whilst 3D reconstruction using the depth camera

would also be possible, it would be more time consuming due to the narrow field of

view of the depth sensor, and in practice was found to be challenging due to loss of

tracking on flat featureless walls.

4.3.2 Dense SLAM

The dense SLAM stage takes RGB and depth frames as input, and uses these to

construct a detailed colour model of the region around the virtual content. Addi-

tionally, the SLAM process provides an estimated transform for the RGBD camera.

Using the known transform between the cameras (see section 4.2.2), the pose of the

fisheye camera can also be estimated.

The dense SLAM algorithm used in this implementation was InfiniTAM [61].

InfiniTAM was selected primarily for its efficiency, but other RGBD reconstruction

methods could also be used, such as ElasticFusion [149] or the parametric surface

approach of Thomas and Sugimoto [139].

4.3.3 Updating the Coarse Model Texture

As each new frame is captured by the fisheye camera, it is used to update the texture

of the coarse model of the whole room. This is achieved efficiently by making use

of graphics hardware. Updating the coarse model frequently enables the model to

capture changes in the distant real environment in real time, such as a video playing

on a TV screen, or curtains being opened.

First, the current location of the fisheye camera is determined using the position



4.3. System Detail 76

of the RGBD camera, and the known transform between the two cameras. The

RGBD and fisheye cameras are not synchronised, however, and may capture frames

at different times. We correct for this, estimating the RGBD pose at the instant the

fisheye frame was captured, and using this pose estimate to find the correct fisheye

pose. This is achieved by linearly interpolating, using the two most recent RGBD

poses, and the times at which the images were captured. The rotational components

of the transforms are interpolated by converting to quaternion form and applying

spherical linear interpolation.

Second, a fragment shader is applied to each texel of the coarse room texture.

This identifies the position in world space that the texel corresponds to, projects it

into the fisheye camera image, and, providing the image location is valid (i.e. the

point is not behind the camera), samples the fisheye image and renders the result to

the texel.

This procedure is efficient, but does not account for the possibility of occlu-

sions, in the event that the coarse room model is not convex (the middle left image

in figure 4.5 shows an example of such a non-convex floorplan). The process used

to handle occlusion is detailed in the following section.

4.3.4 Handling Occlusion in the Coarse Model

Determining which parts of the coarse model texture are currently visible to the

fisheye camera is potentially a challenging problem to solve in real time. A naı̈ve

approach might involve casting a ray from the camera location to each texel, but

due to the large number of texels to be processed this would be prohibitively slow.

However, we can exploit the structure of the model to simplify this task. Since the

model is a right prism, it suffices to determine which parts of the 2D floorplan are

occluded.

Finding which parts of a polygon are visible from a given viewpoint is a well-

studied problem in the literature, and very efficient approaches are available. For

this implementation, the implementation of Bungiu et al. [13] from the CGAL li-

brary [136] was used. The visible region is referred to as a visibility polygon.

Once the polygon has been determined, it is then used to generate a mesh in the
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Figure 4.4: An example of generating an occlusion mask for the room model. Top left:
floorplan of room model. Top Right: a viewpoint (blue circle) and the associ-
ated visibility polygon (in green). Bottom left: mesh rendered into occlusion
mask. Bottom right: final occlusion mask.

texture space of the coarse model, which is rendered using the graphics hardware to

generate a binary occlusion mask efficiently. This mask indicates which texels are

potentially visible to the fisheye camera, and is used during the coarse model update

step (section 4.3.3). An example of the generated texture-space mesh and occlusion

mask for a hypothetical L-shaped room can be seen in figure 4.4.

Figure 4.5 shows a real-world example. Here, the real environment consists of

two rooms, partly separated by a partition, as can be seen in the panoramic image

and floorplan. The example is taken from the first frame of the sequence. A 2D

visibility polygon is computed from the floorplan, based on the fisheye camera’s

location (shown as a blue frustum). This is then converted into the binary occlusion

mask for the 3D coarse room model. Finally, the coarse model texture is updated

with the reprojected fisheye camera image. Only visible components are updated -
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Figure 4.5: An example of occlusion handling when updating the coarse model. Top:
Panoramic image of two rooms, partly separated by a partition (centre of im-
age). Middle left: floorplan of rooms and partition. Middle right: 2D visibility
polygon. Bottom Left: 3D coarse model, textured with visibility mask. Bottom
middle: Frame from fisheye camera (undistorted) Bottom right: Coarse model,
updated with this fisheye camera image. In all examples, the poses of the fish-
eye and RGBD cameras are indicated by blue and green frustra, respectively.

the rest of the texture is filled in using the inpainting approach described in section

4.3.5.

In many cases, the coarse model is in fact convex (i.e. the floorplan is a convex

polygon). In these cases, this occlusion testing step is not necessary, as the coarse

model cannot occlude itself, and it can be skipped for added efficiency.

4.3.5 Completing Missing Regions of the Texture

At a given time, some parts of the coarse model texture may not yet have been ob-

served by the fisheye camera. This may be due to the camera only having seen the

upper hemisphere of the room, or also due to occlusions, if the coarse model is not
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convex. In order to complete the missing regions of the texture, an inpainting ap-

proach [135] is applied. One advantage of this approach is its speed, which enables

it to be reapplied incrementally at runtime as more of the room is observed, keeping

the room texture consistent. A binary inpainting mask is used to indicate which

texels have been updated with real data, ensuring that the inpainting is only applied

to areas which have never been observed.

Inpainting is generally applied to the walls, ceiling and floor separately, as

they are typically of different colours. An exception to this is made in situations

where the floor has not yet been observed by the fisheye camera. In this case, the

inpainting process propagates data to the floor from the surrounding walls to provide

a plausible initial texture.

Figure 4.6 demonstrates the effect of this inpainting process on the first frame

of a sequence. Here, in the example without inpainting, much of the coarse model

has not yet been observed. The texture was initialised to a neutral grey colour, which

is visible in the reflection from the virtual teapot. In the example with inpainting,

the walls and floor have been inpainted, resulting in a more plausible reflection from

the virtual teapot.

4.3.6 Reacting to Large-Scale Lighting Changes

Changes in the lighting environment, such as lights turning on or off, or curtains

being opened, have a global effect on the appearance of the room. The fisheye

camera is able to observe a large portion of the room, and can update areas in its

field of view in real time. Regions not currently visible to the camera are not updated

by the system described above, however. If the room becomes dramatically brighter

or darker, this can lead to noticeable artefacts. These typically take the form of

sudden lighting changes across the coarse model texture, as shown in figure 4.7.

An efficient method was developed to address these problems. At each frame,

before integrating the fisheye frame into the coarse model texture, a global illumi-

nation change ∆ is estimated. This RGB colour value is an estimate of the average

intensity change over the coarse model texture, relative to the previous frame. This

is computed as part of the coarse model update step.
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Figure 4.6: Scene containing a virtual teapot, with and without inpainting applied. Top:
augmented image (with inpainting). Middle: view of coarse model and closeup
of teapot, without inpainting. Bottom: view of coarse model and closeup of
teapot (with inpainting).

For each coarse model texel to be updated with new data from the fisheye cam-

era, the intensity difference between the current and new pixel values is calculated.

The mean of these differences ∆ is then found. When calculating the mean, parts

of the coarse model which have not yet been updated with real data are excluded.

These areas will contain inpainted texels, which do not necessarily reflect the true

appearance of the room. To identify these pixels, the binary inpainting mask is

used (see section 4.3.5). Saturated and black pixels are also avoided, as their true

brightness is unknown. More precisely:
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Figure 4.7: Example of adjusting to a change in lighting conditions. Above: Image with
ceiling light turned off. Middle: Image after ceiling light has been turned on,
without lighting change estimation, and closeup of virtual sphere. Below: Im-
age after ceiling light has been turned on, with lighting change estimation, and
closeup of virtual sphere.
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∆ =
∑t∈T v(t) · (F( f (t))−T (t))

∑t∈T v(t)

Here, T is the coarse model texture, and t a texel location. F is the fisheye

image, and f is a function taking texel locations in the coarse model to the corre-

sponding pixel locations in the fisheye image. v is a validity delta function, defined

as follows:

v(t) =



1,

if t is visible to fisheye camera

and T (t) is not saturated/black

and F( f (t)) is not saturated/black

and t has been directly observed

0, otherwise

This change ∆ is added to all texels in the coarse model which were not up-

dated with new data from the fisheye camera. This has the effect of propagating

changes in lighting to these texels, ensuring the coarse model appears to be of a

consistent brightness. ∆ is also used to adjust the appearance of the dense model

when rendering the cubemap.

An example is shown in figure 4.7. Here, a ceiling light was turned on, in-

creasing the brightness of the room. In the middle example, without lighting change

estimation, the lower half of the reflected scene (i.e. the sewing machine, table and

box) has not changed, and now appears too dark. In the lower example, the change

in illumination was accounted for and the brightness and colour of the lower half of

the sphere appear more consistent.

This approach uses a simplified ambient lighting model. In reality, light trans-

port through the scene is much more complex. This approximation is efficient,

however, and helped to reduce visible brightness inconsistencies in the environment

maps.
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4.3.7 Rendering the Environment Maps

The virtual environment maps are then rendered, using the coarse and dense models.

One environment map is rendered from the perspective of each virtual object. Each

environment map is rendered in the form of a cube map, which can then be used

directly by the graphics hardware.

First, the textured coarse model is efficiently rendered to the cubemap, using

the graphics hardware (each face of the cube is rendered in turn). Secondly, the

dense model captured using InfiniTAM is rendered. The dense model is rendered

on top of the coarse model (i.e. without depth testing).

This approach was chosen because the dense model is typically closer to the

virtual object than the coarse model. Additionally, in cases where the dense SLAM

captures geometry already present in the coarse model (i.e. a wall, ceiling or floor)

this ensures the version from the dense model is visible. This provides improved

results, as the dense model typically has more geometric and texture detail. The

dense model is rendered using the GPU-based raycasting procedures in InfiniTAM.

Although the examples shown here involve a single virtual object, if others

were present, they could also be rendered into the cubemap at this stage, allowing

the environment map to capture the complete mixed reality scene.

4.3.8 Rendering the Virtual Objects

Environment maps provide much richer information about the lighting environment

around a virtual object than simpler real-time lighting models such as point and

directional lights. Although originally developed to produce mirror reflection [45],

they can be used to simulate a wide variety of virtual materials. Some examples

were implemented below, to demonstrate the capabilities of the proposed system.

Environment maps can be used to produce convincing refraction effects, an

example of which is shown in figure 4.8. The top example shows simulation of

refraction through a bottle of water. The lower two examples show an example

of rendering a metallic teapot, simulating material colour and surface roughness.

Surface roughness can be simulated by either combining suitable environment map

samples, or by applying a filter to the environment map [100] (or both [82]). The ex-
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Figure 4.8: Examples of some of the other virtual objects that can be simulated using en-
vironment maps. Top: Water bottle, simulating refraction of the environment.
Middle: Wooden mannequin, simulating diffuse shadowing, reacts to a ceiling
light being turned on. Bottom: Metallic teapots, simulating different levels of
surface roughness.

amples shown here simply sample from coarser mipmap levels, which has a similar

effect.

Environment maps are not limited to rendering specular virtual objects. They

can also be used to render diffuse objects - for example by approximating the en-

vironment map using directional lights, via importance sampling. They can also be

projected into an SH representation, and used as input to PRT rendering [127], as

shown in figure 4.8, middle. In all the examples shown here, diffuse shadowed PRT

is used, with a 4th order SH projection (i.e. 25 coefficients).
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The implementation of PRT used here also renders a contact shadow onto the

table, using differential rendering [28]. Rough real geometry is required for this

when precomputing. Here a plane is used, implicitly assuming that the virtual object

is placed on top of a locally planar real surface at runtime. This is a common

scenario, as realistic virtual objects are typically placed on tables, floors etc.. This

allows the virtual object to cast a convincing contact shadow. Since the cubemap

is updated and reprojected anew each frame, the virtual object also responds in real

time to lighting changes, such as the ceiling light turning on in figure 4.8 above.

Figure 4.9 shows the process of calculating the differential PRT textures for

a virtual object (in this case, the Spot model created by Keenan Crane). A PRT

texture is baked for the virtual object on the plane, resulting in the texture on the

bottom left. A texture is then generated for the real plane alone, giving the result

shown in the middle. The final output is the difference of these two textures, shown

on the bottom right. Note that in this case, the PRT values on the plane in the lower

half of the texture are negative-valued - this will produce a contact shadow when

the texture is used for rendering.

4.4 Results
This section contains results of using the system in a typical setting. Qualitative

comparisons with a real reflective object and a simpler baseline method are shown.

4.4.1 Full Pipeline Results

Figure 4.10 shows an example of the data captured when using the application in

a typical setting. The top and middle images show views of the textured coarse

model, and the estimated camera locations. The lower image shows a raycast of the

dense model, from the viewpoint of the RGBD camera. The appearance of objects

near the virtual object (here, the sewing machine, table and box) are captured in the

dense model. The appearance of more distant parts of the environment (e.g. walls,

ceiling) are captured in the coarse model. Note that these data are from the end of

the first frame of a run using the application, so some quantisation noise remains in

the dense model, and the lower half of the coarse model mainly contains inpainted
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Figure 4.9: Top left: Mesh, consisting of virtual object on plane representing real surface
below it. Top right: albedo texture, with virtual object texture mapped to top
half of texture space, and real world plane to bottom half. Bottom: PRT textures
used to calculate differential PRT. SH band 0 shown, with green representing
positive values, blue negative and black zero.

data.

Figure 4.11 shows an example environment map rendered using this informa-

tion. The cubemap is visualised as a net.

Figure 4.12 shows the final augmented image, containing a reflective virtual

sphere.

It can be seen that often, the lower walls and floor of a room will not be visible

to the fisheye camera during typical use. However, the surface under the inserted

virtual objects, such as a table or floor tends to be captured in the dense reconstruc-

tion, meaning that a complete environment map can be produced.

4.4.2 Comparison to Physical Light Probe

In order to test the effectiveness of the approach, a qualitative comparison was per-

formed between virtual and real reflective spheres. The shadow cast by the virtual
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Figure 4.10: Coarse and dense models captured by the application, in the room of a home.
Top: Two views of the textured coarse model. Locations of the RGBD and
fisheye cameras are shown as blue and green frustra, resepectively. Bottom:
dense reconstruction (raycasted).

Figure 4.11: Environment cubemap produced by proposed approach. Rendered using the
coarse and dense models shown in figure 4.10.
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Figure 4.12: Image augmented with virtual sphere, rendered using the environment map
from figure 4.11.

sphere was rendered using differential PRT, as described in section 4.3.8. In the

examples shown, the capture process was performed, and a virtual sphere rendered.

Afterwards, a real sphere of the same dimensions was placed in the same location,

and another image taken. The two images were taken using the same camera pose,

by attaching the camera to a sturdy tripod. The results are shown in figure 4.13.

The two spheres appear quite similar - both the nearby objects and the more

distant components of the scene, such as the ceiling lights, are reflected in the cor-

rect locations on the virtual sphere. Like the real sphere, the virtual sphere also casts

a shadow on the table, and this shadow is reflected on the sphere. There are some

differences, particularly in the shadowed region under the sphere. In the virtual ex-

ample, the shadow is softer. This is partly a consequence of the use of spherical

harmonics (which can only represent low-frequency illumination) and partly a con-

sequence of the low dynamic range of the camera pair. The reflections on the lower

edge of the virtual sphere are also slightly incorrect, causing the thin bright band on

the lower edge of the virtual sphere. This is a consequence of using an environment
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Figure 4.13: Comparison between a virtual reflective sphere and a real chrome sphere. Top:
virtual sphere. Bottom: real sphere.

cubemap, which was rendered from the centre of the sphere.

Additionally, the dense model has not yet fully captured the nearby real scene,

so some parts of the table are missing in the reflection. Finally, the reflections on the

real sphere are slightly blurred, due to the limited dynamic range and focal depth of

the camera, as well as the imperfect surface of the real sphere.

Figure 4.14 shows a challenging situation for this system. In the middle image,

taken as the application started, the purple side of the box, to the right of the sphere

is not reflected. This is because the RGBD camera did not obtain depth values for

this side of the box, and it was not added to the dense reconstruction. The lower
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Figure 4.14: Example scenario where surfaces are not initially visible to the RGBD camera.
Top: Image of scene with real reflective sphere, for comparison. Middle: AR
image with virtual sphere, on first frame of sequence. Bottom: AR image after
moving camera, exposing more of the real scene to the RGBD camera.
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image shows an example after the camera has been moved to the left: the side of the

box facing the sphere is now visible, and is reflected properly. As the dense model

becomes more complete, the environment maps generated become gradually more

accurate, as can be seen in the bottom image.

4.4.3 Baseline Approach

The approach was also compared to a simpler baseline approach, without the coarse

model approach proposed here. This approach renders the fisheye image into the

virtual object’s environment map each frame, after applying a rotation based on the

current fisheye camera pose. The environment map is not cleared after each frame,

allowing it to build up as more of the room is observed. This approach implicitly

assumes that the environment observed by the fisheye camera is distant from the

object, and does not account for the translation between the virtual object and the

camera pair. Example frames from this comparison are shown in figure 4.15.

These frames were taken from the end of a short sequence during which the

camera was moved around the virtual content. Even so, one can see that the en-

vironment map generated by the baseline approach is still very incomplete, due to

the lack of inpainting and dense modelling. The lower half of the cubemap has yet

to be observed, the geometry is incorrect (for example, the window is too large)

and the reflections of the sewing machine, chest and table are not present. An ex-

ample is also shown with the dense reconstruction added. This is an improvement,

but there are still incomplete regions, and the reflections of distant objects are still

geometrically inaccurate.

4.4.4 Timing Analysis

In order to assess the performance characteristics of the approach, the application

was executed, and the tasks involved in rendering a single frame were individually

timed. The input sequence was taken from the rooms shown in figure 4.5. The

virtual object rendered was the teapot from figure 4.1.

The timings shown were obtained on the CPU, however, many components of

the system execute on the GPU. In order to obtain meaningful timings, the GPU
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Figure 4.15: Comparison of the proposed approach with a simpler, baseline approach. The
sequence used is the same as that used in figures 4.10, 4.11 and 4.12. Top
left: AR Image, using baseline approach. Top right: Environment map, using
baseline approach. Bottom left: Closeup of virtual sphere, using baseline
approach. Bottom middle: Closeup of virtual sphere, using baseline approach
with dense reconstruction. Bottom right: Closeup of virtual sphere, using our
approach.

was explicitly synchronised after each of these stages. These timings were taken on

a desktop PC, using an Intel i7-4970 CPU and an Nvidia GTX 1080 GPU.

Table 4.1 contains the results. Note that, for simplicity, the less time-

consuming stages were combined into the “Other” category. The main component

of this is swapping the framebuffers (including vsync). This frame completed in

47.42ms, corresponding to a framerate of 21.1fps.

The brightness estimation stage is the most time-consuming stage. The current

implementation of this involves rendering a difference image, and summing it seri-

ally on the CPU. The performance could be improved significantly by parallelising

or moving to the GPU. It could be further optimised by sparsely sampling, rather

than using all pixels in the coarse model texture. The undistortion and SH projec-

tion stages are also currently implemented serially on the CPU, and could benefit

from a parallel GPU implementation.
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Task Time (ms) Percentage
SLAM Update 3.16 6.7

Undistort fisheye image 8.55 18.0
Upload images to GPU 0.84 1.8
Render occlusion mask 0.61 1.3

Estimate brightness 21.37 45.1
Update coarse model 0.29 0.6

Render cubemap (coarse model) 0.91 1.9
Render cubemap (dense model) 7.46 15.7

Project cubemap to SH 0.38 0.8
Render scene 0.228 0.5

Other 3.61 7.6
Total 47.42 100.0

Table 4.1: Timing breakdown of a typical frame rendered by the application.

Rendering the dense model component of the cubemap is also quite time-

consuming. Whilst rendering the coarse model just involves rendering a textured

mesh, adding the dense reconstruction requires a costly colour raycast of the Infini-

TAM volume. This performance of this stage also depended heavily on the cubemap

resolution; in this example, with 256x256 cubemap faces, it was relatively fast. At

higher resolutions, it consumed over 50% of the total time.

4.5 Conclusion
A system was developed to synthesise environment maps for virtual objects in in-

door mixed reality applications. The system used a single, self-contained device

containing two cameras. The environment maps were used to render reflective vir-

tual objects, and the results were compared qualitatively to real mirror surfaces. The

system was shown to be able to produce detailed environment maps, which could be

used to render virtual objects with high-frequency lighting effects such as reflection

and refraction.

Since the coarse model updating and environment map rendering take place

in real time, the presented approach can handle a number of dynamic changes.

Changes in the surrounding environment such as a video playing on a nearby televi-

sion screen, a change in the weather outside or a person walking past can be handled

correctly. The virtual objects are also capable of changing their position arbitrar-
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ily within the real scene. This opens up new possibilities for more dynamic and

engaging mixed reality content.

In this system, the reconstructions generated were used to generate environ-

ment maps. These are efficient to render, but are not strictly geometrically accurate,

unless the surrounding real scene is sufficiently distant from the virtual object. It

would be possible to use a more advanced approach, such as reflection mapping

with parallax [156] or multi-perspective rendering [57], to provide more realistic

results. Alternatively, the coarse and dense models could be used as input to other

rendering techniques such as ray-tracing.

Environment maps also perform poorly when rendering flat, planar surfaces.

When such a virtual object is to be rendered, it would be preferable to render the

reflection using a camera placed at the reflected (virtual) viewpoint [30]. This could

be added to enable the system to render a wider variety of objects, such as virtual

mirrors.

There are also ways in which the system presented here could be enhanced, to

improve ease of use. For example, by generating the coarse model automatically, or

by using the fisheye camera or a small inertial measurement unit to improve camera

tracking.

The dense model only contains surfaces observed by the RGBD camera. If the

user does not capture enough of the region around the virtual objects, incomplete

parts of the dense model may be visible in the environment maps (see fig. 4.14). A

completion method such as [39] could be added to address this problem.

The approach presented in this chapter focused on using camera tracking and

3D reconstrution to solve the geometric issues involved in generating environment

maps using our hardware setup. However, photometric accuracy was not addressed

in detail. The following chapter explores extending this earlier approach to capture

the full dynamic range of the environment. The aim of this is to reduce artefacts

such as the excessively soft shadow in figure 4.13, and allow for more accurate

rendering of diffuse virtual objects.



Chapter 5

High Dynamic Range Illumination

Capture

5.1 Introduction

As briefly discussed in the conclusion of chapter 4, the quality of the results pro-

duced using the system was limited due to only capturing low dynamic range (LDR)

information about the real scene. Only capturing information within a limited dy-

namic range means that certain details of the real scene cannot be captured. For

example, real light sources are frequently so bright that they cause pixels in a typi-

cal LDR image to be saturated, meaning it is not possible to infer the true intensity

of the light source. Conversely, other parts of the scene may be dark enough to

be below the black point of the image sensor, again meaning that detail cannot be

recovered. The saturation of pixels corresponding to light sources led to problems

such as the unrealistic reflections of real light sources visible in the virtual sphere

rendered in figure 4.13.

In order to improve upon the previous approach, it was adapted to instead cap-

ture richer high dynamic range (HDR) information about the real scene. This would

help to correct these issues, in addition to opening up the possibility of using more

accurate HDR rendering techniques to exploit the real scene information. Further-

more, the previous approach required the two cameras to have fixed auto exposure

and white balance, wheras the newer approach allows them to adapt to better fit the
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lighting conditions in the real scene.

5.2 Approach Overview
The overall approach was structured in a similar way to the earlier approach of chap-

ter 4, but a significant number of modifications were made to convert the system to

both capture HDR colour values and use these values in the rendering process.

Figure 5.1 gives an overview of the approach, indicating which components

use HDR colour values, and which use LDR values.

5.3 Approach Detail
The individual components of the approach will now be described in more detail,

with particular focus on changes made from the earlier approach of chapter 4.

5.3.1 Hardware Setup

The improved HDR version of the system used nearly the same hardware setup as

the earlier system described in chapter 4 (see figure 4.3). The main change was

to replace the earlier camera, a Point Grey Chameleon CM3-U3-13Y3C-CS with

the similar CM3-U3-31S4C-CS model. This new camera was identical in size and

shape, but had a slightly higher image resolution and an exposure bracketing feature,

which was used for the improved approach. The same Lensagon fisheye lens was

fitted to this new camera, which was again attached to the Asus RGBD camera.

Since the camera had been changed, the calibration process detailed in chapter 4

was repeated after fitting the new camera.

Both of the cameras in the system produced typical 8-bit LDR output. In order

to capture HDR colour information, the bracketing technique was used [29], making

use of the camera’s bracketing feature. This feature enabled it to cycle through a

series of 4 different manually selected shutter and gain settings, whilst capturing

frames at normal video framerate.

In contrast to the previous approach, the fisheye camera was also set up to

produce linear output, disabling all features such as gamma correction and white

balance. This created some issues with capturing footage in indoor environments,
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Figure 5.1: System overview flowchart, with LDR content labelled in blue, and HDR con-
tent in green.
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Figure 5.2: Illustration of a suitable set of 3 exposure settings, capable of capturing the full
dynamic range of a real scene.

due to mains freqency flickering of light sources. At 50 or 60 Hz, this flickering

is too fast to be visible to humans, but if captured with a camera at a different

framerate (e.g. 40 Hz), it can create lower frequency alisasing which is very visible.

To mitigate this problem, the framerate of the camera was fixed at mains frequency

(50Hz in the UK). This did not completely solve the problem, as the flicker would

still cause us to estimate slightly inaccurate radiance values, but it greatly reduced

these inaccuracies.

5.3.2 Selecting Fisheye Exposures

As mentioned above, the fisheye camera’s bracketing mode cycled through 4 expo-

sure settings. A method needed to be developed to select these 4 settings to capture

the full intensity range of the real environments. For this reason, a simple adapted

auto-exposure approach was implemented.

When designing the approach, a number of sample images were taken in a

few typical target environments, in which the system might be used (i.e. indoor

environments). After measuring the radiance difference between the darkest and

brightest parts of these images, it was estimated that 3 exposures would be sufficient

to capture the brightest (e.g. windows on sunny days) and darkest (e.g. areas under

tables) parts of the scenes, whilst still leaving an overlap between the exposures.

This overlap would ensure that there would not be areas which fall between two

exposure ranges, meaning their radiance cannot be determined. Figure 5.2 shows an

illustration of how 3 suitably selected exposure settings could capture the dynamic

range present in a real scene.

For this reason, the fisheye camera’s four exposure settings were set in a low,
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medium, high, medium order (LMHM). This meant that every 4 frame cycle would

capture the full exposure range of the scene. The extra medium exposure at the

end of the cycle was selected as typically the medium exposure captures the largest

number of valid pixels (i.e. not saturated or zero).

A simple algorithm was developed to dynamically select these three exposure

settings. Since the camera was configured to produce linear output, the only two

factors which could be modified were exposure time and gain. Furthermore, fix-

ing the framerate at mains frequency f = 50Hz meant that the exposure time was

bounded above by 1
f = 0.02s1. In the following, we define exposure as E := gt,

where g is gain and t is exposure time. Our camera gave gain in decibels gd , so this

was converted to a linear scaling factor g = 10
gd
20 .

The medium exposure was set to a fixed value, which we found to be rea-

sonable for the scenes where the approach was used. The high and low exposure

settings were chosen based upon the number of saturated and zero pixels in the

most recently captured images. If the number of saturated pixels in the low expo-

sure image exceeded a threshold, the exposure was lowered by one stop. If there

were no saturated pixels at all, the exposure was increased by one stop. Similarly,

if the number of zero pixels in the high exposure image exceeded a threshold, the

exposure was increased, and if there were no zero pixels it was decreased (again a

stop at a time). The high and low exposures were always at least one stop higher or

lower than the medium exposure, respectively.

The number of saturated and black pixels were counted on the GPU, using an

efficient reduction which meant that this step did not consume a significant propor-

tion of the computation time. In future, if this step were to be optimised, it would

probably be sufficient to just sample a subset of the pixels in the image and estimate

the proportion of saturated or black pixels, but this was not explored here.

These criteria were used to choose appropriate exposure values E. This still

leaves the issue of selecting appropriate gain and exposure time settings g, t so

1Mains frequency varies between different countries (and between eastern and western Japan).
If this approach were to be used in an area where mains frequency was 60Hz, it would be necessary
to fix the framerate to 60Hz and limit the exposure time to 1

60 s.
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that E = gt. Here, g and t were selected to maximise exposure time t, subject to the

constraint that t < 1
f = 0.02s. This helped to avoid the issue of high gain amplifying

sensor noise. In principle, setting t too high could result in blur when the camera or

scene objects move. This was not an issue in this case as the very short focal length

of the fisheye lens meant there was no noticeable blur at the maximum exposure

time of 0.02s.

In summary, the algorithm worked as follows:

1. If there are too many saturated pixels in the L exposure, decrease the expo-

sure.

2. If there are no saturated pixels in the L exposure, increase the exposure.

3. If there are too many zero-valued pixels in the H exposure, increase the expo-

sure.

4. If there are no zero-valued pixels in the H exposure, decrease the exposure.

5. Maintain a separation of at least one stop between the exposure settings.

6. Always select the highest exposure time and lowest gain possible for a given

exposure value.

5.3.3 Convering Input Images to HDR

Thanks to the linear output of the camera, we are able to convert the input fish-

eye pixel values to HDR values proportional to radiance by simply dividing by the

exposure E, defined in the previous section. This does make the assumption that

there is no variation in response to incoming radiance over the fisheye image. This

assumption might be incorrect for a variety of reasons, including variation between

the pixels in the sensor and lens artefacts such as vignetting. Since we used a wide-

angle lens and set the aperture to be narrow, we were able to remove much of the

vignetting by cropping a small part of the boundary of the image circle.

As noted above, the HDR images only contain values proportional to the true

radiance; that is, vi = KLi, where Li is the true radiance at the pixel and K is an
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unknown constant. Note that whilst K is unknown, it is constant across each image

and between all captured images. The true value of K depends on a number of

factors including the focal length, aperture and transmissivity of the lens and the

response of the sensor. For this application it is sufficient to know vi as the final

output will be converted back to LDR for display in any case.

Converting the RGBD images to HDR was more challenging. In contrast to

the previous approach, the RGBD camera was set up with both auto exposure and

auto white balance enabled. This enabled the main images used to create the aug-

mented output to adapt to the lighting conditions and remain aesthetically pleasing

and easy to see. Since the RGBD camera used here did not supply exposure infor-

mation when these features were enabled, the exposure was inferred indirectly by

comparing pixels in the region of overlap between the two cameras. This was then

used to store corrected colours in the surfel model, and to correctly add augmented

content to the image.

The model we fit is the same as that used by Zhang et al. [158] and Rohmer

et al. [117]. This consists of inverse gamma correction using a constant γ = 2.2,

followed by linearly multiplying each channel of the image by a separate constant

e := (er,eg,eb), jointly modelling exposure and white balance. Given a set of pixel

values from matching locations in the inverse gamma corrected RGBD image li and

HDR converted fisheye image fi, the exposure/white balance factor e is estimated

as e≈ ∑ fi
∑ li

.

When finding the matching pixels li and fi, only the medium fisheye exposure

is used, as the other exposures typically contain many saturated or zero-valued pix-

els. Matches are found using the following procedure at starting pixel in the RGBD

image.

• If a valid depth value is available here and the colour is not saturated or zero-

valued, reverse-project to the corresponding 3D point.

• Project this 3D point into the fisheye image. If it projects to a valid image

location, sample the fisheye image.
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Figure 5.3: Sample locations used to estimate AE/WB of RGBD image, visualised as red
dots. Left: RGBD colour image. Right: Fisheye image (medium exposure).
Here, the red dots correspond to the locations of the successfully reprojected
samples only - those that correspond to locations with invalid depths (for ex-
ample) are not shown.

• If the fisheye sample is also not saturated or zero-valued, add the fisheye and

RGBD colour samples to a list.

In practice, starting from a small proportion of locations spaced out over the

top of the RGBD image is sufficient to obtain a reasonable estimate of e in most

cases. Figure 5.3 shows a visualisation of the sampling pattern used in the final

implementation. In situations where very few matches were successfully found, the

new estimate for e is unlikely to be accurate and the one from the previous frame

is used instead. Since the fisheye and RGBD images were captured at different

times, an estimated pose for the fisheye camera is interpolated using the current

and previous RGBD poses. The process of finding and summing the matches is

implemented mostly in a compute shader on the GPU, providing some improvement

in performance.

5.3.4 Updating the Coarse Model

The coarse model updating process in this approach is similar to that described in

chapter 4, but some adaptations had to be made when moving from LDR to HDR

values. A naive approach to updating the coarse model might involve simply updat-

ing all texels with the latest HDR-converted fisheye image every frame. However,

this is likely to give inaccurate and noisy results. The inaccuracy stems from using

saturated or zero-valued pixels, and the noise results from using values from the low
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exposure image when this is not appropriate.

Instead, two different approaches were implemented to update the coarse

model. These balanced the need for timely updating with accuracy and avoiding

noise. The approaches each had different strengths and weaknesses which are ex-

plored in more detail later in the chapter.

The first approach (referred to here as the “best score” approach) updated ob-

served texels using the “best” recorded colour during each 4-frame cycle. This

approach was similar to the techinque proposed by [29] for still images. Here,

“best” is defined using a simple score function, which favours colour values from

the middle of the exposure range of each image. This function is defined as the hat

function:

S(x) =

x x ∈ [0,0.5)

1− x x ∈ [0.5,1]
(5.1)

A double-buffering-style approach using two separate coarse model textures

was used to avoid showing partially updated coarse model textures to the user. The

best score so far for each pixel in the current cycle was stored in another texture of

the same size, and the updating process was carried out on the GPU using a compute

shader.

The best score approach produced good quality results for fairly static scenes,

but resulted in the coarse model updating at a lower framerate and caused occasional

ghosting artefacts when the real environment changed during a 4-frame cycle.

The second approach (the “Kalman filter” approach) updated all observed tex-

els every frame, but carried out a weighted update, using a simplified Kalman filter

approach. This had the effect of carrying out a smoothed update, where the update

considered the expected noise in the new supplied value.

The Kalman filter used here was applied to each channel of each pixel in the

image. Two colour textures were used; one to store the current colour estimate,

and the other to store the corresponding error covariance. The update rules for the
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implemented Kalman filter are given below. In the following, G is the Kalman gain,

C is the current covariance, S and P are the sample and process covariance, V is

the estimated radiance value and I is the image sample (converted to HDR). The

subscripts n and n+1 indicate the fisheye frame number. All values are 3-vectors.

Gn+1 =
Cn +P

Cn +Sn+1
(5.2)

Vn+1 =Vn +Gn+1(In+1−Vn) (5.3)

Cn+1 = (1−Gn+1)Cn (5.4)

The process noise P was set to a constant value. The sample noise S was

estimated using a simple sensor noise model. In practice, the process noise P was

chosen manually, and served as a way to control the behaviour of the updating

process, with smaller values of P resulting in a smoother output at the cost of slower

response to changes in lighting.

The Kalman filter approach produced good results in many cases, but had the

effect of smoothing out dramatic lighting changes. For example, when a real light

was switched off, in the coarse model it would instead gradually dim over a period

of about half a second. Although increasing P could address this problem to an

extent, if P was set too high this would result in flickering, noisy output.

5.3.5 Updating the Dense Model

The dense model was reconstructed and updated in a very similar way to that used in

the previous approach, making use of the InfiniTAM dense RGBD SLAM system.

In this instance, a newer version of the library was used (InfiniTAM v3), as this had

now become available.

The InfiniTAM library was originally capable of capturing reconstructions with

low dynamic range colour values, stored as 8-bit unsigned values. For this reason,

we modified the library to instead store colours as 32-bit floating point values. This

necessitated changes to the model representation, updating, rendering and tracking

components of the system.
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It should be noted that whilst InfiniTAM v3 is capable of both volumetric and

surfel-based reconstructions, the examples shown here all use the volumetric repre-

sentation. This was chosen to allow for easier comparison with the previous (LDR)

approach, however the presented HDR illumination method is capable of using ei-

ther representation.

5.3.6 Rendering the Virtual Content

Whilst the overall rendering approach was similar to that described in chapter 4,

adaptations were made to produce HDR output. The overall rendering procedure

began by first rendering an environment map from the virtual object location. This

environment map was then projected into SH lighting coefficients, and the lighting

coefficients and environment map were used to render the added virtual content.

This rendered content and the input RGBD colour image were used to produce the

final MR output.

The environment map was rendered in a similar way to chapter 4, by first

rendering the coarse model and then rendering the dense reconstruction on top.

In this approach, however, the environment map stored HDR values in a 32-bit

floating-point cubemap.

The virtual content was then rendered into a HDR texture, which again stored

32-bit floating point colours, which could be positive or negative in value. In addi-

tion to rendering the virtual objects themselves, differential PRT was also used to

render their influence on the real environment (e.g. shadows cast onto real surfaces

under the virtual object). Each pixel in the HDR texture was labelled as being in

one of three categories: real, virtual or sum. These indicated how the pixel should

be composited into the final MR image.

Pixels in the “virtual” category were generally located on virtual objects, and

would completely replace the captured image at that pixel. At pixels in the “real”

category, the value from the captured real image was used. At pixels in the “sum”

category, the real and virtual pixels were added together to produce the final result.

This category was assigned to pixels where a virtual object affected the real envi-

ronment, for example where it shadowed or produced a caustic on a real surface.
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Note that since the virtual object texture could store positive or negative values, it

was possible to increase or decrease the real observed value.

A compute shader was used to composite the virtual content HDR texture and

HDR-converted real RGBD image. This produced an MR image in the HDR colour

space. Before displaying the image to the user, it was converted back to LDR, by

applying the auto exposure, white balance and gamma of the RGBD colour camera.

In this manner, the image appeared to have been observed by the real camera.

5.4 Results

Figure 5.4 shows examples of the technique being used to render a variety of virtual

objects in two different real scenes.

Perhaps the main advantage of this HDR method over the earlier LDR ap-

proach of the previous chapter in practice is removing the need for manual adjust-

ment. In order to capture the examples shown in chapter 4, it was necessary to

tweak the white balance and auto exposure of the fisheye camera to produce similar

output to the RGBD camera. These settings then had to be locked on both cameras,

in order to ensure that they did not deviate from one another. Finally, a manu-

ally chosen scaling factor had to be applied to the SH lighting in order to produce

realistic-looking results. With the new HDR approach, none of this is necessary. As

an added advantage, the exposure and white balance of the main camera no longer

have to be fixed, meaning they can adjust to produce more pleasing output images.

The shadows produced by the new approach were generally slightly improved

over the LDR approach of chapter 4, but still often appeared too soft. This was

likely a consequence of using SH lighting - after projection to the relatively small

number of SH coefficients used here, the light sources were somewhat blurred, re-

sulting in softer lighting. In order to take full advantage of the new HDR lighting

model captured by this approach, it might be necessary to use a different render-

ing technique capable of producing harder shadows. Ray-tracing could provide one

option, but reasonable results might also be obtained by fitting a number of virtual

point lights to the coarse model and using shadow mapping.
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Figure 5.4: Examples of MR frames rendered using the HDR approach, containing a vari-
ety of different virtual objects and real scenes. Top left: virtual wooden artist’s
mannequin, with diffuse material. Top right: virtual teapot, with mirror reflec-
tive surface. Bottom left: virtual bunny, wtih diffuse material. Bottom right:
virtual dragon, with slightly rough blue metallic material.

5.4.1 Comparison with Physical Light Probe

The system was compared against a real physical light probe (a chrome sphere)

using the same approach as outlined in section 4.4.2. The results are shown in

figure 5.5.

There are some slight differences between the two images that do not result

from the approach itself - in particular, the framing of the image is slightly different,

and the exposure of the camera has also slightly changed. Although the author

attempted to capture images which were as similar as possible by making use of a

quick-release tripod, the position of the tripod has changed slightly between the two

images.

There are some geometric differences between the reflections in the two images

- the reflection of the table does not extend quite as far in the right hand image,

which is due to this part of the table having not yet been fully reconstructed. Objects
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Figure 5.5: Comparison of a virtual reflective sphere rendered using the HDR approach
detailed in this chapter with a real chrome sphere of the same size. Above:
Real sphere. Below: Output of approach detailed in this chapter.

very near the sphere, such as the pens on the table and monitor in the background,

have slightly inaccurate reflections. Similarly to the earlier approach of chapter 4,

this is the result of the use of environment maps to render the reflections, and these

inaccuracies could potentially be removed by using ray-tracing against the dense

model instead.

The size and position of the ceiling light reflections is very similar to the real

sphere. There is a slight difference in the brightness of the ceiling in the reflection,

which could be a consequence of the estimated AE and WB settings of the forward

facing camera being slightly incorrect.

The reflection of the wall behind the camera in the centre of the virtual sphere

is different to that in the real sphere, as a consequence of this area being inpainted.

After more time moving the real camera around and observing more of the real

environment, this area would be filled with real observations, resulting in more

accurate reflections.
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5.4.2 Coarse Model Updating Approaches

The two methods for updating the coarse model outlined in section 5.3.4 were com-

pared to one another. The examples shown here were produced by recording footage

first, and then supplying this to the application twice - once using the best-score up-

dating approach, and once using the Kalman filter-based approach.

Both methods produced good results where the real scene was static, and the

tracking of the camera pair was accurate. In situations where the real scene changed,

or incorrect tracking caused data to be integrated into incorrect parts of the coarse

model, however, both methods exhibited artefacts. The nature of these artefacts was

different with each approach.

The best-score approach only updated the coarse model once in each four-

frame cycle. Since our upward-facing fisheye camera had a framerate of 50fps, this

resulted in an effective update rate of 12.5Hz for the coarse model texture. This was

significantly lower than the 30Hz framerate of the RGBD camera used to display the

AR input, and this discrepancy was noticeable in certain situations. For example,

if a person walking through the room were visible in the reflection from a virtual

object, their motion would appear “jerky” due to the low update rate.

The best-score approach also implicitly assumes that there is no significant

change to the real environment during each four-frame LMHM bracket. That is, it

is assumed that each of the four images samples the same real lighting environment

(albeit with different exposure and gain settings). This is not the case where there

is motion in the real environment, however. Figure 5.6 shows an example of the

output which can result from this problem. Here, a person stands in front of a

window, holding both arms out in a T-pose and moving them up and down. The arms

are moving rapidly, so their position is different in each of the bracketed frames.

Consequently, the arms are not properly represented in the coarse model texture,

and there are visible artefacts at the different locations of the arms in the input

images.

The Kalman filter-based approach suffered from a different kind of artefact in

the presence of rapid motion. Using this approach, the coarse model was updated
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Figure 5.6: Example of the output of the best-score approach where rapid movement is
present in the real scene. Top: bracketed fisheye frames used to update coarse
model (low, medium and high exposures). Bottom: close-up of person in coarse
model.

every fisheye frame (i.e. at 50Hz), meaning that this approach did not suffer from

“jerky” motion. However, since each pixel is more gradually replaced with new

observations, rapid motion tends to lead to artefacts similar to motion blur in the

output. Figure 5.7 shows an example using the same input footage as figure 5.6,

but now using the Kalman updating method. Another consequence of the Kalman

filter-based approach is that the model updates more slowly where there is a large

change in radiance. This causes more motion blur in this example, where a person

wearing dark clothing is moving in front of a bright window. Furthermore, since the

filter is applied independently to each colour channel, the motion blur can exhibit

coloured artefacts, such as the yellowish motion blur under the person’s left arm in

figure 5.7.

An advantage of the Kalman approach is that the parameters of the filter can

be adjusted to tune the balance between updating more rapidly (and hence avoiding

motion blur artefacts) and updating more slowly, which helps to minimise temporal
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Figure 5.7: Example of the output of the Kalman approach where rapid movement is
present in the real scene. Top: bracketed fisheye frames used to update coarse
model (low, medium and high exposures). Bottom: close-up of person in coarse
model.

noise in the output. The optimal choice of parameters might be different in different

scenarios, depending upon how rapidly the real environment might be expected

to change. In this example, captured at dusk, the real environment was fairly dim,

resulting in large amounts of noise in the input fisheye images. The Kalman filtering

approach helped to remove some of this noise from the output - this is most visible

on the wall to the left of the window.

To summarise, the best-score approach produced reasonable results but suf-

fered from unnatural-looking artefacts and a “jerky” response to rapid motion in the

real scene. The Kalman approach did not suffer from “jerky” motion, but instead

tended to exhibit artefacts appearing similar to motion blur. It was also capable

of removing some of the temporal noise present in images captured in low-light

conditions.

On the whole, the authors considered the Kalman approach more successful,

and this is the method used in the other examples shown in this section. The choice
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between the two approaches is somewhat subjective, however, and there may be

situations in which the best-score approach might be considered to provide more

pleasing results.

5.4.3 Comparison with LDR Approach

The revised, HDR approach was compared to the earlier LDR approach of chapter 4.

In the example shown, separate LDR and HDR sequences were recorded. This was

necessary, as the LDR and HDR approaches required different inputs. Specifically,

the LDR approach required LDR video from the RGBD and fisheye cameras, and

the HDR approach required bracketed HDR video from the fisheye camera, along

with exposure information for each frame.

In order to provide a fair comparison, in each of the examples both sequences

were filmed one after the other in the same location, without changing the geometry

or lighting conditions of the real environment. At the end of each sequence, the

camera pair was placed on a tripod, which was fixed in place. This ensured that the

comparison frames were captured from the same camera location.

It is important to note that when recording the examples for the LDR approach,

extra care needed to be taken to manually adjust the white balance and exposure of

the RGBD and fisheye cameras to be similar, and to manually tweak the shadow

intensity for the SH lighting.

Using the new HDR approach has given some small improvements to the out-

put - most noticeably, the reflections of the ceiling lights are more accurate - in the

LDR example, differences between the response of the fisheye and RGBD cameras

have caused the lights to appear too dim in the reflection. In the HDR approach they

appear brighter and larger, and are more similar to the reflections in the real sphere

(see figure 5.5.

It was also hoped that moving to HDR, and capturing the true brightness of

the light sources might result in sharper, more realistic shadows. Unfortunately, this

does not seem to be the case here - in the HDR example, the shadow is still too soft.

As mentioned in section 5.4, this is likely a consequence of the rendering method

used (PRT, using 5 bands of SH) being unable to make full use of the information
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Figure 5.8: Comparison of a virtual reflective sphere rendered using the LDR and HDR
approaches detailed in chapters 4 and 5. Above: Virtual sphere, rendered us-
ing LDR approach of chapter 4. Below: Virtual sphere, rendered using HDR
approach of chapter 5.

available. In future work, it would be interesting to explore using the coarse and

dense models as input to other rendering approaches.

Again, it should be noted that obtaining the shadow shown here using the LDR

approach involved some manual adjustment, wheras the HDR approach was able to

produce a plausible shadow without any intervention.

5.5 Conclusion

In this chapter, an improved version of the MR illumination capture system of chap-

ter 4 was introduced. This system added the ability to capture and make use of HDR

lighting information from the real environment.

Successfully capturing and using HDR information required a number of sig-

nificant changes to the earlier approach. These included changes to the coarse model

and the method for updating it, in addition to changes to the dense model, rendering

and compositing approaches. It was also necessary to find a way to estimate the

RGBD camera’s exposure and white balance settings.
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The revised approach brought a number of benefits. The HDR information

allowed for more accurate rendering, particularly of specular highlights on virtual

objects. It also allowed the RGBD camera to enable auto exposure, capturing more

pleasing real images to input into the MR result. It also removed the need for some

manual adjustments to auto exposure and white balance that were necessary in the

LDR version of the approach.

The new approach was tested in a variety of real environments, rendering a

number of different virtual objects with diffuse and specular material properties.

The results were of similar quality, with slight improvements in the quality of shad-

ows cast by virtual objects, and better reflections of bright light sources. Removing

the need for manual adjustments made getting good results using the application

more straightforward.

Two different methods for updating the coarse model using bracketed expo-

sures from the fisheye camera were developed and tested. In static scenes, the

Kalman filter-based approach could reduce some of the temporal noise present in

the input. Where there was motion in the real scene, the best-score approach re-

sponded more slowly and produced unnatural-looking artefacts. The Kalman filter-

based approch responded more quickly, but suffered from artefacts more similar

to motion blur. On the whole, the Kalman filter approach was considered more

successful.

The approach improved on the earlier method presented in chapter 4 in a num-

ber of ways, but still suffered from some of its shortcomings. In particular, prior

information about the real environment was still required, in the form of a floor-

plan, ceiling height and initial camera pose. There were also still restrictions on the

possible shape of the real room, which was required to be a right prism due to the

coarse model occlusion-handling method (see section 4.3.4). For this reason, in the

final chapter of this thesis an alternative approach was explored, which removes the

need for this prior information.



Chapter 6

Instant Illumination Capture

The content of this chapter comes from the following paper, which appeared in

VRST 2018:

WALTON, D.R., STEED, A. Dynamic Environment Capture for Mixed Real-

ity. In 24th ACM Symposium on Virtual Reality Software and Technology, VRST

2018 (2018)

6.1 Introduction
The systems presented in chapters 4 and 5 were capable of producing realistic re-

sults in the correct setting. However, they required some prior information about

the scene, and placed some restrictions upon its geometry. Specifically, the system

can only be used in an indoor setting, inside a room which is a right prism, and the

geometry of this room must be known. In practice, this limits the range of appli-

cations for the system, which motivated the development of a newer, more general

approach.

The new approach focused on removing these requirements, and producing a

system capable of capturing illumination information in any environment, without

the need for prior knowledge or real scene geometry. Focus was also placed on pro-

ducing an approach which was more responsive to changes in the real environment.

6.1.1 System Overview

Similarly to the approaches discussed in chapters 4 and 5, a dense RGBD SLAM

system was used to capture detailed real geometric information about the environ-
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ment. Whilst the earlier approaches used the InfiniTAM volumetric approach, the

new approach instead used a surfel-based SLAM system implemented by the au-

thors. This system was based upon the system detailed by Keller et al. [74], but a

number of significant modifications were made to better adapt it for use in a mixed

reality system.

Firstly, HDR colour values were captured at each surfel. Similarly to the ap-

proach from chapter 5, the forward-facing camera has auto exposure enabled, and

its exposure and white balance are inferred using the fisheye camera. The colours

are converted to a linear colour space and stored at each surfel. A number of mod-

ifications were also made to the manner in which the surfels are updated with new

RGBD data, enabling the surfel model to capture changes in the real environment

more quickly.

Secondly, the fisheye camera is also used to update the colour values for surfels

visible to it. This increases the number of surfels updated each frame, meaning the

model updates to reflect changes in real-world lighting more quickly.

The earlier mixed reality approaches required rough geometry for the real room

to be known a priori, in order to create a coarse model to be updated using data

captured by the fisheye camera. In the new approach, this requirement is removed.

Instead, the data captured by the fisheye camera is used to create HDR environment

maps, which are intended to store the more distant real environment not captured

by the RGBD reconstruction.

The main disadvantage of an environment map, as compared to the previous

coarse model, is that the environment map can only capture incoming light at a

single location in space. Consequently, if the user moves a significant distance from

their starting location whilst using the application, the environment map will no

longer be a reasonable representation of the lighting environment around them.

For this reason, the approach captures multiple environment maps in the form

of cubemaps, each with an associated 3D location. These cubemap and 3D point

pairs are referred to here as environment map keyframes. The 3D location indicates

thefisheye camera position at the time the keyframe was created. When the camera
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pair moves too far away from the location of the current environment map keyframe,

a new one is created. Earlier keyframes are retained, and are used again if the

camera returns to their location.

As with the earlier approaches, the environment map keyframes are inpainted

to produce a plausible complete cubemap. Using the combination of an environment

map keyframe and the dense model, the lighting environment around a virtual object

can be estimated, and used to render it so that it blends convincingly into the real

environment around it.

The new approach maintains the advantages of the previous approaches in

chapters 4 and 5 - it is capable of generating a rough but complete model for a real

environment very quickly, and then gradually improving the geometry over time, as

more of the room is observed and reconstructed by the RGBD camera. It adds the

ability to work in unprepared environments, widening the range of applications in

which it can be used. The environment map model also opens up the possibility of

use in unbounded outdoor environments, rather than enclosed rooms.

6.2 Approach Detail
This section describes each component of the improved approach in further detail.

6.2.1 Hardware

The hardware used for the new approach was identical to that used in chapter 5; a

forward-facing Asus Xtion Pro RGBD camera, joined to an upward-facing camera

Point Grey CM3-U3-31S4C-CS camera, fitted with a Lensagon CF5M1414 fisheye

lens. The calibration was used again, and the same approach was used to undistort

the fisheye images to a simpler camera model (see section 4.2.2 for more detail on

the calibration).

6.2.2 HDR Surfel-based Reconstruction

As mentioned in section 6.1.1, the new approach used a surfel-based dense SLAM

approach based on that of Keller et al. [74] to capture geometry near the virtual

content and provide tracking. The newly adapted dense SLAM system, added the

ability to capture HDR colours. The parts common to the SLAM system used here
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Figure 6.1: Flowchart giving an overview of the new approach
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and the earlier system of [74] will briefly be outlined, and then the specific modifi-

cations made to capture HDR colour values will be detailed.

The model of the environment consisted of a list of surfels, each consisting of

a point, normal and radius, along with a confidence counter and HDR colour value.

The surfel list is initially empty. When a new frame is captured by the RGBD

camera, it is projected to a number of surfels, each corresponding to a pixel in the

depth map. At the first frame, these new surfels are simply added to the list.

On subsequent frames, the pose of the RGBD camera relative to the model

is first determined using the camera tracking approach detailed in section 6.2.5.

Following the tracking stage, the frame is again projected to a new set of surfels.

Each new surfel can then either be added to the list, or used to update an existing

surfel.

If a new surfel corresponds to an existing surfel (i.e. is close in 3D space, has

a similar normal and radius) it is used to update the existing surfel. The update

consists of taking a weighted average of the surfel’s properties based on the exist-

ing surfel’s confidence. This confidence value is incremented on each successful

update. If the new surfel does not correspond to any existing surfels, it is added to

the list of surfels.

Due to sensor noise, for example, “bad” surfels may be added via this process,

that do not correspond to geometry in the real scene. For this reason, surfels below

a confidence threshold are considered unstable, and not used for tracking. If a surfel

remains unstable for a period of time, it is deleted from the list.

In order to quickly determine which new surfels correspond to existing ones,

an index map is used. This is an image containing the existing surfels, rendered

from the camera’s viewpoint. Each is rendered into a 32-bit integer texture as a

single pixel-width point, with the colour set to be the index of the surfel in the main

surfel list. This map is consulted when updating the existing surfels, to quickly find

possible correspondences. The index map is rendered at 4x the depth map resolution

on each axis (i.e. 16x the total number of pixels) and each new surfel checks the

corresponding 4x4 window for up to 16 possible existing surfels to find matches.
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Before projecting a new set of surfels corresponding to the current frame, the

observed LDR colour values are first converted to HDR values in a linear colour

space. This was achieved in the same way as described in chapter 5. Briefly, inverse

gamma correction is applied, and then the auto exposure and white balance are

estimated by comparing to the images captured by the fisheye camera.

When converting the image to HDR, a flag is also stored for each input pixel,

indicating if it was saturated or below the blackpoint in the input LDR image. This

information is used to assign a lower initial confidence to these surfels, so their

colours are replaced as quickly as possible with more accurate estimates.

6.2.3 Updating Surfel Colours

The new approach also includes a method for the fisheye camera to update the

colours of surfels in the dense model of the environment. This allows their true

intensity to be determined, in the event that they were saturated/black in the RGBD

colour image used to create them initially, and also allows the intensity estimate to

be refined. It also allows them to be updated in the event that the real lighting in the

scene changes. In this way, the extra cameras extend the field of view, meaning that

more of the dense model’s colours can be updated each frame.

First, the pose of the camera must be determined. This is inferred from the pose

of the RGBD camera (obtained through the tracking approach described in section

6.2.5) and the relative pose of the two cameras (obtained via camera calibration).

Generally, the image will not have been captured at the same time as the most

recent RGBD frame, so a simple linear interpolation is performed using the two

most recent RGBD poses, to estimate the RGBD pose at the present time more

accurately.

The updating uses an index map rendered using this camera pose, in a similar

way to the RGBD updating process. When searching for possible matches in the

4x4 window, the match closest to the camera is selected, providing it satisfies a

number of criteria:

1. The matched surfel lies in front of the camera, and is at least a minimum

distance away (10cm).
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2. The matched surfel is not too distant from the camera (over 10m).

3. The normal of the matched surfel points towards the camera (i.e. c.n > 0,

where c is the vector from the camera to the surfel and n is the surfel normal).

4. The confidence of the surfel is above a threshold (5).

5. The colour of the matched surfel is sufficiently similar to that of the new

surfel.

The first and third criteria make sure the match is actually visible to the camera.

The second ensures that the surfel is not so far away that the resolution of the camera

image will be insufficient to determine its colour. The final one is imposed because

the location and normal of new surfels tends to vary a lot in the first few frames,

meaning they may be matched incorrectly.

This updating process can also be applied when the camera used is omnidi-

rectional, as in the case of the fisheye camera used in our prototype. In this case,

an index cubemap is rendered instead of 2D index map image. The rest of the up-

dating process is similar - for each 4x4 set of indices in the cubemap, a matching

surfel is potentially found, and if so, its colour is updated using a sample from the

omnidirectional image.

6.2.4 Environment Map Keyframes

In addition to the surfel-based component of the reconstruction, environment map

keyframes were also captured. These each consisted of a cubemap and 3D location,

as briefly mentioned in section 6.1.1. Similarly to the coarse model used in the

earlier approaches, these were intended to capture details of the real environment

not present in the dense model, either because they have not yet been observed, or

they are too distant for their depths to be inferred by the RGBD camera.

The first keyframe is created at the initial location of the camera system. Its

colours are initialised using the output of the fisheye camera, and then it is inpainted

using an efficient GPU-based push-pull approach, slightly adapted from that in [47,

92]. This newer inpainting approach was significantly more efficient than that used

in the previous approaches, enabling it to be performed on every frame.
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The inpainting approach uses the labels assigned to each pixel, indicating if

they have been observed by the fisheye camera. Those pixels that have been ob-

served are not modified, and those that have not are replaced with inpainted data.

This inpainting approach takes place in two stages - the first “push” stage being

similar to mipmap generation. Working from the finest level of the mipmap to the

coarsest, each pixel is replaced with the average value of all valid parent pixels (i.e.

all those which have been directly observed by the fisheye camera). In the second

“pull” stage, working from coarsest to finest mipmap level, each pixel which has

yet to be observed or inpainted is replaced with the colour stored in its parent pixel.

This procedure is carried out on each face of the cubemap. There is a poten-

tial issue, in that some of the faces of the mipmap may contain no observed pixels.

Typically, for example, on the first frame the fisheye camera faces upwards, mean-

ing that the bottom face of the cubemap will not yet have been observed. For this

reason, a check is added to ensure that each face has at least one valid pixel before

inpainting. If it does not, its neighbouring faces are inpainted first, and a one-pixel

width boundary region is copied to allow the face to be inpainted successfully. Fig-

ure 6.2 shows an example of the result of this inpainting process.

This inpainting is repeated each time the keyframe is updated, to ensure the

inpainted regions are consistent with the rest of the keyframe. The alpha channel

of the texture stores a covariance value, which is used when updating the keyframe.

Pixels which have been inpainted and not yet directly observed have the alpha value

set to zero.

Keyframes are updated whenever a new colour fisheye image is captured. Each

texel of the cubemap is projected into the new image, and it is sampled and used to

update the colour. When projecting, only the rotational component of the camera’s

pose is used (i.e. the points in the map are considered to be at infinity).

The update is carried out using the Kalman filter based update detailed in chap-

ter 5.3.4. The Kalman filter was slightly simplified for this new approach; instead of

using separate covariance values for each channel, only one covariance value was

used for each pixel. This was stored in the alpha channel of the cubemap, meaning
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Figure 6.2: Environment map keyframes, before and after inpainting process. Top left:
Environment map keyframe before inpainting. Black pixels in the lower half
of the cubemap have not yet been observed. Some black pixels in the upper
area of the cubemap were saturated or zero in all the fisheye images. Top right:
Same environment map keyframe after inpainting. Bottom: Image taken from
RGBD camera at the same time, for comparison.

that only one texture was required per environment map keyframe. This reduced the

required GPU memory, which was important as this new approach could potentially

generate several environment map keyframes. This simplification was not found to

have a noticeable impact on the quality of the results.

If the pixel to be updated is being observed for the first time (i.e. has an alpha

value of zero), however, it is simply replaced with the observed colour. If the ob-

served colour is saturated or black, no update is carried out, as the true radiance at

this pixel is unknown.

A new keyframe is generated when the translational component of the camera

system’s pose exceeds a threshold. This helps to prevent the keyframe becoming

obsolete when the distant environment assumption is violated. New keyframes are

initialised with the colours from the previous keyframe, and the alpha channel set

to zero (indicating the pixels have not yet been observed). Previous keyframes are
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retained, and if the camera moves back within range of an existing keyframe, that

keyframe will subsequently be updated and used in rendering.

When new surfels are added, the environment keyframe can be consulted to

obtain HDR colours for them, where available. This is done when a newly added

surfel is either saturated or below the black point in the RGBD image, meaning

its intensity would otherwise be unknown. The surfel is projected back into the

environment map keyframe to find a colour, and this colour is used if the alpha

channel is non-zero (i.e. this part of the keyframe has been observed by a camera,

and was not inpainted or propagated from a previous keyframe).

6.2.5 Camera Tracking

Similar to other dense RGBD SLAM approaches, the location of the RGBD camera

is tracked via an iterative dense frame-to-model alignment process as each new

frame is observed. The camera tracking implementation used in this implementation

made use of the colour and depth tracking approach of Kerl et al. [75], adapted to

make use of the HDR information stored in the surfels.

Specifically, the RGBD alignment process developed by [75, 76, 131] was

used. Given two pairs of intensity and depth images, this finds the rigid trans-

form which best aligns them, in the sense that it minimises the colour and intensity

differences.

This was used as part of a similar overall frame-to-model tracking approach to

earlier dense RGBD reconstruction methods including Kinect Fusion [106]. When

each new pair of colour and depth images is captured by the RGBD camera, the cur-

rent surfel model was rendered from the previous RGBD camera pose. The newly

observed frames were then aligned to these rendered frames. This provided an es-

timated transform for the current frame, which was composed with the previous

camera pose estimate to provide an updated camera pose.

The HDR information available in the model was used to improve the tracking

performance. When rendering the colour frame, the current estimated exposure

and white balance settings of the RGBD colour camera were applied. These were

determined as outlined in section 6.2.2. This ensured that the effective exposure
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and white balance in the real and rendered colour images was the same. The colour

images are then converted to grayscale intensity values, and the intensity and depth

images aligned using the approach of Kerl et al. to provide the final transform.

An alternative approach would have involved converting the input RGBD im-

age to HDR, and aligning this to a HDR rendering of the dense model. This pos-

sibility was explored during development of the approach, but did not perform as

well in cases where the input image contained saturated or zero-value pixels. If

LDR images are aligned, these pixels will be saturated or zero in both the real and

rendered images, and the information in these pixels can be used to align the im-

ages. However, if HDR images are used in tracking, these saturated or zero pixels

are unable to be converted to HDR and cannot be used in tracking.

Tracking using HDR colours and depths brings a number of advantages over

earlier approaches such as Kinect Fusion [106], which tracks using depth alone.

Should the depth image lack sufficient geometric detail to enable the tracking to

function (e.g. the camera observes a flat wall), the colour tracker is still often able

to successfully produce an estimate. Conversely, if colour tracking fails (for ex-

ample, due to a change in lighting conditions), the depth tracking is often able to

successfully recover a camera transform. Since we track using HDR colours, rather

than the LDR colours used by InfiniTAM [61], for example, it is also possible to

enable the auto exposure and white balance features of the colour camera without

adversely affecting the colour tracking. This allows the camera to capture a greater

number of correctly exposed pixels, and to capture a more pleasing image to present

to the end user.

6.2.6 Dynamic Geometry

Early dense RGBD reconstruction approaches, including KinectFusion [106] fo-

cused on reconstructing an accurate model of a static real environment, and con-

tain measures to avoid integrating dynamic moving objects into the reconstruction.

However, the intention of this approach was to respond in real time to changes in

geometry, enabling virtual content in MR applications to (for example) reflect dy-

namic real geometry, such as the user’s hand. To achieve this, we adapt and build
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Figure 6.3: Examples of surfels used for tracking vs. surfels used for rendering MR content

upon the method of Keller et al. [74], which explicitly detects pixels corresponding

to dynamic moving objects, and handles them separately.

Similarly to Keller et al., the criteria used when using surfels for tracking and

MR are separated. Only those surfels that qualify as stable (based on the confidence

threshold detailed in section 6.2.2) are used for tracking, as in [74]. However, all

surfels are used when rendering for MR (for example, when rendering environment

maps used to simulate reflection from a virtual object). This enables the MR ren-

dering to respond instantly to geometric changes, without impacting the quality of

the camera tracking.

Figure 6.3 shows an example of the difference between these categories. The

top image is the input colour image from the RGBD camera. The bottom left image

shows a rendering of all the surfels captured by the approach. The bottom right

image shows just those surfels which are categorised as stable. The top right image

shows a visualisation of the confidence values of the surfels: here shades of red

are unstable, and stable surfels range in colour from blue to green as confidence

increases. Here, the hand has just moved into the frame. It is present in the surfel
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model, and so will correctly impact the lighting of virtual objects, but is not present

in the set used for tracking, so will not negatively impact the tracking.

In many reconstruction methods including [106], colours are generally updated

using a rolling-average approach, similar to that used by other approaches such as

and . This approach is helpful in eliminating noise present in the colour images by

averaging the colours of multiple observations of each surfel. However, Keller et

al. [74] simply store the most recent colour observation at each surfel, which results

in much quicker colour updating at the cost of extra noise. We use the rolling-

average approach, but where a newly observed colour differs significantly from the

existing surfel, its colour is instantly replaced with the new value and its confidence

is reduced. This brings the benefits of both approaches; the averaging reduces noise,

but when, for example, a light is turned on or a window opened, our approach can

respond to this change quickly and remain consistent with the real world.

In order to respond quickly to dynamic objects, it is also critical to quickly

remove surfels which no longer correspond to valid real geometry. This allows the

model to better reflect reality in the event that a real object is moved or removed.

[74] implement one method for achieving this, which we also employ. This involves

searching for those surfels which have a smaller depth than that observed in the

current frame. Since we assume surfels are opaque, this is a physically impossible

situation, and indicates that these surfels should be deleted from the model. These

surfels are identified and removed during the updating stage, using the index map.

In some situations, this method fails to remove bad surfels. This is a particular

problem when depth values are missing, or when depth is insufficient to identify the

problem (e.g. a piece of paper is moved along a tabletop). Since depth values fre-

quently cannot be obtained, small clusters of erroneous surfels are often left behind

in the model.

In this approach, the problem is addressed by also checking for colour viola-

tions. These are points where the colour of the visible surface of the model differs

from that actually observed by the camera. These are identified by rendering a view

of the model from the current camera pose, and comparing the HDR colours with
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Figure 6.4: Surfel reconstructions after sliding a real piece of coloured paper across a table.

Figure 6.5: Surfel reconstructions before and after removing a box from the real scene.

the real image at each pixel. At pixels where the colour is sufficiently different, a

colour violation is detected and the corresponding surfel is marked for deletion.

In order to improve efficiency and avoid removing surfels erroneously, the

colour violation check is only carried out at pixels where no valid depth values

could be obtained. This is based on the assumption that where valid depth values

are available, bad surfels would be detected as depth violations, so carrying out

the colour violation check is unnecessary. This makes the violation check more

efficient, and helps to avoid erroneously removing surfels.

Figures 6.4 and 6.5 show examples of how each of these approaches improves
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the updating of the surfel model. Figure 6.4 shows the surfel reconstruction after a

green piece of paper has been moved from left to right over a tabletop. In the left

example, standard colour updating was used, and the colours are slowly updating,

leaving an afterimage of the paper’s previous position. In the right example, our

faster colour updating approach was used and the colours were updated instantly,

removing this artefact.

Figure 6.5 shows the importance of removing depth and colour violations from

the surfel model. The top left image shows the initial surfel reconstruction of a box

placed on a table. The other images show the state of the reconstruction a few

frames after the box has been removed. In the top right example, neither color nor

depth violation removal was used, and the surfels corresponding to the box remain

in the model. In the bottom left example, just depth violations were removed. Much

of the box is gone from the model, but the lower half had depths similar to those of

the table below, so these could not be classified as depth violations and removed.

In the bottom right, removing both depth and colour violations has successfully

removed nearly all of the outdated surfels corresponding to the box from the model.

6.2.7 Rendering Virtual Content

The MR rendering and compositing approach used here was very similar to that em-

ployed in chapter 5. Briefly, in order to render a virtual object, a HDR environment

map was first rendered from the virtual object’s location. The closest environment

map keyframe to the virtual object was rendered into this environment map first,

followed by rendering the dense surfel-based reconstruction from the virtual ob-

jects location. This environment map was used to render the virtual content into a

floating point HDR texture, which was composited with the HDR-converted image

from the RGBD camera. The result was then converted back to LDR for display.

When rendering the surfel model, backface culling was disabled, as it is com-

mon for only the side of an object facing away from the virtual content to be ob-

served by the camera system. Rendering backfaces ensures that the object will be

present in reflections in the virtual content, although the geometry and colour of

the real object may be inaccurate. Using the surfel-based approach improved the
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efficiency of rendering the model, as the rendering step simply involved rendering

surfels using a geometry shader rather than an expensive volumetric ray-casting

operation.

One issue commonly encountered with the previous approaches was that of

small holes in the dense reconstruction. These were common when surfaces had

only been observed at steep angles. These small holes would become particularly

noticeable when a reflective object was placed on a flat surface, such as a tabletop.

The holes would be magnified due to the close proximity of the virtual object to the

surface, and then would be very visible in reflections on the lower half of the object.

The issue can clearly be seen in figures 4.11 and 4.12.

Although the gaps in the model proved to be smaller using the surfel-based

approach, they were still noticeable. For this reason, a post-processing step was

added to fill these small gaps between the rendered surfels in the environment maps.

After rendering the dense content, a simple inpainting step was performed on the

GPU. This performed a morphological dilation operation on the rendered dense

reconstruction, followed by an erosion operation. This had the effect of filling these

small gaps between surfels efficiently. The alpha channel of the cubemap texture

was used to identify which pixels were rendered from the dense reconstruction, and

which were from the environment map keyframe. An example of the effect of this

inpainting procedure is show in figure 6.6.

Shadows cast by virtual objects and diffuse virtual objects were again rendered

using differential PRT, as in the previous approaches in chapters 4 and 5. However,

the transfer coefficient baking stage was improved from that used in chapter 5 in

the case of shadows cast by specular virtual objects. Previously, these were handled

using diffuse PRT, and specular virtual objects were treated the same way as diffuse

ones for the purpose of differential rendering. This lead to shiny virtual objects

casting excessively dark shadows.

In the new approach, during each light bounce in the baking stage, if a ray hits

a specular virtual object, it is reflected in the object and cast out into the scene again.

This effectively simulates a virtual object with an ideal mirror surface, and allows
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Figure 6.6: Effect of inpainting the dense model in the output environment map. Top: MR
scene, with virtual trumpet in real room. Bottom left: environment map for
trumpet, without inpainting. Note the incomplete regions on the table and on
the back walls. Bottom right: environment map with inpainting. Note these
missing regions have now been inpainted.

light reflected off the virtual object onto a real object to contribute to the lighting

simulation. This was intended to improve the accuracy of shadows cast by shiny

virtual objects and to open up the possibility of simulating effects such as caustics.

6.3 Results
The application described in section 6.2.7 was tested in a variety of real scenarios,

with a number of different virtual objects.

6.3.1 Application Results

Figure 6.7 shows examples of a number of different virtual objects placed in differ-

ent real scenes, demonstrating some of the virtual materials which can be effectively

simulated using the approach. These include reflective surfaces with surface colour

and roughness, as well as diffuse surfaces with albedo textures.

In contrast to the earlier approaches detailed in chapters 4 and 5, no information
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Figure 6.7: Examples of MR frames rendered using the approach, containing a variety of
different virtual objects and real scenes. Top left: virtual pan, with ideal (mir-
ror) reflection. Top right: virtual teapot, with slightly rough, coloured reflective
surface. Bottom left: virtual terracotta bunny, with diffuse surface. Bottom
right: virtual trumpet, with rough coloured reflective surface.

about the real scene had to be captured beforehand in order to obtain these results.

The application was simply started in the real environment, and the pose of the

virtual object was then set to place it correctly on top of the real surface.

6.3.2 Environments with Wide Dynamic Range

Figure 6.8 shows an example where the system was used in a scene with a wide

dynamic range, demonstrating the ability of the approach to function correctly in

such scenes. This scene was captured in a flat on a sunny day, and the windows are

significantly brighter than the rest of the scene, however the bracketing approach

outlined in section 6.2.1 enables the full dynamic range of the scene to be captured.

Additionally, as the camera is moved around the real table, its auto exposure adjusts

due to the bright windows. This change in auto exposure is detected, and the bright-

ness of the virtual bunny adjusted appropriately when mapping the output to LDR.

This means the bunny appears darker, and remains consistent with the real scene
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Figure 6.8: Example using the system in an environment with a wide dynamic range. Top
left: view of virtual bunny. Top right: view of virtual bunny from other side
of table. Note that the auto exposure has adjusted to compensate for the bright
windows, but the bunny remains consistent with the real scene. Bottom: HDR
radiance environment map used to render bunny, shown as heatmap (colour key
below). Note that the windows are much brighter than the rest of the scene.

around it.

6.3.3 Comparison to Physical Light Probe

In order to assess the realism of the results produced by the application, a similar

qualitative comparison to that carried out in chapter 4 was performed. Again, a real

chrome sphere was compared to a virtual sphere of the same size rendered by the

application.

The virtual and real spheres appear similar overall, with nearby reflected ob-

jects located correctly in the virtual reflective sphere, and of similar appearance.

There is some difference in the colour of the two spheres - in particular, the real

sphere is somewhat darker. This is due mainly to the fact that the virtual sphere

was rendered with an ideal mirror surface, wheras the real sphere is an imperfect

reflector. Additionally, the real sphere has a sharper shadow than the virtual sphere.
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Figure 6.9: Comparison of a virtual reflective sphere rendered using the application with
a real chrome sphere of the same size. Above: Real sphere. Below: virtual
sphere.

This is due to the shadow using PRT, with only 4 SH bands, and consequently being

unable to capture the higher frequencies of the incident lighting.

There are slight differences in the positions of nearby real objects due to the

use of environment mapping. The reflections on the sphere were simulated using

an environment map rendered from the centre of the sphere, which results in slight

geometric inaccuracies when this map is used to simulate reflections on the surface

of the sphere.

The most noticeable difference between the two spheres is in the positioning of

the distant geometry. This is slightly different due to being rendered using the envi-

ronment map keyframe, which was captured at a different point in space (i.e. at the

fisheye camera location). The earlier approaches of chapters 4 and 5 addressed this

problem using the coarse model geometry. This improved the accuracy of the place-

ment of the distant geometry, but this came at the cost of requiring more geometric

information a priori, in addition to limiting the range of possible real environments

in which they could be used. This approach offers greater flexibility and ease of use

at the cost of this slight decrease in accuracy. Although the geometric inaccuracy
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is noticeable when directly compared to a real sphere, the issue is less noticeable

in practice and the results are perceptually plausible, if less accurate in an absolute

sense.

6.3.4 Comparison to Prior Approaches

The comparison from section 5.4.3 was extended to compare the output of this new

approach with the earlier approaches of chapters 4 and 5. Again, since the three

approaches accept different inputs (bracketed HDR input vs LDR input), it was not

possible to record a single video and use it as input to all the approaches. In order

to provide the fairest comparison possible, in each of the following examples the

footage was captured for each approaches one after the other, without any change

to the real scene. In each case, the camera was moved around the scene briefly

to generate a satisfactory reconstruction, before being clipped into a sturdy quick-

release tripod. This tripod remained in the same position throughout, so that at

the end of each sequence the camera had the same view of the real scene. These

recorded sequences were then processed using each of the approaches, and the final

frames captured from the same viewpoint are shown in figure 6.10 for comparison.

There are some slight geometric inaccuracies common to all of the approaches

- for example, the reflection of the monitor behind the sphere is slightly misplaced,

and too large. This is mainly a consequence of the use of environment mapping,

which is common to all three approaches. The reflections are all simulated using an

environment map rendered from the centre of the virtual sphere, and this results in

slight inaccuracies when this map is used to simulate reflection from other points in

space, such as the top of the sphere. In principle, this issue could be corrected in any

of the three approaches by changing the rendering method to use another approach,

such as ray-tracing.

The new, instant illumination approach also has slightly incorrect placement

of more distant parts of the environment, such as the overhead lights. This is a

consequence of the use of environment map keyframes, which assume a distant real

environment. The two approaches using a coarse model are able to achieve more

accuracy in this regard, at the cost of requiring real environment information a pri-
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Figure 6.10: Comparison of a virtual reflective sphere rendered using the three systems
discussed in this thesis with a real chrome sphere of the same size. Top: Real
sphere. Top centre: Newest approach from chapter 6. Bottom centre: Original
LDR approach from chapter 4. Bottom: HDR approach from chapter 5.
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ori. In practice, whilst these inaccuracies are apparent when the output of the instant

illumination approach is compared to ground truth, the reflections in the virtual ob-

ject appear perceptually plausible, which is sufficient for many applications.

The dense model in the newer approach was generated using the reconstruc-

tion method detailed here, which was intended to prioritise rapid updating over

detail and accuracy. This has resulted in in less detail in the reflections of the pens

and eraser placed on the table in front of the sphere, as compared to the earlier

approaches. On the other hand, the dense model inpainting process added to the

newer approach has removed the artefacts caused by small holes in the dense recon-

struction. In the earlier approaches, these artefacts are visible as small patches of

incorrect colour in the reflection of the table below the sphere.

6.3.5 Limitations

This approach produces plausible results in a number of settings, but some limita-

tions of the approach were discovered during testing, which will be discussed here.

Since the approach relies upon the dense surfel reconstruction and environment

map keyframes, it may produce inaccurate results when these are incomplete. This

can be problematic when the depth camera cannot infer depths for some objects in

the real scene, for example if a real object is translucent or highly specular. Such

objects will not be present in the reconstruction, and will therefore not be present in

reflections from virtual objects added to the scene. This problem is common to most

dense reconstruction approaches using RGBD cameras, and is not easily addressed

with current depth sensing technology.

The colour violation removal approach detailed in section 6.2.6 can sometimes

erroneously remove valid surfels from the reconstruction. Small numbers of surfels

can be removed due to slight tracking inaccuracies or non-lambertian real objects

(e.g. specular highlights). The problem is most noticeable, however, when a real

object moves very close to the RGBD camera. Figure 6.11 shows an example of

this issue, where a user’s hand has moved very close to the RGBD camera. Here,

the camera was unable to find depth values for the hand since it fell outside the

depth range of the camera. As a result, all the surfels behind the hand are labelled
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Figure 6.11: Examples of a failure case in the surfel reconstrution. Surfels have been incor-
rectly removed from the model when a user placed their hand too close to the
RGBD camera. Bottom left: depth and colour inputs. Bottom right: rendering
of surfel reconstruction.

as colour violations and removed. This problem would be partly mitigated by using

a more recent RGBD camera with a lower minimum depth.

As mentioned in section 6.2.7, the PRT shadow rendering for specular objects

was updated to simulate specular reflection from the object. However, since the

object was modelled as a perfect mirror surface, this tended to result in shadows

which were not sufficiently dark. This issue can be seen in the comparison with the

real sphere in figure 6.9. This issue could be addressed in future work by instead

using a more accurate surface model which absorbs or scatters a proportion of the

incoming light.

6.4 Conclusion
In this chapter, a new approach to probeless illumination capture was presented

and explored. The approach focused on removing some of the restrictions on real

environment and prior information requirements of the earlier approaches presented

in chapters 4 and 5, whilst maintaining the advantages of these earlier approaches

as far as possible.

Through testing, it was shown that the new approach produced results of sim-

ilar quality to these earlier approaches, and the new approach could be used more

easily in a wider range of real environments. The newer approach was also shown to
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be capable of responding more quickly to dynamic changes in the real environment,

thanks to a specially adapted dense reconstruction approach.

The new approach did suffer from a slight loss in geometric accuracy with

respect to the reflections of distant environment objects, as compared to the ap-

proaches from chapters 4 and 5 (see section 6.3.3). Although the results produced

by the new approach are still perceptually plausible, this might mean that there are

some application areas where these earlier approaches may be better suited. Specif-

ically, if an MR system is to be used in a particular indoor environment where the

floorplan and initial camera pose are known a priori, the approach of chapter 5 may

produce slightly better results. If a system is to be used in applications where these

requirements are not met, however, the new approach would be more applicable.



Chapter 7

Conclusions

7.1 Overall Summary
The goal of this project was to explore methods to improve the rendering of virtual

content in a video see-through MR setting. We focused on methods that could

be used in a variety of environments, and that could produce results in real time,

without requiring precapture or precomputation steps. The methods we developed

made use of modern camera technology to capture as much information as possible

from the real environment.

During the EngD project, a number of approaches were developed to tackle two

related problems in this area. The first was that of handling occlusion of virtual ob-

jects by real ones, using the incomplete and noisy geometric information provided

by an RGBD camera. The second problem was capturing dynamic, high-frequency

lighting information for rendering virtual objects, without the need to place physical

light probes at the virtual object locations.

7.2 Occlusion in MR
The first part of the project investigated how the noisy and incomplete depth and

colour output of an RGBD camera could be used to correctly handle occlusion of

virtual objects by real ones in an MR scene. The methods developed differed from

previous approaches in the literature in that they were purely image-based, and

did not rely upon reconstruction of the real environment. This meant that the ap-

proaches were ideal for handling occlusion of virtual objects by real ones which are
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difficult or impossible to reconstruct using current reconstruction techniques, such

as dynamic, non-rigid real objects.

A number of different occlusion-handling approaches were explored. The ap-

proach based on Cost Volume Filtering was found to be the most promising, and

this was compared quantitatively with other approaches from the literature. In or-

der to perform a meaningful quantitative comparison against dense RGBD SLAM

approaches, a new comparison method was developed. This comparison method

was used to demonstrate that CVF occlusion could produce better results than other

frame-by-frame approaches. The results were also comparable to those produced by

InfiniTAM, at much lower computational cost. CVF occlusion had higher temporal

noise than InfiniTAM, but was capable of handling dynamic real objects.

7.2.1 Future Works

Since the paper on the work detailed in chapter 3 was submitted, there has been

further work in the area. The most directly related publication was that of [53],

which details a different approach using the same inputs. As more work is carried

out in this area in the future, techniques for quantitavely comparing the qualities of

competing techniques, such as that detailed in section 3.3 will become increasingly

valuable.

Consumer RGBD hardware is also gradually improving, with newer cameras

offering better depth sensing capabilities. Cameras such as the Intel Realsense D435

camera offer higher output resolution and greater depth range than the Asus Xtion

Pro camera mainly used in this EngD project. The newer Intel camera is also ca-

pable of operating outdoors in sunlight, albeit at the cost of noisier depth output.

These newer cameras could enable increasing the quality of the results produced by

approaches such as those in chapter 3, in addition to extending the possible range

of scenarios in which they could be used.

Thanks in part to a growing range of available RGBD datasets [152, 58, 17, 25,

95], machine learning techniques using RGBD input are recently showing promise

for a range of applications. Zhang et al. [159] recently proposed a technique for

depth completion and denoising using a deep learning approach. Similar tech-



7.3. Real Environment Capture 142

niques may prove fruitful in handling MR occlusion using RGBD data in the future,

and could provide superior results to the current filtering approaches by using prior

learned information (e.g. inferring the proximity of an object based on its perceived

size).

RGBD sensors are naturally not the only way to recover depth and colour im-

age pairs. RGB stereo techniques can also provide similar output, and it would

be interesting to investigate applying occlusion handling techniques to RGB stereo

output. However, the nature of RGB stereo output is quite different, with different

accuracy and precision characteristics. RGB stereo and RGBD cameras both suffer

from missing depth values, but typically at different image locations. It is likely that

the techniques developed here for RGBD output would need to be adapted signifi-

cantly to produce good results given RGB stereo data.

7.3 Real Environment Capture

The second part of the thesis investigated how detailed, dynamic, high-frequency

lighting information about a real environment could be captured using a self-

contained device, without the use of external light probes. It also explored how

this information could be used in an MR application, to add virtual content which

appears to be illuminated by the real environment around it.

A number of approaches were developed, all using a similar hardware setup

with a forward-facing RGBD camera connected to an upward-facing camera with a

wide field of view lens. An initial, LDR approach was developed first (chapter 4).

This used the RGBD output to construct a dense colour reconstruction of the real

environment near the virtual object, and the fisheye output to generate a texture for

a geometry proxy for the more distant parts of the indoor environment (i.e. walls,

ceiling and floor). Both parts of the model were then used to render realistic virtual

content.

The second approach built upon the first (chapter 5). The main change to this

new approach was to add the capability to capture HDR colour information about

the real environment, and make use of this information when rendering the virtual
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content. This was achieved using an exposure bracketing approach, and by adapting

the model updating processes to handle HDR data.

Finally, an approach was developed which focused on removing the require-

ment for prior information about the real environment (chapter 6). Rather than using

a geometry proxy, this approach captured a series of environment map keyframes.

This new approach also captured HDR data, but was now capable of functioning

in new, unprepared environments. A number of other improvements were made,

including making the dense SLAM approach more responsive to changes in the real

scene.

These approaches were evaluated qualitatively, via testing with a range of dif-

ferent real environments and virtual objects. They were also compared to one an-

other and against ground truth by comparing a real chrome sphere to a virtual mirror

sphere of the same size.

The initial LDR approach had a number of advantages over other probeless

illumination capture approaches in the literature. Its was capable of capturing high-

frequency illumination information and updating it dynamically in real time, en-

abling specular virtual objects to reflect their real surroundings convincingly. This

was possible even when the real surroundings changed in a variety of ways - for

example the image changing on a television screen, ceiling lights being turned on

or off, or curtains being opened or closed.

The approach of chapter 5 added the capability to capture a HDR illumination

model, allowing for more accurate lighting. It was capable of capturing the full

dynamic range of the scene, and also brought other benefits. The auto exposure

and white balance of the real camera could be enabled, and manually tweaking

parameters such as the fisheye exposure and white balance and the virtual shadow

intensity was no longer required.

The final approach of chapter 6 offered faster response to changes in the nearby

real environment, thanks to the new RGBD reconstruction approach. It also re-

moved the requirement for prior information about the real scene, increasing the

range of applications for the approach. However, this came at the cost of slightly
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decreased geometric accuracy in the reflections of the distant environment. The

new dynamic RGBD reconstruction approach was also found to offer slightly less

accuracy and detail in the captured model. For this reason, there may be a limited

number of applications where the earlier approach of chapter 5 would serve better.

7.3.1 Future Works

The work carried out during this thesis focused mainly on ways to capture a colour

model of the real environment suitable for MR applications, and less focus was

placed on rendering methods using this model. Whilst a basic rendering approach

using environment mapping and PRT was implemented, it would be interesting in

the future to use these techniques with other real-time rendering approaches. At the

time of writing, consumer GPUs with hardware-accelerated ray-tracing capability

have recently been released, and these could be used to make excellent use of the

detailed information present in the captured models.

The techniques detailed in chapters 4, 5 and 6 all assumed that real surfaces

were Lambertian and grey for the purposes of differential rendering. This produced

generally plausible results, but this simplification sometimes caused artefacts - per-

haps most notably, virtual objects did not interact correctly with specular highlights

on nearby real surfaces. It would be interesting in the future to explore how the dif-

ferential rendering results could be improved by estimating real material properties.

This could potentially be achieved by using a machine learning approach such as

that developed by Meka et al. [97]. This would open up a wider range of realistic

lighting interactions between the virtual and real objects in the scene.

7.4 Conclusion
The approaches detailed in this thesis have focused on capturing real environment

information in order to enable rendering of more realistic-looking mixed reality

content. In the taxonomy of Milgram and Kishino [98], the goal has been to enable

approaches to move along the extent of world knowledge (EWK) axis, enabling

richer MR interactions in unprepared environments.

Chapter 3 focused on the problem of correctly simulating occlusion of virtual
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objects by real ones. Work in this area continues to develop. In addition to new

approaches such as that of Hebborn et al. [53], depth devices continue to improve

in quality, in addition to becoming cheaper and more compact. Devices such as

the most recent Intel RealSense cameras1 are also capable of being used in outdoor

settings with brighter ambient light, increasing the range of settings in which they

can be used. The author feels that in future MR systems, the real-virtual occlusion

problem is likely to be solved using a combination of advances in sensing hardware

and processing algorithms, possibly making use of new machine-learning methods.

Chapters 4, 5 and 6 detailed methods for capturing geometric and lighting

models of real environments, and demonstrated a way in which these data could be

used to render realistic virtual content into MR scenes. A major missing element

of the real environment which these approaches were not yet able to capture was

real material information. Obtaining this information would not only enable more

realistic differential rendering, but would also open up the possibility of XR inter-

actions. These could include capturing virtual replicas of real objects, or capturing

and sharing a space as part of an MR telepresence application.

It is likely that future real material information estimation approaches will also

use a combination of novel algorithms and novel sensing technology. For example,

light field cameras can capture multiple views of a surface point simultaneously,

which could provide useful extra data to infer its material properties. At the time of

writing, light field cameras such as those developed by Raytrix2 are expensive and

targeted towards industrial applications. If, however, their usefulness for MR were

demonstrated, it is possible that compact, cheap consumer cameras may become

available.

In addition to geometry, materials and lighting, there is much more world

knowledge which may be captured in order to enable richer mixed reality expe-

riences. Capturing semantic information about the real environment would enable

future applications to be more context-aware, understanding the purpose of real ob-

jects and how virtual content should interact with them. Approaches such as Seman-

1https://realsense.intel.com/
2https://raytrix.de/

https://realsense.intel.com/
https://raytrix.de/
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ticFusion [95] show one way in which this could be achieved, and are an important

step towards the goal of enabling compelling MR in unknown environments.

It is an exciting time for mixed reality at present, as many of the core technolo-

gies required to advance the field are converging. New techniques such as those

described above are improving EWK, and simultaneously MR displays are becom-

ing increasingly capable and affordable. MR now has the potential to become a

more integral and important part of peoples’ everyday lives.
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Publications

This project has resulted in the following publications, appearing in peer-reviewed

conferences:

WALTON, D.R., THOMAS, D., STEED, A., SUGIMOTO, A. Synthesis of En-

vironment Maps for Mixed Reality. In 16th International Symposium on Mixed and

Augmented Reality, ISMAR 2017 (2017)

Contains extracts of work presented in Chapter 4.

WALTON, D.R., STEED, A. Accurate Real-time Occlusion for Mixed Reality.

In 23rd ACM Symposium on Virtual Reality Software and Technology, VRST 2017

(2017)

Contains extracts of work presented in Chapter 3.

WALTON, D.R., STEED, A. Dynamic Environment Capture for Mixed Real-

ity. In 24th ACM Symposium on Virtual Reality Software and Technology, VRST

2018 (2018)

Contains extracts of work presented in Chapter 6.
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List of Acronyms

3D Three Dimensional

AR Augmented Reality

AV Augmented Virtuality

CPU Central Processing Unit

CVF Cost Volume Filtering

DoF Degree(s) of Freedom

DSO Direct Sparse Odometry

EWK Extent of World Knowledge

GI Global Illumination

GNSS Global Navigation Satellite System

GPU Graphical Processing Unit

HDR High Dynamic Range

HMD Head-Mounted Display

LDR Low Dynamic Range

LI Local Illumination
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LIDAR LIght Detection And Ranging

LSD-SLAM Large Scale Dense SLAM

LUT Look-Up Table

MR Mixed Reality

MSE Mean Squared Error

PRT Precomputed Radiance Transfer

PTAM Parallel Tracking And Mapping

RADAR RAdio Detection And Ranging

RGB Red, Green and Blue

RGBD RGB and Depth

SDK Software Development Kit

SAR Spatial AR

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localisation And Mapping

SH Spherical Harmonic(s)

XR Cross Reality (also Extended Reality)
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This document was set using LATEX and BibTEX using the UCL Thesis document

class, composed with vim.
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