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Abstract Large uncertainties on the sensitivity of Amazon forests to drought exist. Even though water
stress should suppress photosynthesis and enhance tree mortality, a green-up has been often observed
during the dry season. This interplay between climatic forcing and forest phenology is poorly understood
and inadequately represented in most of existing dynamic global vegetation models calling for an improved
description of the Amazon seasonal dynamics. Recent findings on tropical leaf phenology are incorporated
in the state-of-the-art eco-hydrological model Thetys & Chloris. The new model accounts for a mechanistic
light-controlled leaf development, synchronized dry-season litterfall, and an age-dependent leaf
photosynthetic capacity. Simulation results from 32 sites in the Amazon basin over a 15-year period
successfully mimic the seasonality of gross primary productivity; evapotranspiration (ET); as well as leaf area
index, leaf age, and leaf productivity. Representation of tropical leaf phenology reproduces the observed
dry-season greening, reduces simulated gross primary productivity, and does not alter ET, when compared
with simulations without phenology. Tolerance to dry periods, with the exception of major drought
events, is simulated by the model. Deep roots rather than leaf area index regulation mechanisms control
the response to short-term droughts, but legacy effects can exacerbate multiyear water stress. Our results
provide a novel mechanistic approach to model leaf phenology and flux seasonality in the tropics,
reconciling the generally observed dry-season greening, ET seasonality, and decreased carbon uptake
during severe droughts.

1. Introduction

The metabolic rhythm of Amazon rainforests (phenology of vegetation, seasonality of carbon and water
fluxes) is a key component of the global carbon cycle (Phillips et al., 2009) with impacts on tropical moist con-
vection (Knox et al., 2011) and important consequences on global climate (Alden et al., 2016; Cox et al., 2000;
Huete et al., 2006; Wu et al., 2016). The importance of the Amazon in the Earth system is therefore unquestion-
able (Davidson et al., 2012; Malhi et al., 2008), but its vulnerability to drought and the risks associated with a
drying climate (Ahlström et al., 2017; Malhi et al., 2008; Meir et al., 2009) is unclear, as conflicting results have
been reported (Brando et al., 2010).

Dry periods, that is, when precipitation is below potential evapotranspiration, alter forest metabolism. When
severe water stress is generated, drought can reduce or reverse the carbon sink (Gatti et al., 2014; Lewis et al.,
2011; Phillips et al., 2009) and lead to accelerated forest mortality (da Costa et al., 2010; Lewis et al., 2011; Liu
et al., 2018; Malhi et al., 2009; Meir et al., 2009). However, evidence of both positive (e.g., Saleska et al., 2003,
2007) and negative (e.g., Meir et al., 2009; Nepstad et al., 2007) impacts of drought on forest functioning exists.
The severe drought event that affected the Amazon basin in 2005 is a clear example of such conflicting results:
While Phillips et al. (2009) reported a significant decrease in carbon uptake and concluded that Amazon
forests are vulnerable to increasing moisture stress, remote sensing observations revealed a basin-wide
increase in photosynthetic activity, suggesting a biome resilience (defined as the capability to sustain car-
bon/water fluxes during extremely dry periods) higher than originally thought (Ahlström et al., 2017; Saleska
et al., 2007).

Such unexpected dry-season greening, associated with an increase in leaf area timed to solar radiation
(Huete et al., 2006; Myneni et al., 2007), has been confirmed by a large number of remote sensing, eddy
flux tower, and field observations (Brando et al., 2010; Guan et al., 2015; Huete et al., 2006; Hutyra et al.,
2007; Myneni et al., 2007; Morton et al., 2014; Restrepo-Coupe et al., 2013; Saleska et al., 2003, 2007, 2016;
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Samanta et al., 2012; Wu et al., 2016), suggesting that light, rather than water, may regulate forest seasonality
in tropical wet climates. However, seasonal variations of temperature and radiation are fairly moderate in the
tropics and understanding whether the carbon fluxes are controlled by hydro-climate (e.g., Borchert, 1998;
Guan et al., 2015) or variations in the forest photosynthetic machinery (leaf area, leaf demography, and photo-
synthetic capacity; e.g., Brando et al., 2010; Huete et al., 2006; Restrepo-Coupe et al., 2013) has been a subject
of debate (Hayek et al., 2018; Liu et al., 2018; Morton et al., 2014; Saleska et al., 2016).

The different theories have been recently reconciled by camera observations and leaf-level measurements
revealing a synchronization of dry-season litterfall with the onset of new leaves having higher photosynthetic
capacity and therefore light use efficiency (Albert et al., 2018; Wu et al., 2016). Such a coordinated leaf devel-
opment explains observed seasonal variations of leaf area index (LAI), photosynthetic capacity (PC), and gross
primary productivity (GPP), demonstrating that canopy phenology plays an important role in regulating for-
est fluxes during the dry season (Wu et al., 2016). However, the interplay between phenologic and climatic
factors regulating the overall forest response to dry periods and droughts (i.e., during the dry periods of 2005
and 2010; Lewis et al., 2011) is still unclear and the compound effects of leaf phenology and plant water stress
on carbon/water fluxes remain elusive, framing the scope here.

The fact that seasonality in photosynthetic capacity is driven by changes in leaf quality and quantity (younger
leaves and changes in LAI) can also explain the reported discrepancies between observations and model sim-
ulations (Restrepo-Coupe et al., 2017; Wu et al., 2016). Most of existing dynamic global vegetation models,
DGVMs (and, similarly, eco-hydrological models, terrestrial biosphere models, and land surface models; Fatichi
et al., 2014), assume simple or no phenology for tropical evergreen biomes, and they account for variability of
the climate drivers only (Restrepo-Coupe et al., 2017; Wu et al., 2016). Thus, models systematically fail to repro-
duce the seasonality of carbon fluxes and the observed dry-season greening (Restrepo-Coupe et al., 2017).
Tropical forest description in DGVMs has been continuously improved (Baker et al., 2008; Christoffersen et al.,
2014; De Weirdt et al., 2012; Galbraith et al., 2010; Ivanov et al., 2012; Kim et al., 2012; Verbeeck et al., 2011;
Von Randow et al., 2013), but these models still produce inaccurate GPP predictions at timescales from days to
decades (Restrepo-Coupe et al., 2017). Despite limitations in reproducing GPP seasonality, DGVMs generally
capture the observed seasonality of ET fluxes and have provided insights into the importance of deep root-
ing systems, hydraulic redistribution, root niche separation, and groundwater fluxes to explain the observed
tolerance of Amazon forests to extended droughts (Baker et al., 2008; Christoffersen et al., 2014; Ivanov et al.,
2012; Miguez-Macho & Fan, 2012). Hence, given the assumption of an aseasonal photosynthetic infrastruc-
ture, it is unclear whether model simulations provide the right answers for the right reasons (Restrepo-Coupe
et al., 2017). Recently, Wu, Serbin, et al. (2017) have proposed a two-fraction leaf (sun/shade), two-layer canopy
model for representing tropical photosynthetic seasonality in DGVMs, and Xu et al. (2017) have shown that
cross-species variations in leaf longevity can be explained by a trait-driven carbon optimality model. However,
the impact of such dynamics on carbon/water relations was not addressed, leaving the following questions
open: (i) What is the impact of leaf phenology on ecosystem carbon and water fluxes in the Amazon basin?
(ii) Does photosynthetic seasonality enhance or decrease forest resilience to drought? (iii) Is the accuracy of
model simulations, in terms of carbon and water fluxes, different when the forest photosynthetic machinery
is allowed to vary seasonally?

To answer these questions a novel eco-hydrological model description of phenology in tropical biomes is
developed here and used to investigate carbon and water fluxes seasonality across the Amazon basin. The
specific approaches of this study are as follows: (i) the development of a mechanistic light-controlled leaf phe-
nology model for tropical evergreen forests based on recent experimental observations, (ii) the use of model
simulations to assess the impact of leaf phenology on the seasonality of biosphere-atmosphere exchanges
in the Amazon, and (iii) a multisite and multiyear analysis of water/carbon fluxes to evaluate the interplay
between leaf phenology and water stress controls on forest responses to dry periods.

In summary, given the projected increase in the Amazonian dry-season length towards the end of this century
(Boisier et al., 2015; Fu et al., 2013; Lintner et al., 2012; Malhi et al., 2008; Marengo et al., 2011), the need of
realistically describing biosphere-atmosphere interactions under future climate (Fatichi, Pappas, et al., 2016),
and the fact that tropical leaf phenology is not accounted for in the existing DGVMs (Restrepo-Coupe et al.,
2017; Wu et al., 2016), the overarching goal of this study is to improve the representation of water/carbon
fluxes in the tropics, quantify the role of photosynthetic seasonality, and disentangle the role of between
phenology and water stress.
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2. Materials and Methods
2.1. Study Sites
Local observations from 32 tropical forest sites in the Amazon basin are considered here (Table 1). Flux tower
data for six sites (Bananal, CAX, km34, km67, km83, and RJA) are obtained from the LBA-ECO Flux Tower
Network Data Compilation and LBA-Model Intercomparison Project (Christoffersen et al., 2014; De Gonçalves
et al., 2013; Restrepo-Coupe et al., 2013), freely available online (ftp://saleskalab.eebweb.arizona.edu/pub/
BrasilFlux_Data/). Additional meteorological data (temperature, precipitation, relative humidity, radiation,
pressure, and wind speed) from eight LBA-ECO weather stations (Belterra, Embrapa, Guarana, Jamaraqua,
km117, Mojui, Sudam, and Vilafranca; Fitzjarrald et al., 2008) and 18 meteorological stations (A101, A109–113,
A117, A120–126, A128, and A133–134) run by the Brazilian Meteorological Institute, INMET (Instituto
Nacional de Meteorologia-Ministério da Agricultura, Pecunária e Abastecimento) are also used as input for
model simulations (see next subsections). Overall, LBA-ECO data are available for the period 1999–2006, while
INMET meteorological stations cover the period 2008–2015 with site A101 spanning from 2000 to 2014.

Solar-induced fluorescence (SIF) observations from the Global Ozone Monitoring Instrument 2 (GOME-2) are
also used to assess model performance (monthly data at a spatial resolution of 0.5∘ × 0.5∘ (Joiner et al., 2013).
SIF has been shown to provide good estimates of GPP (e.g., Yang et al., 2015; Zhang, Guanter, et al., 2016;
Zhang, Xiao, et al., 2016) and forest response to drought (e.g., Joiner et al., 2013; Lee et al., 2013). For instance,
SIF correlates with GPP at diurnal and seasonal scales (with r2 values larger than 0.7 for spring and summer sea-
son in North America; Zhang, Xiao, et al., 2016), thus providing an additional piece of information to evaluate
the seasonality of carbon fluxes at the study sites.

2.2. Model Formulation

2.3. Phenological Metrics
Seasonal observations of GPP, LAI, photosynthetic capacity, and new leaf production at sites km34 and km67
have been digitized from (Wu et al., 2016; Figure 1). Photosynthetic efficiency erel is estimated from PC data
as erel = PC∕PCmax , with PC being the canopy photosynthesis per unit incoming light under reference cli-
matic conditions (Wu et al., 2016), which can be interpreted as a metric of the ecosystem-scale photosynthetic
capacity (Wu, Guan, et al., 2017), and PCmax is the annual maximum of PC. The partitioning of total LAI
(m2

leaf
m−2

ground) into young, mature, and old leaves presented by Wu et al. (2016) is used to estimate the average
leaf age AL [mo] and the fraction of new leaves (see Figures 1b and 1c for details). Note that AL in the model is
prognostically estimated and represents the average of the entire canopy, since the model does not track dif-
ferent leaf cohorts (see next subsections). The observations show consistent seasonal patterns at both sites
(Figures 1b–1e) with increased leaf production at the end of the wet season, followed by leaf rejuvenation and
an increase in photosynthetic capacity as the dry season develops. Specifically, the peak of new leaf produc-
tion and the minimum leaf age occur during the dry season over a span of 1–2 months (Figures 1c–1e), while
the largest PC is obtained for mature leaves (i.e., intermediate age at the end of dry season, see also model
simulations in the supporting information), as young and old leaves are less photosynthetically efficient (Wu
et al., 2016).

Combining such leaf production data with estimated canopy leaf age and observed photosynthetic capacity
provides a two-dimensional relation for erel (Figure 1f ):

erel(AL, fNL) = 1.61 − 0.06 ⋅ AL − 1.20 ⋅ fNL (1)

where the coefficients have been estimated by a least-square fit of the data, fNL = kc
NB∗L
LAI

[mo−1] is the monthly
fraction of newly generated leaves (i.e. age <1 month) acting to decrease erel , NB∗

L is the new leaf produc-
tion (m2 ⋅ m−2 ⋅ mo−1; as observed by Wu et al., 2016) and kc is a correction factor to ensure consistency

between NB∗
L and LAI. Specifically, kc = dleaf ⋅LAI∑

NB∗L
, where LAI is the mean annual LAI, dL is the turnover rate

of green aboveground biomass from litterfall estimates [mo−1] and NB∗
L is summed over a year. Note that

kc is introduced here to to preserve consistency (mass conservation) between observations of standing LAI,
annual litterfall, and monthly leaf biomass production estimates (Figure 1e), which indicate that leaf average
turnover is about 270 days. In the case of model simulations carbon mass is conserved and therefore kc = 1.
Given that equation (1) admits values above 1, a limit erel ≤ 1 is imposed (Figure 1f ). The overall good fit of
equation (1) (R2 = 0.93) with data reveals a linear dependence of photosynthetic capacity on canopy leaf age
and the fraction of new leaves (in accordance with the results by Wu, Serbin, et al., 2017, and Xu et al., 2017).
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Table 1
Name and Location of the Study Sites, Mean Annual Precipitation (MAP), Number of Dry Months ndry (i.e., Monthly Precipitation < 100 mm), and Monitoring Method

Site Latitude Longitude MAP (mm/year) ndry Monitoring method References

A101–134 (18 sites) [−8.76; −0.11] [−69.86; −56.75] 1738–3223 0–4 Meteo station Instituto Nacional de

Meteorologia, Brazil

Bananal −9.82 −50.16 1,714 6 Flux tower De Gonçalves et al. (2013);

Restrepo-Coupe et al. (2013);

Christoffersen et al. (2014)

Belterra −2.64 −54.94 1,642 6 Meteo station Fitzjarrald et al. (2008)

Caxiuana (CAX) −1.72 −51.47 2,022 4 Flux tower Restrepo-Coupe et al. (2013)

Embrapa −2.39 −54.33 2,411 8 Flux tower —

Guarana −2.68 −54.32 1,579 6 Meteo station Fitzjarrald et al. (2008)

Jamaraqua −2.81 −55.04 1,590 7 Meteo station Fitzjarrald et al. (2008)

km34 (Manaus) −2.61 −60.21 2,735 2 Flux tower De Gonçalves et al. (2013);

Restrepo-Coupe et al. (2013);

Christoffersen et al. (2014)

km67 (Santarem) −2.86 −54.96 1,649 5 Flux tower De Gonçalves et al. (2013);

Restrepo-Coupe et al. (2013);

Christoffersen et al. (2014)

km83 (Santarem) −3.02 −54.96 1,716 5 Flux tower De Gonçalves et al. (2013);

Restrepo-Coupe et al. (2013);

Christoffersen et al. (2014)

km117 −3.35 −54.92 1,356 6 Meteo station Fitzjarrald et al. (2008)

Mojui −2.77 −54.58 1,618 5 Meteo station Fitzjarrald et al. (2008)

Reserva Jaru (RJA) −10.08 −61.93 2,325 5 Flux tower De Gonçalves et al. (2013);

Restrepo-Coupe et al. (2013);

Christoffersen et al. (2014)

Sudam −2.54 −54.09 1,278 7 Meteo station Fitzjarrald et al. (2008)

Vilafranca −2.35 −55.03 2,367 4 Meteo station Fitzjarrald et al. (2008)

Specifically, erel is maximum at an average leaf age of 8–9 months given that the carbon assimilation rates
are low for young leaves and reach a peak at maturity before decreasing with age (Wu, Serbin, et al., 2017;
Xu et al., 2017).

Equation (1) provides a simple description of phenology-driven changes in PC, explaining the role of qual-
ity (age) in regulating seasonal carbon fluxes. To include this information into models that use an aseasonal
photosynthetic scheme, the maximum Rubisco capacity can be modified as follows:

V∗
c,max25 = Vc,max25 ⋅ erel(AL, fNL) (2)

where Vc,max25 is the maximum Rubisco capacity at 25∘C and erel is the photosynthetic efficiency defined
according to equation (1), but computed with simulated quantities (i.e., AL, LAI, and NB∗

L ).

2.3.1. T&C Model
To simulate soil water dynamics and vegetation functioning, the eco-hydrological model T&C is used (Fatichi,
2010; Fatichi et al., 2012a, 2012b). T&C combines a dynamic vegetation model accounting for plant physiology,
phenology, and carbon pool dynamics with a land surface and hydrologic module solving the surface energy
balance, soil-vegetation-atmosphere exchanges and subsurface water dynamics. T&C does not use plant func-
tional types, and its vegetation parameterization is tailored to each site and potentially for multiple species at
each site, even though many parameters may be equal across species and sites (Fatichi, Leuzinger, et al., 2016;
Mastrotheodoros et al., 2017). The T&C model can be thus listed as a trait-based vegetation model accounting
for interspecific and intraspecific plant trait variability. Trait-based approaches typically offer a better repre-
sentation of ecosystem functioning than models grouping plant traits into broad categories (Pappas et al.,
2016). T&C has been successfully applied to simulate water and carbon fluxes in various ecosystems worldwide
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Figure 1. Conceptualization of the leaf phenology model developed for tropical rainforests (a), observations from sites
km34 and km67 (b–e), and parameterization of erel (f ). Data are digitized from Wu et al. (2016). Phenological states
(Φ) and the count of days from the new season beginning (dflo) are regulated by changes in PAR (ΔPAR) exceeding an
assigned threshold (ΔPARth). See main text for details on the calculation of ΔPARth . (c) Canopy leaf age AL [mo] is
estimated using a simple mixing model (Wu et al., 2016) accounting for the partition of total LAI (squares in b) into
young (dotted line), mature (solid line), and old (dashed line) leaves (b) and assuming average ages of 1.5, 6, and
12 months, respectively. Only data for km34 are shown in (b) as similar trends are observed at km67 (Wu et al., 2016).
Photosynthetic efficiency (erel) and new leaf biomass production (NB∗L ) are illustrated in panels (d) and (e), respectively.
The dry season (i.e., monthly precipitation <100 mm; Christoffersen et al., 2014) is denoted by gray shaded regions
(dark gray for km34, light gray for km67 in panels (c), (d), and (e)). The observed dependence of erel on AL and NB∗L is
shown in panel (f ) together with the interpolating plane (equation (1). Note that a limit erel ≤ 1 is imposed. Given that

seasonal changes in LAI are limited, the fraction of new leaves fNL = kc
NB∗L
LAI

follows the same trend illustrated in panel (e)
for NB∗L . LAI = leaf area index; PAR = photosynthetic active radiation.

(Fatichi & Ivanov, 2014; Fatichi et al., 2015; Fatichi, Leuzinger, et al., 2016; Manoli et al., 2018; Paschalis et al.,
2015, 2016; Pappas et al., 2016) and is applied here in a revised form to the Amazon rainforests. Consistently
with other DGVMs (Restrepo-Coupe et al., 2017), in the case of evergreen biomes the original formulation of
T&C does not simulate a phenologic cycle of photosynthetic efficiency, which is maintained fixed through-
out the year. A modified T&C version incorporating the phenology of tropical evergreen ecosystems (i.e.,
equation (1) is therefore introduced next. Direct simulation of SIF is also implemented in T&C according to Lee
et al. (2015). Additional information on model equations are provided in the supporting information while a
list of variables and abbreviations is provided in Table 2.
2.3.2. T&C With Leaf Phenology
To describe the observed seasonality of photosynthesis, three phenological states (Φ) are employed
(Figure 1a): preparation to the new season (Φ = 1), initial growth (Φ = 2, corresponding to the beginning of
a new season), and normal growth (Φ = 3). This tropical phenology model describes a succession of periodic
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Table 2
Variables Used in the Tropical Phenology Module and Listed in the Text

Symbol Description Units

AL Leaf age months (mo)

AL,cr Critical leaf age days (d)

An Net carbon assimilation μ mol CO2 m−2 s−1

CL Leaf carbon pool gC m−2

ΔPAR Smoothed PAR time derivative W m2 d−1

ΔPARth Threshold for ΔPAR W m2 d−1

dflo Phenological index counting the days after new season beginning d

dL Turnover rate of leaves d−1

dmg phenological parameter (days of initial growth) d

erel Photosynthetic efficiency —

ET Evapotranspiration mm d−1

fL Carbon allocation fraction to leaves —

f ′L Preliminary carbon allocation fraction to leaves —

fNL monthly fraction of young (<1 month) leaves mo−1

GPP Gross primary productivity gC m−2 d−1

gs Stomatal conductance mol CO2 m−2 s−1

kc Correction factor —

LAI Leaf area index m2
leaf

m−2
ground

NBL New leaf biomass production gC m−2 mo−1

NB∗L New leaf production m2 m−2 mo−1

NLAI New leaf area increment m2 m−1 d−1

Φ Phenological state —

ΨL Predawn leaf water potential MPa

PAR Photosynthetic active radiation W m−2

PC Photosynthetic capacity molCO2
mol−1

photons

PCmax Maximum photosynthetic capacity molCO2
mol−1

photons

SIF Solar-induced fluorescence W m−2 sr−1 μm−1

SL Specific leaf area m2 gC−1

Vc,max25 Maximum Rubisco capacity at 25∘C μ mol CO2 m−2 s−1

plant life cycles similar to the stages adopted for temperate ecosystems (Arora & Boer, 2005; Fatichi, 2010)
but is modified to consider the peculiarities of tropical biomes, that is, observed synchronization of new leaf
growth and litterfall with sunlight during the dry season (Huete et al., 2006; Wu et al., 2016).

Given that dry-season greening closely tracks sunlight seasonality (Huete et al., 2006; Wu et al., 2016), changes
in photosynthetic active radiation (PAR) are used as the driver of leaf development. A new season (Φ = 1 → 2)
is set to begin when ΔPAR>ΔPARth, where ΔPAR = ⟨⟨PAR(t)⟩30 − ⟨PAR(t)⟩45⟩10 is a smoothed time deriva-
tive of PAR and ΔPARth is a specific threshold. The smoothing procedure is employed to remove the daily and
subdaily oscillations. This is achieved by computing the 10-day average of the difference between ⟨PAR(t)⟩30

and ⟨PAR(t)⟩45, that is, PAR averages over 30 and 45 preceding days, respectively. ΔPAR is negative when
PAR (on average) decreases with time, positive otherwise. This choice is guided by the hypothesis that veg-
etation “senses” the arrival of a new light-rich dry season by detecting an increase in sunlight availability
(Wright & Van Schaik, 1994) and is in accordance with observations of maximum leaf production 1 to 2 months
before the peak in PAR (Wu et al., 2016). Note that a similar mechanism based on light controls was used
to explain observed synchronous flowering in the tropics (Borchert et al., 2005). The signal (ΔPAR) is a non-
instantaneous sunlight control on rainforest greening as the new season starts when the threshold ΔPARth

is reached. The threshold ΔPARth is theoretically zero (i.e., the new season starts when ΔPAR switches from
negative to positive) but values of 0.75–1 (W m−2 d−1) are used here to account for the remaining noise
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in ΔPAR (see Figure 1 and supporting information Figure S1). At the end of stage Φ = 1 and during Φ = 2
a large fraction of the assimilated carbon is allocated to new leaf biomass NBL to support the observed
light-controlled green-up.

The preliminary carbon allocation fraction to leaves is computed as f ′L = 1 − dflo∕AL,cr where AL,cr is the crit-
ical leaf age (d), which is a model parameter and dflo [d] is a phenological index counting the days after the
beginning of the new season and computed as dflo(t + dt) = dflo(t) + dt, with dt = 1 day (see Figure 1a).
The remaining assimilated carbon is partitioned among fine roots, living sapwood, carbohydrate reserves,
and reproductive organs using functional allocation fractions and considering allometric constraints that
define final allocation fractions as in the original T&C (Fatichi et al., 2012a, 2012b). Tropical evergreen forests
do not experience proper senescence and dormant phases and carbon is allocated to reproductive organs
year-round. The transition to the normal growth phase (Φ = 2 → 3) takes place when dflo > dmg, where dmg (d)
is a prescribed number of days, while the transition Φ = 3 → 1 occurs when dflo >AL,cr . The parameters AL,cr

and dmg are employed in T&C also for other biomes and their values for tropical forests have been estimated,
respectively, from observations and during model calibration (see next subsection). Even though allocation
dynamics are variable throughout the year (Figure S1), from a modeling perspective phase Φ = 1 is identi-
cal to normal growth (Φ = 3) with the only difference that it allows for the preparation to a new season. The
criterion used for the transition to Φ = 1 (i.e., dflo >AL,cr) ensures that the new season cannot start before
the leaves produced in the previous year have reached maturity. During phase Φ = 1, dflo is scaled back as
dflo(t+dt) = dflo(t)−

365
365−AL,cr

dt to progressively increase allocation to new leaves and prepare for phaseΦ = 2

(Figures 1 and S1).

To increase litterfall with leaf onset (Wu et al., 2016), the turnover rate of leaves dL (d−1) is modified to include
NBL (gC m−2 d−1) as follows:

dL(t) =
⎧⎪⎨⎪⎩

NBL(t)⋅AL,cr

CL(t)
⋅ AL(t)

A2
L,cr

if NPP > 0

AL

A2
L,cr

if NPP ≤ 0

(3)

where AL [d] is the prognostic leaf age and CL is the leaf carbon pool (gC m−2). Leaf age AL is calculated as
follows (Fatichi, 2010; Krinner et al., 2005):

AL(t) =
[

LAI(t) − NLAI(t)
]
⋅
[

AL(t − dt) + dt
]
+ NLAI(t)dt

LAI(t)
(4)

where NLAI is the new leaf area increment [m2 m−2] on a time step and dt is the daily time step. For seasonal
tropical evergreens, the turnover rate of leaves is assumed to be proportional to the ratio of newly produced
leaves to the total biomass ( NBL(t)

CL(t)
), thus generating faster turnover times during leaf production and mim-

icking the observed behavior of shedding old leaves to create space for new ones (Wu et al., 2016). For an
aseasonal forest NBL(t)

CL(t)
= 1

AL,cr
and dL becomes equal to the original T&C version without tropical phenology.

Equations (1)–(4) provide a novel mechanistic approach for the simulation of phenology-controlled season-
ality in tropical evergreen forests. Compared to the original T&C formulation, the new approach introduces
only one additional model parameter (ΔPARth).
2.3.3. Simulation Setup
To assess the impact of leaf phenology on carbon/water fluxes in the Amazon basin, both the original (T&C)
and new (T&C with tropical phenology) model formulations are employed here. Meteorological forcings
measured at the 32 study sites are used as model inputs. Partition of solar radiation into diffuse and direct com-
ponents and in two wavebands is carried out by using the weather generator AWE-GEN (Fatichi et al., 2011).
Model parameters are calibrated at one site (km67), and results are validated at three locations (km34, CAX,
and RJA) for both model formulations with only few changes in the parameters set to tailor the application to
site-specific characteristics (e.g., rooting depth, see Table S1). Based on literature values (e.g., Bahar et al., 2017;
Baraloto et al., 2010), calibration was carried out by manually adjusting the most sensitive parameters for pho-
tosynthesis and transpiration (Mastrotheodoros et al., 2017). Calibrated parameters are then used to form two
sets of average biome-specific parameters (one for each model version) and applied to the remaining 30 sites
(Table S1). To be consistent with the theory of a common phenological mechanism operating across climatic
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Figure 2. Observed and simulated GPP, erel , and ET for the calibration (km67) and validation (km34, CAX, and RJA) sites in the Amazon basin (blue and black
boxes, respectively). Simulation results are shown for both the original and modified (i.e., with phenology) model formulations (red and blue lines, respectively).
The dry season (i.e., monthly precipitation <100 mm) is denoted by gray shaded regions. Error bars indicate ±1 standard deviation. In the case of digitized
data (erel and GPP), the standard deviation is estimated from the coefficient of variation of ET. ET = evapotranspiration; GPP = gross primary productivity.

gradients (Wu et al., 2016), physiological/phenological parameters are kept constant among sites and only
climate drivers and soil properties are varied. Soil hydraulic parameters (saturated hydraulic conductivity and
soil water retention curves) are estimated from soil textural properties (clay, sand, and organic matter content)
obtained for the site or retrieved from the SoilGrids250m database (Hengl et al., 2017), using the pedotrans-
fer functions by Saxton and Rawls (2006) with proper changes to account for tropical clay specificity (see the
supporting information for details).

Changes in the generic flux or variable Y (i.e., Y = {GPP, ET , LAI}) due to leaf phenology (ΔY [%]) are then
estimated as:

ΔY =
YT&C with phenology − YT&C

YT&C
⋅ 100 (5)

where YT&C and YT&C with phenology are the simulation results obtained with the original and modified T&C model
versions, respectively.

The two model versions are run with a few different calibrated parameters and ΔY thus represents possible
discrepancies due to tropical leaf phenology but also model parameters. To ensure that the calibration proce-
dure does not confound the effects of leaf phenology, we run additional model simulations using a single set
of calibrated parameters (see the supporting information for details). Results are very similar, suggesting that
the introduction of phenology rather than small differences in parameters is the main source of difference
between the two numerical experiments.

To ensure good quality of the meteorological forcing, only data from flux towers and meteorological stations
are considered. A basin-wide analysis could be performed by using model-derived reanalysis data. However,
the large bias in precipitation generally found in the tropics (e.g., Bosilovich et al., 2008) motivates our choice
of a plot-scale multisite analysis rather than a distributed analysis with incorrect local climatic forcing.
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Figure 3. Observed and simulated LAI, new leaf production NB∗L = NBL ⋅ SL , that is, new leaf mass times specific leaf area
(a and b), and leaf age AL (c and d) at km34 and km67 sites. New leaf data (NB∗L ) are digitized from Wu et al. (2016) and
scaled by kc to ensure consistency between LAI, litterfall, and leaf production (see main text for details). Simulation
results are obtained using the modified model version (T&C with phenology). LAI = leaf area index;
T&C = Thetys & Chloris.

3. Results
3.1. Calibration and Validation
Calibration and validation results are illustrated in Figure 2. The original model version (without leaf phenol-
ogy) assumes a fixed photosynthetic efficiency throughout the year (erel = 1) and provides seasonal fluxes
comparable with other DGVMs (see Restrepo-Coupe et al., 2017): The seasonality of ET fluxes is generally
correct but the dry season increase in GPP is not captured. When leaf phenology is introduced, model sim-
ulations successfully reproduce PC seasonality and capture the observed dry-season greening. In particular,
the correlation coefficient (r) between modeled and observed hourly GPP increased from 0.20 and 0.41 to
0.34 and 0.52 for km67 and km34, respectively (see the supporting information). At monthly time scales and
across the different sites, r increased from 0.2 to 0.5 (Figure S6). Note that the same set of parameters is used
for all of the sites and, considering the uncertainties of flux tower observations in the tropics, the result can
be considered to be a significant improvement. Interestingly, despite the changes in PC and GPP seasonal-
ity, simulated ET fluxes are only slightly affected by leaf phenology, thus preserving a good agreement with
observations and reproducing coherently the seasonality of ET and GPP. This result is explained by the limited
variability of LAI (Figure 3). While the production of new leaf biomass modifies mean leaf age (thus affecting
the photosynthetic efficiency through erel), the synchronization of leaf onset and literfall limits LAI changes
and, consequently, the impact on ET fluxes (see the supporting information). All these processes are well cap-
tured by the modified model version, T&C with phenology (Figures 3 and S1), which has only one additional
parameter. Additional comparisons between observations and model results are illustrated in the supporting
information for energy fluxes, GPP, and soil moisture dynamics.

3.2. Multisite Analysis
Model simulations are then used to evaluate the seasonal and interannual variability of carbon and water
fluxes in the Amazon. An overview of GPP, ET, and LAI as well as soil and predawn leaf water potential across
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Figure 4. Daily simulated GPP (a and b), ET (c and d), WUE (e and f), LAI (g and h), and predawn leaf water potential ΨL (i and j) at the 34 study sites using the
modified T&C model (T&C with phenology). Colors indicate the magnitude of mean annual precipitation, MAP (mm/year), at the different study sites.
ET = evapotranspiration; GPP = gross primary productivity; LAI = leaf area index; T&C = Thetys & Chloris; WUE = water use efficiency.

the study sites from year 1999 to 2015 is provided in Figures 4 and 5. Note that different sites cover different
periods of time. Also, predawn leaf water potential is a model quantity that integrates soil water potential
over the root zone weighted to account for fine root vertical distribution and expresses an ecosystem-scale
quantity that does not necessarily correspond to leaf-level observations of different species and thus should
be interpreted with care.

GPP is shown to be lower at the beginning of the dry season and reach a maximum by the end of the dry
season, with values generally ranging between 6 and 10 gC m−2 d−1. GPP dynamics are delayed compared to
ET fluxes that increase early in the dry season (ET> 5 mm d−1) and then decrease as the dry season progresses.
However, monthly averages of forest ET never fall below 2 mm d−1. Model simulation show ET values larger
than observations, but flux tower measurements are likely to considerably underestimate evaporation from
ground and intercepted water, especially after precipitation (Gerken et al., 2017; Hirschi et al., 2017; Leuning
et al., 2012). Overall, the dry season increase in GPP, timed with LAI and ET increments, is consistent across
sites (Figures 4b, 4d, and 4h) but clear spatial patterns of GPP and ET with mean annual rainfall (MAP) are not
observed (see next section). The water use efficiency WUE = GPP∕ET (gC m−2 mm−1) is low at the end of the
wet season and then increases during the dry months, indicating a more efficient water consumption linked
to leaves with higher photosynthetic capacity as the ET demand increases.
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Figure 5. Simulated monthly averages of GPP (a), SIF (b), and soil water potential (c and d) at sites A101, km117, and
A123. SIF observations from GOME-2 (Joiner et al., 2013) at the 32 sites are also illustrated for a qualitative comparison
(grey lines in panel b). The inset in panel b shows the location of the selected study sites. GOME-2 = Global Ozone
Monitoring Instrument 2; GPP = gross primary productivity; SIF = solar-induced fluorescence.

Plant water stress (Figure 4j) can occur at end of the dry season causing a reduction in ET, but ET is generally
modulated by incoming radiation. Model simulations clearly illustrate that several sites likely have experi-
enced water stress with major drought events in 2005 and 2010 (Liu et al., 2018). However, leaf water potential
is close to zero (i.e., no water stress) for most places most of the time and only major droughts are evident
with simulated predawn leaf water potential ΨL < −1 MPa at several locations (Figure 4i). Our results suggest
that the 2010 drought was an “independent” severe event, while plant water stress in 2005 was the result
of successive dry seasons that exacerbated drought through legacy effects. These results are consistent with
the observed increase in tree mortality during the 2005 drought event (Meir et al., 2009; Phillips et al., 2009)
and the greater anomalies in vegetation water content recorded in 2005 compared to 2010 (Liu et al., 2018)
but, given the difficulties in comparing modeled ΨL with observations and the paucity of ΨL measurements,
results cannot be rigourously confirmed.

The decrease in LAI at the end of the wet season (Figures 3 and 4h) reduces ET thus saving soil water for
the upcoming dry months, but the impact on the magnitude of ET is minimal. LAI dynamics show little sea-
sonality, the variability across sites is higher than seasonal variations, and LAI values range between 4 and
5.5 m m−2. The dry season increase in LAI and GPP (i.e., greening during August–November) is clearly repro-
duced in Figure 5, where simulated and observed SIFs are also illustrated for comparison. During the 2005
drought, some sites (e.g., A101) show no water stress and a dry season increase in GPP, while other locations
(e.g., km117) experience severe stress with a substantial decrease in productivity and, potentially, forest mor-
tality (Phillips et al., 2009). Even though fewer locations across the study sites seem to have experienced stress
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Figure 6. Comparison of simulation results (daily values) with and without leaf phenology: GPP (a), ET (b), LAI (c),
and predawn leaf water potential 𝜓L (d). Water use efficiency (WUE = GPP/ET [gC m−2 mm−1]) is also shown (inset in
panel b). Colors indicate mean annual precipitation values, MAP (mm/year), at the different study sites. The 1:1 line is
illustrated for comparison (yellow line). ET = evapotranspiration; GPP = gross primary productivity; LAI = leaf area index.

in 2010, the severity of drought in some locations is clearly illustrated by the temporal evolution of the soil
water potential (Figure 5d), which caused a sharp GPP reduction (see sites km117 and A123).

3.3. The Role of Leaf Phenology
The impact of leaf phenology on water/carbon fluxes is now evaluated by comparing simulation results from
the original and modified model versions (T&C and T&C with tropical phenology, respectively). Hourly values
of GPP, ET, LAI, and ΨL simulated with and without leaf phenology are illustrated in Figure 6. When phenology
is neglected, model results generally overestimate the total carbon uptake (ΔGPP < 0) as the GPP reduction
before the dry season is not captured (see Figures 2 and 6a and Restrepo-Coupe et al., 2017). As expected little
variations are observed in the ET fluxes and, given the changes on both GPP and ET, no appreciable devia-
tions in WUE are simulated (Figure 6b). Negative LAI changes (ΔLAI) are also obtained (Figure 6c), but they are
relatively small (<1 m m−2), and, at each site, LAI oscillates within a small range of values (Myneni et al., 2007).
Overall, the onset of new leaves at the beginning of the dry season can potentially increase forest resilience
to drought (i.e., its ability to maintain unaltered carbon and water fluxes under extremely dry conditions) by
maintaining more favorable leaf water potentials during drought (Figure 6d) and sustain water fluxes during
the dry season. This mechanism is explained by a decrease in LAI at the end of the wet season that reduces
ET, maintain favorable soil water conditions, and sustain ET maxima during the dry season (Wu et al., 2016).
However, our results suggest that such a phenology-induced increase in forest resilience should be relatively
limited and additional field measurements are required to test this assertion and support it with more quan-
titative evidence. Note that model simulations with and without phenology are run considering different sets
of calibrated parameters but calibration was tested to have a negligible effect on the phenology-induced
changes observed in Figure 6 (see the supporting information).

The spatial distribution of carbon/water fluxes and phenology-induced changes in GPP, ET, and LAI is illus-
trated in Figure 7. On average (yearly and among sites), the addition of leaf phenology results in GPP, ET,
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Figure 7. Land cover (a) and mean annual precipitation (MAP) (b) in tropical Amazonia. Simulated GPP, ET,
and LAI (mean annual values) at the 34 study sites using T&C with phenology are illustrated in panels c, e, and g.
Phenology-induced changes in simulated GPP, ET, and LAI are shown in panels d, f, and h. Land cover data are derived
from the Global Land Cover 2000 database (European Commission, Joint Research Centre, 2003), while precipitation
is based on the GPCC Full Data Reanalysis of monthly global land-surface precipitation (Schneider et al., 2015).
ET = evapotranspiration; GPP = gross primary productivity; LAI = leaf area index; T&C = Thetys & Chloris.

and LAI changes of −2.56%, +0.4%, and −1.3%, respectively (with ΔGPP ∈ [−7.6; 5.9]), ΔET ∈ [-4.1; 5.9], and
ΔLAI ∈ [−14.0; 10.8]). While GPP is consistently overestimated when leaf phenology is neglected, changes in
ET and LAI are small and no clear spatial pattern can be identified.

4. Discussion
4.1. Leaf Phenology in DGVMs
Global estimates of GPP are still highly uncertain (Badgley et al., 2017), and tropical carbon fluxes are poorly
resolved in existing DGVMs (Restrepo-Coupe et al., 2017). Tropical forest GPP is a major component of the
global carbon cycle (Musavi et al., 2017), and understanding its seasonal and interannual variability is cru-
cial to predict global climate dynamics. Here we have provided a novel mechanistic approach to represent
leaf phenology and GPP seasonality that requires a single parameter and is general enough to be used in
any DGVM that has a prognostic phenology and simulates leaf age. Its inclusion can improve the assessment
of carbon and water fluxes in the tropics. We have shown that carbon uptake is likely to be biased by cur-
rent DGVMs simulations and, in the absence of leaf phenology, model parameterization can lead to both
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an underestimation and overestimation of photosynthesis (as happened here, Figures 2a–2d). Previous efforts
to include tropical phenology in DGVMs focused on parameterizing Vc,max as a function of leaf age (De Weirdt
et al., 2012; Kim et al., 2012) and introducing a radiation-dependent leaf turnover rate (Kim et al., 2012). These
modifications improved the ability of models to capture the seasonality of litterfall (De Weirdt et al., 2012) and
carbon fluxes (Kim et al., 2012). Here we introduced a mechanistic link between light controls, leaf demogra-
phy, and photosynthetic efficiency and we have shed light on seasonal dynamics of forest ET and ecosystem
responses to drought. This approach is consistent with recent field observations showing that mature leaves
have “better quality” (i.e., higher Vc,max) than young and old leaves and their quantity increases during the dry
season (Albert et al., 2018; Wu et al., 2016). Building on this knowledge, future model improvements could
focus on the explicit representation of different leaf age classes that are encoded here in a single canopy age,
AL, and another variable, which is the fraction of young leaves fNL. Such a modification might improve the
timing of simulated leaf flush (Figure 3) and allow a direct comparison with available data for young, mature,
and old leaves (Albert et al., 2018). In this regard, more resolved litterfall and biomass production data as well
as observations from more locations in the tropics are needed to better assess the performance of tropical
phenology schemes.

4.2. Leaf Phenology and Water Stress in the Amazon Rainforest
Coordinated ecosystem-scale phenology is likely to be an evolutionary strategy to maximize photosynthe-
sis during drier but light-richer periods (Myneni et al., 2007) and optimize carbon gain in year-round warm
climates (Wu et al., 2016). On evolutionary timescales, producing leaves and flowers in synchronous flushes
during the dry season could also be an “escape” strategy to reduce the damages from herbivores, which
are more abundant at the beginning of the wet season (Aide, 1988, 1992) or the result of biotic interactions
between plants and pollinators (Borchert et al., 2005). However, these responses to biotic pressures are largely
neglected in the context of DGVMs, and seasonal variations in rainfall, light, and soil water availability are gen-
erally accepted as the major causes of observed tropical phenology (Borchert et al., 2004; Brando et al., 2006;
Kim et al., 2012; Wright & Van Schaik, 1994; Wu et al., 2016). Our results confirm the hypothesis that leaf phe-
nology may act to facilitate dry season maxima in water fluxes (Chavana-Bryant et al., 2016; Wu et al., 2016)
since we found little evidence of soil moisture stress in most of the locations with ET fluxes supported by
deep root water uptake. Existing evidence suggests that such late dry season fluxes are key to activating shal-
low convection and initiate the dry-to-wet season transition (Machado et al., 2004; Wright et al., 2017). In this
framework leaf phenology can help enhance resilience to drought by reducing LAI at the end of the wet sea-
son, thus “saving” soil water for the upcoming dry months but quantitative evidence is minimal. The impact
on ET is relatively small (+0.4%), indicating that tropical leaf phenology may have little impact on forest toler-
ance to drought, and implications for simulated rainfall recycling (Betts et al., 2004; Bonetti et al., 2015; Eltahir
& Bras, 1994) and climate teleconnections (Stark et al., 2016; Wright et al., 2017; Wu et al., 2016) should be lim-
ited. However, the simulated seasonality of WUE suggest that leaf development and synchronized dry season
litterfall are in agreement with evolutionary strategies aimed at increasing the efficiency of photosynthesis
and water consumption during periods of abundant light but potentially low water availability (i.e., at the end
of the dry season).

The small sensitivity of ET to leaf phenology is explained by the fact that changes in the maximum Rubisco
capacity (V∗

c,max25) due to seasonality (i.e., erel) have direct effects on carbon assimilation (An) and GPP accord-
ing to the Farquhar model An is proportional to V∗

c,max25 in light-rich environments; Bonan et al., 2011; Collatz
et al., 1991; Farquhar et al., 1980; see the supporting information) but only an indirect impact on ET through
changes in the stomatal conductance (gs) of sunlit and shaded leaves (modeled according to Leuning, 1995,
in T&C). In particular, while erel affects gs, the impact of leaf phenology on transpiration is buffered by
canopy-atmosphere decoupling (De Kauwe et al., 2017), significant for tall broadleaf tropical forests, and con-
comitant LAI changes, which reduce the changes in ET as compared to ΔGPP (see the supporting information
for details).

Our results also show that Amazonian forests experienced a severe water stress in 2005 due to a legacy effect
of deficient rainfall in previous dry/wet seasons that aggravated water stress by systematically decreasing
soil-plant water potentials (Figure 4i). Such legacy effects were not visible in 2010, probably due to a very wet
2009 (Marengo et al., 2011). Thus, the hypothesis that tropical forest are resilient to short-term climatic anoma-
lies (Saleska et al., 2007) but vulnerable to prolonged (i.e., multiyear) drought events (Nepstad et al., 2007;
Ivanov et al., 2012) is generally supported here. Furthermore, these results are consistent with the observa-
tions of severe drought events in the Amazon region in 2005 and 2010 (Lewis et al., 2011; Marengo et al., 2011).
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After the 2005 drought an increase in tree mortality was observed (Phillips et al., 2009) and a suppression of
photosynthesis caused a neutralization of the carbon sink in 2010 (Gatti et al., 2014). A multisite analysis by
Doughty et al. (2015) also revealed that trees’ allocation to maintenance and defence tissues decreased during
the 2010 drought, thus increasing the risk of postdrought mortality.

Basin-wide drought assessments based on satellite-derived rainfall data have considerable uncertainty
as compared to plot-scale analyses that are also better representing effects of local soil conditions and
soil-moisture temporal and vertical variability. As a matter of fact, ecosystem functioning and productivity are
directly linked to soil water availability rather than rainfall (Bonetti et al., 2017; Fatichi, Pappas, et al., 2016).
Hence, despite the spatial limitation of our analysis (performed at the plot-scale in multiple sites), the simula-
tion of coupled soil-plant-atmosphere processes here provides an insightful quantification of the mechanisms
regulating dry-season greening and water stress in the Amazon. In particular, we show that depending on
complex interactions between rainfall variability, soil water content, and canopy phenological state, plot-scale
forest productivity can both increase or decrease during the dry season (see simulated GPP in 2005 and 2010;
Figure 5). These results are consistent with the observed heterogeneities of basin-wide responses to drought
reported in the literature (Lewis et al., 2011; Phillips et al., 2009).

5. Conclusions

A novel approach to model GPP seasonality in the tropics and a multisite, multiyear analysis relying on locally
observed meteorological data only and illustrating forest responses to climate variability across the Amazon
basin over a 15-year period has been presented. Our results provide a first mechanistic description of tropical
leaf phenology, reconciling observed dry-season greening and water limitations in the Amazon and paving
the way for future model analyses accounting for photosynthetic seasonality in the tropics. Leaf phenology
is shown to influence considerably ecosystem carbon fluxes with little impact on evapotranspiration and
resilience to short-term drought. Phenology-related inaccuracies in the simulation of water and energy fluxes
are unlikely, but existing DGVMs generally overestimate or underestimate GPP, because they lack a seasonal
cycle of photosynthetic efficiency. Accounting for the effects of leaf quality and quantity on photosynthesis
is therefore crucial to accurately describe the Amazon carbon balance from hourly to decadal timescales.
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